A complex symplectic structure on a Lie algebra h is an integrable complex structure J with a closed non-degenerate (2, 0)-form. It is determined by J and the real part of the (2, 0)-form. Suppose that h is a semi-direct product g V, and both g and V are Lagrangian with respect to and totally real with respect to J. This note shows that g V is its own weak mirror image in the sense that the associated differential Gerstenhaber algebras controlling the extended deformations of and J are isomorphic. The geometry of (, J) on the semi-direct product g V is also shown to be equivalent to that of a torsion-free flat symplectic connection on the Lie algebra g. By further exploring a relation between (J, ) with hypersymplectic Lie algebras, we find an inductive process to build families of complex symplectic algebras of dimension 8 n from the data of the 4 n-dimensional ones.