In this paper, we prove that the ODE system,
$ \dot{x}=sinz+cosy$
$ \dot{y}=sinx+cosz$
$ \dot{z}=siny+cosx$
whose right-hand side is the Arnold-Beltrami-Childress (ABC) flow with parameters A = B = C = 1, has periodic orbits on $(2 \pi T)^3$ with rotation vectors parallel to (1, 0, 0), (0, 1, 0), and (0, 0, 1). An application of this result is that the well-known G-equation model for turbulent combustion with this ABC flow on $R^3$ has a linear (i.e., maximal possible) flame speed enhancement rate as the amplitude of the flow grows.