Representation Theory

[46] Non-separability of the Gelfand space of measure algebras

Przemysław Ohrysko Institute of Mathematics, Polish Academy of Sciences Michał Wojciechowski Institute of Mathematics, Polish Academy of Sciences Colin C. Graham Department of Mathematics, University of British Columbia

Representation Theory Rings and Algebras mathscidoc:1701.30003

Arkiv for Matematik, 1-11, 2016.2
[ Download ] [ 2017-01-08 20:34:08 uploaded by arkivadmin ] [ 33 downloads ] [ 0 comments ] [ Abstract ] [ Full ]
Please log in for comment!
 

[47] Parity sheaves on the affine Grassmannian and the Mirković–Vilonen conjecture

Pramod N. Achar Department of Mathematics, Louisiana State University Laura Rider Department of Mathematics, Massachusetts Institute of Technology

Representation Theory mathscidoc:1701.30002

Acta Mathematica, 215, (2), 183-216, 2014.7
[ Download ] [ 2017-01-08 20:34:05 uploaded by actaadmin ] [ 37 downloads ] [ 0 comments ] [ Abstract ] [ Full ]
Please log in for comment!
 

[48] Every finite group is the group of self-homotopy equivalences of an elliptic space

Cristina Costoya Departamento de Computación, Álxebra, Universidade da Coruña Antonio Viruel Departamento de Álgebra, Geometría y Topología, Universidad de Málaga

Representation Theory mathscidoc:1701.30001

Acta Mathematica, 213, (1), 49-62, 2012.11
[ Download ] [ 2017-01-08 20:34:03 uploaded by actaadmin ] [ 85 downloads ] [ 0 comments ] [ Cited by 5 ] [ Abstract ] [ Full ]
Please log in for comment!
 

[49] Dirac cohomology for graded affine Hecke algebras

Dan Barbasch Department of Mathematics, Cornell University Dan Ciubotaru Department of Mathematics, University of Utah Peter E. Trapa Department of Mathematics, University of Utah

K-Theory and Homology Representation Theory mathscidoc:1701.20001

Acta Mathematica, 209, (2), 197-227, 2010.12
[ Download ] [ 2017-01-08 20:33:59 uploaded by actaadmin ] [ 54 downloads ] [ 0 comments ] [ Cited by 11 ] [ Abstract ] [ Full ]
Please log in for comment!
 

[50] On rooted cluster morphisms and cluster structures in 2-Calabi–Yau triangulated categories

Wen Chang Shaanxi Normal University Bin Zhu Tsinghua University

Representation Theory mathscidoc:1611.30001

Journal of Algebra, 458, 387-421, 2016
[ Download ] [ 2016-11-23 15:54:38 uploaded by bzhu ] [ 97 downloads ] [ 0 comments ] [ Cited by 3 ] [ Abstract ] [ Full ]
Please log in for comment!
 

Show all 3 5 10 25 papers per page.
Sort by time views
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved