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Abstract We prove that if Mn(n ≥ 4) is a compact Einstein manifold whose normal-
ized scalar curvature and sectional curvature satisfy pinching condition R0 > σn Kmax,
where σn ∈ ( 1

4 , 1) is an explicit positive constant depending only on n, then M must be
isometric to a spherical space form. Moreover, we prove that if an n(≥4)-dimensional
compact Einstein manifold satisfies Kmin ≥ ηn R0, where ηn ∈ ( 1

4 , 1) is an explicit
positive constant, then M is locally symmetric. It should be emphasized that the pinch-
ing constant ηn is optimal when n is even. We then obtain some rigidity theorems for
Einstein manifolds under (n − 2)-th Ricci curvature and normalized scalar curvature
pinching conditions. Finally we extend the theorems above to Einstein submanifolds
in a Riemannian manifold, and prove that if M is an n(≥4)-dimensional compact Ein-
stein submanifold in the simply connected space form F N (c) with constant curvature
c ≥ 0, and the normalized scalar curvature R0 of M satisfies R0 > An

An+4n−8 (c + H2),

where An = n3 − 5n2 + 8n, and H is the mean curvature of M , then M is isometric
to a standard n-sphere.
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170 H. Xu, J. Gu

1 Introduction

It plays an important role in Riemannian geometry to study the rigidity of Einstein man-
ifolds. To classify the Einstein manifolds satisfying some curvature pinching condition
is an important problem, which was initiated by Berger [1]. In 1974, Tachibana [23]
proved that a compact Einstein manifold with positive curvature operator is isometric
to a spherical space form. Later, Micallef and Wang [16] proved that a four-dimensional
Einstein manifold with nonnegative isotropic curvature is locally symmetric. In 2000,
Yang [28] obtained the following rigidity theorem on four-dimensional Einstein man-
ifolds with positive sectional curvature.

Theorem A Let M be a 4-dimensional compact Einstein manifold with RicM = 3. If
the sectional curvature of M satisfies

KM ≥ ε0 ≡
√

1249 − 23

40
≈ 0.308529,

then M is isometric to either the unit 4-sphere S4, the 4-dimensional real projective
space RP4, or the complex projective space CP2.

In 2003, the pinching constant above was improved to 0.292893 by de Araujo Costa
in [9]. More discussions about the Einstein manifolds can be seen in [2,13,19], etc.
Recently, Brendle [8] generalized Micallef and Wang’s theorem [16] for 4-dimensional
Einstein manifolds to higher dimensional cases.

Theorem B Let M be an n(≥4)-dimensional compact Einstein manifold. If M has
positive isotropic curvature, then M is isometric to a spherical space form. Moreover,
if M has nonnegative isotropic curvature, then M is locally symmetric.

Let K (π) be the sectional curvature of M for 2-plane π ⊂ Tx M . Set Kmax(x) :=
maxπ⊂Tx M K (π), Kmin(x) := minπ⊂Tx M K (π). Denote by Ric(k) the k-th Ricci cur-
vature of M (see Definition 2.2 below). The following rigidity theorem can be viewed
as a consequence of Theorem B.

Theorem C Let M be an n(≥4)-dimensional compact Einstein manifold. If Kmin ≥
1
4 Kmax, and the strict inequality holds for some point x0 ∈ M, then M is isometric to
a spherical space form.

The purpose of this paper is to prove some new rigidity theorems for Einstein
manifolds and submanifolds. In Sect. 3, we prove the following rigidity theorem for
compact Einstein manifolds with positive scalar curvature.

Theorem 1.1 Let M be an n(≥4)-dimensional compact Einstein manifold. Denote
by R0 := c the normalized scalar curvature of M. We have

(i) If R0 > σn Kmax, then M is isometric to a spherical space form of constant
curvature c.
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Rigidity of Einstein manifolds with positive scalar curvature 171

(ii) If Kmin ≥ ηn R0 > 0, then M is locally symmetric. In particular, if M is simply
connected, then M is isometric to either the standard n-sphere Sn( 1√

c
) or the

complex projective space CPm(c̃) with n = 2m.

Here

σn = 1 − 6

5(n − 1)
,

ηn = 1 − 3

n + 2
,

c̃ = 4(n − 1)

n + 2
c.

Furthermore, we obtain the following rigidity theorem.

Theorem 1.2 Let M be an n(≥4)-dimensional compact Einstein manifold. Denote
by R0 := c and Ric(n−2) the normalized scalar curvature and the (n − 2)-th Ricci
curvature of M. We have

(i) If Ric(n−2)
min > τn(n − 2)R0, then M is isometric to a spherical space form of

constant curvature c.
(ii) If (n − 2)R0 ≥ μn Ric(n−2)

max > 0, then M is locally symmetric. In particular, if M
is simply connected, then M is isometric to either the standard n-sphere Sn( 1√

c
)

or the complex projective space CPm(c̃) with n = 2m.

Here

τn = 1 − 6

(n − 2)(5n − 11)
,

μn = 1 − 3

(n − 1)(n + 1)
,

c̃ = 4(n − 1)

n + 2
c.

Remark 1.1 We see from Example 3.1 that the pinching constants ηn and μn are
optimal when n is even.

Let M be an n-dimensional compact submanifold in an N -dimensional Riemannian

manifold M
N

with mean curvature H . In Sect. 4, we extend the theorems above to
Einstein submanifolds in a Riemannian manifold with arbitrary codimension, and
prove the following rigidity theorem.

Theorem 1.3 Let M be an n(≥4)-dimensional compact Einstein submanifold in the

Riemannian manifold M
N

. If S ≤ 16
3

(
K min− 1

4 K max

)
+ n2 H2

n−2 , and the strict inequality

holds for some point x0 ∈ M, then M is isometric to a spherical space form.

Remark 1.2 When M is a compact Einstein submanifold of codimension zero, Theo-
rem 1.3 reduces to Theorem C.
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172 H. Xu, J. Gu

In particular, we obtain the following rigidity theorem for Einstein submanifolds
in a space form.

Theorem 1.4 Let M be an n(≥4)-dimensional compact Einstein submanifold in the
simply connected space form F N (c) with constant curvature c. If the normalized scalar
curvature R0 of M satisfies

R0 >
An

An + 4n − 8
(c + H2),

where An = n3 − 5n2 + 8n, then M is isometric to a spherical space form. Moreover,
if c ≥ 0, then M is isometric to a standard n-sphere.

2 Notation and lemmas

Let Mn be an n(≥4)-dimensional submanifold in an N -dimensional Riemannian man-
ifold M

N
. We shall make use of the following convention on the range of indices.

1 ≤ A, B, C, . . . ≤ N ; 1 ≤ i, j, k, . . . ≤ n;
if N ≥ n + 1, n + 1 ≤ α, β, γ, . . . ≤ N .

For an arbitrary fixed point x ∈ M ⊂ M , we choose an orthonormal local frame

field {eA} in M
N

such that ei ’s are tangent to M . Denote by {ωA} the dual frame field
of {eA}. Let

Rm =
∑

i, j,k,l

Ri jklωi ⊗ ω j ⊗ ωk ⊗ ωl ,

Rm =
∑

A,B,C,D

R ABC DωA ⊗ ωB ⊗ ωC ⊗ ωD

be the Riemannian curvature tensors of M and M , respectively. Denote by h the second
fundamental form of M . When N = n, h is identically equal to zero. When N ≥ n+1,
we set

h =
∑
α,i, j

hα
i jωi ⊗ ω j ⊗ eα.

Then we have the Gauss equation

Ri jkl = Ri jkl + 〈h(ei , ek), h(e j , el)〉 − 〈h(ei , el), h(e j , ek)〉. (2.1)

The squared norm S of the second fundamental form of M is given by

S :=
∑
α,i, j

(hα
i j )

2.
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Rigidity of Einstein manifolds with positive scalar curvature 173

We put

ξ := 1

n

∑
α,i

hα
i i eα, H := ‖ξ‖ = 1

n

√∑
α

(
∑

i

hα
i i )

2.

Definition 2.1 (See also [29], P.349) ξ and H are called the mean curvature vector
and mean curvature of M , respectively.

Denote by K (·), K (·), Ric(·), Ric(·), R and R the sectional curvatures, the Ricci
curvatures and the scalar curvatures of M and M , respectively. Then we have

Ric(ei ) =
∑

j

Ri ji j , Ric(eA) =
∑

B

R AB AB,

R =
∑
i, j

Ri ji j , R =
∑
A,B

R AB AB .

Set

Kmin(x) = min
π⊂Tx M

K (π), Kmax(x) = max
π⊂Tx M

K (π),

K min(x) = min
π⊂Tx M

K (π), K max(x) = max
π⊂Tx M

K (π).

Then by Berger’s inequality (See e.g. [5], Proposition 1.9), we have

|Ri jkl | ≤ 2

3
(Kmax − Kmin) (2.2)

for all distinct indices i, j, k, l, and

|R ABC D| ≤ 2

3
(K max − K min) (2.3)

for all distinct indices A, B, C, D. We set

Ricmin(x) = min
u∈Ux M

Ric(u), Ricmin(x) = min
u∈Ux M

Ric(u),

Ricmax(x) = max
u∈Ux M

Ric(u), Ricmax(x) = max
u∈Ux M

Ric(u).

For any unit tangent vector u ∈ Ux M at point x ∈ M, let V k
x be a k-dimensional

subspace of Tx M satisfying u ⊥ V k
x . Choose an orthonormal basis {ei } in Tx M such

that e j0 = u, span{e j1 , . . . , e jk } = V k
x , where the indices 1 ≤ j0, j1, . . . , jk ≤ n are

distinct with each other. We set

Ric(k)(u; V k
x ) = Ric(k)([e j0 , . . . , e jk ]) =

k∑
q=1

R j0 jq j0 jq . (2.4)
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174 H. Xu, J. Gu

We extend an orthonormal s-frame {e j0 , . . . , e js−1} in Tx M to (k + 1)-frame
{e j0 , . . . , e jk } for 1 ≤ s ≤ k + 1 ≤ n and set

R(k,s)([e j0 , . . . , e jk ]) =
s−1∑
p=0

k∑
q=0

R jp jq jp jq , (2.5)

R(k)([e j0 , . . . , e jk ]) = R(k,k+1)([e j0 , . . . , e jk ]) =
k∑

p=0

k∑
q=0

R jp jq jp jq . (2.6)

Definition 2.2 We call Ric(k)(u; V k
x ), R(k,s)([e j0 , . . . , e jk ]), and R(k)([e j0 , . . . , e jk ])

the k-th Ricci curvature, (k, s)-curvature and k-th scalar curvatrure of M , respectively.

Denote by Ric(k)
min(x), R(k,s)

min (x) and Ric(k)
max(x), R(k,s)

max (x) the minimum and max-
imum of the k-th Ricci curvature and (k, s)-curvature at point x ∈ M for any ortho-
normal (k + 1)-frame in Tx M . Set

R(k)
min = R(k,k+1)

min , R(k)
max = R(k,k+1)

max .

The geometry and topology of k-th Ricci curvature was initiated by Hartman [12]
in 1979, and developed by Wu [24] and Shen [20,21], etc.. By the definition above,
it is seen that the Ricci curvature of M is equal to the (n − 1)-th Ricci curvature and
(n − 1, 1)-curvature; the scalar curvature of M is equal to (n − 1, n)-curvature and
(n − 1)-th scalar curvature. If M is Einstein, then

Ricmin = Ricmax = R

n
= constant. (2.7)

For any unit tangent vector u ∈ Ux M at point x ∈ M, let V k
x be a k-dimensional

subspace of Tx M satisfying u ⊥ V k
x . Choose an orthonormal basis {eA} in Tx M such

that eA0 = u, span{eA1 , . . . , eAk } = V k
x , where the indices 1 ≤ A0, A1, . . . , Ak ≤

N are distinct with each other. We define the k-th Ricci curvature as follows.

Ric
(k)

(u; V k
x ) =

k∑
q=1

R A0 Aq A0 Aq . (2.8)

Moreover, we define the k-th scalar curvature of M as follows.

R
(k)

([eA0 , . . . , eAk ]) =
k∑

p=0

k∑
q=0

R Ap Aq Ap Aq . (2.9)

Denote by Ric
(k)

min(x), R
(k)

min(x) and Ric
(k)

max(x), R
(k)

max(x) the minimum and maxi-
mum of the curvatures defined above at point x ∈ M .

The following nonexistence theorem for stable currents in a compact Riemannian
manifold M isometrically immersed into the simply connected space form F N (c) is
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Rigidity of Einstein manifolds with positive scalar curvature 175

employed to eliminate the homology groups Hq(M; Z) for 0 < q < n, which was
initiated by Lawson-Simons [14] and extended by Xin [25].

Theorem 2.1 Let Mn be a compact submanifold in F N (c) with c ≥ 0. Assume that

n∑
k=q+1

q∑
i=1

[2|h(ei , ek)|2 − 〈h(ei , ei ), h(ek, ek)〉] < q(n − q)c

holds for any orthonormal basis {ei } of Tx M at any point x ∈ M, where q is an
integer satisfying 0 < q < n. Then there are no stable q-currents in M. Moreover,

Hq(M; Z) = Hn−q(M; Z) = 0,

where Hi (M; Z) is the i-th homology group of M with integer coefficients, and
π1(M) = 0 when q = 1.

For submanifolds with positive Ricci curvature, we have the following lemma.

Lemma 2.1 [26] Let M be an n(≥4)-dimensional compact submanifold in F N (c)
with c ≥ 0. If the Ricci curvature of M satisfies

RicM >
n(n − 1)

n + 2
(c + H2),

then M is simply connected.

Proof From Gauss equation, we have

Ric(ei ) = (n − 1)c +
∑
α,k

[hα
i i h

α
kk − (hα

ik)
2]. (2.10)

Moreover, we have

−S + n2 H2 + n(n − 1)c = R ≥ n Ricmin.

This implies that

S − nH2 ≤ n(n − 1)(c + H2) − n Ricmin. (2.11)

It follows from (2.10), (2.11) and the assumption that

n∑
k=2

[2|h(e1, ek)|2 − 〈h(e1, e1), h(ek, ek)〉] − (n − 1)c

= 2
∑
α

n∑
k=2

(hα
1k)

2 −
∑
α

n∑
k=2

hα
11hα

kk − (n − 1)c
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=
∑
α

n∑
k=2

(hα
1k)

2 − Ric(e1)

≤ 1

2
(S − nH2) − Ric(e1)

≤ 1

2
[n(n − 1)(c + H2) − (n + 2)Ricmin]

< 0. (2.12)

Hence the assertion follows from Theorem 2.1. This proves Lemma 2.1. ��
Lemma 2.2 [11] Let M be a compact Riemannian manifold of dimension n. If M has
nonnegative isotropic curvature and has positive isotropic curvature for some point
in M, then M admits a metric with positive isotropic curvature.

3 Rigidity theorems for Einstein manifolds

In this section, we will give the proof of Theorems 1.1 and 1.2.

Lemma 3.1 Let M be an n(≥4)-dimensional compact Einstein manifold. Assume M
satisfies one of the following conditions:

(i) Ric(k)
min > (k − 6

5 )Kmax for some integer k ∈ [2, n − 1];
(ii) Ric(k)

min > 5k−6
5k−1 Ric(k+1)

max for some integer k ∈ [2, n − 2];
(iii) Ric(k)

min > 5k−6
5k2+9k−8

R(k+1)
max for some integer k ∈ [2, n − 2];

(iv) Ric(k)
min >

(k+2)(5k−6)

s(5k2+9k−8)
R(k+1,s)

max for some integers k ∈ [2, n−2] and s ∈ [2, k +2].
Then M is isometric to a spherical space form.

Proof (i) It follows from (2.4) that

Kmin ≥ Ric(k)
min − (k − 1)Kmax. (3.1)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame. It follows from Berger’s inequal-
ity (2.2) that

R1234 ≤ 2

3
(Kmax − Kmin).

This together with (3.1) implies that

R1313 + R2323 + R1414 + R2424 − 2R1234

≥ 2Ric(k)
min − 2(k − 2)Kmax − 4

3
(Kmax − Kmin)

≥ 2Ric(k)
min − 2(k − 2)Kmax − 4

3
[kKmax − Ric(k)

min]

≥ 10

3

[
Ric(k)

min −
(

k − 6

5

)
Kmax

]
. (3.2)
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Rigidity of Einstein manifolds with positive scalar curvature 177

This together with the assumption implies that M has positive isotropic curvature. It
follows from Theorem B that M is isometric to a spherical space form.

(ii) It’s easy to get from (2.4) that

Kmax ≤ Ric(k+1)
max − Ric(k)

min. (3.3)

This together with the assumption implies that

Ric(k)
min >

5k − 6

5k − 1
Ric(k+1)

max

≥ 5k − 6

5k − 1
(Kmax + Ric(k)

min).

A direct calculation show that Ric(k)
min > (k − 6

5 )Kmax, and the conclusion follows
from (i).

(iii) By Definition 2.2, we obtain

Kmax ≤ 1

2
[R(k+1)

max − (k + 3)Ric(k)
min]. (3.4)

It follows from (3.4) and the assumption that

Ric(k)
min >

5k − 6

5k2 + 9k − 8
R(k+1)

max

≥ 5k − 6

5k2 + 9k − 8
[2Kmax + (k + 3)Ric(k)

min].

Then we obtain Ric(k)
min > (k − 6

5 )Kmax. This together with (i) implies that M has
constant sectional curvature.

(iv) From (2.5) and (2.6), we have

R(k+1,s)
max

s(k + 1)
≥ R(k+1)

max

(k + 1)(k + 2)
, (3.5)

which together with the assumption implies

Ric(k)
min >

(k + 2)(5k − 6)

s(5k2 + 9k − 8)
R(k+1,s)

max

≥ 5k − 6

5k2 + 9k − 8
R(k+1)

max . (3.6)

Then the assertion follows from (iii).
This proves the lemma. ��
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Lemma 3.2 Let M be an n(≥4)-dimensional compact Einstein manifold. Suppose
one of the following conditions holds:

(i) Kmin > 1
k+3 Ric(k)

max for some integer k ∈ [2, n − 1];
(ii) Ric(k+1)

min > k+4
k+3 Ric(k)

max for some integer k ∈ [2, n − 2];
(iii) R(k+1)

min > k2+6k+11
k+3 Ric(k)

max for some integer k ∈ [2, n − 2];
(iv) R(k+1,s)

min >
s(k2+6k+11)
(k+2)(k+3)

Ric(k)
max for some integers k ∈ [2, n−2] and s ∈ [2, k+2].

Then M is isometric to a spherical space form.

Proof (i) From (2.4), we obtain that

Kmax ≤ Ric(k)
max − (k − 1)Kmin. (3.7)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame. Combing (2.2) and (3.7), we
get

R1313 + R2323 + R1414 + R2424 − 2R1234

≥ 4Kmin − 4

3
(Kmax − Kmin)

≥ 16

3
Kmin − 4

3
[Ric(k)

max − (k − 1)Kmin]

≥ 4

3
[(k + 3)Kmin − Ric(k)

max]. (3.8)

This together with the assumption implies M has positive isotropic curvature. From
Theorem B, we see that M has constant sectional curvature.

(ii) It’s seen from (2.4) that

Kmin ≥ Ric(k+1)
min − Ric(k)

max. (3.9)

Then we get from the assumption that

Kmin ≥ Ric(k+1)
min − Ric(k)

max

>
k + 4

k + 3
Ric(k)

max − Ric(k)
max

= 1

k + 3
Ric(k)

max. (3.10)

Therefore, the assertion follows from (i).
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(iii) It follows from (2.4), (2.6) and the assumption that

Kmin ≥ 1

2
[R(k+1)

min − (k + 3)Ric(k)
max]

>
1

2

[k2 + 6k + 11

k + 3
Ric(k)

max − (k + 3)Ric(k)
max

]

= 1

k + 3
Ric(k)

max. (3.11)

This together with (i) implies that M has constant sectional curvature.

(iv) By (2.5) and (2.6), we get

R(k+1,s)
min

s(k + 1)
≤ R(k+1)

min

(k + 1)(k + 2)
, (3.12)

which together with the assumption implies

Ric(k)
max <

(k + 2)(k + 3)

s(k2 + 6k + 11)
R(k+1,s)

min

≤ k + 3

k2 + 6k + 11
R(k+1)

min . (3.13)

It follows from (iii) that M is isometric to a spherical space form.
This proves the lemma. ��

Lemma 3.3 Let M be an n(≥4)-dimensional compact Einstein manifold. If one of
the following conditions holds:

(i) R(k)
min >

(
k2 + k − 24

7

)
Kmax for some integer k ∈ [3, n − 1];

(ii) R(k,s)
min >

s(7k2+7k−24)
7(k+1)

Kmax for some integers k ∈ [3, n − 1] and s ∈ [2, k + 1];
(iii) Kmin > 1

ks+6 R(k,s)
max for some integers k ∈ [1, n − 1] and s ∈ [2, k + 1];

(iv) Kmin > 1
k2+k+6

R(k)
max for some integer k ∈ [1, n − 1],

then M is isometric to a spherical space form.

Proof (i) It follows from (2.6) that

R(k)
min ≤ 2Kmin + [k(k + 1) − 2]Kmax.

Then we have

Kmin ≥ 1

2
[R(k)

min − (k2 + k − 2)Kmax]. (3.14)
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Suppose {e1, e2, e3, e4} is an orthonormal four-frame. From (2.2), (3.14) and the
assumption we get

R1313 + R1414 + R2323 + R2424 − 2R1234

≥ 1

2
{R(k)

min − [k(k + 1) − 8]Kmax} − 4

3
(Kmax − Kmin)

≥ 1

2
{R(k)

min − [k(k + 1) − 8]Kmax} − 2

3
[k(k + 1)Kmax − R(k)

min]

≥ 7

6

[
R(k)

min −
(

k2 + k − 24

7

)
Kmax

]

> 0. (3.15)

Therefore, M has positive isotropic curvature. By Theorem B, we see that M has
constant sectional curvature.

(ii) By Definition 2.2, we have

R(k)
min

k(k + 1)
≥ R(k,s)

min

ks
. (3.16)

This together with the assumption implies

R(k)
min ≥ k + 1

s
R(k,s)

min >
(

k2 + k − 24

7

)
Kmax. (3.17)

Then the assertion follows from (i).

(iii) It follows from (2.5) that

Kmax ≤ 1

2

[
R(k,s)

max − (ks − 2)Kmin

]
. (3.18)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame. Then we get from (2.2) and
(3.18) that

R1313 + R2323 + R1414 + R2424 − 2R1234

≥ 4Kmin − 4

3
(Kmax − Kmin)

≥ 16

3
Kmin − 2

3
[Ric(k,s)

max − (ks − 2)Kmin]

≥ 2

3
[(ks + 6)Kmin − R(k)

max]. (3.19)

This together with the assumption implies M has positive isotropic curvature. There-
fore, M is isometric to a spherical space form.

(iv) By taking s = k + 1 in (iii), we get the conclusion.

This completes the proof of Lemma 3.3. ��
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Rigidity of Einstein manifolds with positive scalar curvature 181

Proof of Theorem 1.1 Since M is Einstein, we know from (2.7) that the normalized
scalar curvature and the Ricci curvature satisfy R0 = Ricmin

n−1 = Ricmax
n−1 .

(i) By taking k = n − 1 in conditions (i) of Lemmas 3.1, we get that M has
constant sectional curvature.

(ii) By taking k = n − 1 in (3.8), we see that if Kmin ≥ n−1
n+2 R0, then M has

nonnegative isotropic curvature. This together with Theorem B implies that M is
locally symmetric. When M is simply connected, we assume that M is not isometric
to the standard n-sphere. Then we claim that for every point x ∈ M there exists an
orthonormal four-frame {e1, e2, e3, e4} such that

R1313 + R2323 + R1414 + R2424 − 2R1234 = 0. (3.20)

Otherwise, M has positive isotropic curvature at some point in M . This together
with Lemma 2.2 implies that M admits a metric with positive isotropic curvature. A
result due to Harish [11] says that a compact locally symmetric space which admits
a metric of positive isotropic curvature has constant sectional curvature. So M is iso-
metric to the standard n-sphere. This is a contradiction. From (3.8), (3.20) and the
assumption, we have

Kmin − 1

4
Kmax ≡ 0,

and

Kmin = n − 1

n + 2
R0 = n − 1

n + 2
c = constant. (3.21)

Therefore, M admits a metric with weakly 1/4-pinched sectional curvature in the
global sense. Following Berger’s classification theorem we obtain that M either is
homeomorphic to Sn or isometric to a compact rank one symmetric space(CROSS).
Since M is locally symmetric, a topological sphere would have to be of constant posi-
tive sectional curvature. This contradicts the assumption that M is not isometric to the
standard n-sphere. By (3.21) and a simple computation, we know that M is isometric
the complex projective space CPm(c̃) with n = 2m, where c̃ = 4(n−1)

n+2 c.
This completes the proof of Theorem 1.1. ��

Proof of Theorem 1.2 (i) By taking k = n − 2 in condition (ii) of Lemma 3.1, we
know that M has constant sectional curvature.
(ii) From

Kmin ≥ Ricmin − Ric(n−2)
max ,

and the assumption

(n − 2)R0 ≥ n2 − 4

n2 − 1
Ric(n−2)

max ,

we see that Kmin ≥ n−1
n+2 R0 and the complex projective space satisfies the equality

Kmin = Ricmin − Ric(n−2)
max . Hence the assertion follows from (ii) of Theorem 1.1.
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This proves Theorem 1.2. ��
From the proof of Theorems 1.1 and 1.2, we have the following corollary.

Corollary 3.1 Let M be an n(≥4)-dimensional compact Einstein Riemannian man-
ifold. Denote by R0 := c the normalized scalar curvature of M. Assume one of the
following conditions holds:

(i) Kmin > ηn R0;
(ii) (n − 2)R0 > μn Ric(n−2)

max .

Then M is isometric to a spherical space form of constant curvature c. Here ηn is
defined as in Theorem 1.1 and μn is defined as in Theorem 1.2.

By (3.8), (3.9) and a direct calculation, we know that if M is an n(≥4)-dimensional
compact manifold satisfies condition (i) or (ii) in Lemma 3.2, then

R1313 + λ2 R1414 + R2323 + λ2 R2424 − 2λR1234 > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ R. Using Brendle’s con-
vergence result for Ricci flow [4] and taking k = n − 1 in condition (i) and k = n − 2
in condition (ii), we get the following differentiable sphere theorem.

Theorem 3.1 Let M be an n(≥4)-dimensional compact Riemannian manifold.
Assume one of the following conditions holds:

(i) (n − 1)Kmin > ηn Ricmax;
(ii) (n − 2)Ricmin > μn(n − 1)Ric(n−2)

max .

Then M is diffeomorphic to a spherical space form. In particular, if M is simply
connected, then M is diffeomorphic to Sn. Here ηn is defined as in Theorem 1.1 and
μn is defined as in Theorem 1.2.

For further discussions about the Ricci flow and sphere theorem, we refer to see
[3,5–7,10,15,17,18,22,27].

Example 3.1 Let R0 be the normalized scalar curvature of a Riemannian manifold.
By a direct computation, we have the normalized scalar curvatures of the compact
rank one symmetric spaces (CROSS) with standard metrics.

R0(CPm) = m + 1

4m − 2
, dimR(CPm) = 2m, m ≥ 2;

R0(HPm) = m + 2

4m − 1
, dimR(HPm) = 4m, m ≥ 2;

R0(OP2) = 3

5
, dimR(OP2) = 16.

On the other hand, Kmin(CPm) = Kmin(HPm) = Kmin(OP2) = 1
4 . Then we know

that the curvatures of CPm satisfy

Kmin = η2m
Ricmax

(2m − 1)
= η2m R0,
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and

(2m − 2)R0 = (2m − 2)
Ricmin

2m − 1
= μ2m Ric(2m−2)

max .

These mean the pinching constants ηn and μn are optimal when n is even.

Motivated by Theorem 1.1 and Example 3.1, we would like to propose the following
conjectures.

Conjecture A Let Mn(n ≥ 4) be a compact Einstein manifold. If R0 > 3
5 Kmax, then

M is isometric to a spherical space form.

Conjecture B Let Mn(n ≥ 4) be an even dimensional compact simply connected
Einstein manifold. If KM ≤ 1 and R0 ≥ cn, where

cn =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n + 2

4(n − 1)
for n = 4 or 4k + 2, k ∈ Z

+,

n + 8

4(n − 1)
for n = 4k, k ∈ Z

+ ⋂[2,∞) and k �= 4,

3

5
for n = 16,

then M is either isometric to the standard n-sphere, or a compact rank one symmetric
space.

4 Einstein submanifolds with arbitrary codimension

In this section, we extend the theorems in Sect. 3 to Einstein submanifolds in a general
Riemannian manifold. For compact submanifolds, we first prove Theorem 1.3.

Proof of Theorem 1.3 Setting Sα = ∑n
i, j=1(h

α
i j )

2, we obtain

( n∑
i=1

hα
i i

)2 = (n − 2)

⎡
⎣

n∑
i=1

(hα
i i )

2 +
∑
i �= j

(hα
i j )

2 + (
∑n

i=1 hα
i i )

2

n − 2
− Sα

⎤
⎦ . (4.1)

Note that for all distinct p, q, m, l

( n∑
i=1

hα
i i

)2 ≤ (n − 2)

⎡
⎣(hα

pp + hα
qq)2 + (hα

mm + hα
ll)

2 +
∑

i �=p,q,m,l

(hα
i i )

2

⎤
⎦

= (n − 2)

[
n∑

i=1

(hα
i i )

2 + 2hα
pphα

qq + 2hα
mmhα

ll

]
.

This together with (4.1) implies

2hα
pphα

qq + 2hα
mmhα

ll ≥
∑
i �= j

(hα
i j )

2 + (
∑n

i=1 hα
i i )

2

n − 2
− Sα, (4.2)
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for all distinct p, q, m, l. Suppose {e1, e2, e3, e4} is an orthonormal four-frame. From
(2.1), we get

R1313 + R1414 + R2323 + R2424 − 2R1234

= R1313 + R1414 + R2323 + R2424 − 2R1234

+
∑
α

[
hα

11hα
33 + hα

22hα
44 + hα

22hα
33 + hα

11hα
44

−(hα
13)

2 − (hα
23)

2 − (hα
24)

2 − (hα
14)

2 − 2(hα
13hα

24 − hα
14hα

23)
]

≥ R1313 + R1414 + R2323 + R2424 − 2R1234

+
∑
α

[
hα

11hα
33 + hα

22hα
44 + hα

22hα
33 + hα

11hα
44

−2(hα
13)

2 − 2(hα
23)

2 − 2(hα
24)

2 − 2(hα
14)

2
]
. (4.3)

It follows from Berger’s inequality (2.3) and (4.2) that

R1234 ≤ 2

3
(K max − K min),

hα
11hα

33 + hα
22hα

44 + hα
22hα

33 + hα
11hα

44 ≥
∑
i �= j

(hα
i j )

2 + (
∑n

i=1 hα
i i )

2

n − 2
− Sα.

This together with (4.3) implies that

R1313 + R1414 + R2323 + R2424 − 2R1234

≥ 4K min − 4

3
(K max − K min)

+
∑
α

[ ∑
i �= j

(hα
i j )

2 + (
∑n

i=1 hα
i i )

2

n − 2
− Sα

−2(hα
13)

2 − 2(hα
23)

2 − 2(hα
24)

2 − 2(hα
14)

2
]

≥ 16

3

(
K min − 1

4
K max

)
+ n2 H2

n − 2
− S. (4.4)

Then it follows from the assumption that M has nonnegative isotropic curvature and
has positive isotropic curvature for some point x0 ∈ M . This together with Lemma
2.2 implies that M admits a metric of positive isotropic curvature. Since M is Ein-
stein, it follows from Theorem B that M is locally symmetric. A result due to Harish
[11] says that a compact locally symmetric space which admits a metric of posi-
tive isotropic curvature has constant sectional curvature. This completes the proof of
Theorem 1.3. ��
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Theorem 4.1 Let M be an n(≥4)-dimensional compact Einstein submanifold in the

Riemannian manifold M
N

with codimension N − n ≥ 0. If M satisfies one of the
following conditions:

(i) S < 10
3

(
Ricmin − 5N−11

5 K max

)
+ n2 H2

n−2 ;

(ii) S <
4(N+1)

3

(
Ricmin − N+2

N+1 Ric
(N−2)

max

)
+ n2 H2

n−2 ;

(iii) S <
4(N+2)

3

(
K min − 1

N+2 Ricmax

)
+ n2 H2

n−2 ;

(iv) S <
2(5N−11)

3

(
Ric

(N−2)

min − 5N−16
5N−11 Ricmax

)
+ n2 H2

n−2 ,

then M is isometric to a spherical space form.

Proof If N = n, i.e., the codimension is zero, then S and H are equal to zero. Hence
M is an Einstein manifold, and the assertion follows from (2.7), Theorems 1.1 and
1.2.

If N > n, we consider the following cases.

(i) From (2.8), we get that

K min ≥ Ric
(k)

min − (k − 1)K max. (4.5)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame. From (2.3), (4.2) and (4.5), we
have

R1313 + R1414 + R2323 + R2424 − 2R1234

= R1313 + R1414 + R2323 + R2424 − 2R1234

+
∑
α

[
hα

11hα
33 + hα

22hα
44 + hα

22hα
33 + hα

11hα
44

−(hα
13)

2 − (hα
23)

2 − (hα
24)

2 − (hα
14)

2 − 2(hα
13hα

24 − hα
14hα

23)
]

≥ 2Ric
(k)

min − 2(k − 2)K max − 4

3
(K max − K min)

+
∑
α

⎡
⎣∑

i �= j

(hα
i j )

2 + (
∑n

i=1 hα
i i )

2

n − 2
− Sα

−2(hα
13)

2 − 2(hα
23)

2 − 2(hα
24)

2 − 2(hα
14)

2

⎤
⎦

≥ 2Ric
(k)

min − 2(k − 2)K max − 4

3
(kK max − Ric

(k)

min) + n2 H2

n − 2
− S

≥ 10

3

[
Ric

(k)

min −
(

k − 6

5

)
K max

]
+ n2 H2

n − 2
− S. (4.6)

Taking k = N − 1 in (4.6), we get from the assumption that M has positive isotropic
curvature. This together with Theorem B implies that M is isometric to a spherical
space form.
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(ii) It follows from (2.8) that

K max ≤ Ric
(N−2)

max − (N − 3)K min, (4.7)

K min ≥ Ricmin − Ric
(N−2)

max . (4.8)

This together with the assumption implies that

S <
4(N + 1)

3

(
Ricmin − N + 2

N + 1
Ric

(N−2)

max

)
+ n2 H2

n − 2

≤ 4(N + 1)

3

(
K min + Ric

(N−2)

max − N + 2

N + 1
Ric

(N−2)

max

)
+ n2 H2

n − 2

≤ 4(N + 1)

3

[
K min − 1

N + 1
(K max + (N − 3)K min)

]
+ n2 H2

n − 2

= 16

3

(
K min − 1

4
K max

)
+ n2 H2

n − 2
.

Then the assertion follows from Theorem 1.3.

(iii) We know that

K max ≤ Ricmax − (N − 2)K min. (4.9)

It follows from (4.9) and the assumption that

S <
4(N + 2)

3

(
K min − 1

N + 2
Ricmax

)
+ n2 H2

n − 2

≤ 4(N + 2)

3

[
K min − 1

N + 2
(K max + (N − 2)K min)

]
+ n2 H2

n − 2

= 16

3

(
K min − 1

4
K max

)
+ n2 H2

n − 2
.

This together with Theorem 1.3 implies that M has constant sectional curvature.

(iv) It’s seen from (2.8) that

K max ≤ Ricmax − Ric
(N−2)

min . (4.10)

Taking k = N − 2, for any orthonormal four-frame {e1, e2, e3, e4}, we get from (4.6),
(4.10) that

R1313 + R2323 + R1414 + R2424 − 2R1234

≥ 10

3

[
Ric

(N−2)

min −
(

N − 16

5

)
K max

]
+ n2 H2

n − 2
− S
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≥ 10

3

[
Ric

(N−2)

min −
(

N − 16

5

)
(Ricmax − Ric

(N−2)

min )
]

+ n2 H2

n − 2
− S

= 2(5N − 11)

3

(
Ric

(N−2)

min − 5N − 16

5N − 11
Ricmax

)
+ n2 H2

n − 2
− S.

This together with the assumption implies that M has positive isotropic curvature.
Therefore, we see from Theorem B that M is isometric to a spherical space form.

This completes the proof of Theorem 4.1. ��
Theorem 4.2 Let M be an n(≥4)-dimensional compact submanifold in an

N-dimensional Riemannian manifold M
N

. Denote by R0 the normalized scalar cur-
vature of M. Assume that M satisfies one of the following conditions:

(i) S <
7N (N−1)

6 (R0 − σ ′
N K max) + n2 H2

n−2 ;
(ii) S <

2N (N 2−1)
3(N−2)

[(N − 2)R0 − μ′
N Ric

(N−2)

max ] + n2 H2

n−2 ;
(iii) S <

2(N 2−N+6)
3 (K min − η′

N R0) + n2 H2

n−2 ;
(iv) S < 5N 2−11N−6

3 [Ric
(N−2)

min − τ ′
N (N − 2)R0] + n2 H2

n−2 .

Then M is isometric to a spherical space form. Here

σ ′
N = 1 − 24

7N (N − 1)
,

μ′
N = 1 − 6

N (N − 1)(N + 1)
,

η′
N = 1 − 6

N 2 − N + 6
,

τ ′
N = 1 − 12

(N − 2)(5N 2 − 11N − 6)
.

Proof (i) Since

R
(k)

min ≤ 2K min + [k(k + 1) − 2]K max,

we have

K min ≥ 1

2
[R

(k)

min − (k2 + k − 2)K max]. (4.11)

Suppose {e1, e2, e3, e4} is an orthonormal four-frame. From (2.1), (2.3), (4.2) and
(4.11), we get

R1313 + R1414 + R2323 + R2424 − 2R1234

= R1313 + R1414 + R2323 + R2424 − 2R1234

+
∑
α

[
hα

11hα
33 + hα

22hα
44 + hα

22hα
33 + hα

11hα
44

−(hα
13)

2 − (hα
23)

2 − (hα
24)

2 − (hα
14)

2 − 2(hα
13hα

24 − hα
14hα

23)
]
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≥ 1

2
{R

(k)

min − [k(k + 1) − 8]K max} − 4

3
(K max − K min)

+
∑
α

⎡
⎣∑

i �= j

(hα
i j )

2 + (
∑n

i=1 hα
i i )

2

n − 2
− Sα

−2(hα
13)

2 − 2(hα
23)

2 − 2(hα
24)

2 − 2(hα
14)

2

⎤
⎦

≥ 1

2
[R

(k)

min − (k2 + k − 8)K max]

−2

3
[k(k + 1)K max − R

(k)

min] + n2 H2

n − 2
− S

≥ 7

6

[
R

(k)

min −
(

k2 + k − 24

7

)
K max

]
+ n2 H2

n − 2
− S. (4.12)

Taking k = N −1, we see from (4.12) and the assumption that M has constant sectional
curvature.

(ii) It follows from (2.8) that

K min ≥ 1

2
[R − (N + 1)Ric

(N−2)

max ]. (4.13)

This together with (4.7) and the assumption implies that

S <
2N (N 2 − 1)

3(N − 2)

[ N − 2

N (N − 1)
R −

(
1 − 6

N (N 2 − 1)

)
Ric

(N−2)

max

]
+ n2 H2

n − 2

≤ 2N (N 2 − 1)

3(N − 2)

[ N − 2

N (N − 1)

(
2K min + (N + 1)Ric

(N−2)

max

)

−
(

1 − 6

N (N 2 − 1)

)
Ric

(N−2)

max

]
+ n2 H2

n − 2

= 4

3
[(N + 1)K min − Ric

(N−2)

max ] + n2 H2

n − 2

≤ 4

3
{(N + 1)K min − [K max + (N − 3)K min]} + n2 H2

n − 2

= 16

3

(
K min − 1

4
K max

)
+ n2 H2

n − 2
.

Applying Theorem 1.3, we conclude that M is isometric to a spherical space form.

(iii) We know that

K max ≤ 1

2
[R − (N 2 − N − 2)K min]. (4.14)
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Then we get from the assumption that

S <
2(N 2 − N + 6)

3

(
K min − 1

N 2 − N + 6
R
)

+ n2 H2

n − 2

≤ 2(N 2 − N + 6)

3

[
K min − 1

N 2 − N + 6
(2K max

+(N 2 − N − 2)K min)
]

+ n2 H2

n − 2

= 16

3

(
K min − 1

4
K max

)
+ n2 H2

n − 2
.

Hence, we get the conclusion from Theorem 1.3.

(iv) It follows from (2.8) and (2.9) that

K max ≤ 1

2
[R − (N + 1)Ric

(N−2)

min ]. (4.15)

Taking k = N − 2, we get from (4.6), (4.15) and the assumption that

R1313 + R2323 + R1414 + R2424 − 2R1234

≥ 10

3

[
Ric

(N−2)

min −
(

N − 16

5

)
K max

]
+ n2 H2

n − 2
− S

≥ 10

3

[
Ric

(N−2)

min − 1

2

(
N − 16

5

)(
R − (N + 1)Ric

(N−2)

min

)]
+ n2 H2

n − 2
− S

= 1

3

[
(5N 2 − 11N − 6)Ric

(N−2)

min − (5N − 16)R
]

+ n2 H2

n − 2
− S

> 0,

for all orthonormal four-frames {e1, e2, e3, e4}. This together with Theorem B implies
that M has constant sectional curvature.

This completes the proof of Theorem 4.2. ��
Proof of Theorem 1.4 Setting

Tα := 1

n

∑
i

hα
i i ,

we have
∑

α T 2
α = H2, and

hα
i i h

α
j j = 1

2
[(hα

i i + hα
j j − 2Tα)2 − (hα

i i − Tα)2 − (hα
j j − Tα)2]

+Tα(hα
i i − Tα) + Tα(hα

j j − Tα) + T 2
α (4.16)

for i, j = 1, . . . , n. Suppose {e1, e2, e3, e4} is an orthonormal four-frame. From (2.1)
and (4.16), we get
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R1313 + R2323 + R1414 + R2424 − 2R1234

= 4c +
∑
α

[hα
11hα

33 − (hα
13)

2 + hα
22hα

33 − (hα
23)

2

+hα
11hα

44 − (hα
14)

2 + hα
22hα

44 − (hα
24)

2 − 2(hα
13hα

24 − hα
14hα

23)]
≥ 4c − 2

∑
α

[(hα
13)

2 + (hα
23)

2 + (hα
14)

2 + (hα
14)

2]

+1

2

∑
α

[(hα
11 + hα

33 − 2Tα)2 − (hα
11 − Tα)2 − (hα

33 − Tα)2

+2Tα(hα
11 − Tα) + 2Tα(hα

33 − 2Tα) + 2T 2
α ]

+1

2

∑
α

[(hα
22 + hα

33 − 2Tα)2 − (hα
22 − Tα)2 − (hα

33 − Tα)2

+2Tα(hα
22 − Tα) + 2Tα(hα

33 − 2Tα) + 2T 2
α ]

+1

2

∑
α

[(hα
11 + hα

44 − 2Tα)2 − (hα
11 − Tα)2 − (hα

44 − Tα)2

+2Tα(hα
11 − Tα) + 2Tα(hα

44 − 2Tα) + 2T 2
α ]

+1

2

∑
α

[(hα
22 + hα

44 − 2Tα)2 − (hα
22 − Tα)2 − (hα

44 − Tα)2

+2Tα(hα
22 − Tα) + 2Tα(hα

44 − 2Tα) + 2T 2
α ]

≥ 4(c + H2) − 2
∑
α

[(hα
13)

2 + (hα
23)

2 + (hα
14)

2 + (hα
14)

2]

+
∑
α

4∑
i=1

[−(hα
i i − Tα)2 + 2Tα(hα

i i − Tα)]. (4.17)

On the other hand, from Gauss equation (2.1), we obtain

Ric(ei ) = (n − 1)(c + H2) + (n − 2)
∑
α

Tα(hα
i i − Tα)

−
∑
α

(hα
i i − Tα)2 −

∑
α, j �=i

(hα
i j )

2

for i = 1, . . . , n. So, we have

−
∑
α

(hα
i i − Tα)2 ≥ Ricmin − (n − 1)(c + H2)

−(n − 2)
∑
α

Tα(hα
i i − Tα) +

∑
α, j �=i

(hα
i j )

2, (4.18)

and

∑
α

Tα(hα
i i − Tα) ≥ 1

n − 2
[Ricmin − (n − 1)(c + H2)], (4.19)
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for i = 1, . . . , n. This together with (4.17) and (4.18) implies that

R1313 + R2323 + R1414 + R2424 − 2R1234

≥ 4(c + H2) − 2
∑
α

[(hα
13)

2 + (hα
23)

2 + (hα
14)

2 + (hα
14)

2]

+4[Ricmin − (n − 1)(c + H2)] − (n − 4)
∑
α

4∑
i=1

Tα(hα
i i − Tα)

+
∑

α, j �=1

(hα
1 j )

2 +
∑

α, j �=2

(hα
2 j )

2 +
∑

α, j �=3

(hα
3 j )

2 +
∑

α, j �=4

(hα
4 j )

2

≥ 4(c + H2) + 4[Ricmin − (n − 1)(c + H2)]

−(n − 4)
∑
α

4∑
i=1

Tα(hα
i i − Tα). (4.20)

Since

nTα =
4∑

i=1

hα
i i +

n∑
j=5

hα
j j ,

we have
4∑

i=1

(hα
i i − Tα) = nTα −

n∑
j=5

hα
j j − 4Tα

= −
n∑

i=5

(hα
i i − Tα). (4.21)

Substituting (4.19) and (4.21) into (4.20), we obtain

R1313 + R2323 + R1414 + R2424 − 2R1234

≥ 4(c + H2) + 4[Ricmin − (n − 1)(c + H2)]
+(n − 4)

∑
α

n∑
i=5

Tα(hα
i i − Tα)

≥ 4(c + H2) +
(

4 + n − 4

n − 2

)
[Ricmin − (n − 1)(c + H2)]

= 4(c + H2) + n2 − 4n + 8

n − 2
[(n − 1)R0 − (n − 1)(c + H2)]. (4.22)

The last equality above holds because M is Einstein, i.e.,

(n − 1)R0 = Ricmin. (4.23)

This together with the assumption implies that M has positive isotropic curvature.
This shows that M is isometric to a spherical space form.
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For the case c ≥ 0, by a direct computation, we have

n(n2 − 5n + 8)

n2 − 4n + 8
(c + H2) ≥ n(n − 1)

n + 2
(c + H2). (4.24)

This together with the assumption, (4.23) and Lemma 2.1 implies that M is simply
connected. Therefore, M is isometric to a standard n-sphere.

This completes the proof of Theorem 1.4. ��
Acknowledgements The authors would like to thank the referee for his valuable suggestions.
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