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Abstract

In this paper, we investigate rigidity of geometric and differentiable structures of complete submanifolds via an extrinsic geo-
metrical quantity τ (x) defined by the second fundamental form. We verify a geometric rigidity theorem for complete submanifolds
with parallel mean curvature in a unit sphere Sn+p . Inspired by the rigidity theorem, we prove a differentiable sphere theorem for
complete submanifolds in Sn+p . Moreover, we obtain a differentiable pinching theorem for complete submanifolds in a δ(> 1

4 )-
pinched Riemannian manifold.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on étudie la rigidité de structures géométriques et différentiable de sous-variétés complètes via une quantité
géométrique extrinsèque τ (x) définie par sa deuxième forme fondamentale. On démonte un théorème de rigidité géométrique
pour les sous-variétés complètes à courbure moyenne parallèle dans une sphère unité Sn+p . Inspiré par le théorème de rigidité,
on établit un théorème de sphère différentiable pour les sous-variétés complètes dans Sn+p . On obtient aussi un théorème de
pincement différentiable pour les sous-variétés complètes dans une variété riemannienne δ(> 1

4 )-pincée.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of relations between geometric invariants and the structures of the geometry and topology of a manifold
is a longstanding subject in global differential geometry (see [2,5,8,24]). In 1930’s, Hopf conjectured that a compact,
simply connected Riemannian manifold whose sectional curvatures are close to 1 is homeomorphic to a sphere. This
conjecture is known as the curvature pinching problem, which was first taken up by Rauch [23]. In 1960’s, making
use of the comparison technique, Berger [1] and Klingenberg [16] proved that a compact, simply connected manifold
M whose sectional curvatures all lie in the interval (1/4,1] is homeomorphic to the sphere Sn. Since the complex
projective space CPm (m � 2) has sectional curvatures in the interval [1/4,1], the pinching constant 1/4 is optimal
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for even dimensional cases. Later, Micallef and Moore [20] obtained a topological sphere theorem for pointwise
1/4-pinched manifolds via the technique of minimal surfaces. Meanwhile, the geometry of compact Kähler manifolds
admitting negatively 1/4-pinched Riemannian metric was investigated by Yau and Zheng [34]. In 2008, Böhm and
Wilking [3] proved that a compact Riemannian manifold with 2-positive curvature operator is diffeomorphic to a
spherical space form. Recently, Brendle and Schoen [6] proved a remarkable differentiable pinching theorem for
pointwise 1/4-pinched Riemannian manifolds by developing Hamilton’s Ricci flow theory [15]. Furthermore, they
gave a classification of weakly pointwise 1/4-pinched Riemannian manifolds [7]. More recently, Brendle [4] obtained
the celebrated convergence result for the Ricci flow.

Theorem 1.1. Let (M,g0) be a compact Riemannian manifold of dimension n � 4. Assume that

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234 > 0, (1)

for all orthonormal four frames {e1, e2, e3, e4} and all λ ∈ [−1,1]. Then the normalized Ricci flow with initial met-
ric g0

∂

∂t
g(t) = −2Ricg(t) + 2

n
rg(t)g(t),

exists for all time and converges to a metric with positive constant sectional curvature as t → +∞. Here rg(t) denotes
the mean value of the scalar curvature of g(t).

The purpose of the present article is to investigate the geometry and topology from the viewpoint of submanifolds.
After the pioneering rigidity theorem for closed minimal submanifolds in a unit sphere due to Simons [26], Lawson
[17] and Chern, do Carmo and Kobayashi [12] obtained a classification of n-dimensional closed minimal submanifolds
in Sn+p whose squared norm of the second fundamental form satisfies S � n/(2 − 1/p). Further discussions on the
rigidity theorems have been carried out by many other authors (see [21,22,33], etc.). In 1990, Xu [29] proved a rigidity
theorem for compact submanifolds with parallel mean curvature in a sphere.

Theorem 1.2. Let M be an n-dimensional oriented compact submanifold with parallel mean curvature in an (n+p)-
dimensional unit sphere Sn+p . Denote by H and S the mean curvature and squared norm of the second fundamental
form, respectively. If S � C(n,p,H), then M is either a totally umbilic sphere Sn( 1√

1+H 2
), a Clifford hypersurface

in an (n + 1)-sphere, or the Veronese surface in S4( 1√
1+H 2

). Here the constant C(n,p,H) is defined by

C(n,p,H) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(n,H), for p = 1, or p = 2 and H �= 0,
n

2− 1
p

, for p � 2 and H = 0,

min{α(n,H), n+nH 2

2− 1
p−1

+ nH 2}, for p � 3 and H �= 0,

α(n,H) = n + n3

2(n − 1)
H 2 − n(n − 2)

2(n − 1)

√
n2H 4 + 4(n − 1)H 2.

Later, the above pinching constant C(n,p,H) was improved, by Li and Li [19] for H = 0 and by Xu [30] for
H �= 0, to

C′(n,p,H) =
{

α(n,H), for p = 1, or p = 2 and H �= 0,

min{α(n,H), 1
3 (2n + 5nH 2)}, otherwise.

The special case of Theorem 1.2 for p = 1 was also studied by Cheng and Nakagawa [11] independently.
On the other hand, Lawson and Simons [18] proved a topological sphere theorem for closed submanifolds in a unit

sphere by using the non-existence for stable currents on compact submanifolds in a sphere. Shiohama and Xu [25]
improved Lawson–Simons’ result and proved a topological sphere theorem for complete submanifolds in a simply
connected space form with nonnegative constant curvature. Recently, Xu and Zhao [32] and Xu and Gu [31] obtained
some differentiable sphere theorems for complete submanifolds.
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Let Mn be an n-dimensional Riemannian submanifold in an (n+p)-dimensional Riemannian manifold Nn+p . Set
UM = ⋃

x∈M UxM , where UxM = {u ∈ TxM: ‖u‖ = 1} and TxM is the tangent space at x ∈ M . In 1986, Gauchman
[13] proved that if M is an n-dimensional closed minimal submanifold in Sn+p , and if σ(u) � 1

3 for any unit vector
u ∈ UM , where σ(u) = ‖h(u,u)‖2 and h is the second fundamental form of M , then either σ(u) ≡ 0 or σ(u) ≡ 1

3 .
Xu, Fang and Xiang [28] generalized this rigidity result to the case where M is an n-dimensional closed submanifold
with parallel mean curvature in Sn+p . In [32], Xu and Zhao proved the following theorem.

Theorem 1.3. Let M be an n-dimensional complete submanifold in an (n + p)-dimensional unit sphere Sn+p . If
σ(u) < 1

3 for all u ∈ UM , then M is diffeomorphic to the standard unit n-sphere Sn.

Putting β(u, v) = ‖h(u,u) − h(v, v)‖2 for u,v ∈ UxM , we define

τ(x) = max
u,v∈UxM,u⊥v

β(u, v).

Note that if ‖h(u,u)‖2 < c for any u ∈ UxM , where c is some positive constant, then β(u, v) < 4c for any u,v ∈
UxM . This implies τ(x) < 4c.

In this paper, we first obtain the following geometric rigidity theorem.

Theorem A. Let M be an n-dimensional complete submanifold with parallel mean curvature in an (n + p)-
dimensional unit sphere Sn+p .

(1) When p = 1, or p = 2 and H �= 0, if M is compact and τ(x) � 4 for all x ∈ M, then either τ(x) ≡ 0 and M is
the totally umbilical sphere Sn( 1√

1+H 2
), or τ(x) ≡ 4.

(2) When p � 3, or p = 2 and H = 0, if τ(x) � 4
3 for all x ∈ M, then either τ(x) ≡ 0 and M is the totally umbilical

sphere Sn( 1√
1+H 2

), or τ(x) ≡ 4
3 .

Corollary 1.4. (See [13,28].) Let M be an n-dimensional complete submanifold with parallel mean curvature in an
(n + p)-dimensional unit sphere Sn+p .

(1) When p = 1, or p = 2 and H �= 0, if M is compact and σ(u) � 1 for all u ∈ UM, then either σ(u) ≡ 0 and M is
the totally umbilical sphere Sn( 1√

1+H 2
), or maxu∈UM σ(u) = 1.

(2) When p � 3, or p = 2 and H = 0, if σ(u) � 1
3 for all u ∈ UM, then either σ(u) ≡ 0 and M is the totally umbilical

sphere Sn( 1√
1+H 2

), or σ(u) ≡ 1
3 .

Then we prove the following differentiable rigidity theorem, which is a generalization of Theorem 1.3.

Theorem B. Let M be an n-dimensional complete submanifold in an (n + p)-dimensional unit sphere Sn+p . If
τ(x) < 4

3 for all x ∈ M , then M is diffeomorphic to the standard unit n-sphere Sn.

Remark 1.5. Examples 3.5 and 3.6 in Section 3 show that our pinching constants in Theorems A and B are sharp.

If the ambient space is a general Riemannian manifold, we obtained the following differentiable pinching theorem.

Theorem C. Let M be an n-dimensional complete submanifold in an (n + p)-dimensional pointwise δ(> 1/4)-
pinched Riemannian manifold Nn+p . Denote by K(x,π) the sectional curvature of N for 2-plane π ⊂ TxN and
point x ∈ N . Set Kmax(x) := maxπ⊂TxN K(x,π) for x ∈ M . If τ(x) < 16

9 Kmax(x)(δ − 1
4 ) for all x ∈ M, then M is

diffeomorphic to a space form. In particular, if M is simply connected, then M is diffeomorphic to the standard unit
n-sphere Sn or the Euclidean space Rn.
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Our paper is organized as follows. In Section 2, we introduce some basic equations in the geometry of submanifolds
and give a lower bound for the sectional curvature of the submanifold in terms of the extrinsic quantity τ(x). We prove
two rigidity theorems for submanifolds of spheres in Section 3. Then we give the proof of Theorem A. In Section 4,
Theorems B and C are proved by using convergence results for the Ricci flow of Hamilton [15] and Brendle [4], and
the non-existence theorem for stable currents due to Lawson and Simons [18]. Moreover, we present a differentiable
pinching theorem for even dimensional submanifolds in pinched Riemannian manifolds.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically immersed in an (n + p)-dimensional Riemannian
manifold Nn+p . We shall make use of the following convention on the range of indices:

1 � A,B,C, . . . � n + p, 1 � i, j, k, . . . � n, n + 1 � α,β, γ, . . . � n + p.

Choose a local orthonormal frame field {eA} on Nn+p such that ei ’s are tangent to M . Let {ωA} be the dual frame
field of {eA} and {ωAB} the connection 1-forms of Nn+p . Restricting these forms to M , we have

ωαi =
∑
j

hα
ijωj , hα

ij = hα
ji,

h =
∑
α,i,j

hα
ijωi ⊗ ωj ⊗ eα,

ξ = 1

n

∑
α,i

hα
iieα,

Rijkl = Kijkl +
∑
α

(
hα

ikh
α
jl − hα

ilh
α
jk

)
, (2)

Rαβkl = Kαβkl +
∑

i

(
hα

ikh
β
il − hα

ilh
β
ik

)
, (3)

where h, ξ , Rijkl , Rαβkl are the second fundamental form, the mean curvature vector, the Riemannian curvature tensor
and the normal curvature tensor of M , and KABCD is the Riemannian curvature tensor of N , respectively. We set

H = ‖ξ‖, Hα = (
hα

ij

)
n×n

.

Denote the first and second covariant derivatives of hα
ij by hα

ijk and hα
ijkl , respectively. Then we have∑

k

hα
ijkωk = dhα

ij +
∑

k

hα
kjωik +

∑
k

hα
ikωjk +

∑
β

h
β
ijωαβ,

∑
k

hα
ijklωl = dhα

ijk +
∑

l

hα
ljkωil +

∑
l

hα
ilkωjl +

∑
l

hα
ij lωkl +

∑
β

h
β
ijkωαβ.

The Laplacian of h is defined by 
hα
ij = ∑

k hα
ijkk . If the mean curvature vector of M is parallel in the normal bundle

T ⊥M , i.e., ∇⊥
Xξ = 0 for any X ∈ Γ (T M), following [28,30,33], etc. we have∑

i

hα
iik = 0,

∑
i

hα
iikl = 0, for all k, l, α, (4)


hα
ij =

∑
k,m

hα
kmRmijk +

∑
k,m

hα
miRmkjk +

∑
k,β

h
β
kiRβαjk, (5)

∑
α

Rαβkl

(
trHα

) = 0. (6)

Let UM denote the unit tangent bundle on M and UxM its fiber over x ∈ M . Then UM = ⋃
x∈M UxM , where

UxM = {u ∈ TxM: ‖u‖ = 1}, TxM is the tangent space of M at x. Set
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β(u, v) = ∥∥h(u,u) − h(v, v)
∥∥2

,

for u,v ∈ UxM . We define a new extrinsic geometrical invariant of M by

τ(x) = max
u,v∈UxM,u⊥v

β(u, v), x ∈ M.

Proposition 2.1. Let M be an n-dimensional submanifold in a Riemannian manifold Nn+p , and x a fixed point in M .
Then τ(x) = 0 if and only if x is a totally umbilical point.

Proof. A point x ∈ M is totally umbilical if and only if for each α = n + 1, . . . , n + p, the eigenvalues of the matrix
Hα are equal. Suppose {e1, . . . , en} is an orthonormal basis of TxM such that 〈h(ei, ej ), eα〉 = κα

i δij . Then κα
i , i =

1, . . . , n, are n eigenvalues of Hα . If τ(x) = 0, then h(ei, ei) = h(ej , ej ). This implies that κα
i = 〈h(ei, ei), eα〉 =

〈h(ej , ej ), eα〉 = κα
j for i �= j . That is to say, Hα has only one eigenvalue with multiplication n. Note that this holds

for arbitrary α = n + 1, . . . , n + p. Hence M is totally umbilical at x. The inverse is obvious since that M is totally
umbilical at x is equivalent to h(X,Y ) = 〈X,Y 〉ξ for any X,Y ∈ TxM . �

The following lemma gives a lower bound for the sectional curvature of a submanifold.

Lemma 2.2. Let M be an n-dimensional submanifold in a Riemannian manifold Nn+p . Denote by K(x,π) the
sectional curvature of N for 2-plane π ⊂ TxN and point x ∈ N . Set Kmin(x) := minπ⊂TxN K(x,π) for x ∈ M .
Then the sectional curvature of M at x ∈ M is no less than Kmin(x) − τ(x)

2 .

Proof. For x ∈ M , let u, v be two perpendicular unit vectors in UxM . Then by Gauss equation (2) we have

R(u, v,u, v) = K(u,v,u, v) + 〈
h(u,u),h(v, v)

〉 − ∥∥h(u, v)
∥∥2

. (7)

Note that

τ(x) �
∥∥h(u,u) − h(v, v)

∥∥2 = ∥∥h(u,u)
∥∥2 + ∥∥h(v, v)

∥∥2 − 2
〈
h(u,u),h(v, v)

〉
.

Therefore, 〈
h(u,u),h(v, v)

〉
� 1

4

(∥∥h(u,u)
∥∥2 + ∥∥h(v, v)

∥∥2 − τ(x)
) + 1

2

〈
h(u,u),h(v, v)

〉
� −τ(x)

4
. (8)

On the other hand, we have

h(u, v) = 1

2

(
h

(
u + v√

2
,
u + v√

2

)
− h

(
u − v√

2
,
u − v√

2

))
.

Since (u + v)/
√

2 and (u − v)/
√

2 are two perpendicular unit vectors, we have

∥∥h(u, v)
∥∥2 = 1

4

∥∥∥∥h

(
u + v√

2
,
u + v√

2

)
− h

(
u − v√

2
,
u − v√

2

)∥∥∥∥
2

� τ(x)

4
. (9)

Combining (7), (8) and (9), we complete the proof of the lemma. �
3. Rigidity of submanifolds with parallel mean curvature

In this section, we investigate the geometric rigidity of submanifolds with parallel mean curvature. Let Mn be
an n-dimensional complete submanifold with parallel mean curvature in an (n + p)-dimensional unit sphere Sn+p .
Then KABCD = δACδBD − δADδBC .

Suppose τ(x0) �= 0 at x0 ∈ M . Then there exist two perpendicular unit vectors u0, v0 ∈ Ux0M such that

max
u,v∈Ux M,u⊥v

∥∥h(u,u) − h(v, v)
∥∥2 = ∥∥h(u0, u0) − h(v0, v0)

∥∥2
.

0
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Choose an orthonormal frame {eA} at x0 such that

en+1 = h(u0, u0) − h(v0, v0)

‖h(u0, u0) − h(v0, v0)‖ , (10)

and the matrix (hn+1
ij ) satisfies

hn+1
11 � · · · � hn+1

nn , hn+1
ij = 0 (i �= j). (11)

Let u0 = ∑
i x

iei, v0 = ∑
i y

iei . Since

τ(x0) = 〈
h(u0, u0) − h(v0, v0), en+1

〉2
=

[∑
i

(
x2
i − y2

i

)
hn+1

ii

]2

�
[∑

i

x2
i hn+1

11 −
∑

i

y2
i hn+1

nn

]2

= (
hn+1

11 − hn+1
nn

)2
,

by the definition of τ , we have τ(x0) = (hn+1
11 − hn+1

nn )2. Thus we can take

e1 = u0, en = v0. (12)

From (10), we know that h(e1, e1) − h(en, en) is parallel to en+1. Hence

hα
11 = hα

nn, α �= n + 1. (13)

On the other hand, for any x ∈ M , ei, ej ∈ TxM, i �= j , let

u = ei + ej√
2

, v = ei − ej√
2

.

Since u, v are perpendicular, we have ∑
α

(
hα

ij

)2
(x) = 1

4

∥∥h(u,u) − h(v, v)
∥∥2 (14)

� 1

4
τ(x). (15)

Define a tensor field A = (Aijkl) on M by

Aijkl =
∑
α

hα
ijh

α
kl .

Under the frame satisfying (10)–(13), we have

τ(x0) = A1111 + Annnn − 2A11nn. (16)

By the definition of Laplacian, we obtain 
τ(x0) = 
(1, n) = (
A)1111 + (
A)nnnn − 2(
A)11nn, and

1

2
(
A)1111 =

∑
α,i

[
hα

11h
α
11ii + (

hα
11i

)2]
,

1

2
(
A)nnnn =

∑
α,i

[
hα

nnh
α
nnii + (

hα
nni

)2]
,

(
A)11nn =
∑
α,i

[
hα

11h
α
nnii + hα

nnh
α
11ii + 2hα

11ih
α
nni

]
.

Using (13), at x0 we have
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1

2

(1, n) =

∑
i

(
hn+1

11 − hn+1
nn

)(
hn+1

11ii − hn+1
nnii

) +
∑
α,i

(
hα

11i − hα
nni

)2

�
∑

i

(
hn+1

11 − hn+1
nn

)(
hn+1

11ii − hn+1
nnii

)
. (17)

Substituting (2), (3) and (5) into (17), we have

1

2

(1, n) � n

(
hn+1

11 − hn+1
nn

)2

− 2
(
hn+1

11 − hn+1
nn

)∑
i,α

{(
hn+1

11 − hn+1
ii

)(
hα

1i

)2 + (
hn+1

ii − hn+1
nn

)(
hα

ni

)2}
+ (

hn+1
11 − hn+1

nn

)∑
i,α

{(
hn+1

11 − hn+1
ii

)
hα

11h
α
ii + (

hn+1
ii − hn+1

nn

)
hα

nnh
α
ii

}
. (18)

Lemma 3.1. Let M be an n-dimensional submanifold with parallel mean curvature in a unit sphere Sn+p . Suppose
τ(x) �= 0 at x ∈ M . Let {eA} be an adapted frame satisfying (10)–(13).

(1) If p = 1, or p = 2 and H �= 0, then

1

2

(1, n) � n

(
hn+1

11 − hn+1
nn

)2
(

1 − 1

4

(
hn+1

11 − hn+1
nn

)2
)

;

(2) If p � 3, or p = 2 and H = 0, then

1

2

(1, n) � n

(
hn+1

11 − hn+1
nn

)2
(

1 − 3

4

(
hn+1

11 − hn+1
nn

)2
)

.

Proof. (1) If p = 1, by (10) we see that the second term of the right hand side of (18) vanishes. If p = 2 and H �= 0,
by (6) we have ∑

α

Rαβkl

(
trHα

) = 0.

Let α, β be n + 1 and n + 2, respectively. Then we have{
R(n+1)(n+2)kl

(
trHn+1) = 0,

R(n+2)(n+1)kl

(
trHn+2) = 0.

Since H �= 0, trHn+1 and trHn+2 do not equal to 0 at the same time. Hence

R(n+1)(n+2)kl = 0

for all k, l = 1, . . . , n. By (3) and (11) we have

R(n+1)(n+2)kl =
n∑

i=1

(
hn+1

ik hn+2
il − hn+1

il hn+2
ik

)
= hn+1

kk hn+2
kl − hn+1

ll hn+2
lk

= hn+2
kl

(
hn+1

kk − hn+1
ll

)
= 0.

Particularly,

hn+2
1i

(
hn+1

11 − hn+1
ii

) = 0, hn+2
ni

(
hn+1

nn − hn+1
ii

) = 0.

So the second term of the right hand side of (18) vanishes either. Hence we have the following estimate from (18):
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1

2

(1, n) � n

(
hn+1

11 − hn+1
nn

)2

+ (
hn+1

11 − hn+1
nn

)∑
i

{(
hn+1

11 − hn+1
ii

)∑
α

hα
11h

α
ii + (

hn+1
ii − hn+1

nn

)∑
α

hα
nnh

α
ii

}

� n
(
hn+1

11 − hn+1
nn

)2 + (
hn+1

11 − hn+1
ii

)
×

∑
i

{
−1

4

(
hn+1

11 − hn+1
ii

)(
hn+1

11 − hn+1
nn

)2 − 1

4

(
hn+1

ii − hn+1
nn

)(
hn+1

11 − hn+1
nn

)2
}

= n
(
hn+1

11 − hn+1
nn

)2
[

1 − 1

4

(
hn+1

11 − hn+1
nn

)2
]
. (19)

In the second inequality we have used the following estimate:

−
∑
α

hα
11h

α
ii �

∑
α

1

4

(
hα

11 − hα
ii

)2

= 1

4

∥∥h(e1, e1) − h(ei, ei)
∥∥2

� 1

4

∥∥h(e1, e1) − h(en, en)
∥∥2

= 1

4

(
hn+1

11 − hn+1
nn

)2
. (20)

(2) If p � 3, or p = 2 and H = 0, (18) can be rewritten as

1

2

(1, n) = n

(
hn+1

11 − hn+1
nn

)2 − (
hn+1

11

− hn+1
nn

){ n∑
i=2

(
hn+1

11 − hn+1
ii

)[
2
∑
α

(
hα

1i

)2 −
∑
α

hα
11h

α
ii

]

+
n−1∑
i=1

(
hn+1

ii − hn+1
nn

)[
2
∑
α

(
hα

ni

)2 −
∑
α

hα
nnh

α
ii

]}
. (21)

For i �= 1, by (15) we have

2
∑
α

(
hα

1i

)2 � 1

2

(
hn+1

11 − hn+1
nn

)2
.

From this and (20) we obtain

n∑
i=2

(
hn+1

11 − hn+1
ii

)(
2
∑
α

(
hα

1i

)2 −
∑
α

hα
11h

α
ii

)

�
n∑

i=2

(
hn+1

11 − hn+1
ii

) × 3

4

(
hn+1

11 − hn+1
nn

)2
. (22)

Similarly,

n−1∑
i=1

(
hn+1

ii − hn+1
nn

)(
2
∑
α

(
hα

ni

)2 −
∑
α

hα
nnh

α
ii

)

�
n−1∑
i=1

(
hn+1

ii − hn+1
nn

) × 3

4

(
hn+1

11 − hn+1
nn

)2
. (23)

Substituting (22) and (23) into (21), we get
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1

2

(1, n) � n

(
hn+1

11 − hn+1
nn

)2 − (
hn+1

11 − hn+1
nn

)

×3

4

(
hn+1

11 − hn+1
nn

)2

(
n∑

i=2

(
hn+1

11 − hn+1
ii

) +
n−1∑
i=1

(
hn+1

ii − hn+1
nn

))

= n
(
hn+1

11 − hn+1
nn

)2 − 3

4

(
hn+1

11 − hn+1
nn

)3

×
(

n∑
i=1

(
hn+1

11 − hn+1
ii

) +
n∑

i=1

(
hn+1

ii − hn+1
nn

))

= n
(
hn+1

11 − hn+1
nn

)2 − 3

4
n
(
hn+1

11 − hn+1
nn

)4

= n
(
hn+1

11 − hn+1
nn

)2
(

1 − 3

4

(
hn+1

11 − hn+1
nn

)2
)

.

This completes the proof of the lemma. �
Lemma 3.2. Let M be an n-dimensional compact submanifold with parallel mean curvature in a unit sphere Sn+p .
We have

(1) If p = 1, or p = 2 and H �= 0, and τ(x) � 4 for any x ∈ M , then τ(x) is a constant function on M .
(2) If p � 3, or p = 2 and H = 0, and τ(x) � 4

3 for any x ∈ M , then τ(x) is a constant function on M .

Proof. It suffices to show that τ(x) is a subharmonic function. Fix a point x ∈ M . For the Laplacian of continuous
functions, we have the generalized definition

(
τ)(x) = C lim
r→0

1

r2

( ∫
B(x,r)

τ
/ ∫

B(x,r)

1 − τ(x)

)
,

where C is a positive constant and B(x, r) is a geodesic ball centered at x with radius r .
If τ(x) = 0, then 
τ(x) � 0 since τ is nonnegative on M .
If τ(x) �= 0, in a small neighborhood Ox of x within the cut-locus of x, we denote by u(y), v(y) two vectors

tangent to M obtained by parallel transport of u(x) = e1, v(x) = en along the unique geodesic joining x to y. Define
fx(y) = ‖h(u(y),u(y)) − h(v(y), v(y))‖2. Then


fx(y)|y=x = 

{
A(u,u,u,u) + A(v, v, v, v) − 2A(u,u, v, v)

}∣∣
y=x

= 
(1, n).

Since τ(x) = fx(x) and τ(y) � fx(y), we have 
τ(x) � 
fx(x). From Lemma 3.1 we know that 
(1, n) � 0. Hence

τ(x) � 0.

Since x is arbitrary, we see that τ(x) is subharmonic, which implies that τ is a constant function. This completes
the proof of Lemma 3.2. �
Theorem 3.3. Let M be an n-dimensional compact submanifold with parallel mean curvature in a unit sphere Sn+p .
If p = 1, or p = 2 and H �= 0, and if τ(x) � 4 for all x ∈ M, then either τ(x) ≡ 0 and M is the totally umbilical
sphere Sn( 1√

1+H 2
), or τ(x) ≡ 4.

Proof. By Lemma 3.2, τ is a constant function. When τ = 0, from Lemma 2.1 we know that M is the totally umbilical
sphere Sn( 1√

1+H 2
). When τ �= 0, from the definition of fx(y) in the proof of Lemma 3.2 we see that fx(x) is the

maximal value of fx . Hence, 
(1, n) = 
fx(x) � 0. By Lemma 3.1 we have

1

2

(1, n) � n

(
hn+1

11 − hn+1
nn

)2
(

1 − 1

4

(
hn+1

11 − hn+1
nn

)2
)

.

Since τ(x) = (hn+1
11 − hn+1

nn )2 � 4, we obtain from the above inequality that τ(x) = 4. This completes the proof of
Theorem 3.3. �
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Theorem 3.4. Let M be an n-dimensional complete submanifold with parallel mean curvature in a unit sphere Sn+p .
If p � 3, or p = 2 and H = 0, and if τ(x) � 4

3 for all x ∈ M, then either τ(x) ≡ 0 and M is the totally umbilical

sphere Sn( 1√
1+H 2

), or τ(x) ≡ 4
3 .

Proof. From Lemma 2.2, we have KM � 1
3 > 0. Hence M is a compact submanifold by Myers’ theorem. When τ = 0,

M is the totally umbilical sphere Sn( 1√
1+H 2

). When τ is a nonzero constant, we have 
(1, n) � 0. From Lemma 3.1

we have 1
2
(1, n) � n(hn+1

11 − hn+1
nn )2(1 − 3

4 (hn+1
11 − hn+1

nn )2). Hence if τ(x) = (hn+1
11 − hn+1

nn )2 � 4
3 , we obtain that

τ = 4
3 . This completes the proof of Theorem 3.4. �

Now we are in a position to give the proof of Theorem A.

Proof of Theorem A. Combing Theorems 3.3 and 3.4, we obtain the assertion of Theorem A. �
Example 3.5. Let Sq(r) be the q-dimensional sphere of radius r in Rq+1, and let 1 � k � n − 1. We embed
Sk(1/

√
2 ) × Sn−k(1/

√
2 ) in Sn+1(1) as follows. Let u ∈ Sk(1/

√
2 ) and v ∈ Sn−k(1/

√
2 ) be vectors of length 1/

√
2

in Rk+1 and Rn−k+1, respectively. We can consider (u, v) as a unit vector in Rn+2 =Rk+1 ×Rn−k+1. It is easy to see
that Sk(1/

√
2) × Sn−k(1/

√
2 ) is a submanifold in Sn+1(1) with constant mean curvature

H =
∣∣∣∣2k − n

n

∣∣∣∣.
In particular, Sk(1/

√
2)×Sk(1/

√
2 ) ⊂ Sn+1(1) is minimal if n = 2k. Since Sn+1(1) ⊂ Sn+2(1) is totally geodesic, as

a submanifold in Sn+2(1), Sk(1/
√

2 ) ×Sn−k(1/
√

2 ) ⊂ Sn+2(1) is a submanifold with parallel mean curvature vector
of norm H = | 2k−n

n
|.

Example 3.6. Denote by RP2, CP2, QP2 and CayP2 the projective planes over the real numbers, complex numbers,
quaternions and octonions, and by ψ1 : RP2 → S4(1), ψ2 : CP2 → S7(1), ψ3 : QP2 → S13(1) and ψ4 : CayP2 →
S25(1) the corresponding isometric embeddings. Let ψ ′

1 : S2(
√

3 ) → S4(1) be the isometric immersion defined by
ψ ′

1 = ψ1 ◦ π , where π : S2(
√

3 ) →RP2 is the canonical projection.
For n � 2, m � 0, let Sn(1) be the great sphere in Sn+m(1) given by

Sn(1) = {
(x1, . . . , xn+m+1) ∈ Sn+m(1): xn+2 = · · · = xn+m+1 = 0

}
,

and ηn,m : Sn(1) → Sn+m(1) the inclusion. We set

φ1,p = η4,p−2 ◦ ψ1 :RP2 → S2+p(1), p � 2,

φ2,p = η7,p−3 ◦ ψ2 :CP2 → S4+p(1), p � 3,

φ3,p = η13,p−5 ◦ ψ3 :QP2 → S8+p(1), p � 5,

φ4,p = η25,p−2 ◦ ψ4 :CayP2 → S16+p(1), p � 9,

φ′
1,p = η4,p−2 ◦ ψ ′

1 : S2(
√

3) → S2+p(1), p � 2.

Then φi,p is a minimal isometric embedding and φ′
1,p is a minimal isometric immersion.

From the proof of Main Theorem 1.6 in [28] we see that, for submanifolds described in Example 3.5, there exist
u,v ∈ UxM at every x ∈ M which are perpendicular such that τ(u, v) = 4. Hence τ = 4 on M . This implies that the
condition τ � 4 of Theorem A (1) is optimal. Similarly, we have τ ≡ 4

3 on φi,p , i = 1,2,3,4, and φ′
1,p described

in Example 3.6. So the condition τ(x) � 4
3 in Theorem A (2) and Theorem B is optimal in the sense that there exist

submanifolds which satisfy τ ≡ 4
3 but not isometric or diffeomorphic to a sphere.

Theorem A also improves the rigidity result due to Chen [10].
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4. Differentiable sphere theorems for submanifolds

In this section, we first prove a differentiable sphere theorem for compact submanifolds in a δ(> 1/4)-pinched
Riemannian manifold by using the convergence result for the Ricci flow due to Brendle [4].

Theorem 4.1. Let M be an n-dimensional compact submanifold in an (n + p)-dimensional pointwise δ(> 1/4)-
pinched Riemannian manifold Nn+p . Denote by K(x,π) the sectional curvature of N for 2-plane π ⊂ TxN and
point x ∈ N . For x ∈ M , set Kmax(x) := maxπ⊂TxN K(x,π). If τ(x) < 16

9 Kmax(x)(δ − 1
4 ) for all x ∈ M, then M

is diffeomorphic to a spherical space form. In particular, if M is simply connected, then M is diffeomorphic to the
standard unit n-sphere Sn.

Proof. Since M is compact and Kmax(x) > 0 for all x ∈ N , we see from Lemma 2.2 that the sectional curvature KM

of M satisfies

KM >
δ + 2

9
inf

x∈M
Kmax(x) > 0.

When n = 2, it is easy to see that M is diffeomorphic to S2 or RP2. When n = 3, the Hamilton theorem in [15] says
that M is diffeomorphic to a spherical space form. When n � 4, let {e1, e2, e3, e4} be an orthonormal four-frame at
x ∈ M and λ ∈R. By Lemma 2.2 and Berger’s inequality we have

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

> 2
(
1 + λ2)δ + 2

9
Kmax(x) − 2|λ|

(
2

3
(1 − δ)Kmax(x) + 8

9
Kmax(x)

(
δ − 1

4

))

= 2

9
(δ + 2)Kmax(x)

(
1 − 2|λ| + λ2)

� 0.

This together with Theorem 1.1 implies that M admits a metric with positive constant sectional curvature. Hence M

is diffeomorphic to a spherical space form. In particular, if M is simply connected, then M must be diffeomorphic to
the standard unit n-sphere Sn. This completes the proof. �
Lemma 4.2. (See [18].) Let M be an n-dimensional compact submanifold in a unit sphere Sn+p . Let k and l be
positive integers with k + l = n. If the following inequality:

n∑
j=k+1

k∑
i=1

(
2
∥∥h(ei, ej )

∥∥2 − 〈
h(ei, ei), h(ej , ej )

〉)
< kl,

holds for any orthonormal basis {e1, e2, . . . , en} of the tangent space at any point x ∈ M , then there is no stable
k-current in M . Moreover,

Hk(M,Z) = Hl(M,Z) = 0,

where Hi(M,Z) is the i-th homology group on M with integer coefficients.

Now we give the proofs of Theorems B and C.

Proof of Theorem B. By Lemma 2.2, we know that KM � 1
3 > 0. Then M is compact by Myers’ theorem. Let

{e1, e2, . . . , en} be any orthonormal basis of the tangent space at any point x ∈ M . By (8) and (9) we know that
〈h(ei, ei), h(ej , ej )〉 > − 1

3 and ‖h(ei, ej )‖2 < 1
3 . Hence for any 1 � k � n − 1,

n∑
j=k+1

k∑
i=1

(
2
∥∥h(ei, ej )

∥∥2 − 〈
h(ei, ei), h(ej , ej )

〉)
<

n∑
j=k+1

k∑
i=1

(
2 × 1

3
+ 1

3

)
= k(n − k).

By Lemma 4.2, we know that there does not exist any stable integral current in M .
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Suppose that π1(M) �= 0. Since M is compact, it follows from a classical theorem due to Cartan and Hadamard
that there exists a minimal closed geodesic in any nontrivial homotopy class in π1(M). Then we get a contradiction.
Therefore π1(M) = 0 and M is simply connected. This together with Theorem 4.1 implies that M is diffeomorphic
to Sn. This completes the proof of Theorem B. �
Proof of Theorem C. By Lemma 2.2 we see that KM > δ+2

9 infx∈M Kmax(x) � 0. When M is compact, we see from
Theorem 4.1 that M is diffeomorphic to a spherical space form. When M is complete noncompact, it follows from
Cheeger–Gromoll–Myers’s soul theorem [9,14] that M is diffeomorphic to Rn. In particular, if M is simply connected,
then M is diffeomorphic to Sn or Rn. This completes the proof of Theorem C. �

Theorem C improves the sphere theorems due to Xia [27] and Xu and Zhao [32]. Furthermore, we present a
differentiable pinching theorem for even dimensional complete submanifolds as follows.

Theorem 4.3. Let Mn be an even dimensional complete oriented submanifold in an (n + p)-dimensional pointwise
δ(> 1/4)-pinched Riemannian manifold Nn+p . If

τ(x) <
16

9
Kmax(x)

(
δ − 1

4

)

for all x ∈ M, then M is diffeomorphic to the standard unit n-sphere Sn or the Euclidean space Rn.

Proof. It follows from the assumption and Lemma 2.2 that

KM >
δ + 2

9
inf

x∈M
Kmax(x) � 0.

When M is compact, it is seen from the assumption and Synge’s theorem that M is simply connected. From Theo-
rem 4.1, we see that M is diffeomorphic to Sn. When M is complete noncompact, it follows from Cheeger–Gromoll–
Myers’s soul theorem [9,14] that M is diffeomorphic to Rn. Therefore, we conclude that M is diffeomorphic to Sn

or Rn. �
Finally, motivated by Theorems A and B, we would like to propose the following conjecture on the mean curvature

flow in higher codimensions.

Conjecture 4.4. Let F0 : M → Sn+p be an n-dimensional compact submanifold in an (n+p)-dimensional unit sphere
Sn+p . If τ(x) < 4

3 for all x ∈ M, then the mean curvature flow⎧⎨
⎩

∂

∂t
F (x, t) = nξ(x, t), x ∈ M, t � 0,

F (·,0) = F0(·),
has a unique solution F : M × [0, T ) → Sn+d , and either

(1) T < ∞ and Mt converges to a round point as t → T ; or
(2) T = ∞ and Mt converges to a totally geodesic sphere in Sn+d as t → ∞.

In particular, we give the following:

Conjecture 4.5. Let F0 : M → Sn+p be an n-dimensional compact submanifold in an (n+p)-dimensional unit sphere
Sn+p . If σ(u) < 1

3 for any unit vector u ∈ UM, then the mean curvature flow with F0 as initial value has a unique
solution F : M × [0, T ) → Sn+d , and either

(1) T < ∞ and Mt converges to a round point as t → T ; or
(2) T = ∞ and Mt converges to a totally geodesic sphere in Sn+d as t → ∞.
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