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Abstract We generalize the second pinching theorem for minimal hypersurfaces in a
sphere due to Peng—Terng, Wei—Xu, Zhang, and Ding—Xin to the case of hypersurfaces
with small constant mean curvature. Let M" be a compact hypersurface with constant
mean curvature H in $"*!. Denote by S the squared norm of the second fundamental
form of M. We prove that there exist two positive constants y (n) and §(n) depending
only on n such that if |H| < y(n) and B(n, H) < S < B(n, H) + §(n), then

S = B(n, H) and M is one of the following cases: (i) Sk(\/g) X S”*k( u),

n

15k§n—1;(ii)Sl( 1 )xS"’l( L ).Hereﬁ(n,H)=n+—2(,’fil)H2+

142 142
-2 H|+/n2H2+4(n—1
gzz_lg\/nzH4+4(n—1)H2 and p = "1 °s UBD

Mathematics Subject Classification (2000) 53C24 - 53C40

1 Introduction

Let M" be an n-dimensional compact hypersurface with constant mean curvature H in
an (n4 1)-dimensional unit sphere S”*!. Denote by S the squared length of the second
fundamental form of M and R its scalar curvature. Then R = n(n — 1) + n2H? — S.
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870 H. Xu, Z. Xu

When H = 0, the famous pinching theorem due to Simons [12], Lawson [8], and
Chern, do Carmo and Kobayashi ([2]) says that if § < n,then S = 0 or § = n,

i.e., M must be the great sphere S” or the Clifford torus Sk (\/g) x §n—k (,/"n;k),
1 < k < n — 1. Further discussions have been carried out by many other authors (see
[6,9,13,16,17,22,23], etc.). In 1970s, Chern proposed the following conjectures.

Chern Conjecture 1. Let M be a compact minimal hypersurface with constant scalar
curvature in S"TL. Then the possible values of S a discrete set. In particular, if n <
S <2n, then S = n, or S = 2n.

Chern Conjecture IL. Let M be a compact minimal hypersurface in S"+'. If n <
S < 2n, then S = n, or S = 2n.

In 1983, Peng and Terng made breakthrough on the Chern conjectures I and II.
They [10] proved that if M is a compact minimal hypersurface with constant scalar
curvature in the unit sphere st andifn < S <n+ ﬁ, then S = n. Moreover,
Peng and Terng [11] proved that if M is a compact minimal hypersurface in the unit
sphere st andifn <5andn < S <n+ 71(n), where 71 (n) is a positive constant
depending only on n, then S = n. During the past three decades, there have been some
important progress on these aspects(see [1,4,5,7,14,15,24,25], etc.). In 1993, Chang
[1] solved Chern Conjecture I for the case of dimension 3. In [4,24], Cheng, Ishikawa
and Yang obtained some interesting results on the Chern conjectures.

In 2007, Suh—Yang and Wei—Xu made some progress on Chern Conjectures, respec-
tively. Suh and Yang [14] proved that if M is a compact minimal hypersurface with
constant scalar curvature in $"T!, andifn < S <n + %n, then S =nand M is a
minimal Clifford torus. Meanwhile, Wei and Xu [15] proved that if M is a compact
minimal hypersurface in sty =6, 7,andif n < S < n + ©(n), where o(n)
is a positive constant depending only on n, then S = n and M is a minimal Clifford
torus. Later, Zhang [25] extended the second pinching theorem due to Peng—Terng [11]
and Wei—Xu [15] to 8-dimensional compact minimal hypersurfaces in a unit sphere.
Recently Ding and Xin [7] obtained the following pinching theorem for n-dimensional
minimal hypersurfaces in a sphere.

Theorem A Let M be an n-dimensional compact minimal hypersurface in a unit
sphere S"T1 and S the squared length of the second fundamental form of M. Then
there exists a positive constant T (n) depending only onn such thatifn < S < n-+1t(n),
then S = n, i.e., M is a Clifford torus.

The pinching phenomenon for hypersurfaces of constant mean curvature in spheres
is much more complicated than the minimal hypersurface case (see [16,18]). In [16],
Xu proved the following pinching theorem for submanifolds with parallel mean cur-
vature in a sphere.

Theorem B Let M be an n-dimensional compact submanifold with parallel mean
curvature vector (H # 0) inan (n+ p)-dimensional unit sphere S"* TP If S < a(n, H),
then either M is pseudo-umbilical, or S = a(n, H) and M is the isoparametric
n—1 1 1 A . n+1 . : .
hypersurface S («/l+7) xS (m) ina great sphere 8" . In particular, if M is a

compact hypersurface with constant mean curvature H (£ 0) in St then M is either
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The second pinching theorem 871

a totally umbilical sphere S"(ﬁ), or a Clifford hypersurface Sn_l(«/]i—T) X

32 2
S' (). Here a(n. H) = n + Sty — "GeBEll /n? H? +4(n — 1) and ). =
n|H|4++/n2H?+4(n—1)

2(n—1)

In [19], Xu and Tian generalized Suh—Yang’s pinching theorem [14] to the case
where M is a compact hypersurface with constant scalar curvature and small constant
mean curvature in S”*!. The following second pinching theorem for hypersurfaces
with small constant mean curvature was proved for n < 7 by Cheng et al. [3] and
Xu—Zhao [20] respectively, and for n = 8§ by Xu [21].

Theorem C Let M be an n-dimensional compact hypersurface with constant mean
curvature H(# 0) in a unit sphere S"t', n < 8. Then there exist two positive
constants yy(n) and 8o(n) depending only on n such that if |H| < yy(n), and
H) < H = H M = S'(—=
Bn,H) < S < B, H) + do(n), then S Bn, H) and S (m) X
3 _
Sn_l(JﬁT)' Here B(n, H) = n + 3= H? + ;gz_fg VnZH* +4(n — 1)H? and
__ n|H|++/n2H%+4(n—1)
= 5 .

In this paper, we prove the second pinching theorem for n-dimensional hypersurfaces
with constant mean curvature, which is a generalization of Theorems A and C.

Main Theorem. Let M be an n-dimensional compact hypersurface with constant
mean curvature H in a unit sphere S"t'. Then there exist two positive constants
y (n) and 8(n) depending only on n such that if |H| < y(n), and B(n, H) < § <

B(n, H)+68(n), then S = B(n, H) and M is one of the following cases: (i) Sk(\/g) X

—k n—k v 1 1 —1 1%
SSRGS, L =k <= n— 1 (i) S( 1+ll«2) x S"H( 1+u2)' Here B(n, H) =
3 _ Hl4A/n2 H2+4(n—1
n+ —2(;11_1)H2 + ;EZ_%;\/nzH“ +4(n—1)H?and n = nH It/ 5 +a=l)

2 Preliminaries
Let M" be an n-dimensional compact hypersurface with constant mean curvature in

a unit sphere S"*!. We shall make use of the following convention on the range of
indices.

1<A,BC,....,<n+1, 1=<i,jk,...,<n.

For an arbitrary fixed point x € M C §"*!, we choose an orthonormal local frame
field {e4} in S"T! such that ¢;’s are tangent to M. Let {w4} be the dual frame fields
of {e4} and {w4 )} the connection 1-forms of $"*!. Restricting to M, we have

Wpt1i = Zhijwj, hij = hj;. (D
J
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872 H. Xu, Z. Xu

Let h be the second fundamental form of M. Denote by R, H and S the scalar
curvature, mean curvature and squared length of the second fundamental form of M,
respectively. Then we have

hzzhija)i@sz 2)
i.j
1
S=2 hy H="3 hii 3)
L] 1
R=n(n—1)+n’H>-5S. 4)

We choose e+ such that H = % Zi hii > 0. Denote by h;ji, hjjx and h;jg, the
first, second and third covariant derivatives of the second fundamental tensor 4;;,
respectively. Then we have

Vh = Zhijka)i®wj Q wr, hijk = hikj, ®)
i.j.k
hijit = hijik + D hmj Rmikt + D him Rmjt. (©)
m m
hijklm = hijkml + Z hrijrilm + Z hirerjlm + Z hierrklm~ (7N

At each fixed point x € M, we take orthonormal frames {e;} such that i;; = A;;;
for all i, j. Then Zi Ai = nH and Zi k? = §. By a direct computation, we have

1
SAS = S(n—S) —n’H? +nHfs + |Vh|?, (8)

1 3

EA|Vh|2 =(@2n+3—95)|Vh? - 5|v5|2 + |V2h|?

+ Z (6hjjkhitmh jihim — 3hijihijihimhmn)
ivjikdm
+3nH Z hijih jichi
ijkl

3
=Q2n+3-9|Vh)? - E|VS|2 +|V2h)?

+3(2B — A)+3nHC, )
where
k 2 2 2 2
fe=D 0 A=D"hEal. B=) hikikj, C= > hizh
i i.jk ijk ijk

Using a similar method as in [10], we obtain
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hijij = hjiji + tij,

3 2 3 2
|V2h|? > Z > 1= i > 1
i#] ij

and

3(A — 2B) < aS|Vh|?,

where t;j = (A; —Aj))(1+A;Aj)and a = @ From (11), we have

|V2h|* >

N W

By a computation, we obtain
1 1
3 > hij(f)ij = 3 PRGN
ij k

= Z v Z Riih + 2 Z h,-zjk)»i
k i i

= z ik hich? 42 Z h,'zjk)hi)\-k
ik i.j.k

= > Thikii + (i = A+ Aid) AT + 2B
ik

[Sfs — f} — S* = S(S —n) —n’H? + 2nHf3].

(10)
(11)

(12)

(13)

S..
=> %—Zhﬁjk W4 D A = M) (L4 Aidg) + 2B
i j.k

i,k

hikhg;
ZZ ik k’S,-j+an3—Sz—f32+Sf4_(A_ZB)' (14)

2
ij.k

Since f M Zi, j hij(f3)ijdM = 0, we drive the following integral formula.

hikhg;
2

/(A—ZB)dM:/ nHfs —S* = 3+ Sfa+ > Sij
M

i.j.k

i,j.k

S.
2_ 2
/ nHfs = S* — fi + Sfa— > hikjhkj?l
M

i,j.k

dM

M
2 2 Si
nHfy =8 = f3 4 Sfs = 3 (i) > | M
M
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S
— Z hikhkijl dm
i,j,k

E\ S—

S.
nHfy — S* — f3 + Sfa — Z hikjhkjEl dM
ik
VS|
4

(an3 S )dM. (15)

3 Proof of Main Theorem

The key to the proof of Main Theorem is to establish some integral equalities and
inequalities on the second fundamental form of M and its covariant derivatives by the
parameter method.

To simplify the computation, we introduce the tracefree second fundamental form
¢ = Zi,j ¢ijw; ® wj, where ¢;; = h;j — Ho;;. If hij = A;8;j, then ¢;; = w;d;;,
where u; = A; — H. Putting @ = [¢|? and fx = >, ;Lf.‘, we get ® = S — nH?,
fs=f3+3HP +nH3and f4 = f4 +4H f3 + 6H*® + nH*. From (8), we obtain

1
74P = S0 —$) - n*H? + nHfs + |Vh|)?

=—@>+n® +nHf3+nH*® + |Vp|?
= —F(®) + |Vo|?, (16)

where F(®) = &2 — n® — nH?® — nH f3. Therefore, we have

1 1
Vo |? = EAQDZ—CDAq) = EA4>2+2q>F(q>)—2q>|v¢>|2, (17)
and
/F(q))dM:/|v¢|2dM. (18)
M

Lemma 1 (See [16]) Let a1, az, ..., a, be real numbers satisfying Zi a; = 0 and
> a? =a. Then

-2

3
< —az

Jnn=1)

and the equality holds if and only if at least n — 1 numbers of a;’s are same with each
other.
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The second pinching theorem 875

From Lemma 1, we get

F(®) > &> —nd — H2¢_M
B " 8 Jnn —1)
oo 1 -DHO? —n(1 + H?)
B Jnn—1)
>0, 19)
provided
3
— 2 =2 5o “NH2 _ ap2
@ = fon. H) :=n+ 70— 2(n_1)\/nH +4(n— )H? —nH”.

Moreover, F(®) = 0if and only if @ = By(n, H).
Set

G=> =20+ 1>
ij

Then we have
G =2[Sfs — f} — S* — S(S —n) +2nHf; — n*H?]. (20)
This together with (8) and (15) implies

%/GdM:/ |:(A—2B)— |Vh|2+%|VS|2} M. 1)
M M

Lemma 2 Let M be an n(>4)-dimensional compact hypersurface with constant mean
curvature in S"t1. If S = B(n, H), then we have

3(A — 2B) < 2S|Vh|? + C1(n)|Vh|*G3,

where Ci(n) = (v/17 — 3)[6(v/17 + 1)]*%(% - *1/_75 — Ly-3

Proof We derive the estimate above at each fixed point x € M. If 22— 4rihj <28
for all i # j, then we get the desired estimate immediately. Otherwise, we assume
that there exist i # j, such that )\5 —4rid; =15 > 28.

We get

2
1S — 22
Szx?+,\2.=( 'f) + 2. (22)
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Then
1 V17 +1
—7(t+8+4\/4+t—t2)S 2<r<T+, (23)
which implies
1 S
—AiA/zﬁ(4t—2—\/4+t—t2)S20.26S>—zl. (24)
’ n
On the other hand, we have
ey 23, 3t
I Y +Z(Aj—4xi)\j)zzs. (25)
By the definition of G, we get
G > 200 — 2)%(1 + A j)?
3t
> 80 +Aixj)?
3t S\?
> —S (_)\.i)\.j — —)
2 n
31 177 4
=5 ﬁ(4t—2—\/4+t—t2—— S, (26)
n

We define an auxiliary function

2
= s [ -2 - Varm 1] 2 ATEL

(t—2)3

Then we have

0> — i(:—z—ﬁ)—lz
W= |1 n
> inf ;[i(M—z—«/ﬁ)—lT
T < (t—2)3|17 n
_ AW+ (2 _“/_5_12 27)
CWTT=33\V1rT 11 oa)
(A —4nihj —28)° = (1 —2)°S°

2G
<
—3¢@)

Hence
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The second pinching theorem 877

W=y (2 V3 o1)
= 6T+ 1) \/_ 17 n

- (cl (n)cz) . (28)

This implies

3a-28 = X 2434 40) = (it ay+ a7 i
i,j,kdistinct
+3D (5 — aniaphf;
i#]
<25 > R 43> K (2S+C1 (n)G%)

i,j,k distinct i£]

< 28|Vh|? + C1()| V2GS, (29)

iij

m}

Proof of Main Theorem (i) When H = 0, the assertion follows from Theorem A.

(ii)) When H # 0, the assertion for lower dimensional cases (n < 8) was verified
in [3,20,21]. We consider the case for n > 4. From (10) and (11), we see that
G=>2 i 12 and |[V2h|? > 3G. Letting 0 < 6 < 1, we have

/|V2h|2dM > [¥+ 1 ]/GdM (30)
M M

From (9), (21), Lemma 2 and Young’s inequality, we drive the following inequality.

3(1 —
ﬂ/cm
4
M
2, 3 2 30
(S =2n =3)|VAI" + SIVS|" +3(A = 2B) = 3nHC — —-G |dM
(S 2n—3+ )|Vh|2dM+(3——)/(A 2B)dM
3 2
5—— |VS|?’dM —3nH | CdM
0 0
</(S 2n—3+3 )|Vh|2dM+(1—§)/(ZS|Vh|2
M M

3
+c1(n)|Vh|2G%) M + (5 - —) / \VSPdM — 3nH/CdM

[
+ R :\
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30 s 3(1 —0)
< [ |G=0)8—2n -3+ ||VhPdM + GdM
M

4
3030
+C2(n,9)/|Vh|3dM+ (E—g)/lvsﬁdM
M M

—3nH/CdM, 31)
M

3
where Co(n,0) = 3C1 ()7 (1= §)2(1 —6) 2.
Letting € > 0, from (16), we get

/|Vh|3dM:/|v¢|3dM
M M

=/|v¢| (F((D)+%A<D)dM
M

:/F(@)|V¢|dM— %/V|V¢|~V(DdM

M M
1
§/F(<D)|V¢|dM~|—e/ |V2¢|2dM+E/|V®|2dM.
M M M
(32)
Since
IC| < V/S|Vh|?, (33)
we have

0< / [(3 +3nH — 0)(® +nH?*) —2n —3 + 379] |Vp|>dM
M

+C(n, 0) |;W/F(®)|V¢|dM+e/|V2¢|2dM+%/|V(D|2dM:|
M M

330 )
+ (5 - g) / Vo 2dm. (34)
M

@ Springer



The second pinching theorem 879

Substituting (12) and (33) into (9), we have

/|V2¢|2dM=/ |V2h|2dM
M
M

3
5/ |:(S—2n—3)|Vh|2~|—§|VS|2+aS|Vh|2—3nHC] M

M
3
5/[(a+1+3ﬁH)S—2n—3]|V¢|2dM+§/|VS|2dM.
M M
(35)
Combining (16) and (17), we have

/%|V¢>|2dM=/cDF(di)dM—/Q>|V¢>|2dM+,30(n,H)/|V¢>|2dM
M M M M

—Bo(n, H)/ F(®)dM
M

=/(¢—ﬁo(n, H))F(CD)dM—Ir/(ﬂo(m H)—®)|Vo[*dM.
M M
(36)

Hence

05/[[3+3ﬁH—e+eC2(n,9)(a+1+3ﬁH)] (@ — Bo(n, H))
M
+B(n, H)[343/nH — 6 + €Ca(n, 0)(a + 1 +3/nH)|
_2(3 30 Cr(n,0) 3eCa(n,0)

278 T T1ee T2 )(d)_ﬁO(”’H))

36
—2n =34 - —eCan, 0)n + 3)] IVo|2dM

3 30 Cy(n,0) 3eCy(n,0)
+2 (E iy + 16 + 2 ) (® — Bo(n, H))F(®)dM

M

+C2(n,9)/F(4’)|V¢|dM
M
= / [D(n, H)[3+3vnH — 0 + €Cy(n, 0)(a+ 1 +3/nH)]|
+(d—6)m—3+ 379 303 H + €Ca(n, 0)(an +3n> H —n — 3)] Vo |2dM
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0 %
_ _+C2(l’l, )—3«/51‘1
4 8¢

+€Ca(n.0) (2 — a — 3/nH) ) /@ — fo(n. H)|Vg2dM
M

N (3 _H L0800 s, 9)) /(q> — fo(n, H))F(®)dM
M

4 8¢
+Cz(n,0)/F(4>)|V¢IdM, (37)
M
where B(n, H) = Bo(n, H) + nH? and D(n, H) = B(n, H) — n.
Note that
g+$—3ﬁH+ecz(n,9)(2—a—3ﬁH) >0, (38)

for all € € (0, €], where €; is some positive constant. When S(n, H) < S <
B(n, H) + €2, we obtain

30 ‘
05/[(1—9)n—3+7+3n3H+D(n,H)(3+3ﬁH—9)

+0(e, 0, H)] IVé|2dM + Ca(n, «9)/ F(®)|VepldM, 39
M

where

O(e, 6, H) = eD(n, H)Ca(n, 0) (a + 1 + 3/nH)

+€Co(n, O)(an+3n>H —n —3)
360 Can, 0
e (3 -+ 200.9) | 3econ, 9)) .

8¢
On the other hand, we have

Ca(n,0) / F(D)|VeldM
M

2
< %/F(qb)dM—i—w/F(dﬁ)szdM. (40)
M M
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Using Lemma 1, we drive an upper bound for F(®).

nn—2)H®>
Jnn—1)

—n(l +H2):|

F(®) < @ —nd —nH?*® +

N nn —2)Hd?
- Jnn —=1)
d (qs% + Bo(n, H)%) (@ —ap(n, H))

= ; - , 41)
P2 +ag(n, H)?

2
_ | =nm=2)H4nv/n2H2+4n—4
where ag(n, H) = [ NG ] .
When §(n) < €2 and € < 1, we choose positive constant y|(n) such thatn < @ <
2n and Bo(n, H) <2n — 1 for all H < y;(n). We obtain

YD) G D). @)
(n—-1)

F(®) < 8n(® — ap(n, H)) < 8n (e2 +

Letd =60(n) =1— %. We choose positive constants y»(n) and y3(n) such that

3n7H + D(n, H)(3 + 3/nH) < L forall H < y5(n), and

16n2(n—2) /3 7 2 9
S Jn?ys ()t + 4(n — Dys(n)? < R aT

Take € (n) = ["(;"—j)wnzyg > +4(n — 1)y (n)z]7 > 0. Combining (39), (40)

and (42), we obtain

/ [_% + 0(e, 0(n), H)] IV|*dM >0, (43)
M

for all H < y(n) = min{y;(n), y2(n), y3(n)} and € < min{l, €1, €2(n)}.
For € < 1, we have
O(e,0(n), H) < €D(n,y(n)Ca(n,0(n))(a + 1+ 3/nyn))

4 eCo(n, O(n))(an + 3n2y (n))
. (3 300 Can.6)

+3Ca(n, 9(")))

4 8
= en(n), (44)
where a = ‘/qﬂ.
_ Co(n,0(n)) _ 1741
Fore < €1(n), wheree|(n) = S () 1Ca (.00 (@ T3 my (0 —D)] > 0,a = =,
we have
Car(n, 0(n)) 0(n)

> 3y/ny(n) + C2(n, 6(n)) (a + 3+/ny (n) —2) — (45)

8¢
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So

O0m)  Ca(n,0(n))
4 + 8¢

—3V/nH +€Cy(n,0(n)) (2 —a — 3/nH) = 0.

Taking 8(n) = €(n)?, where €(n) = min{1, €| (n), e2(n), €3(n)} and €3(n) = %,
we have §(n) > 0. From (43) and the assumption that B(n, H) < § < B(n, H)+4§(n),
we obtain V¢ = 0. This implies F(®) = 0 and @ = Bo(n, H).

By Lemma 1, we have

_ 2
)»1:---:)\%_121_1_\/@7
nin—1)

dn=H + \/(” — )(B(n, H) — nHz).

n

Therefore M is the Clifford hypersurface

1 I
S —— ) x s
(‘/1+u2) (~/1+u2)
71H+»\/n2H2+4(n71)
2

Finally we would like to propose the following problems.

in $"t1, where u =

. This completes the proof of Main Theorem.

Open Problem A Let M be an n-dimensional compact hypersurface with constant
mean curvature H in the unit sphere S"+1. Does there exist a positive constant §(n)
depending only on n such thatif B(n, H) < S < B(n, H) +38(n), then S = B(n, H)?

Open Problem B For an n-dimensional compact hypersurface M"™ with constant

. /2 H2 _
mean curvature H in S"t1 set Ui = AT/ 2Hk Hak(n k). Suppose that a(n, H) <
S < B(n, H). Is it possible to prove that M must be the isoparametric hypersurface
Sk( I ) x S""‘(\/Lz),kz 1,2, ..on—1?

J14u? 1+p3

When H = 0, the rigidity theorem due to Lawson [8], Chern, do Carmo and
Kobayashi [2] provides an affirmative answer for Open Problem B.

Acknowledgments We would like to thank Dr. En-Tao Zhao for his helpful discussions. Thanks also to
Professor Y. L. Xin for sending us the manuscript of [7].
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