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A NEW VERSION OF HUISKEN’S CONVERGENCE THEOREM
FOR MEAN CURVATURE FLOW IN SPHERES

LI LEI AND HONGWEI XU

ABSTRACT. We prove that if the initial hypersurface of the mean curvature
flow in spheres satisfies a sharp pinching condition, then the solution of the flow
converges to a round point or a totally geodesic sphere. Our result improves
the famous convergence theorem due to Huisken [9]. Moreover, we prove a
convergence theorem under the weakly pinching condition. In particular, we
obtain a classification theorem for weakly pinched hypersurfaces. It should be
emphasized that our pinching condition implies that the Ricci curvature of the
initial hypersurface is positive, but does not imply positivity of the sectional
curvature.

1. INTRODUCTION

Let Fy : M™ — N™*! be an n-dimensional immersed hypersurface in a Riemann-
ian manifold. The mean curvature flow with initial value Fj is a smooth family of
immersions F : M x [0,T) — N™*! satisfying

9 F(x,t) = H(z,t),
(1) { F(.,0) = R,

where ﬁ(m, t) is the mean curvature vector of the hypersurface My = Fy(M), F; =
F(-,t).

In 1984, Huisken [7] first proved that compact uniformly convex hypersurfaces
in Euclidean space will converge to a round point along the mean curvature flow.
Afterwards, Huisken[9] verified the following important convergence result for mean
curvature flow of pinched hypersurfaces in spheres.

Theorem A. Let Fy : M™ — F"*1(c) be an n-dimensional (n > 3) closed hyper-
surface immersed in a spherical space form of sectional curvature c. If Fy satisfies
|n|? < ﬁHQ + 2¢, then the mean curvature flow with initial value Fy converges
to a round point in finite time, or converges to a totally geodesic hypersurface as
t — oo.

For any fixed positive constant ¢, Huisken [9] constructed examples to show
that the pinching condition above can not be improved to |h|? < —L-H? + 2c + €.
An attractive problem is: Is it possible to improve Huisken’s pinching condition?
During the past nearly three decades, there has been no progress on this aspect.
For more convergence results of mean curvature flow, we refer the readers to [2, [3]

8, 12, 13, 16} 17, 18].
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Let M be an n-dimensional hypersurface in a space form F"*!(c) with constant
curvature c. Set

(1.2) a(n,H,c) :=nc+ 2 n_2)\/H4+4(n—1)cH2.

n
2(n—1) 2(n—1

Based on the pioneering work on closed minimal submanifolds in a sphere due to
Simons [22], Lawson [II] and Chern-do Carmo-Kobayashi [5] proved the famous
rigidity theorem for n-dimensional closed minimal submanifolds in S"™¢ whose
squared norm of the second fundamental form satisfies |h|? < n/(2 — 1/q). Af-
ter the work due to Okumura [19] 20] and Yau [25], the second author [23] verified
the generalized Simons-Lawson-Chern-do Carmo-Kobayashi theorem for compact
submanifolds with parallel mean curvature in S*™9. In particular, Cheng-Nakagawa
[4] and Xu [23] got the following rigidity theorem for constant mean curvature hy-
persurfaces, independently.

Theorem B. Let M™ be a compact hypersurface with constant mean curvature
in S"L(1/4/c). If |h|? < a(n, H,c), then either M is the totally umbilical sphere

S™ (n/VH? + n2c), one of the Clifford torus S* ( k/(nc)) xSn—k ( (n— k)/(nc)) ,
1 < k < n—1, or the isoparametric hypersurface S"~' (1/ve + A2) xSt (A/Vc2 + cA?),

|H|4++/H?+4(n—1)c

where A\ = 5=

For the refined rigidity results in higher codimensions, we refer the readers to
[14, 24]. Motivated by Theorem B, the optimal topological sphere theorem due to
Shiohama-Xu [21I] and Andrews’ suggestion on the nonlinear parabolic flow [I], we
have the following conjecture (see [16]).

Conjecture C. Let Fy : M™ — S™1(1/\/c) be an n-dimensional closed hypersur-
face satisfying |h|* < a(n,H,c). Then the mean curvature flow with initial value
Fy converges to a round point in finite time or converges to a totally geodesic sphere
as t — oo.

In particular, noting that ming a(n, H,1) = 24/n — 1, we have the following,.

Conjecture D. Let Fy : M™ — S"T(1) be an n-dimensional closed hypersurface
satisfying |h|?> < 2v/n—1. Then the mean curvature flow with initial value Fy
converges to a round point or a totally geodesic sphere.

In [I5], Li, Xu and Zhao investigated the conjectures above, and proved the
following convergence result for the mean curvature flow in a sphere.

Theorem E. Let Fy : M™ — S"t1(1) be an n-dimensional (n > 3) closed hyper-
surface immersed in the unit sphere. If there exists a positive constant € < %, such
that Fy satisfies

n n—2 n
H?*— H* +4(n—1)H? d H>—,
2(n—1+¢) 2(n—1—|—€)\/ +an—1) o Ve
then the mean curvature flow with initial value Fy converges to a round point in
finite time.

|h|? < n—4e+

The purpose of the present paper is to prove a sharp convergence theorem for the
mean curvature flow of hypersurfaces in spherical space forms, which is a refined
version of the famous convergence theorem due to Huisken [9].
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Theorem 1.1. Let Fy : M™ — F""1(c) be an n-dimensional (n > 3) closed hyper-
surface immersed in a spherical space form. If Fy satisfies

|h|2 < 7(n,H,c),

then the mean curvature flow with initial value Fy has a unique smooth solution
F: M x[0,T) — F**l(c), and F; converges to a round point in finite time, or
converges to a totally geodesic hypersurface ast — co. Here y(n, H,c) is an explicit
positive scalar defined by

y(n, H,c) = min{a(H?), B(H*)},

where

a(r) =nc+ 2(nn_ 1)3: — 2(7:1__21) Vz2+4(n—1)cx,
Bla) = o) + o (@0)(z — 20) + 30 (z0) (& — 70)",

2(n* —4) 1 n?—4n46
To =yYnC, Yn=4(1—-n)+ ﬁ cos | 3 arctan v )
Remark 1. Notice that v(n, H,c) > ﬁHQ + 2¢ and \/8n? > y,. Furthermore,

a computation shows that y(n, H, c) > %\/n — lc. Therefore, Theorem 11l substan-
tially improves Theorem A as well as Theorem E.

Put oy (z) = n+ e~ 2(’;—:21) V&% +4(n — 1)x. As a consequence of Theorem
[[I we obtain the following convergence result.

Theorem 1.2. Let Fy : M™ — F""1(c) be an n-dimensional (n > 3) closed hyper-
surface immersed in a spherical space form. If Fy satisfies

|h|? < ke,

then the mean curvature flow with initial value Fy has a unique smooth solution
F: M x[0,T) — F**l(c), and F; converges to a round point in finite time, or
converges to a totally geodesic hypersurface as t — oo. Here ky is an explicit
positive constant defined by

_ [ ealyn) = a1(wn)yn + 304 (wa)yi, n =3,
" o) - ES, n>

Remark 2. By a computation, we have k, > %\/n — 1. In particular, if 5 < n <

10, then k, > 1.999+/n — 1. In fact, k19 = 6. This shows that the pinching constant
knc in Theorem [1.2 is sharp.

Corollary 1.3. Let Fy : M™ — F"*l(c) be an n-dimensional (n > 3) closed
hypersurface immersed in a spherical space form. If Fy satisfies

|h|2<§\/n_1cv

then the mean curvature flow with initial value Fy has a unique smooth solution
F: M x[0,T) — F**1(c), and F; converges to a round point in finite time, or
converges to a totally geodesic hypersurface as t — oco.

If the ambient space is a sphere, we have the sharp differentiable sphere theorem.
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Theorem 1.4. Let My be an n-dimensional (n > 3) closed hypersurface immersed
in ST (1/y/¢) which satisfies |h|?> < ~(n, H,c), then My is diffeomorphic to the
standard n-sphere S™. In particular, if Mo satisfies |h|? < kync, then My is diffeo-
morphic to S™.

Furthermore, for compact hypersurfaces in spheres, we have the following con-
vergence theorem for the mean curvature flow under the weakly pinching condition.

Theorem 1.5. Let Fy : M"™ — S"*1 (1/\/¢) be an n-dimensional (n > 3) closed
hypersurface immersed in a sphere. If Fy satisfies

[h* <(n, H, ),
then the mean curvature flow with initial value Fy has a unique smooth solution
F:M x[0,T) — S"" (1/4/c), and either
(¢) T is finite, and F; converges to a round point ast — T,
(it) T = oo, and F} converges to a totally geodesic sphere as t — oo, or
(iid) T s finite, My is congruent to S"1(r1(t)) x S*(r2(t)), where r1(t)% +r2(t)? =

/e, ri(t)? = =L(1—e?et=D)), and F, converges to a great circle ast — T.

Theorem (iii) shows that our pinching conditions in Theorem is sharp.
As a consequence of Theorem [[.5], we have the following classification theorem.

Corollary 1.6. Let My be an n-dimensional (n > 3) closed hypersurface immersed
in ST (1/\/c) which satisfies |h|?> < vy(n,H,c). Then My is either diffeomorphic
to the standard n-sphere S™, or congruent to S"~1(r1) x S*(r2), where r? +13 =1/c

2 n—1
and r{ < %—.

From the fact that k19 = 6, we get the following optimal convergence result.

Corollary 1.7. Let Fy: M — S (1//¢) be a 10-dimensional closed hypersurface
which satisfies |h|?> < 6c. Then the mean curvature flow with initial value Fy has a
unique smooth solution F : M x [0,T) — St (1/y/¢), and either

(i) T is finite, and F; converges to a round point ast — T,
(ii) T = oo, and Fy converges to a totally geodesic sphere as t — oo, or
(iii) T is finite, My is congruent to S°(r1(t)) xSt (ra(t)), where r1(t)2+r2(t)? = 1/c,

r1(t)? = -1 — 1), and F; converges to a great circle ast —T.

In particular, My is diffeomorphic to S'°, or congruent to S° (1 / %) x St (, / ﬁ)

2. PRESERVATION OF CURVATURE PINCHING

Let F': M™ x [0,T) — F"*1(¢c) be a mean curvature flow in a spherical space
form. Let (x!,---,2") be the local coordinates of an open neighborhood in M.
We consider the hypersurface M; at time ¢. In the local coordinates, the first
fundamental form of M; can be written as symmetric matrix (g;;). Denote by (%)
the inverse matrix of (g;;). With the suitable choice of the unit normal vector field,
the second fundamental form of M, can be written as symmetric matrix (h;;). We
adopt the Einstein summation convention. Let h{ = ¢Fhy, and h7 = gk gilhy,.
Then the mean curvature and the squared norm of the second fundamental form of
M, can be written as H = h! and |h|? = hijhij, respectively. Let h” = hi; — %gij
be the traceless second fundamental form, whose squared norm satisfies |h|2 =
hf? = 4

o
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Similar to Lemma 1.2 of [9], the gradient and Laplacian of the second funda-
mental form have the following properties.

Lemma 2.1. For any hypersurface of F*1(c), we have
(1) VAP > 35| VHP,
(ii) Alh|? =2(h, V2H) + 2|Vh|*> + 2W, where W = Hh{hfh}g — |hl* + nelh)?.
The evolution equations take the same form as in [9].
Lemma 2.2. For the mean curvature flow F : M x [0,T) — F*""1(c), we have
(4) %gij = —2Hh,;,
(lZ) %hu = Ahu — 2thkh;€ + |h|2hij + 2CHgij - nchij,
(i) 2H = AH + H(|h|*> + nc),
(v) Z|h|* = AlR> = 2|VA|? + 4cH? + 2|h|* — 2nc|h?,
(v) Z|hf? = Alh[> = 2|VA|? + 2|VH|? + 2|h[>(|h]* — nc).
We define
n—2

n
= — 2 — 2
alx) =nc+ 20— 1>x 1) Vaz+4(n—1)ex, = =0,

and
B(z) = a(zo) + o' (xo)(z — z0) + %Oz”(xo)(l' —20)%, x>0,

where

2(n? —4)

e N T

1 n? —4n—+6
COS <§ arctan W .

Then we set
| alz), x>,
@1) (@) = { Blx), 0<a < .
It is easy to see that v is a C2-function on [0, +00). Moreover, we obtain the
following.
Lemma 2.3. Forn >3, ¢ >0 and x > 0, the C*-function ~(x) satisfies
(i) 227" (x) ++'(x) < %, and the equality holds if and only if x = xg,

(i) (y(z) + ne)ry'(x) = 2cx + v(x)? — ney(x), and the equality holds if and only
fo 2 Zo,

o2 z (y(z) — Lz) +v(z) < 2z + nc.

Proof. (i) By direct computations, for z > 0, we get
n n—2 x+2n-1c

T y BT By T
" 2(n —2)(n — 1)c?
o'(@) = (22 + 4(n — 1)cx)3/2’
o () = _6(n—2)(n —1)(z+2(n— 1)e)c?

(22 4+ 4(n — 1)cx)>/2
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Notice that y,, is the only positive root of equation

2 _4n 2
22 6= 10 = (S a1

n— Cl)2 xr n— Cc
Let ¢1(x) = 2z () +a (z) = 52y — 2(7(171‘;’296214?3(71)2)3/2, From (Z2) we get
6(n—2)(n—1)cz?

T @ A(n-Dear? <

v1(xo) = 7%2 We have lim, o ¢1(2) = —25. Since ¢} (z) =
0, we get = < ¢1(z) < ni—i-2 if @ > xo.

Let wa(z) = 228" (x) + p'(z) = o' (z0) + " (x0) (3 — ). Then we get )(z) =
3a (xg) > 0. Thus we have pa(z) < p2(z¢) = ni—|-2 if 0 < & < zg. Hence assertion
(i) follows.

(ii) It’s easy to check that o and o’ satisfy
(2.3) () + ne)zd (z) = 2cx + a(z)? — nea(x).

Let ¥(x) = (B(x) + nc)xfB (z) — 2cx — B(z)? + neB(z). From the C?-continuity
of v and ([23)), we get ¥ (o) = ¥’ (x0) = 0. Making calculation, we get

V" (x) = 3" (z0) [ (z0)2* + (o/ (x0) — w00 (20))x + nc].

Let 1 = (nv/n—1-2n+2)c. We have o/(z1) = 0, a’(z1) = WQ\/”__IC

and ¢1(z1) = W%Hn. Since ¢ (x) < 0 and p1(x0) < @1(x1), we get zg > 1.
Since o (z) > 0, we have o/(x9) > o/(z1) = 0. By the definition of y,, we have

yn <A1 —n) + 22D « 2 p(5 4 9) = 20 This yields
n V2n—5 S 15 5¢1(z0) "

2
200" (z0) + &/ (z0) < =re,
5I0

Thus we have ¢"(z) > 3a”(z¢)nc (1 — 55 ). 0 <z < o, then ¢"(z) > 0.

Therefore, we have ¢'(x) < 0 < ¢(x) if 0 < x < xo. This proves (ii).

(iii) We have

(n—2)cx
22 +4(n—1)cx
Since (B(z)—z0'(z)) = —a''(z0)x < 0, we get B(z)—z8' (z) = a(xg)—z0c (29) > 0
if 0 < & < 2. Hence assertion (iii) is proved.

(iv) We have o’ (z) < 0 = " (z). From «a(zg) = B(zo), &' (x0) = B'(z0) and
o (xo) = B"(Hyp), we obtain a(z) > B(x) for 0 < z < zp, and a(x) < p(z) for
T > Zo.

(v) It’s easy to verify that 2¢ < a(z) — -£5 < nc. Since o”’(z) > 0 and " (z) =
o' (z9) > 0, we get v(z) > 0. So, lim, o ¥/ () = —L5 implies v/(z) < —L5. Then
we have y(z) — ~£5 > lim, oo (a(x) — —£5) = 2¢. This proves (v).

(vi) Note that « satisfies the following identity

> 0.

a(r) — zd/ (z) = ne —

(2.4) \/% x <a(3:) - %x) +ax) = %x + ne.
Combing ([24) and v(z) < a(x), we prove (vi). O

The following lemma will be used in the proofs of Corollaries [L3] and .7

Lemma 2.4. We have y(z) > 2v/n— 1c, where y(z) is defined by (Z1). In par-
ticular, k, > 1.999v/n — 1 for 5 <n <9, and k1o = 6.
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Proof. Let 1 = (nv/n—1—2n+2)c. Since o/(z1) = 0 and a”(z) > 0, we get
a(z) = a(zr) = 2v/n — le

If n = 3, we have S(z) > 0.027% + 0.304z + 2.661c > 1.8v/2c.

If n > 4, by the definition of 3, we have 3(x) > a(zg) — 20:,(,96(;)02) = kpc.

Making a calculation, we get kg > 3.443 > 1.8/3 and ks > 3.998 = 1.999 x 2.

If n > 6, putting 2o = /2(n — 1) (Vn — 1 — 1/\/5)20, we have o < [4(1 —n) +

2\(/7;71—_4)]0 < 3. Then we get o/ (zg) < o/(z2) = 5 and o (z¢) > a’(z2) =
%. Thus we obtain §(x) >2\/n—lc—8\f+"23)6 2v/n —TIe.

In fact, by more computations, we get k, > 1.999y/n —1if 5 < n < 9, and
kio = 6. ]

Let w € C?[0,40o0) be a positive function which takes the following form

2 2

o € n2ec ﬁ7(1+4(n71)c/z)71/2
YO = T - e [(1 ) St | for w2 o

Then w has the following properties.

Lemma 2.5. Forn >3, ¢>0 and x > 0, w satisfies
(i) (v(x) + ne)x (“; = 2y(x) — 2y'(z) — 3ne if x> a0,

(i) 2xow” (x0) + w'(x0) > 0, limy_, 00 (22w” (x) + W' (x)) > 0,
(#1) w(z) — 2w (x) is bounded.

Proof. (i) When = > o, we see that w satisfies the following identity
W'(xz)  20(x) —xd () — 3nc
w(z) z(a(x) + ne)

(2.5)

which implies (i).

(ii) By a computation, we get that lim, o (2zw” (z) + w'(z)) = LR

If n = 3, we have 2zow” (x0) + w'(x0) = 11.4 > 0.

If n > 4, we have y, < 4(1 —n) + \(/Zn—_? < (n—2)%. So, we get a(xg) <
a((n —2)2%c) = ne. From Z3F), for z > xo, we have

2ow(@) +W'lz) o, (W’(iv))' LY@

w(z) w(z) w(z)
_ 20/ (z)(xza/ (x) + 5ne)  bne — 222’ (x) — za/(z) 2
(a(zx) + nc)? z(a(x) + ne) x

Combing the above inequality with a(zg) < ne, o/(xg) > 0 and 2x0a” (zo) +
o (xg) < ngs’ we obtain 2zow” (z9) + w'(z¢) > 0.
2(271:1)0' 0
n—1
For convenience, we denote v(H?), v/ (H?), v"(H?), w(H?), w'(H?) and w" (H?)
by v, v, v”, w, w’ and w"”, respectively.
Suppose that My is a compact hypersurface satisfying |h|? < 7. Then there
exists a sufficiently small positive number ¢, such that

(iii) The assertion follows from lim, o (w(x) — zw'(z)) =

|h|? <7y — ew.

Now we show that this pinching condition is preserved.
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Theorem 2.6. If My satisfies |h|? < v —ew, then this condition holds for all time
tel0,T).

Proof. Let U = |h|?> — v + ew. From the evolution equations we have

0

(a - A) U = =2|Vh?+202H*Y' ++' —e(2H*W" +w"))|VH|?
+4cH? 4 2|h|* — 2nc|h|* — 2(7 — ew’) - H*(|h|* + nc).

By Lemma 23] (i) and Lemma[25] (ii), the coefficient of [VH|? in the above formula

is less than —C5. Then Lemma ] (i) yields —2[VA[* + 25[VH|*> < 0. Then

replacing |h|? by U + v — ew, we get
(% - A> U < 2U*4+2U[2y — H*Y —nc+ e(H?W' — 2w))
(2.6) +4cH? + 292 — 2ney — 2(y + ne)H?'
+2ew [—27 + H?*Y +nc+ (v + nc)HQ%/ +26%w - (w — HAW').
By Lemma 2.3 (ii), Lemma [2.5] (i) and (iii), when ¢ is small enough, we have
(%—A)U<2U2+U-U.

Therefore, the conclusion follows from the maximum principle. O

3. AN ESTIMATE FOR TRACELESS SECOND FUNDAMENTAL FORM

In this section, we derive an estimate for the traceless second fundamental form,
which shows that the principal curvatures will approach each other along the mean
curvature flow.

Theorem 3.1. If My satisfies |h|? < v — ew, then there exist constants 0 < o < 1
and Cy > 0 depending only on My, such that for allt € [0,T), we have

|}°L|2 < CQ(H2 +C)17067206t.

Let ¥ = v — L H2. Theorem says that |h|2 < 4 — ew holds for all time. We
denote by 4" =+ — 1, 4” = /" the first and second derivatives of ¥ with respect
to H?. For 0 < o < 1, we set

L2
f o = °|1L7'
Y

To prove Theorem [3.I] we need to show that f, decays exponentially. First, we

make an estimate for the time derivative of f,.

Lemma 3.2. There exists a positive constants C1 depending only on n, ¢, such

that
0 20, 2efs 2 2
—fo K Afy + —|V[f;||IVH| — ——|VH|* + 20(|h|* — ne) f,.
fifo < Mo+ SHVLIVH] = 25 [VHE 20 o S

Proof. By a straightforward calculation, we have

9 i et
~Jo — Jo —5 - — 1-0'7 .
sile =1 ( TR L
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The gradient of f, can be written as

- o
Vi =/ (Vlh' - (f)@) .

|f? g

The Laplacian of f, is given by
Alh)? A4 Vfo, V3 V5[
(3.1) Afy = f, ( |7 —(1—@4) 21—y MV oy 72)' .
Y Y
By the evolution equations, we have

0 > (V o, VA) il

——Alf, = 21-0 . —o(l—-o0)fs
(“% 15 ST

2f, (|VH?
+Oi(| |
|h|2

2H20// o/
- |Vh|2> 21— oy, Y e

r 201
+2fy (B2 ) = (1= o) (1 + ) T }

2 .
(3-2) < §|Vfg||V7|
[ 1 VH2 2H2°//+ 2!
+2f, WC n' —IVh|2)+(1—U)#IVH|2

+2f, :a(|h|2 +n¢) + (1= o) (b +ne) (1 - Hi > - 2nc] .

From the definitions of ¥, w, there exist a positive constant C; depending only
on n, ¢, such that

20| 1y
d —_ /'
A e

This together with |h|? < 4 implies
' 2% |H||VH VH
Vil _ 2 HIVH] _ , VH]
Y Y |h|
Next we estimate the expression in the first square bracket of the right hand side of

(2). Lemma 23] (i) implies 2H?3" + 4 < 721((2;2 From Lemma 2.1] (i), we have

(3.3)

1 VHQ 2H2°// o/
L (VEE onp) - o 2 Y g
|h|? n
(I-n) 1 (1-0)2(n-1) 5
< —+ . VH
( (n+2) |h? ¥ n(n+2) IVH]
< 2(n—1) l__ VH?
n—|—2 07 |h|2
2(n-1) ¢
< = |\vH|?
( 2) 4|hl?

Ol|h|2| HI?.
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Then we estimate the expression in the second square bracket of the right hand
side of (32). From Lemma 3 (iii), we get (|h|2 + nc) (1 - HTV) < Ly +ne)(y—
H?~"). Lemma 23] (ii) yields (v + ne)(y — H*y') < 2ncy. Thus we obtain

H2/

a(|h]* +nc) + (1 — o) (|h]* + ne) (1 - > —2nc < o(|h* — ne).

This completes the proof of the Lemma O

To estimate the term 20|h|?f, in Lemma B2} we need the following.

Lemma 3.3. If M is an n-dimensional (n > 3) hypersurface in F**(c) (¢ > 0)
which satisfies |h|2 < 4 — ew, then there exists a positive constant Co depending
only on n and c, such that

Al > 2 (h, V2H ) + 25Colhf? b2,
Proof. From Lemma 2.1] we have
. . 2 .
AlR|? =2 <h, V2H> F2VAPR = Z|VH]? +2W > 2 <h, V2H> + oW
n

Let \; (1 < i < n) be the principal curvatures of M. Put A; = A; — L Then
S A =0, Z)\2 |h|2. Thus we have

CUTEDMED I 3 i + 2

3
2H.

Using the inequality h[3 (see [20 , Lemma 2.1), we have
\/—

W = HhRERL — |h)* + nclh]?

—2 ° 1 o o .

(3.4) > T2 H||RE + ZH2 R — A + nclhf?
n(n—1) n

WV

. -2 1
B | == HV/3 + H? = (5 —w) e |
Vvn(n —1) n
Let Cy = inf(w/7). It follows from Lemma 23 (vi) that W > ew|h|2 > £Cy|h|?|h|2.
(]

From &1, B3) and Lemma B3], we have

Alhf? A§ (V1o V4)
Afa' > fO' ° -1l-0 fO'T_2 1-0 - -
R
2fs /o - 2C
> o (V) 2O, (- ) 8y - TV

This is equivalent to

2 o /3 2C o °
(3.5)  2eCylh?fy < Afy — i <h, V2H> + |—|1|Vfa||VH| + (1 —0)—AY.
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Multiplying both sides of the above inequality by f2=!, then integrating them over

M, applying the divergence theorem and the relation Vzh; = %VjH , we get
(36) |t =1 [ Ve <0
My My
I 2 f” ' 2
— V*H = - h”V ;Hd
/Mt RE (b V28 ) dp a5 e
fe!
= / Vi ( h”) Vde/Lt
M, ok
_ o2
= / (p—1= h”V foV;H
M, L -
fp ! 7 1f p—1 2
(3.7) —(1- )”Y hJVﬁV iH + —”Y ~|VH[?| dy
[ f
< [ |o-vf V|
M, L
fe! 2
ti 1] V4| IVH|+ IVHI dpe
< [ |o-vEmwnivne e |2|VH|2] e
M

and

/ ﬁMdM = _/ <v <ﬁ> ,V%> dpu
M, Y M v

p—1 o 2
(3.8) = /Mt [ ffy <vfm >+ftzf) (lvT,-Y,y') ‘|th

fp 2f 2
pCh 7 IVfo|[VH| + Cf e |VH|
M,

N

Putting (335)-(B3) together, we obtain

p—1
(3.9) 25/ |hf? fRdpe < C3/ [pf |Vfa||VH|+ |VH|2 dpae,
My My

Al A2

where C'5 is a positive constant depending on n and c.
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Using (39) and Lemma 2] we make an estimate for the time derivative of the
integral of f2.

g/ fdp = p/ s 1af”dt—/ P,

20, fp1
p/ v-inf, 4 2 g v
M, |h|

N

2ef7 2 2
VH|* +20(|h|" —nc)fE| d
G IV HE 200 )f] "
. 20, f271 ;
Gy < o[ |me-0pvLE s L v v - v
M, A 1|h|
C
3”pf| . v+ &2 —H |2|VH|2—2ancfp dpe
C
= o[ - 0iae (204 3(””)| T
My
2e C30') 2 /
—_— - VH|*| dus — 2ponc Pduy.
(01 |h|2| I*| due — 2po Mtf" it

In the following we show that the LP-norm of f, decays exponentially.

Lemma 3.4. There exists a constant Cy depending on My such that for all p >
80138_1 and o < 52p_1/2, we have

1
(/ ff;dut) < Cye 3¢,
My

Proof. The expression in the square bracket of the right hand side of BI0) is a
quadratic polynomial. With & small enough, its discriminant satisfies

(201+O‘°’ p) —4p—1) (?-%)
1

< 8C% +2C3e%p — 2pe/C)y
= (80} —pe/Ch) + (2C3e?p — pe/Ch)
< 0.

Therefore, this quadratic polynomial is non-positive. So we have

d
— f”dut\ —3poc fpdut

dt
This implies [, f2du < e*3p“Ct Sz, fodo. O
Letting g, = f,e27¢, we get

Corollary 3.5. There exist a constant Cs depending on My such that for allr > 0
p > max{dr?e~* 8C5c '} and o < 2e2p~Y/2, we have

1

([ wraau) < coeoe,
My
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Proof. Putting Cs = sup (v/7), we obtain

1 1
P P P
( / |h|2T9§dut> <( / Vgﬁdut) < ( / (Cs%)Te%“tfﬁdut)
My My My

1
P
< Cg/pQQUCt (/ ngrszt)
My P

With r/p < 3¢2//p and o + r/p < €?/,/p, the conclusion follows from Lemma

([
From Lemma [3:2] we have an estimate for the time derivative of g,.
0 20 229, 2 2
00 S Aga' + — Vgg VH| - 5 VH|* +20l|h Jo-
g gl IVH - 2T HE 20l

For k > 0, define g, = max{g, — k,0}, A(k,t) = supp go.x = {z € M|g,(x) > k}.
Letting p > 8C3 /e, we have
d

- p < p—l[ & _ 25_25 2 2 }
dt M, go,kdut ~ p/Mt gcr,k AgU+ || |v.g<7||VH| Cl\h|2|VH| +20|h| Yo th

—1
2Clg§,k 255]5,,c

< p —(p—1)g2 2| Vgol* + =72 |V go || VH| — —%£ |VH[?| du
M, , Al Crlh]

+2po / g2 dp
A(k,8)

1 _
< —5plo— 1)/ 9232 \Vgo *dpe + 2190/ R gbdpss.
M, A(k,t)

Notice that 1p(p — 1)951_,€2|Vg,;|2 > |Vgg{:|2. Setting v = gg{:, we obtain
d
(3.11) T vidpy —|—/ |Vol?dp: < 2pa/ |h|?gP d ;.
Mt Mt A(kvt)

The volume of suppwv satisfies fA(k p due < fA(k p 95k Pdpy < CPk~P. Tt is
sufficiently small when k is large. By Theorem 2.1 of [6], for the function u =

n—1

v2(r=1/("=2) we have a Sobolev inequality (fMt uﬁdut)T < C7 [oy, (V| +
u|H|)dps, where C7 is a positive constant depending only on n. Using Holder’s
inequality, we have

n-2 2 n-2
(/ v%dut> < C7/ |Vol2du+Cr </ H”dut> </ U%dﬂt>
M, M, A(k,t) My
When k > C5(2nC7)%, p > n?/e* and o < Le?/,/p, it follows from Corollary 35
2 2
that (IA(k " H"dut) "< (fA(k " n%|h|"g§k_pdut) "< % Thus we obtain

1 2n "
3.12 e 7-zd < Vol *dp.
(312) 2C; (/Mtv Mt) /Mt| ol due
It follows from BII) and (BI12) that

2

d 1 2n i
3.13 — [ vPdu+ o (/ vr=2dp ) < 2po/ R
( ) dt M, t 207 M, t A(k,t) | | t
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Let k > supy;, go. Then v|,_; = 0. For a fixed time s, let s; € [0, s] be the time
when [ v2dyu; achieves its maximum in [0, s]. Integrating (.13 over [0,s1] and
[0, s] respectively, adding them, we obtain

n—2
1 5 2n "
2 —=n_
sup / vidpy  + </ v 2d,u) dt
te[0,s] J M; ! 2C7 !
(3.14) < 4po/ / |h|? gPdpudt.
A(k,t)

Let [|[A(k)||s = [, fA(k)t) dyudt. For a positive number r > 22 et p > 4r/e?,

o< %52 /+/pr. Using Holder’s inequality and Corollary B0, we have

1
// |h|2ggdﬂtdt < (/ Cgre—practdt> HA(]C)H;_%
0 JAKt) )
1

C? 1-1
1 — | A(K)||s "
(3.19) A
For h > k, we have f, 1 > h —k on A(h,t). So
(3.16)

2Ant2) 2
t=iptamle s [ [ vamars ([ 05 aar) ™ )
My My

We estimate the right hand side of the above inequality as follows.

([ )
M
s 2 n—-2 n+r2
L) )™
0 My My
e [ s n-2 w3
(3.17) < <sup/ v2dut> /</ v%dut) dt]
tel0,s] J M, 0 M
n—2
< Cg- sup/ vidp + — Cs / </ v%d,ut> dt.
te[0,s] J M, 2C7 M,

Putting inequalities (B.14)-B.IT) together, for h > k, we have
1—T1+535
(h = kPIAMR)s < Col| ARl ™ ™7,

where Cy is a positive constant depending on My, p, o and r.

By a lemma of [I0] (Chapter II, Lemma B.1), there exists a finite number £y,
such that || A(k1)||s = 0 for all s. Hence we have g, < k1. This completes the proof
of Theorem B.1]

4. A GRADIENT ESTIMATE

To compare the mean curvature at different points of M;, we need an estimate
for the gradient of mean curvature.

Theorem 4.1. For alln € (O, %), there exists a constant C(n) depending on n and
My, such that
[VH[> < [(nH)* + C(n)*]e™".
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Firstly, we derive an inequality for the time derivative of |VH|.

Lemma 4.2. There exists a positive constant By > 1 depending only on n, such
that

)
E|VH|2 < A|VH|? + By(H? + ¢)|Vh|%.

Proof. From the evolution equation of H, we have
0 0
—V:H = V;|=H
7V = V()
Vi(AH + H(|h|* + ne))
= V,AH +VH(|h|? +nc) + HV;|h|*.
Lemma [2.2] (i) implies %gij = 2Hh%. Thus we have
0 0, ;i
—|VH? = = (¢"V;HV;H
(4.1) = 2(VAH,VH) +2|VH|*(|h|* + nc)
+2H(V|h|*,VH) + 2HKhV;HV ;H.
The Laplacian of |[VH|? is given by

(4.2) A|VH|> = 2(AVH,VH) + 2|V*H|*.

From the Gauss equation, we get

(4.3) VAH — AVH = (1 —n)cVH + h*h; Vi Hdx' — HhEV Hdx'.

Combining (A1), (2) and 3)), we obtain the evolution equation of |VH|.
%|VH|2 = A|VH]? - 2|V2H|* + 2|VH|*(|h]* +¢)

(4.4) +2H(V|h|>, VH) + 2h" b5V ;HV . H.

Using the Cauchy-Schwarz inequality, we have H(V|h|?, VH) < 2|H||h||Vh||VH]|
and K hFV;HV H < |h|>|VH|?. Using |h|?> < v and [VH|? < 2£2|Vh|?, we ob-
tain the conclusion. g

Secondly, we need the following estimates.

Lemma 4.3. Along the mean curvature flow, we have
(i) S H*> AH* —TnH?Vh|*>+ 2HS,
(ii) ZIh> < AJRI? — 8[VAP + H2AP,
(iii) 2 (H2|h|2) <A (H2|h|2) — TH?|Vh|? + Bo|Vh|2 +4nH2(H? + c) |2, where
By > 2c is a positive constant depending on M.
Proof. (i) We derive that
0
EH“ = AH* —12H*|VH|? + 4H*(|h|* + nc).
This together with |h|> > LH? and |[VH|? < 22|Vh|? implies inequality (i).
(i) The evolution equation of |h|? is given by

o - . 2 .
§|h|2 = Alh]? — 2|Vh|* + E|VH|2 +2|h2(|h]? = nc).
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Using 2|VH|? < ZE2|Vh|? < 3|Vh|? and |h[? — nc < v —ne < 1H?, we get
inequality (ii).
(iii) Tt follows from the evolution equations that
B . o o 1
= (H2|h|2) - A (H2|h|2) + AH2| B2 - 2H? (|Vh|2 - —|VH|2>
n

2RV H|? — AH <VH, V|E|2> .

We use £|VH|? < 3|Vh|? again. From |h|?> < v, we have AH?|h|2|h? < AnH2(H?+
¢)|h|2. From the formula V;|h|? = 2i°zjkvihjk and Young’s inequality, we get

—4H <VH, V|i°z|2> < S|H||VH]||h||VA|
< 8\/E2Co|H|(H? +¢) =" |Vh|?
< <32 + %H2> |Vh|?.
This proves inequality (iii). O
Proof of Theorem[{.1] Define the following scalar
f= (|VH|2 + 9B, Byl h)? + 731H2|i3|2) et — (nH)*, ne (o, %) .
From Lemma and [£.3] we obtain
(% - A> f < {Bl(H2 +¢)|Vh|? + 9B, By (—§|Vh|2 + H2|i1|2)
+7B, <_gH2|Vh|2 + Ba|Vh|? +4nH?(H? + c)|;1|2>
toe (|VH|2 + 9B, By|h|? + 731H2|E|2)} eoet
—nt (—7nH2|Vh|2 + %Hf")

40
< <—§Ble“t + 7m74) H?|Vh|* + [(Bic — B1B2)|Vh|* + oc|VH|?]e”

2 a5 2.0et AN
By Theorem B we get
0 4n?
<— - A> f < |:00B3(H2 + 0)3_0 - iI{6 e_UCt.
ot n

We consider the expression in the bracket of the right hand side of the above in-
equality, which it is a function of H. Since the coefficient of the highest-degree
term is negative, the supremum Co(n) of this function is finite. Then we have
% f < Af+Co(n)eo¢. Tt follows from the maximum principle that f is bounded.
This completes the proof of Theorem 411 (I
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5. CONVERGENCE UNDER SHARP PINCHING CONDITION

In order to estimate the diameter of M;, we need a lower bound for the Ricci
curvature.

Lemma 5.1. Suppose that M is an n-dimensional (n > 3) hypersurface in F"1(c)
satisfying |h|?> < v — ew. Then there exists a positive constant By depending only
on n, such that for any unit vector X in the tangent space, the Ricci curvature of
M satisfies

Ric(X) > Bye(H? +¢).
Proof. Using Proposition 2 of [21I] and Lemma [Z3] (vi), we have

-1 2 -2 o
Ric(X) > o (nc+—H2—|h|2_n7|H||h|>
n n 1

Vn(n—1)

~1 2 —2
> nn <n0+ ;HQ—(V—EW)—LWW%)

vn(n—1)

n—1

WV

EW
n

> Bye(H? +¢).

We also need the well-known Myers theorem.

Theorem 5.2 (Myers Theorem). Let T' be a geodesic of length at least 7/Vk
in M. If the Ricci curvature satisfies Ric(X) > (n — 1)k, for each unit vector
X eT, M, at any point x € ', then I has conjugate points.

Now we show that M; converges to a round point or a totally geodesic sphere.
Theorem 5.3. If T is finite, then F; converges to a round point ast — T'.

Proof. Let |H|min = minpg, [H|, |H|max = maxypy, |[H|. By Theorem EI] for any
n € (0,1), there exists C(n) > 1 such that [VH| < (nH)? + C(n). From Theorem
7.1 of [§], | H|max becomes unbounded as t — T'. So, there exists a time 7 depending
on 7, such that |H|2, > C(n)/n? on M,. Then we have |[VH| < 2n?|H|?,, on
M.

Let x be a point in M, where | H| achieves its maximum. Then along all geodesics
of length [ = (29| H |;max) ! starting from x, we have |H| > |H|max — 2% H|20x -l =
(1—n)|H |max. With 7 small enough, Lemma Bl implies Ric > Bye(1—n)?|H|% . >
(n—1)m% /1% on these geodesics. Then by Myers’ theorem, these geodesics can reach
any point of M.

Then we have [H| > (1 — n)|H|max > % on M;. Thus we can assume H > %
on M, without loss of generality. Let n be sufficiently small. From Theorem [B.1],
at any point in M, the principal curvatures \; > % — |h| >0,1<¢<n. Hence
M, is a convex hypersurface. By Theorem 1.1 of [§], F; will converge to a round
point (see [26] Chapter 11 for the details). O

Theorem 5.4. If T = oo, then F; converges to a totally geodesic hypersurface as
t — oo.
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Proof. Firstly we prove that |H|pmax must remains bounded for all ¢ € [0,00). If
not, we see that F; will converge to a round point in finite time from the proof of
Theorem 5.3

Next we prove |H|min = 0 for all ¢ € [0,00). Suppose |H|min > 0 on My. From
the evolution equation of H, we have %|H| > AlH| + L|H[? for t > 6. By the
maximum principle, we get that |H| will tend to infinity in finite time. This leads
to a contradiction.

By Lemma [5.1] and Myers’ theorem, diam M; is uniformly bounded. Applying

Theorem EI] we have |H| < Ce™%". Therefore, from Theorem Bl we obtain

nf? = (A% + 1L < C2emoc,
By Lemma 7.2 of [8], [V™h]| is bounded for all m € N and ¢ € [0, +00). Then
M; converges to a smooth limit hypersurface M. Since |h| — 0 as t — 0o, M is

totally geodesic. ([l
Proof of Theorem [I1. Combining Theorem and [0.4] we complete the proof of
Theorem [T.1] O

6. CONVERGENCE UNDER WEAKLY PINCHING CONDITION

Now we are in the position to prove Theorem Assume that M is a closed
hypersurface immersed in S*** (1/,/c), and M, satisfies |h|? < 7.
Proof of Theorem [L3. Recall the proof of Theorem Letting € = 0, we get

(9 2 6 i / 2
- _ _ < _
(at A)(Ihl 7) < n+2+2(2H7 +7)| IVH]
(6.1) +2(|n[> = )% + 2(|h|* = 7)(2y — H*Y — nc)

+4cH? 4 27 — 2ncy — 2(y + ne) HY'.

By LemmaZ3 (i) and (i), we get (& — A) (|h[>—~) < 2(|h|2—7)(|h>+v—H?*y -
nc). Then using the strong maximum principle, we have either |h|? < v at some
time to € (0,T), or |h|?> =~ for all t € [0,7).

If |h|? < 7 at some tg, it reduces to the case of Theorem [l

If |h|> = v for t € [0,T), we have {—%“+2(2H27//+7/)] IVH[? = 0 and
4cH? + 292 — 2ney — 2(y + ne)H?y' = 0 for all t. Thus we obtain VH = 0 and

H? > xy. By Theorem B, M, is the isoparametric hypersurface

7 (7)< (vem)
c+ N2 Z+rex)’

|H|++/H?+4(n—1)c

where \ = P

We see that A is the (n — 1)-multiple principal curvature and —<% is the other
one. Thus we have |[H| = (n —1)A — £ and |h]* = (n — 1)\ + i—z Substituting
these equalities into the evolution equation of H, we get

d c c 5 2
Z(m=A=5) = (n-1a-3) ((n—l))\ —i—p—l—nc).
Let ry = T 2 = \/ﬁ The above equation implies

d
Er% =2 —2n+ 2neri.
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Solving the ODE above, we obtain

o n—1
i =

(1 —d- e2nct)7

ne
where d € (0,1) is a constant of integration.

It’s seen from the solution of r; that the maximal existence time T = —lgij.
Hence we obtain rf = %(1 — e27e(t=T)) " We see that M, converges to a great
circle St (1/4/c) as t — T. This completes the proof of Theorem [L5 O

Motivated by Theorem B and Theorem [[L5] we propose the following conjecture
for the mean curvature flow in a sphere.

Conjecture F. Let Fy : M™ — S (1/,/c) be an n-dimensional closed hyper-
surface immersed in a sphere. If Fy satisfies |h|> < a(n, H,c), then the mean
curvature flow with initial value Fy has a unigque smooth solution F : M x [0,T) —

S"*1(1/4/c), and either

(¢) T is finite, and F; converges to a round point ast — T,
(it) T = oo, and F} converges to a totally geodesic sphere as t — oo, or
(iii) T is finite, My is congruent to S"1(ry(t)) x S*(r2(t)), where r1(t)% +r2(t)? =
/e, r1(t)? = 2=L(1 —e2e(=D)), and F; converges to a great circle ast — T,

(iv) T = oo, and My is congruent to one of the minimal hypersurfaces S* < ﬁ) X

Sn—k (,/”n——j), k=1,---,n—1.
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