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1. Introduction

Decomposition theorems of the de Rham complex have become a part of Hodge theory since the
fundamental work of P. Deligne and L. Illusie. They proved the following fundamental decomposi-
tion theorem:

Theorem (Deligne-Illusie, [5]). Let S be a scheme of characteristic p. Assume given a (flat) lifting
T of S over Z/p2Z. Let X be a smooth S-scheme and let us denote F : X → X ′ the relative
Frobenius of X/S. Then if X ′ admits a (smooth) lifting over T , the complex of OX′-modules
τ<pF∗Ω•X/S is decomposable in the derived category D(X ′) of OX′-modules.

Let X be a smooth variety over a perfect field k of characteristic p > 0. If X is liftable to
W2(k), then τ<pF∗Ω•X/k is decomposable in D(X ′). The most important applications of this result
include the degeneration of the Hodge-de Rham spectral sequence and the Kodaira-Akizuki-Nakano
vanishing theorem in characteristic zero ([5] Corollary 2.7, 2.11). Note that counterexamples exist
otherwise ([14],[11]).

As an application of the notion of the log structure in the sense of Fontaine-Illusie [3], K. Kato
has obtained the following generalization:

Theorem (Kato [3]). Let f : X → Y be a smooth morphism of Cartier type between fine log
schemes over Fp. Let X ′ be the Frobenius base change of X over Y and F : X → X ′ the relative
Frobenius morphism of log schemes. Let Ỹ be a flat lifting of Y over Z/p2Z. Then, there exists a
canonical bijection between the set of isomorphism classes of smooth liftings of X ′ over Ỹ and the
set of splittings of τ≤1F∗ΩX/Y .

The theorem of Deligne-Illusie corresponds to the case that the log structures of X and Y are
trivial. The notion of smooth morphism of Cartier type is referred to Definition 4.8 [3]. However,
one will see that some new phenomenon arises applying Kato’s decomposition theorem to a semi-
stable reduction over DVR with mixed characteristic. This note grows out of our study on a
problem of Illusie [6] on semi-stable reductions over Witt rings: Let k be a perfect field of positive
characteristic p and W = W (k) be the ring of Witt vectors. Let X be a semi-stable reduction over
W (Definition 2.1). Then X0 = X ×Spec W Spec k is the closed fiber which is a reduced normal
crossing divisor in X. The log de Rham complex of X0 is defined as

Ωlog •
X0

= Ω•X(logX0)|X0 .

Problem 1.1 (Illusie, Problem 7.14 [6]). Is the complex

τ<pF∗Ωlog •
X0

(1)

decomposable in D(X ′0)? Here F : X0 → X ′0 is the relative Frobenius morphism.
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By the standard argument following [5], the decomposability of τ<pF∗Ωlog •
X0

is equivalent to the
decomposability of τ≤1F∗Ωlog •

X0
. By using the induced log structure from the natural one over X

and equipping the base field k with the log structure 1 7→ 0 (the so-called canonical log point) ,
the structural morphism X0 → k extends to a smooth morphism of Cartier type (see remarks after
Definition 4.8 [3]) and Ωlog •

X0
coincides with Kato’s de Rham complex Ω•X0/(k,17→0) for log schemes

[3]. One might attempt to apply Kato’s theorem here by taking Y ′ = (W2 = W2(k), 1 7→ p), but it
does not work: The log absolute Frobenius morphism on k does not lift to Y ′. Therefore, although
X0 admits an obvious lifting to Y ′ by taking the reducton of X modulo p2, X ′0 does not lift to Y ′
necessarily (note that the underlying scheme does lift however), as we shall demonstrate in below.

Indeed, we show in this short note that the answer to this problem is generally NO, even when
the generic fiber is so nice as a projective space! The conclusion builds on the following criterion.

Theorem. Let k be the canonical log point and X0 → k a log smooth variety of Cartier type over k.
Then τ<pFX0∗Ω

log •
X0

is decomposable if and only if X0 has a log smooth lifting over (W2(k), 1 7→ 0).

Noticing that the obstruction whether X0 can be lifted to (W2, 1 7→ 0) lies in H2(X0, T
log
X0

), where
T log
X0

is the log tangent sheaf of X0 over the canonical log point (k, 1 7→ 0), we have:

Corollary. If the special fiber X0 satisfies that H2(X0, T
log
X0

) = 0, then τ<pFX0∗Ω
log •
X0

is decompos-
able. In particular, Problem 1.1 is affirmative if

(1) X0 is affine, or
(2) X0 is a curve, or
(3) X0 is a combinatorial K3 surface, which appears in the semi-stable the degenerations of a

K3 surface [12].

Let us explain some geometry related to this theorem. In the classical situation, the local (flat)
deformation of a smooth point keeps smoothness. There is a new phenomenon in the deformation
of log smooth singularities. For simplicity, let us consider the log smooth lifting over W2 of a local
normal crossing singularity defined by the equation x1 · · ·xr = 0. There exist two types of log
smooth deformations of this singularity, distinguished according to which log structure we choose
on the base scheme Spec W2.

Type I: Log smooth lifting over (W2, 1 7→ p): this deformation smooths the singularity. Étale
locally the log deformation looks like

Nr ei 7→xi // W2[x1, · · · , xn]/(x1 · · ·xr − p)

N

∆

OO

17→p // W2(k).

OO

Type II: Log smooth lifting over (W2, 1 7→ 0): this deformation keeps the singularity. Étale
locally the log deformation looks like

Nr ei 7→xi // W2[x1, · · · , xn]/(x1 · · ·xr)

N

∆

OO

17→0 // W2.

OO

In the above two diagrams, ∆ means the diagonal map. Once we view the mod p2-reduction of
a semi-stable reduction X over W (k) as a log smooth deformation of the special log smooth fiber
X0, such log smooth deformation is of Type I. However, the above criterion shows that the truth
of Illusie’s problem is equivalent to the existence of a Type II log smooth deformation. In the
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next, we provide two approaches to produce semi-stable reductions over the Witt ring whose closed
fibers do not admit any Type II log smooth deformation.
First Approach: Take a smooth projective variety Y0 over k which is non W2-liftable. Take

a closed embedding Y0 ↪→ Z0 over k into a smooth projective variety such that the codimension
CodZ0Y0 ≥ 2 and Z0 admits a smooth lifting Z over W . Set X = BlY0Z, the blowup of Z along
the closed subscheme Y0. Then X is a semi-stable reduction over W whose closed fiber X0 does
not admit any Type II log smooth deformation.

Therefore, if we take Y0 to be the classical counter-example of M. Raynaud [14] (see [11] for a
generalization) to the Kodaira’s vanishing theorem in positive characteristic and Z0 the projective
space of suitable dimension, then we get an example of DR-indecomposable closed fibers of semi-
stable reductions over the Witt rings.
Second Approach: Take a closed embedding Y0 ↪→ Z0 over k such that both Y0 and Z0 are

smooth, Z0 admits a smooth lifting Z overW , and such that the pair (BlY0Z0, E) is nonW2-liftable,
where E is the exceptional divisor. Set X = BlY0Z. Then X is a semi-stable reduction over W
whose closed fiber X0 does not admit any Type II log smooth deformation.

Such examples exist by the recent work of Liedtke-Satriano [9]. See Theorem 1.1 (a) [9] (more
specifically Theorem 2.3 (a) and Theorem 2.4 loc. cit.). This approach (with a little modification)
provides examples of DR-indecomposable closed fibers of semi-stable reductions over the Witt rings
W (k) of relative dimension d ≥ 2 with the algebraically closed field k arbitrary positive character-
istic (see Proposition 3.5). It is desirable to find examples of minimal semi-stable reduction.
Notations: We mainly follow the notions and notations in [3] with some exceptions:
• We use the capital letters X, Y , etc. to denote log schemes. If X is a log scheme, we denote
X be the underlying scheme and αX : MX → OX be the log structure. We consider a
classical scheme as a log scheme with the trivial log structure.
• We denote a log cotangent sheaf by Ω instead of ω as in [3].
• Let R be a ring and α : P → (R,×) be a homomorphism of monoids. Denote (R,P aR) be the
log scheme whose underlying scheme is Spec(R) and the log structure is the one associated
to α (if there is no ambiguity of the homomorphism α). If α is the zero map, we use the
notation (R,P 7→ 0) instead. In the case that P = N, the monoid of nonnegative integers,
we shall also use alternatively the notation (N, 1 7→ α(1)).

2. Semi-stable reduction, Type II deformation and DR-indecomposability

Let us recall the following
Definition 2.1. Let R be a complete discrete valuation ring (DVR) and π be a uniformizer of
R. An R-scheme X is a semi-stable reduction over R if étale locally X is smooth over the closed
subscheme of Spec(R[x1, · · · , xr]) defined by the equation x1 · · ·xr = π for some r ≥ 1.

By an R-scheme X we mean the scheme X is flat and finite type over Spec(R). The following
characterization of semi-stable reductions over R will be used below. For a proof, see [4], 2.16.
Lemma 2.2. Notation as above. Let K be the fractional field of R and k the residue field. Then
a semi-stable reduction over R has the following two properties:

(1) the generic fiber XK = X ×R K is smooth over K,
(2) the closed fiber Xk = X ×R k is a normal crossing variety over k.

If k is perfect, then an R-scheme X is a semi-stable reduction over R if the above two properties
hold.

By a normal crossing variety over k we mean a connected and geometrically reduced k-scheme
which étale locally over each closed point x is isomorphic to Spec(k(x)[x1, · · · , xr]/(x1 · · ·xr)).

Semi-stable reductions are important examples of smooth morphisms in log geometry. Indeed,
the log structure MXk

(resp. MSpec(k)) attached to the divisor Xk (resp. Spec(k)) is fine, and
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the natural morphism of log schemes f : (X,MXk
) → (Spec(R),MSpec(k)) is log smooth. If r

(the number of local branches) in the definition is one everywhere, then the underlying morphism
X → Spec(R) is smooth. In the special case where R is the valuation ring of a local field, they
are of particular interest in p-adic Hodge theory. However, extra subtlety and difficulty arises in
the case R is (very) ramified. This is related to the DR-decomposability of the closed fiber Xk.
Note that there exist DR-indecomposable examples of Xk where X is smooth over R and R is
ramified over W (k) (see e.g. [10]). The fact that the absolute Frobenius on Spec(k) does not lift
over Spec(R) contributes to the DR-indecomposability in examples. Similar phenomenon occurs
in the semi-stable reduction case, due to the fact that the log absolute Frobenius on (k, 1 7→ 0)
does not lift over (R, 1 7→ π), even the special case (W (k), 1 7→ p). For this consideration, we shall
restrict ourselves to the case R = W (k) in the following.

In the following, we fix a finitely generated integral monoid P . For simplicity we denote k =
(k, P 7→ 0) and W2 = (W2(k), P 7→ 0).

Theorem 2.3. Let f : X → k be a smooth morphism of Cartier type, then

τ<pFX∗Ω∗X/k

is decomposable if and only if X is liftable to W2, that is, X admits a Type II deformation.

Proof. Let
X ′

σ //

��

X

��
k F // k

be the base change of X by the log Frobenius map of k. After Kato’s decomposition theorem, it
remains to show that X ′ is W2-liftable if and only if X itself is W2-liftable. Notice the absolute
log Frobenius morphism of k admits a lifting G : W2 →W2 as in the diagram

W2
FW2 // W2

P

0

OO

×p // P.

0

OO

Thus, via the base change of G, one obtains a W2-lifting of X ′ from that of X. Since G is not
isomorphism of log schemes, our argument is to show the converse nevertheless is still true. Let
ωX ∈ H2(X,TX/k) (resp. ωX′ ∈ H2(X ′, TX′/k)) be the obstruction class of the lifting of X (resp.
X ′) to W2. Recall that ωX is constructed as follows: Let {Ui} be an affine cover of X. Choosing for
each Ui a log smooth lifting Ui on W2, then we have that on each overlap Uij = Ui∩Uj there exists
an isomorphism αij : Uj |Uij → Ui|Uij . Moreover, ωX is represented by {(Ui ∩Uj ∩Uk, αijαjkαki)}.
Because of the existence of G, {(G−1(Ui ∩ Uj ∩ Uk), G∗αijαjkαki)} represents ωX′ . Thus we have
that σ∗(ωX) = ωX′ through the canonical map

H2(X ′, TX′/k) = H2(X ′, σ∗TX/k)

H2(X,TX/k)

σ∗

OO
.

The above equality uses the fact that σ∗ΩX/k = ΩX′/k and that both sheaves are locally free (see
1.7 and Proposition 3.10 [3]). However, since σ is an isomorphism of schemes, the map σ∗ in the
vertical line is bijective. It follows immediately that ωX = 0 under that assumption that X ′ is
W2-liftable and hence X itself is W2-liftable. �
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As a corollary, the decomposability of τ<pF∗Ω∗X/k does not depend on the base field. Explicitly,
we have

Corollary 2.4. Let f : X → k be a smooth morphism of Cartier type and K be a perfect field
containing k. Denote by K the field K with the induced log structure from k and by XK the log
base change. Then τ<pFX∗Ω∗X/k decomposed in D(X) if and only if τ<pFXK∗Ω∗XK/K decomposed in
D(XK).

Proof. By Theorem 2.3, it is enough to show that a (W2(K), P 7→ 0)-lifting of XK induces a
(W2(k), P 7→ 0)-lifting of X. By the flat base change, one has the isomorphism H2(X,TX/k)⊗kK =
H2(XK, TX/K) and hence the injection α : H2(X,TX/k) → H2(XK, TX/K). Then, by the same
arguments in Theorem 2.3, the obstruction class obk to lifting X to W2(k) sends to the obstruction
class obK of lifting XK to (W2(K), P 7→ 0) via the map α. By the condition that α(obk) = obK = 0,
it follows that obk = 0. �

As a consequence, when considering problem 1.1 one can assume in the following that k is
algebraically closed.

Remark 2.5. After presenting our results, Weizhe Zheng provided us a more conceptual proof of
Theorem 2.3: Denote by Lift(X) (resp.Lift(X ′)) the groupoid of liftings of X (rsep. X ′) over
W2. Denote G : W2 → W2 be a lifting of the log Frobenius morphism F : k → k. Given a
lifting X(1) ∈ Lift(X), the pullback of X(1) along G gives an object in Lift(X ′). With the obvious
assignments on morphisms, one can get a functor

Lift(X)→ Lift(X ′).(2)

Conversely, let X ′(1) ∈ Lift(X ′) be a lifting of X ′. Denote by i : X ′ ↪→ X ′(1) the canonical strict
closed immersion and by σ : X ′ → X the base change of F : k→ k. Recall that σ : X ′ → X is an
isomorphism and MX′ 'MX ⊕Kk

Mk. One can construct the pushout X ′(1)qX′X of the diagram

X ′
σ //

i
��

X

X ′(1)

as follows:
• The underlying scheme X ′(1) qX′ X is defined to be X ′(1),
• the log structure of X ′(1) q′X X is defined to be MX′(1) ×MX′

MX .
With the obvious assignments on morphisms, the pushout process along σ : X ′ → X gives a functor

Lift(X ′)→ Lift(X).(3)
It is straightforward to check the following proposition.

Proposition 2.6. The above two functors (2) and (3) are the equivalences of groupoids, quasi-inverse
to each other.

3. Examples

Let k be an algebraically closed field of characteristic p > 0. In this section, we shall use Theorem
2.3 to provide some examples of DR-indecomposable semi-stable reductions over the Witt ring W .
First a simple lemma.

Lemma 3.1. Let Z be a smooth scheme over W . Let Y0 be a smooth closed subvariety of Z0 =
Z ×W k. Set X = BlY0Z, the blowup of Z along the closed subscheme Y0. Then X is a semi-
stable reduction over W , whose closed fiber X0 is a simple normal crossing divisor consisting of two
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smooth components BlY0Z0 and P(NY0/Z) (the projective normal bundle of Y0 in Z) which intersect
transversally along P(NY0/Z0) (the projective normal bundle of Y0 in Z0). Furthermore, if the
normal crossing variety X0 over k admits Type II deformation, then both pairs (BlY0Z0,P(NY0/Z0))
and (P(NY0/Z),P(NY0/Z0)) are W2(k)-liftable.

Proof. The proof of the first statement is fairly standard and therefore omitted. The second state-
ment follows from Lemma 3.4 below. �

The following proposition is due to Cynk-van Straten.

Proposition 3.2 ([1] Theorem 3.1). Let π : Y → X be a morphism of schemes over k and let
S = Spec(A), A artinian with residue field k. Assume that OX = π∗OY and R1π∗(OY ) = 0. Then
for every lifting Y → S of Y there exists a preferred lifting X → S making a commutative diagram

Y �
� //

��

Y

��
X �
� // X

Corollary 3.3. Notation as above. If Y0 is non W2(k)-liftable, then the closed fiber X0 of X does
not admit any Type II deformation.

Proof. Use Lemma 3.1 and Proposition 3.2 which says that the W2-liftability of P(NY0/Z) implies
that of Y0. �

Thus, one deduces from the corollary the first approach to requested examples as given in the
introduction.

Lemma 3.4. Let X =
⋃
i∈I Xi be a normal crossing variety over k, where {Xi, i ∈ I} are irreducible

components. Endow X with the canonical log structure so that it is log smooth over (k, 1 7→ 0). Let
X be a Type II deformation of the log scheme X. Then X =

⋃
i∈I Xi is the schematic union of

closed subschemes Xis such that for each nonempty J ⊆ I, the schematic intersection
⋂
j∈J Xj is

a lifting of
⋂
j∈J Xj over W2.

Proof. Let
Ii = Ii + pIi

where Ii denotes the ideal sheaf of Xi in X. Ii is an ideal sheaf of OX′ . We claim that the closed
subscheme Xi defined by Ii is what we want. To do this it is enough to show

(1) OX′/Ii is flat over W2,
(2)

⋂
Ii = 0, and

(3) for each nonempty J ⊆ I, OX′/ ∪j∈J Ij is flat over W2.
Since ÔX′x is faithfully flat over OX′,x for each point x ∈ X ′, it is sufficient to verify the claim
above after tensoring with ÔX′x for every x ∈ X ′. By ([3] Theorem 3.5, Proposition 3.14) , There
is an étale morphisms U ′ → X ′ such that there is an diagram

U ′
f //

π′|U′ ))

Spec(W2(k)[x1, · · · , xn]/(x1 · · ·xr))

��
Spec(W2(k))

,

where f is an étale morphism. As a consequence, there is an isomorphism

α : ÔX′x 'W2(k)[[x1, · · · , xn]]/(x1 · · ·xr)
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such that each IiÔX′x (whenever it is nonempty) is generated by α−1(Πj∈Jixj) for some nonempty
Ji ⊆ {1, · · · , r}. Moreover, {1, · · · , r} is the disjoint union of Jis. Then the claim follows from
direct calculations. �

The following proposition illustrates the second approach in the introduction.

Proposition 3.5. For any d ≥ 2 and any p ≥ 2, there exists a smooth scheme Z over W (k) of
relative dimension d and char(k) = p such that there exists a smooth closed subvariety Y0 ⊂ Z0
such that the pair (BlY0Z0, E) is non W2(k)-liftable. Here E is the exceptional divisor of the
blowup BlY0Z0. As a consequence, X = BlY0Z is a semi-stable reduction over W whose closed fiber
is DR-indecomposable of dimension d ≥ 2 over k with arbitrary positive characteristic.

Proof. For d ≥ 3 and p arbitrary, this is the statement of Theorem 2.4 [9]. The surface case can
be also obtained by adapting its proof as follows. By [11], there is a projective smooth curve C of
genus g ≥ 2 over k, a vector bundle E on C of rank 2, and a smooth curve D in PC(E) such that
the composite D → PC(E)→ C is the relative Frobenius morphism F0 : D → D(p) = C. Denote

C0 = C, Y0 = D, Z0 = PC(E).
It is clear that Z0 admits a W -lifting Z = PC (E ), where C is a W -lifting of C and E is a W -lifting
of E over C (for dimensional reason formal lifting exists and then apply Grothendieck’s existence
theorem in formal geometry to conclude the algebracity of the formal objects). Then we claim
that the closed fiber X0 of X = BlY0Z is non W2-liftable. If not, by Lemma 3.4, the pair (Z0, Y0)
consisting of the component Z0 = BlY0Z0 of X0 together with the divisor Y0 = P(NY0/Z)∩Z0 ⊂ X0
lift to a pair (Z1, Y1) over W2 (The scheme Z1 is not necessarily the reduction of Z over W2).
On the other hand, Proposition 3.2 implies that the projection Z0 → C0 is the reduction of a
certain W2-morphism Z1 → C1. Therefore, the composite F0 : Y0 ↪→ Z0 → C0 lifts to the
composite F1 : Y1 ↪→ Z1 → C1 over W2. But this leads to a contradiction: the nonzero morphism
dF1 : F ∗1 ΩC1 → ΩY1 is divisible by p and it induces a nonzero morphism over k

dF1
p

: F ∗0 ΩC0 → ΩY0

which is impossible for the degree reason. This shows the claim and hence the proposition. �
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