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ABSTRACT. This is a personal update on some recent advances on the
geometry of moduli spaces of Calabi–Yau manifolds, especially along the
finite distance boundary with respect to the Weil–Petersson metric. Two
main themes are metric completion and extremal transitions. Besides re-
viewing the known results, I will also raise some related questions.

0. INTRODUCTION

The Weil–Petersson metric gWP on a complex manifold S for a polarized
Kähler–Einstein family (X, g)→ S is defined as, for s ∈ S,

(0.1) gWP(v, w) =
∫
Xs

(ρ(v), ρ(w))gs ,

where ρ : TsS → H1(Xs, TXs)
∼= H0,1

∂̄
(TXs) sends a vector v to the harmonic

representative of its Kodaira–Spencer class in the Kähler–Einstein metric
gs. We always assume that π : X → S is effective in the sense that ρ is
injective.

For a polarized family of Calabi–Yau n-folds with Ricci-flat metrics gs
given by Yau in the polarization class [48], the fact that the top holomorphic
form Ω ∈ Γ(Xs, KXs) is parallel with respect to gs implies that (cf. [35])

(0.2) gWP(v, w) =
〈i(v)Ω, i(w)Ω〉
〈Ω, Ω〉 ,

where i(v) is the interior product by ρ(v) and

〈a, b〉 = (−1)q
√
−1

n2

(a, b̄) for a, b ∈ Hn−q,q

is the positive pairing (inner product). Hence (0.2) is an isometry between
TsS and its image in Hom(Hn,0, Hn−1,1). Furthermore, the Bogomolov–
Tian–Todorov theorem [35] asserts that the Kuranishi space of a Calabi–Yau
manifold is smooth (unobstructed) of dimension hn−1,1.

The two expressions (0.1) and (0.2) link the differential-geometric and
algebrao-geometric aspects of Calabi–Yau moduli and suggest rich inter-
actions between both techniques. However, it took a longer time than ex-
pected to make this realizable in specific problems. The purpose of this
note is to review some of these developments related to my research.
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I worked on the Weil–Petersson geometry of Calabi–Yau moduli around
1994–1996 by observing the incompleteness phenomenon and its relation
with degenerations acquiring canonical singularities [41]. Meanwhile I de-
rived the formula for the Riemannian curvature tensor and analyzed its
asymptotic behavior along degenerations (published much later in [44]).
The original hope, partly suggested by Professor S.-T. Yau, was to obtain
information on metrics and curvature to give a differential geometric proof
of Viehweg’s theorem on the quasi-projectivity of the moduli space of po-
larized Calabi–Yau manifolds (or with at most canonical singularities) [39].
The incompleteness of gWP leads to serious obstructions.

A deeper thinking on it indicates the possibility to relate Viehweg’s quasi-
projective moduli of Calabi–Yau with at most canonical singularities with
the metric completion of moduli of Calabi–Yau manifolds. In the algebraic
side the needed machinery is the minimal model program (MMP in brief)
in birational geometry, while in the analytic side the possible approach is
via Hausdorff convergence. At that time both theories were less developed
in high diemsnions and the project got stuck (cf. [42, §10]). Later on there
were huge progresses made on both aspects during the last two decades.

After Shokurov’s work in early 2000’s on MMP in dimension 4, I wrote
a note [43] explaining how the MMP leads to the equivalence between one
parameter incomplete CY degenerations and the filling-in of a punctured
CY family by a CY with at most canonical singularities. The MMP needed,
in all dimensions, was later completed by Lai [13] and Fujino [9]. The met-
ric completion is thus established in the one parameter case.

The idea of Hausdorff convergence in the study of degenerations of alge-
braic manifolds had also received significant progresses due to the works
of Donaldson–Sun [5] and Rong–Zhang [26]. These were used by Tosatti
[37] and Takayama [34] to deduce further geometric properties of the in-
complete degenerations, e.g. its equivalence with boundedness of diameters
in the family. I will review this in §3 and point out the further step needed
to complete the study of the completion problem in its full generality.

Concerning with the curvature formula, it consists of a complex hyper-
bolic terms and a correction term related to the Yukawa coupling. In §2
I will review a recent construction by Sheng, Xu and Zuo [31] on the ex-
istence of maximal CY families with minimal length of Yukawa coupling,
i.e. the correction terms vanish. The base of such a family is thus locally a
ball quotient. It admits no maximal degenerate points nor essential finite
distance degenerations. It might be possible to classify all of them.

The classification program of Calabi–Yau 3-folds in the form suggested
by the Reid’s fantasy [25] is build on extremal transitions which take place
at incomplete degenerations. The conifold transitions are the simplest ones
and a folklore conjecture expects that they form the building blocks of ex-
tremal transitions in some vague sense. The first evidence is the standard
web of Green–Hubsch [10] which connects two CICY 3-folds (see §4 for
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the definition) by a sequence of conifold transitions. I will review in §4 an
elementary proof due to S.-S. Wang [45].

For conifold transitions there is a pretty local exchange of quantum A
models and B models obtained in my joint work with Y.-P. Lee and H.-W.
Lin [16], which is explained in §5. Viewing conifold transitions as the semi-
simple (or diagonalizable) case, our study might be useful for transitions
through general canonical singularities. I end this expository survey by
stating a global quantum transition via the notion of linked A and B models
[16], and describing a concrete example due to T.-J. Lee and Lin [15].

Acknowledgements: I am grateful to the Mittag-Leffler Institut for the invi-
tation and for the hospitality during my visit in July 2015. I am also grateful
to the referees for valuable suggestions.

This expository article reflects only my personal experience on this sub-
ject. Due to the limitation of scope I apologize for the omission of many
other important aspects and works on Calabi–Yau moduli.

1. DISTANCE

For a polarized family of Calabi–Yau n-folds π : X → S, gWP in (0.2)
admits a Hodge theoretic description as the Ricci tensor of the Hodge line
bundle Fn = π∗KX/S of holomorphic top forms. Namely

(1.1) ωWP = c1(Fn, 〈 , 〉) = −
√
−1

2π
∂∂̄ log〈Ω, Ω〉

where Ω is any local holomorphic section of Fn. gWP is in general semi-
positive. It is positive at TsS if the associated VHS is effective at s in the
sense that the infinitesimal period map

(1.2) σ : TsS→ Hom(Hn,0, Hn−1,1)⊕ Hom(Hn−1,1, Hn−2,2)⊕ · · ·
is injective in the first piece. This is the case if S ⊂M is a sub-moduli.

Based on Schmid’s nilpotent orbit theorem [27], I derived the following
finite distance criterion when dim S = 1. Denote the punctured disk by ∆×.

Theorem 1.1. [41, Theorem 1.1] Let H → ∆× be a polarized VHS of weight n
with rank Fn = 1. Then 0 ∈ ∆ is at finite distance if and only if NFn

∞ = 0.

Here F•∞ is the limiting Hodge filtration and N is the nilpotent part of the
monodromy operator. The extension to a higher dimensional base S, say
the moduli, is still an unsolved question. Assume that we are in the typical
situation that S = (∆×)r × ∆m, 0 ∈ S̄ = ∆n, and S̄ \ S = D1 ∪ · · · ∪ Dr a
normal crossing divisor with nilpotent monodromy Nj along Dj = (tj).

Conjecture 1.2. The point 0 ∈ S̄ is at finite gWP distance if and only if NjFn
∞ = 0

for all j. Here F•∞ is the limiting Hodge filtration with respect to N = ∑r
j=1 Nj.

One direction of Conjecture 1.2 is easy: If NjFn
∞ = 0 for all j, then the

distance along the curve t 7→ (t, . . . , t, 0, . . . , 0) is finite since its monodromy
is precisely N = ∑r

j=1 Nj. In fact, if the geodesic γ towards 0 ∈ S̄ lies
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in a holomorphic curve C ⊂ S then the conjecture follows from the one
parameter case: If C is parametrized by t 7→ (tdj)r

j=1 in the first r coordinates

with dj > 0 then it has monodromy N(~d) = ∑r
j=1 djNj. By [2, (3.3)], N(~d)

has the same weight filtration as N. Hence

N(~d)Fn
∞ = 0⇐⇒ NFn

∞ = 0.

It remains to control the loci of γ. I pose it as a

Question 1.3. Is there a geodesic γ ⊂ S towards 0 ∈ S̄ which lies in a holo-
morphic curve C ⊂ S? Is there a geodesic which fails this property?

By estimating the metric tensor carefully, Conjecture 1.2 for r = 1 can be
deduced from Theorem 1.1. The case for r = 2 is already subtle which was
only recently treated for families of Calabi–Yau 3-folds:

Theorem 1.4. [14] Let π : X → S = (∆×)2 × ∆m be a polarized family of
Calabi–Yau 3-folds. Then the distance measured by the dominant term of the Weil–
Petersson potential is infinite if NjF3

∞ 6= 0 for some j ∈ {1, 2}.

I will explain the case m = 0 with NjF3
∞ 6= 0, j = 1, 2. By the nilpotent

orbit theorem, a section Ω of Fn near 0 ∈ S̄ takes the form

Ω(t) = ez1 N1+z2 N2 a(t1, t2) ∈ F3
t

where zj = xj +
√
−1yj ∈ H with tj = e2π

√
−1zj = e2π

√
−1xj e−2πyj , and

a(t1, t2) = a0 + · · · is holomorphic with a0 ∈ Fn
∞.

The assumption Nja0 6= 0, j = 1, 2 suggests that the potential 〈Ω, Ω〉 is
essentially controlled by the dominant term

〈e2π
√
−1 ∑ zj Nj a0, e2π

√
−1 ∑ zj Nj a0〉 = 〈e−4π ∑ yj Nj a0, a0〉 =: p(y).

The metric constraint implies that p(y) is a positive polynomial in y ∈
(R+)2 such that M(p) := −D2 log p(y) is positive definite for y ∈ (R+)2.

In the one parameter case the story ends here since if d = deg p(y) then

M(p) = − d2

dy2 log p(y) =
p′2 − pp′′

p2 ∼ d
y2 ,

which is asymptotic to the Poincaré metric towards y = +∞ (t = 0).
For r ≥ 2, the natural question to ask is if

−
r

∑
i,j=1

∂i∂j log p(y) dyi ⊗ dyj ∼
r

∑
j=1

dj

y2
j

dy2
j

holds (where dj is the nilpotency of Nj). Since 1 ≤ dj ≤ n = 3, for r = 2
there are 6 choices of (d1, d2) with d1 ≤ d2. All such polynomials p(y)
were classified in [14], and all the off-diagonal terms were shown to be
dominated by the diagonal ones in a case by case study.
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Let d be the total degree of p(y), then d ≤ d1 + d2. Let Λ(p) be the convex
hull of the set of exponents (m1, m2) ∈ (Z≥0)2 in p. We may assume that p
is supported only on its higher degree boundary ∂+Λ(p).

For example, let d1 = d2 = 1. If d = 1, then p = Ay1 + By2 with A, B > 0,

M(p) =
1
p2

[
A2 AB
BA B2

]
.

Let γ be a curve towards t = 0. Then

|γ| =
∫

γ
ds ≥

∫
γ

Ady1 + Bdy2

p
=
∫

γ
d log p = +∞.

If d = 2, then p = Ay1 + By1y2 + Cy2 with A, B, C > 0 and

M(p) =
1
p2

[
(A + By2)2 AC

AC (C + By1)
2

]
.

For large y1 and y2 the off-diagonal terms can be ignored. Hence we still

conclude |γ| ≥ (
√

2
−1 − ε)

∫
γ d log p = +∞ as before.

For the other (d1, d2)’s, there are more terms and the major efforts are
paid to get rid off the contributions from the off-diagonal terms.

When N1F3
∞ 6= 0 but N2F3

∞ = 0, the problem is reduced to the case r = 1
and m = 1. In this case the Weil–Petersson distance (not just the one ap-
proximated by the dominant term) is also shown to be infinite along angular
slices. We refer the details to [14].

Remark 1.5 (Hessian geometry). Differential geometry with hessian metrics
given by ds2 = ∑ hij dyi ⊗ dyj, (hij) = −D2 log p(y), p(y) a polynomial,
deserves a systematic study (cf. [38]). It serves as the real form of the quasi-
Hodge metrics [43] along period maps.

There is a classical recipe in [3, §1] in detecting completeness of the metric

hij =
pi pj

p2 −
pij

p
.

Under the assumption that (pij) = D2 p is invertible with inverse (pij), and
denote by (dp)2 = ∑ pij pi pj, the inverse matrix (hij) of (hij) is given by

hij = −p
(

pij − pi pj

(dp)2 − p

)
.

We compute directly that

0 < ‖∇h‖2 = ∑ hijhihj = −
1
p

(
(dp)2 − ((dp)2)2

(dp)2 − p

)
=

(dp)2

(dp)2 − p
.

Since p > 0, we have (dp)2 > p. Moreover, for any positive function f ,

(1.3) ||∇h|| ≤ f ⇐⇒ p ≤ (1− f−2)(dp)2.
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For any such f and any path γ of unit speed towards ∞, we have

|γ| =
∫

γ
||γ′|| ds ≥

∫
γ

1
f
|∇h · γ′| ds ≥

∫
γ

dh
f

.

In order to conclude that |γ| = ∞ it is sufficient to prove the validity of (1.3)
for f being in the one of the following form

f = c, f = c h, f = c h log h, f = c h log h log(log h), · · ·
near ∞, where c > 0 is a constant. There are obvious analogous statements
for the Kähler (Weil–Petersson) metric gi j̄ = −∂i∂ j̄ log Q with Q = 〈Ω, Ω〉.
The task is to relate the analogue of (1.3) with Conjecture 1.2.

2. CURVATURE

Based on (0.2) and Griffiths’ curvature formula for Hodge bundles, the
Riemannian curvature tensor for gWP was calculated in

Theorem 2.1. [44, Theorem 2.1] Let H→ S be an effective polarized variations
of Hodge structures of weight n with hn,0 = 1. In terms of any holomorphic section
Ω of Hn,0, the full curvature tensor of gWP = ∑ gi j̄ dti ⊗ dt̄j on S is given by

(2.1) Ri j̄k ¯̀ = −(gi j̄ gk ¯̀ + gi ¯̀ gkj̄) +
〈σiσk Ω, σjσ` Ω〉
〈Ω, Ω〉 ,

where σi = σ(∂/∂ti) is the infinitesimal period map in (1.2).

A similar formula was derived earlier by Schumacher [29] by analytic
method based on (0.1). For family of Calabi–Yau 3-folds, (2.1) is equivalent
to Strominger’s formula (cf. [44, Theorem 3.4])

Ri j̄k ¯̀ = −(gi j̄ gk ¯̀ + gi ¯̀ gkj̄) + ∑
p,q

gpq̄ FpikFqj`,

where Fijk is the Bryant–Griffiths cubic form

Fijk =

∫
X ∂i∂j∂k Ω ∧Ω∫

X Ω ∧ Ω̄
.

Remark 2.2. For n = 3, 4, the Weil–Petersson metric determines the full
Hodge metric gHodge which is induced from the period domain. For n = 3,

gHodge = (h2,1 + 3)gWP + Ric(gWP).

This follows easily from (2.1) since it implies that Ri j̄ = −(h2,1 + 1)gi j̄ + hi j̄

where hih̄ is the metric on Hom(Hn−1,1, Hn−2,2) (cf. [44, Theorem 3.2], see
also [19] for a different derivation). Similarly, for n = 4 we have

gHodge = (2h2,1 + 4)gWP + 2Ric(gWP).

In the physics literature the tensor Fijk is known as the Yukawa coupling.
Thus σ is also called the Yukawa coupling when no confusion may arise.
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Definition 2.3. The length of Yukawa coupling `(π) for a VHS π : H→ S is
defined to be the largest integer ` with σi1 · · · σi` 6≡ 0 for some i1, . . . i`.

In the study of mirror symmetry for a (effective maximal) Calabi–Yau
family π : X → S, one needs the existence of maximal degenerate point
p0 ∈ S̄ to start with. This implies that the π has maximal Yukawa coupling
length `(π) = n. In such a case the family as well as the VHS over S is rigid
by a result of Viehweg and Zuo [40, Proposition 8.2].

On the other extreme, there are examples of maximal families of Calabi–
Yau manifolds π : X → M (the moduli) which have minimal Yukawa
coupling length `(π) = 1. By (2.1), this is equivalent to

Ri j̄k ¯̀ = −(gi j̄ gk ¯̀ + gi ¯̀ gkj̄).

That is, (M, gWP) is locally isometric to the complex hyperbolic ball.
The following construction is due to Sheng, Xu and Zuo. Let Mn,m be

the space of m-hyperplane arrangements of Pn in general positions. That
is, each A ∈ Mn,m is a set A = {H1, . . . , Hm} of hyperplanes Hi ⊂ Pn

such that any n + 1 members from A have empty intersection. Let n ≥ 3
be an odd integer and fn : Xn → Mn,n+3 be the family of r = 1

2 (n + 3)-
fold cyclic cover πA : XA → Pn branched along the corresponding divisor
HA =

⋃n+3
i=1 Hi ⊂ Pn. By the canonical bundle formula for branch covers,

KXA = π∗AKPn + (r− 1)HA ∼ 0.

Theorem 2.4. [31, Theorem 1.1] There is a crepant resolution f̃n : X̃n →
Mn,n+3 which is a maximal family of Calabi–Yau n-folds with `( f̃n) = 1.

The most natural VHS with ` = 1 comes from VHS of weight one. In fact
fn also comes from family of curves. Let γ : (P1)n → SymnP1 = Pn be the
natural Sn Galois cover. Then γ induces a natural isomorphism

Γ : M1,n+3
∼= Mn,n+3

by sending pi ∈ P1 to Hi = γ({pI} × (P1)n−1) [31, Lemma 3.4, 3.5]. In
this way, f1 : C = X1 → M1,n+3 is a family of curves C’s which are r cyclic
covers of P1 at n + 3 general points. In particular C has genus g(C) =
1
4 (n + 1)2. A key step towards the proof of Theorem 2.4 is the diagram

Cn/G ∼ //

hn $$

Xn

fn{{
Mn,n+3

,

where G = N o Sn for some abelian group N with hn a Z/r Galois cover.
To finish the description of these examples, I list their Hodge numbers:

Proposition 2.5. [31, Lemma 3.1] The Hodge numbers of Hn(X̃A) are

hn−q,q =

{
q + 1 if q is even,
n + 1− q if q is odd.
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In particular, the family f̃n has dimension h1(T) = hn−1,1 = n = dim X̃A.

Now I briefly describe an on-going project with Sheng and Xu on char-
acterizing maximal Calabi–Yau families π wth `(π) = 1. From Proposition
2.5, the dimension of complex deformations equals the complex dimension
of the Calabi–Yau manifolds. We would like to know if this is the optimal
case under the assumption that `(π) = 1.

The idea is to mimic the Bochner principle for Riemannian manifolds
(M, g) with Ric(g) ≥ 0. In that case every harmonic one form is paral-
lel whose dual is a parallel vector field. Thus we must have h1(M, R) ≤
dim M, with equality holds if and only if that the universal cover (M̃, g̃) is
isometric to the Euclidean space Rdim M.

In the Calabi–Yau case X = Xs, π : X → S with `(π) = 1, every har-
monic form σi Ω ∈ Hn−1,1(X) corresponds to a harmonic element

v = ∑ vβ
ᾱ

∂

∂zβ
⊗ dz̄α ∈ H0,1

∂̄
(TX),

and we ask if it a parallel section of (T∗)0,1⊗T ∼= Hom(T̄, T). The equations
σj(σi Ω) = 0 for all j are then used to analyze this question.

Question 2.6. Classify maximal Calabi–Yau families π with `(π) = 1.

3. SINGULARITIES

For a semi-stable degeneration X → ∆ with X0 =
⋃

i Xi, the Clemens–
Schmid exact sequence for MHS implies that

Theorem 3.1. [41, Theorem 2.1] NFn
∞ = 0 if and only if there is a component

X0 in X0 with hn,0 6= 0 (⇐⇒ there is exactly one component with hn,0 = 1 by the
semi-continuity of geometric genus).

Together with Theorem 1.1, this implies that a Calabi–Yau degeneration
π : X→ ∆ with X0 = X̄ irreducible and with at most canonical singularities
is at finite gWP distance [41, Corollary 2.3]. The converse follows from the
minimal model theory in dimension n + 1:

Theorem 3.2. [43, Proposition 1.2] Let π : X→ ∆ is a finite distance degenera-
tion of Calabi–Yau manifolds. Assuming MMP, then up to a finite base change and
birational modifications on the central fiber, X0 has only canonical singularities.

Idea of proof. The idea is simple. Let π′ : X′ → ∆ be the semi-stable reduc-
tion of the given finite distance degeneration π. It is clear that π′ is also
at finite distance. By Theorem 3.1, we may write X′0 =

⋃N
i=0 X′i with X′0

being the unique component with a canonical section Ω ∈ Γ(X′0, KX′0
). Let

π′′ : X′′ → ∆ be the relative minimal model of π′ constructed from diviso-
rial contractions and flips. Then the distinguished component X′0 is never
contracted during this process, for otherwise it will be covered by extremal
rational curves and has Kodaira dimension −∞.
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The minimality of π′′ easily implies that KX′′ ∼ 0. Also if X′′0 = ∑N
i=0 Xi

has more than one component then −KXi,red is a non-trivial effective divi-
sor on Xi,red for each i [43, Lemma 5.2]. In particular, the component X0
corresponding to X′0 can not have a canonical section, hence leads to a con-
tradiction. Finally we conclude X′′0 = X0 which has at most canonical sin-
gularities. For the actual proof there are issues on normality on X0 which
needs to be taken care, which will not be repeated here. �

When ∆ is replaced by a quasi-projective curve C, the MMP needed can
be replaced by a weaker version, namely the semi-stable MMP for Calabi–
Yau varieties, which was recently settled in [13, 9].

Instead of the algebraic method by MMP, the idea of using Hausdorff
convergence to relate canonical singularity degenerations with Calabi–Yau
family with uniformly bounded diameters was also raised in [42, §10] and [44,
§7]. The starting point is that the finite distance condition NFn

∞ = 0 is in-
deed equivalent to the continuity, or uniform boundedness, of the potential
function 〈Ω(t), Ω(t)〉 in t ∈ ∆ as t→ 0. Let ωt be the Ricci-flat Kähler form
in the polarization class L. By integrating the Monge–Ampère equation

√
−1

n2

Ω(t) ∧Ω(t) = f (t)ωn
t ,

we have f (t) = 〈Ω(t), Ω(t)〉/(Ln) ≤ M for some M > 0. Thus the finite
distance is also equivalent to the point-wise estimate on (Xt, gt) for t 6= 0:

ωn
t ≥ M−1 Ω(t) ∧Ω(t).

Concerning with its equivalence to the uniform boundedness of diame-
ters of (Xt, gt) in t ∈ ∆×, denoted by diamgtXt, one direction was achieved
by Rong and Zhang (stated in our notations):

Theorem 3.3. [26, Theorem 2.1] Let X → ∆ be a degeneration of Calabi–Yau
n-folds with KX/∆ ∼ 0 and with ample line bundle (polarization) L → X. Let gt,
t ∈ ∆×, be the Ricci-flat metric in the polarization class L = c1(L|Xt). Then

diamgtXt ≤ 2 + c 〈Ω(t), Ω(t)〉,
where c is a constant independent of t.

When X→ ∆ is a degeneration such that X0 has only canonical singular-
ities, we have KX/∆ ∼ 0 and 〈Ω(t), Ω(t)〉 is continuous as t→ 0. Hence the
diameter is uniformly bounded as expected.

Remark 3.4. In fact Theorem 3.3 serves as the a priori estimate in [26] to
show the smooth convergence of (Xt, gt) to a singular Ricci-flat metric g0 on
X0 which is smooth outside the singular loci. It follows from [6] that g0
coincides with the singular metric constructed from the complex Monge–
Ampère equation with degenerate right side in [48].

For the reverse implication, namely from the boundedness of diameters
to degeneration with only canonical singularities, the machinery became
mature only after the appearance of the fundamental work of Donaldson
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and Sun [5] on Gromov–Hausdorff limits of Kähler–Einstein manifolds.
Their theory works for polarized families with fixed total volume V, bounded
Ricci curvature |Ric| ≤ 1, and the volume non-collapsing property

(3.1) Vol Br ≥ c r2n

for any metric r ball with r ≤ diam X. (Here n = dimC X.) The class of
such Kähler (projective) manifolds is denoted by K(n, c, V).

Theorem 3.5. [5, Theorem 1.2] Given n, V and c, there exist k, N ∈ N such
that any X in K(n, c, V) can be embedded in PN by Γ(X, L⊗k).

Moreover, let Xj be a sequence inK(n, c, V) with Gromov–Hausdorff limit X∞.
Then X∞ is homeomorphic to a normal projective variety W ⊂ PN . By passing to
a subsequence and taking suitable projective transformations, we have Xj ⊂ PN

converges to W in PN .

The algebraic properties on the limit variety are discussed extensively in
[5, §4.3, §4.4]. Especially the normality and the log-terminality are proved
in [5, Lemma 4.12] and [5, Proposition 4.15] respectively. Thus to apply
Theorem 3.5 in our setting, it is important to analyze (3.1) carefully. This
has been done by Tosatti [37] and Takayama [34] recently. Below I briefly
review their arguments and refer the details to their papers.

Tosatti [37, Theorem 1.1, (e)⇔ ( f )] made the important observation that
( f ) the volume non-collapsing (3.1) in a polarized family is equivalent to
(e) the uniform boundedness of diameters. In fact (e) ⇒ ( f ) follows from
the Bishop volume comparison theorem [28, Theorem 1.3]:

Volgt Br

cn r2n ≥
∫
Xt

ωn
t

cn (diamgtXt)2n ,

i.e. the ratio decreases in r, where cn = πn/n! is the volume of unit ball in
Cn, and ( f ) ⇒ (e) can be proved by covering a minimal geodesic with a
bounded number of balls since the total volume V is fixed.

Based on Theorem 3.5 and the above equivalence, Takayama [34, The-
orem 1.4] completed the reverse implication. In fact, for a given family
X → ∆ with uniformly bounded diameters, (3.1) hold for all Xt, t 6= 0. By
choosing the embedding of Xt into PN by L⊗k

t for fixed k, N, he showed
that the limit variety W from Theorem 3.5 indeed has at most canonical
singularities and KW = 0, hence it is at finite Weil–Petersson distance on
the moduli [41, Corollary 2.3]. By a delicate comparison of period maps via
Hilbert schemes, he then deduced that X→ ∆ is a finite distance degenera-
tion, hence admits a model (up to finite base change) such that X0 has only
canonical singularities. For technical reasons, Takayama stated and proved
his result for families over a quasi-projective curve C instead of a disk ∆. It
would be interesting to see if this requirement is really necessary.

Now we are in a position to discuss the metric completion problem men-
tioned in the introduction.
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Convention. From now on, a Calabi–Yau variety is a projective Q-Gorenstein
variety with K ∼ 0 and h1(O) = 0, unless stated otherwise. And a Calabi–
Yau n-fold is always assumed to be smooth.

Let M be an irreducible component of the moduli space of polarized
Calabi–Yau n-folds, which is a quasi-projective orbifold by Viehweg’s the-
orem [39] and the BTT theorem mentioned before. We equip M with the
Weil–Petersson metric gWP and turn (M, dWP) into a metric space. We ask
if there is a partial compactificationMc ⊃ M such that the extended dis-
tance function dc

WP defines a complete metric space onMc. The immediate
candidate is Viehweg’s quasi-projective moduli Mh of polarized Calabi–
Yau varieties (X, L)’s with at most canonical singularities and with given
Hilbert polynomial h. That is,

h(k) = h0(X, L⊗k) for k >> 0.

Notice that we implicitly assume that the symbol Mh represents the irre-
ducible component containingM. Of course, by Theorem 3.2,Mh is con-
sidered as part of the proposed completion Mc. But it might not be the
wholeMc. For example, starting from a (polarized) finite distance degen-
eration, in order to obtain a model X → ∆ such that X0 has at most canon-
ical singularities it is often necessary to change the polarization during the
MMP. Thus the best one can expect seems to be the following

Conjecture 3.6. Given an irreducible component M of the moduli of polarized
(smooth) Calabi–Yau n-folds, there exist a finite number ofMhj ’s such that

(3.2) Mc =
⋃

j
Mhj ⊃M

is complete with respect to the induced Weil–Petersson metric. Here Mhj is an
irreducible component of Viehweg’s quasi-projective moduli of polarized Calabi–
Yau with canonical singularities and with Hilbert polynomial hj,

In order for (3.2) to make sense, we need a natural embedding

ιh :M ↪→Mh

whenever “Mh contains a point inM”. For n = 3, this is guaranteed by
Wilson’s theorem on the deformation invariance of Kähler cone [46].

Special attention needs to be paid on the jumping loci (X, L). This hap-
pens precisely when X contains a divisor E with p : E → C being a conic
bundle over an elliptic curve C [46, Proposition 3.1]. Let ψ = ΦL⊗k : X → X̄
be the morphism contracting E to C ⊂ X̄ so that L = ψ∗ L̄ for an ample line
bundle L̄ on X̄. We still conclude that the pair (X̄, L̄) belongs toMh since
X̄ has only canonical singularities.

The corresponding statement in higher dimensions are expected to hold,
though a general proof does not seem to be available at this moment. As-
suming it, then Conjecture 3.6 contains two major claims. The first one is
purely algebraic and the second one is essentially differential-geometric:
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(1) The existence of a finite cover of
⋃

hMh byMhj ’s.
(2) The completeness of the induced Weil–Petersson metric.

We emphasize that in (1) the singularities involved are not all the three
dimensional canonical singularities. Otherwise there is no boundedness
property to be expected. At this point, I should point our that based on
the work of Donaldson and Sun [5], a version of metric completion using
infinite covers byMh’s was studied in a recent preprint by Zhang [49].

For (2), the major problem is that so far Theorem 3.2 was proved only for
one dimensional families. For families X→ S with dim S ≥ 2, the problem
is essentially reduced to its Hodge theoretic criterion, i.e. Conjecture 1.2.

An alternative approach is to use Hausdorff convergence. We pose

Question 3.7. Given a polarized Calabi–Yau degeneration X → S such that
p ∈ S is at finite Weil–Petersson distance. Do we then have the uniform
boundedness of the diameter of Xt for t close to p?

This is true for dim S = 1 as I have explained above. But the proof
relies on the Hodge theoretic criterion Theorem 1.1. So in order to avoid
using Conjecture 1.2 we need to find a direct proof of it. Notice that this is
unknown even for dim S = 1.

According to (0.1), the finiteness of Weil–Petersson distance can be re-
garded as certain L2 bound when integrating over a path γ (e.g. a geodesic)
in S, and the expected uniform bound on diameters can be regarded as a
C0 (or sup norm) bound along γ. It would be interesting to see if certain
iteration method as in [48] may be applied to study Question 3.7.

4. TRANSITIONS

Two (non-singular) Calabi–Yau 3-folds X, Y are connected by an extremal
transition, denoted by X ↗ Y, if there is a projective degeneration π : X→
∆ with Xt = X for some t 6= 0, X0 = X̄ a singular Calabi–Yau with at most
canonical singularity, and a projective contraction/resolution ψ : Y → X̄.
Such a transition is called a terminal transition if X̄ has only terminal sin-
gularities, and a conifold transition if X̄ has only ordinary double points
(ODP) as its singularities. An ODP has has local analytic equation

x2
1 + x2

2 + x2
3 + x2

4 = 0.

The famous Reid’s fantesy in 1987 [25] suggested the possibility to con-
nect all simply connected Calabi–Yau 3-folds by a sequence of (possibly
non-Kähler) conifold transitions. We work with the Kähler (hence projec-
tive) assumption first, and leave the non-projective case to Remark 4.6.

The early evidence to this is due to Green and Hubsch saying that any
two CICY 3-folds (nef complete intersection in product of projective spaces)
are indeed connected by conifold transitions [10]. Notice that “nef” means
the defining equations are required to be only semi-ample instead of ample.
This is now well-known as the standard web. In such a situation the contrac-
tion ψ is always a determinantal contraction (whose definition is recalled
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in Definition 4.3 below). More complicate examples arise from toric ge-
ometry naturally. For example, extremal transitions for hypersurfaces in
weighted projective spaces or toric varieties were studied by Morrison [22]
in connection with mirror symmetry.

Transitions of non-explicit Calabi–Yau 3-folds had also been studied ex-
tensively through combinations of birational geometry and deformation
theory, notably the deformation invariance of Kähler cone due to Wilson
[46] and smoothing results of Namikawa–Steenbrink [23] and Gross [11]
for Calabi–Yau 3-folds with terminal or canonical singularities. In contrast
to the naive belief that conifold transitions are “generic” among extremal
transitions, Namikawa constructed examples of terminal transitions which
can not be deformed to conifold transitions:

Example 4.1. [24, Remark 2.8] Let S → P1 be a rational elliptic surface with
6 singular fibers of type II (i.e., cuspidal rational curves). Then X̄ = S×P1 S
is a Calabi–Yau 3-fold with 6 singular points of cA2 type:

x2 − y3 = u2 − v3.

X̄ admits smoothings to X = S1 ×P1 S2 with Si → P1 having disjoint dis-
criminant loci, and a small resolution π : Y → X̄ exists by explicit con-
structions. The π-exceptional loci can not be deformed to a disjoint union
of (−1,−1)-curves since a singular fiber of type II splits up into at most
2 singular fibers of type I, and a general fiber of small deformation of a
singularity of X̄ which preserves small resolutions has 3 ODPs.

To understand this phenomenon, it is natural to consider the possibil-
ity on factoring an extremal transition into composition of conifold transi-
tions up to flat deformations. Such decompositions are shown to exist for
Namikawa’s examples by Wang [45, §6]. As a by-product, he found an el-
ementary proof that generic determinantal contractions ψ : Y → X̄ in the
standard web do have X̄ being a conifold, hence offered a detailed proof
to the Green–Hubsch result. To explain this, we first notice that there are
simple topological constraints associated to a terminal transition X ↗ Y.

Proposition 4.2. [45, Proposition 1.2] Let Y → X̄ be a small resolution of a
terminal 3-fold X̄ and X a smoothing of X̄. Then e(Y) − e(X) ≥ 2 |Sing(X̄)|
with equality holds if and only if all the singularities of X are ODPs.

Indeed, let Ci be the exceptional loci, namely an effective one cycle, over
a singularity pi ∈ X̄. Since X̄ is terminal Gorenstein, pi must be an isolated
hypersurface singularity. We have the well-known formula

e(Y)− e(X) = ∑
i

µpi + ∑ (e(Ci)− 1) ,

where µpi is the Milnor number of pi. By classification theory, pi is a cDV
(compound Du Val) singularity, hence the support of Ci is union of smooth
rational curves which meet transversally and thus the number e(Ci)− 1 is
equal to the number of irreducible components of Ci, which is denoted by
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ni. Then ∑ µpi + ∑ ni > 2 |Sing(X)| with the equality holds if and only if
ni = µpi = 1 for all i. That is, pi is an ODP.

Definition 4.3 (Determinantal contractions/transitions). Let Y ⊂ S× Pn be
the zero loci of sections si ∈ Γ(S × Pn,Li) where Li → S × Pn are line
bundles of the form Li = Li �OPn(1) with Li being semi-ample on S.

Let [x0 : · · · : xn] be the homogeneous coordinates on Pn. We write

si = ∑n
j=0 sij xj, i = 0, . . . , n,

where sij ∈ Γ(S, Li). We are interested in study the restriction of the projec-
tion map π : S× Pn → S to Y. Define X̄ = π(Y) ⊂ S and

ψ = π|Y : Y → X̄.

For p ∈ X̄ ⊂ S, since sij(p)’s are fixed, ψ−1(p) is not unique if and only if

∆(p) := det sij(p) = 0.

The contraction ψ : Y → X̄ is called a determinantal contraction, and the
variety X̄ is defined by equations ∆ = 0 on S. Notice that

∆ ∈ Γ(S,
⊗n

i=0
Li).

If for general sections τ ∈ ⊗n
i=0 Li the variety Xτ defined by τ = 0 is

smooth, then it gives rise to a transition Y ↘ X. If furthermore X̄ has
only ODPs as singulrities, then we get a conifold transition.

The important special case of CICY 3-folds transitions had been studied
extensively in the literature. The smoothness of the generic member Xτ

follows from certain Bertini type result. The statement that X̄ is a conifold
for generic Y → X̄ was proved via

Proposition 4.4. [45, Proposition 3.4] Given a determinantal transition Y ↘ X
as in Definition 4.3 with E =

⊕n+1
i=1 Li, the defect of Euler numbers is given by

e(Y)− e(X) = 2
∫

S

(
c2(E)2 − c1(E)c3(E)

)
.

Indeed, in the case of CICY 3-fold transitions it was shown that the num-
ber of singularities on X̄ is also calculated by the above integral when
Y → X̄ is a generic determinantal contraction. Thus by Propositions 4.2
and 4.4 we conclude that X̄ is a conifold. Since Green and Hubsch already
showed that any two CICY 3-folds can be connected through a sequence
of determinantal transitions, putting these together we have connected the
standard web via projective conifold transitions.

Concerning with the program on factoring a terminal transition, the fol-
lowing is regarded as the first step (cf. [11, (5.1)] for the case ρ(Y/X̄) = 1):

Theorem 4.5. [45, Theorem 1.3] Let π : Y → X̄ be a small projective resolution
of a Calabi–Yau 3-fold X̄. If the natural closed immersion De f (Y) ↪→ De f (X̄) of
Kuranishi spaces is an isomorphism then the singularities of X̄ are ODPs. More-
over, the number of ODPs is equal to the relative Picard number ρ(Y/X̄).
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Remark 4.6 (Non-projective transitions). Let Y be a projective (or cohomo-
logically Kähler) Calabi–Yau 3-fold with disjoint (−1,−1) curves P1 ∼=
Ci ⊂ Y, 1 ≤ i ≤ r satisfying ∑r

i=1 ai[Ci] = 0 with ai 6= 0 for all i. Let
ψ : Y → X̄ be the analytic map contracting all Ci’s. Then works of Clemens,
Friedman and Tian [8, 36] imply that the conifold X̄ can be smoothed to a
non-singular complex 3-fold X, which is non-projective if ψ is not.

This happens if [Ci]’s span N1(Y), and then h2(X) = 0. If we assume Y
(hence X) is simply connected, then by the classification theory of Wall such
a non-projective Calabi–Yau 3-fold X is homotopic equivalent to (S3× S3)#k

for some k ∈ N. Despite its topological simplicity, so far we are still short
of tools for further geometric studies in this non-projective category.

The dual picture was studied by Smith, Thomas and Yau [32]. They de-
veloped the symplectic conifold transitions X ↗ Y by collapsing Lagrangian
spheres Si’s with a good relation ∑ ai[Si] = 0, ai 6= 0, in H3(X), and then
proving the existence of symplectic resolutions to get symplectic Y.

Question 4.7. The non-projective conifold transitions are more flexible and
easier to construct. It was shown in [8, 20, 47] that for a generic CICY 3-
folds Y ⊂ P = ∏k

i=1 Pni defined by m = ∑k
i=1 ni − 3 ample divisors, the

collection of curves Ci’s in Remark 4.6 can be constructed. Can one extend
this to all CICY 3-folds (i.e. defined by semi-ample divisors only)?

Can one connect the web of nef CICY 3-folds in toric varieties to the
standard web via (projective or non-projective) conifold transitions?

5. INVARIANCE

In order for extremal transitions among Calabi–Yau 3-folds to admit fruit-
ful applications, it is necessary to have an effective control on the variations
of geometric data under the process. Putting in the folklore statement from
string theory, one expects that two string theories based on topologically
distinct Calabi–Yau 3-folds should be equally powerful to determine each
other, at least when they are connected by extremal transitions. This is the
notion on invariance which I would like to explain in this final section.

There could be several meanings of invariance we may pursue, depend-
ing on the category we are working on. However, I will skip the view-
point from physics to avoid inappropriate interpretations (by me). From
the differential geometric viewpoint, the Ricci-flat metrics do behave con-
tinuously in the Hausdorff topology under extremal transitions. This was
proved by Rong and Zhang in [26] (see also Song [33] for the special case
of conifold transitions). So far it is still a challenging problem to apply this
continuity result to control the variations of geometric data.

I will thus focus directly on the geometric data which are interesting
in current study on Calabi–Yau 3-folds. These are the A model, which is
the Gromov–Witten theory on virtual counting of stable maps, and the B

model, which is the Kodaira–Spencer theory on complex deformations. In
the genus zero picture both admit the structure of integrable connections.



16 C.-L. WANG

For A model it is the Dubrovin connection, or equivalently the quantum
cohomology ring. For B model it is the VHS, or equivalently the Gauss–
Manin connection with Griffiths’ transversality on the Hodge filtration.

Now I will review a recent joint work with Y.-P. Lee and H.-W. Lin [16]
concerning with the invariance of the coupled theory (A,B), linked in a
suitable sense, under a conifold transition.

Let X ↗ Y be a projective conifold transition of Calabi–Yau 3-folds X,
Y through a singular Calabi–Yau variety X̄ with k ODPs p1, . . . , pk ∈ X̄.
During the complex degeneration π : X→ ∆ with X0 = X̄, there are k van-
ishing 3-spheres S1, . . . , Sk with NSi/X = T∗S3. And during the Kähler de-
generation (small contraction) ψ : Y → X̄, there are k vanishing 2-spheres
(exceptional curves) C1, . . . , Ck with NCi/Y = OP1(−1)⊕2. Schematically
these data are encoded in the following diagram:

Ci ⊂ Y

ψ
��

Si ⊂ X π // pi ∈ X̄

.

Let µ := h2,1(X)− h2,1(Y) > 0 be the loss of complex moduli and ρ :=
h1,1(Y)− h1,1(X) > 0 be the gain of Kähler moduli. From χ(X)− kχ(S3) =
χ(Y)− kχ(S2), we get the following well-known elementary relation

µ + ρ = k.

This implies that the ψ-exceptional curve classes [Ci] ∈ NE(Y/X̄) admit µ
independent relations, and the π vanishing cycles [Si] ∈ V ↪→ H3(X) →
H3(X̄) admit ρ independent relations. (The vanishing cycle space V has
dim V = µ.) Let A, B be the corresponding relation matrices:

A = (aij) ∈ Mk×µ, ∑k
i=1 aij[Ci] = 0,

B = (bij) ∈ Mk×ρ, ∑k
i=1 bij[Si] = 0.

We have the following relations on vanishing A and B cycles:

Theorem 5.1 (Basic exact sequence). [16, Theorem 1.14] The Hodge realiza-
tion of µ + ρ = k is represented by an exact sequence

0→ H2(Y)/H2(X)
B−→Ck At

−→V → 0

of weight two Hodge structures.
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Indeed V ∼= H1,1
∞ H3(X) in the limiting Hodge diamond for π:

H2,2
∞ H3

N∼

��

C ∼= H3,0
∞ H3 H2,1

∞ H3 H1,2
∞ H3 H0,3

∞ H3

H1,1
∞ H3

and the invariant subsystem is GrW
3 H3(X) ∼= H3(Y).

Based on Theorem 5.1, we may proceed to describe local quantum tran-
sitions. By the BTT unobstructedness theorem [35] and its extension to
Calabi–Yau conifolds by Ran and Kawamata [12], the moduli spaces MY
andMX̄ are smooth of dimension h2,1(Y) and h2,1(X) respectively. Also the
contraction ψ : Y → X̄ deforms in projective families. This then identifies
MY as a codimenison µ boundary strata inMX̄ and locally near [X̄] ∈ MX̄
we haveMX̄

∼= ∆µ ×MY.
We represent V = C〈Γ1, . . . , Γµ〉 in terms of a basis Γj’s. It was shown in

[16, Proposition 3.15] that the α-periods

(5.1) rj =
∫

Γj

Ω, 1 ≤ j ≤ µ

form the degeneration coordinates around [X̄] ∈ MX̄
∼= ∆µ ×MY.

In order to describe the discriminant loci of MX̄ near [X̄], we recall Fried-
man’s result on (partial) smoothing of ODP’s:

Proposition 5.2. [7] Let wi = ai1r1 + · · ·+ aiµrµ, then the divisor Di := {wi =
0} ⊂ MX̄ is the loci where the sphere Si shrinks to an ODP pi.

It is clear that the discriminant loci DB =
⋃k

i=1 Di is not a normal crossing
divisor. Rather it is a central hyperplane arrangement. Schmid’s nilpotent
orbit theorem admits a simple extension in such a situation:

Theorem 5.3. [16, Theorem 3.13] Consider a degeneration of Hodge structures
over ∆µ ×M with discriminant locus D being a central hyperplane arrangement
with axis M. Let T(i) be the monodromy around the hyperplane Z(wi) with
quasi-unipotency mi, N(i) := log((T(i))mi)/mi, and suppose that the monodromy
group Γ generated by T(i)’s is abelian.

Let D denote the period domain and Ď its compact dual. Then the period map
φ : ∆µ ×M \D→ D/Γ takes the following form

(5.2) φ(r, s) = exp

(
k

∑
i=1

mi log wi

2π
√
−1

N(i)

)
ψ(r, s),

where ψ : ∆µ ×M→ Ď is holomorphic and horizontal.
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In the current situation, the Picard–Lefschetz theory implies that mi = 1
for all i, N(i)N(j) = 0 for all i, j, and the monodromy group is abelian.
Hence Theorem 5.3 can be applied. In particular, the local section Ω near
DB can be selected as in the normal crossing case. Logically, in [16] this
is done before proving the integrals in (5.1) form coordinates. The way I
present it here is for ease of exposition.

Under a suitable choice of homology symplectic basis, the β-periods in
the transversal directions are given by

up = ∂pu =
∫

βp

Ω

for some function u. The Bryant–Griffiths–Yukawa couplings are then ex-
tended over the boundary DB and satisfy

(5.3) upmn := ∂3
pmnu = O(1) +

k

∑
i=1

1
2π
√
−1

aipaimain

wi

for 1 ≤ p, m, n ≤ µ. It is regular if one of the indices is outside this range.
The collection {upmn} is the essential part of the Gauss–Manin connec-

tion ∇GM onMX which has regular singular extension over DB.
Similarly, let u = ∑

ρ
p=1 upTp ∈ H2(Y)/H2(X), Di := {∑ρ

p=1 bipup = 0},
i = 1, . . . , k. By the multiple cover formula of Gromov–Witten invariants,
which will not be recalled here, we know that QH(Y), or the Dubrovin
connection on Y, is regular singular along DA =

⋃
Di.

Let y = ∑k
i=1 yiei ∈ Ck, with e1, · · · , ek being the dual basis on (Ck)∨. The

trivial logarithmic connection on Ck ⊕ (Ck)∨ −→ Ck is defined by

∇k = d +
1
z

k

∑
i=1

dyi

yi
⊗ (ei ⊗ e∗i ).

The statement AtB = 0 in Theorem 5.1 leads to an orthogonal sum

(5.4) Ck = image A
⊥
⊕ image B ∼= V∗ ⊕ H2(Y)/H2(X).

Theorem 5.4 (Local invariance). [16, Theorem 4.1] Under (5.4),
(1) ∇k restricts to the logarithmic part of ∇GM on V∗.
(2) ∇k restricts to the logarithmic part of ∇Dubrovin on H2(Y)/H2(X).

Theorem 5.4 provides evidence to

“excess A theory” + “excess B theory” = “trivial”

through the partial exchange of quantum information attached to vanishing
cycles on both the A and B theories.

Remark 5.5 (Duality for vanishing cycles). The mirror of a CY 3-folds tran-
sition X ↗ Y through X̄ is conjecturally to be another transition Y∨ ↗ X∨

through some Ȳ, where X∨ (resp. Y∨) is the mirror of X (resp. Y) [22, 1].
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For conifold transitions, the basic exact sequence in Theorem 5.1 is com-
patible with mirror symmetry in the sense that its mirror corresponds to
the dual sequence. Then the roles of vanishing A cycles and vanishing B

cycles, as well as the matrices A and B, switch under duality.
Since the vanishing A cycles are (−1,−1) curves, which are supersym-

metric cycles, mirror symmetry then suggests that the vanishing B cycles
should also be supersymmetric. That is, the vanishing sphere Si should
be representable by a special Lagrangian sphere, and hence is rigid by a
theorem of McLean [21]. So far we only know that Si can be chosen to be
Lagrangian by a result of Seidel and Donaldson [30].

Remark 5.6 (Extremal transitions). Suppose that in the extremal transition
of CY 3-folds X ↗ Y the variety X̄ has more general canonical singularities,
and assume that the contraction ψ : Y → X̄ can be deformed to ψt : Yt →
X̄t such that X̄i is a conifold. This is equivalent to that the simultaneous
contraction Ψ overMY

Y
Ψ //

  

X

~~
MY

is generically a contraction of (−1,−1) curves to a conifold. In this case,
there are natural extensions of the basic exact sequence (Theorem 5.1) and
the local invariance (Theorem 5.4) to family versions. There is also an exten-
sion to extremal transitions which are compositions of conifold transitions
up to flat deformations in the above sense.

For the full information on quantum A, B theories, we proved the fol-
lowing result:

Theorem 5.7. [16, Theorem 0.3] Let [X] be a nearby point of [X̄] inMX̄,
(1) A(X) is a sub-theory of A(Y) (e.g. quantum sub-ring in genus 0).
(2) B(Y) is a sub-theory of B(X) (invariant sub-VHS).
(3) A(Y) can be reconstructed from a “refined A theory” on

X◦ := X \
⋃k

i=1
Si

“linked” by the vanishing spheres in B(X).
(4) B(X) can be reconstructed from the variations of MHS on H3(Y◦),

Y◦ := Y \
⋃k

i=1
Ci,

“linked” by the exceptional curves in A(Y).

Again, due to the “B model nature” of this survey article, I will skip the
aspect on Gromov–Witten theory completely.

To sketch the idea of proof to Theorem 5.7 (4), we go back to (5.2) and
notice that the exponential term is completely determined by the relation



20 C.-L. WANG

matrix A of [Ci]’s. This might not be completely obvious at first sight for
the monodromy matrix N(i) along Di, which is indeed determined by A
completely from the Yukawa coupling expression (5.3) (see [16, Corollary
3.18] for the precise formula of N(i)).

To determine the VHS φ(r, s) from (5.2), we need to understand the holo-
morphic horizontal map ψ(r, s). It turns out that ψ(r, s) is determined by
the “period map” of the VMHS on H3(Y◦). In this manner we regard this
as a refined B model on Y linked by the exceptional curves Ci’s.

Instead of explaining the technical part of the proof, I will include an ex-
plicit example for Theorem 5.7 (4) due to T.-J. Lee and H.-W. Lin to demon-
strate the effective computability of the linked theory:

Example 5.8. [15] Consider a conifold transition X ↗ Y of (anti-canonical)
Calabi–Yau hypersurfaces arising from toric degenerations (cf. [1]):

Y ⊂ P̂ = P̂(2, 4)

Ψ
��

X ⊂ G = G(2, 4) // P(2, 4)

.

The B model on X is governed by the tautological systems τG recently
introduced by Lian, Song and Yau in [17, 18], while the B model on Y is
govern by the so called extended GKZ system τP̂ as shown in [15]. In fact
they proved that the extended GKZ can be regarded as a tautological sys-
tem in this special case.

The goal is to determine τG from τP̂ and the collection of rational curves
Ci’s contracted by ψ = Ψ|Y.

For τG, the symmetry operators come from SL(4, C), which has 16− 1 =
15 dimensions. It consists of 12 roots and 3 torus action.

For τP̂, the extended GKZ has symmetry Aut0(P̂) generated by T4 and
14 “roots”. Here for a toric variety defined by a fan Σ in NR = N ⊗R, the
set of roots are defined by Cox [4] to be

R(Σ, N) = {α ∈ M | ∃p ∈ Σ1, (α, p) = −1, (α, p′) ≥ 0 ∀p′ 6= p}.

Now the 2 roots ±(1, 1, 1, 1) are discarded since they do not preserve Ψ.
The remaining 12 roots then correspond to the 12 roots in τG under suitable
coordinate transformations. Thus (τP̂,

⋃
Ci) determine τG.

Question 5.9. Generalize Theorem 5.3 to VHS associated to a smoothing
family X→ S of a Calabi–Yau 3-fold with at most terminal or canonical sin-
gularities. The simple splitting expression of nilpotent orbit theorem (5.2)
no longer exists since the monodromy term and the deformation term for
open space “linked with each other” in a deeper level. It might be related
to the local fundamental group of the singualrity.
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