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Mean field equations, hyperelliptic
curves and modular forms: I

CHING-L1 CHAT*, CHANG-SHOU LIN, AND CHIN-LUNG WANGT

We develop a theory connecting the following three areas: (a) the
mean field equation (MFE)

Au+e" = pdy, p € R

on flat tori E; = C/(Z+Zr), (b) the classical Lamé equations and
(c¢) modular forms. A major theme in part I is a classification of
developing maps f attached to solutions u of the mean field equa-
tion according to the type of transformation laws (or monodromy)
with respect to A satisfied by f.

We are especially interested in the case when the parameter
p in the mean field equation is an integer multiple of 47. In the
case when p = 4w (2n + 1) for a non-negative integer n, we prove
that the number of solutions is n + 1 except for a finite number of
conformal isomorphism classes of flat tori, and we give a family of
polynomials which characterizes the developing maps for solutions
of mean field equations through the configuration of their zeros
and poles. Modular forms appear naturally already in the simplest
situation when p = 4rw

In the case when p = 8mn for a positive integer n, the solvability
of the MFE depends on the moduli of the flat tori F. and leads
naturally to a hyperelliptic curve X,, = X, (7) arising from the
Hermite-Halphen ansatz solutions of Lamé’s differential equation

d?w

2 (n(n+ 1)p(z;Ar) + B)w = 0.

We analyse the curve X,, from both the analytic and the algebraic
perspective, including its local coordinate near the point at infinity,
which turns out to be a smooth point of X,,. We also specify the
role of the branch points of the hyperelliptic projection X,, — P!
when the parameter p varies in a neighborhood of p = 87n. In
part IT, we study a “pre-modular form” Z,(c;7), a real-analytic
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function in two variables associated to X, (7), which has many
symmetries and also the property that the 7-coordinates of zeros
of Z,(o;7) correspond exactly to those flat tori where the MFE
with parameter p = 8mn has a solution.
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0. Introduction

0.1. How to study the geometry of a flat torus E = Ej := C/A? There
are at least two seemingly different approaches to this problem. In the first
approach one studies the Green’s function G = Gg of E, characterized by

1
—-ANG=0— — on F,
(0.1.1) * ]

[z G=0,

where the Laplacian A = 8—;+8—;2 = 40,05 on F is induced by the Laplacian

of the covering space C of E, |E| = [, dxdy = @ f(C/A dz NdZ is the area
of E, &y is the Dirac delta measure at the zero point [0] = Omod A € FE,
and we have identified functions on E with measures on F using the Haar
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measure dx dy = % |dzdz| on E.! In the second approach one studies the
classical Lamé equation
(0.1.2) Lypw:=w"—(n(n+1)p(z) + B)w =0

with parameters? n € R~ and B € C, where p(z) = p(z;A) is the Weier-
strass elliptic function

1 1 1
M=l (1) .ec
p(2A) 2 Z (z—w)?  w? z
weA~{0}
Throughout this paper, we denote by wi,ws a Z-basis of the lattice A,
T = we/wy with Im(7) > 0, and w3 = —w; — wo.
0.1.1.  The Green’s function is closely related to the so-called concentra-

tion phenomenon of some non-linear elliptic partial differential equations
in two dimensions. For example, consider the following singular Liouville
equation with parameter p € R+ 3

(0.1.3) Au+e"=p-6 on E.

It is proved in [12] that for a sequence of blow-up solutions wuy of (0.1.3)
corresponding to p = pi with pp — 8mn, n € N, the set {p;,...,pn} of
blow-up points satisfies the following equations:

oG oG .
(0.1.4) na(pl) = Z g(pZ = 2) Vi=1,...,n.

1<j<n, j#i

For n = 1, the blow-up set consists of only one point p which by (0.1.4) is a
critical point of G:

(0.1.5) %(p) =0.

1So the first equation in (0.1.1) means that

—/ G-A(f)d:vdy:f(o)—lEl‘l-/ f dudy
E E

for all smooth functions f € C*°(FE).

2We imposed the condition 1 > 0 on the real parameter 1 of the Lamé equation
L, p so that these Lamé equations are related to the mean field equations. The
parameter 7) are positive integers in classical literature such as [27, 67].

3Equation (0.1.3) with parameter p < 0 is not very interesting—it becomes too
easy.
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Such a connection of (0.1.4) with the Green’s function also appears in many
gauge field theories in physics. The well-known examples are the Chern—
Simons—Higgs equation for the abelian case, and the SU(m) Toda system
for the non-abelian case. See [45, 51, 52| and references therein.

This connection leads to the following question: How many solutions
might the system (0.1.4) have? Or an even more basic question:

How many critical points might the Green function G have?

Surprisingly, this problem has never been answered until [43], where the
second and the third authors proved the following result.

Theorem A. For any flat torus E, the Green function G has either three
or five critical points.

The statement of Theorem A looks deceptively simple at first sight.
However its proof uses the non-linear PDE (0.1.3) and is not elementary.

0.1.2. In view of Theorem A it is natural to study the system (0.1.4)
and the degeneracy question related to each solution of it. We will see in a
moment that such an investigation leads naturally to a fundamental hyper-
elliptic curve X,, (which varies with n and E), and requires us to study its
geometry—especially the branch points for the hyperelliptic structural map
X,, — P}(C). The precise definition of X,, will later be given in (0.6.6).

In the literature there are at least two situations in which one encounters
this hyperelliptic curve X,,. Both of them are related to the Lamé equation
(0.1.2) with n € N. One of them is well-known, namely the spectral curve of
the Lamé equation in the KdV theory. In §7 we will prove that this spectral
curve is identical to the hyperelliptic curve X,,; see Remark 7.4.3.

The second situation has a more algebraic flavor and is perhaps less
known to the analysis community. Let

p(x) = 42° — g2(A)z — g3(A).
The differential equation

dy 1, . dy
(0.1.6) p(x)w + P (az)a —(nn+1z+B)y=0
on P!(C) is related to (0.1.2) by the change of variable z = p(z; A), where
p(x) = %p(x). People have been interested in describing those parameters
B so that the Lamé equation (0.1.6) has algebraic solutions only, or equiva-
lently the global monodromy group of (0.1.6) is finite. This question seems
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not to have been fully solved, though significant progress had been achieved
and there are algorithms to generate all cases; see [4, 65, 20] and references
therein.

0.1.3. A related and even more classical question is:

When is the global monodromy group of the Lamé equation (0.1.6) reducible?

That is, there is a one dimensional subspace C - y;(z) of the space of local
solutions which is stable under the action of the fundamental group

st (Pl((C) ~Ap(z15A) | 21 € %A/A})

of the complement of the 4 singular points of (0.1.6) on P!(C). This question
has a fairly complete answer:

(i) It is known that if the global monodromy group is reducible then the
parameter 7 of the Lamé equation is an integer and the monodromy
group is infinite.

(ii) If C-yi(z) is a one-dimensional space of solutions of (0.1.6), then y; ()
is an algebraic function in x. Moreover solutions which are not multi-
ples of y;1(x) are not algebraic in z, and the action of the monodromy
group of (0.1.6) is not completely reducible (as a two-dimensional lin-
ear representation of the fundamental group).

See [65, §4.4] and [4, §3]. A solution of (0.1.2) of the form y;(p(z;A)) with
n = n is traditionally known as a Lamé function.*

0.1.4. For each fixed torus F and each n € Z-(, those parameters B
such that the monodromy group of the Lamé equation L,, p is reducible are
characterized by the classical Theorem B below.

Theorem B ([27, 67, 53]). Suppose that n = n € N. Then there is a poly-
nomial £y (B) of degree 2n + 1 in B such that equation (0.1.2) has a Lamé
function as its solution if and only if £,(B) = 0.

“When n is even, 1 + n/2 of the 2n + 1 Lamé functions are polynomials of
degree n/2 in p(z), and 3n/2 of the form /(p(z) — €;)(p(2) — €;) - Q(p(2)) for
some polynomial Q(z) of degree (n/2) — 1 and some i # j with i,7 = 1,2 or 3,
where e; := p(w;/2) for i = 1,2 or 3.

When n is odd, 3(n + 1)/2 of the 2n + 1 Lamé functions are of the form
Ve(z) — e - Q(p(z)) for some polynomial Q(x) of degree (n —1)/2 and i = 1,2
or 3. The rest (n — 1)/2 Lamé functions are of the form p/(2) - Q(p(z)) =
(\/(p(z))/— e1)(p(z) —e2)(p(z) —e3) - Q(p(z)) for some polynomial Q(z) of degree

n—3)/2.
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It turns out that the algebraic curve
{(B.C) | C* = tn(B)}

is identical to “the affine part” Y;, of a complete hyperelliptic curve X, to
be defined later in (0.5.2). Such an identification was only implicitly stated
in Halphen’s classic [27]. In this paper we will give a detailed and rigorous
proof of the statement; see Theorem 0.7. See also [27, Ch.12], [67, Ch. 23]
and [53, Ch. 9] for traditional treatments of the Lamé equation.

0.1.5. The main theme of this paper is to explore the connection be-
tween the Liouville equation (0.1.3) and the Lamé equation (0.1.2) when
the parameter p in (0.1.3) and the parameter 1 in (0.1.2) satisfies the linear
relation 7 = p/87.° Equation (0.1.3) has its origin in the prescribed curva-
ture problem in conformal geometry. In general, for any compact Riemann
surface (M, g) we may consider the following equation

n
(0.1.7) Au+e“—2K:47rZaj dg, on M,
j=1

where K = K (z) is the Gaussian curvature of the given metric g at x € M,
Q; € M are distinct points, and o; > —1 are constants.® For any solution
u(z) to (0.1.7), the new metric

has constant Gaussian curvature K = 1 outside those Q;’s. Since (0.1.7) has
singular sources at the @);’s, the metric %e“g may degenerate at Q; for each
J and is called a metric on M with conic singularities at the points Q;’s.

Digression. There is also an application of (0.1.3) to the complex Monge-Ampeére equa-

tion:

82’111 —w d
o azj) e on (E~{0})Y,

1<i,j<d

(0.1.8) det (

where (E~{0})? is the d-th Cartesian product of E~{0}. Obviously, for any solution u
to (0.1.3), the function

d
w(z1,..,2a)== > u(z;) +d-log4

=1

®In this article 2 = p/4m € N most of the time.
5The points Q; and the constants «; are regarded as parameters of (0.1.7).
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satisfies (0.1.8) with a logarithmic singularity along the normal crossing divisor D =
EI(E~{0})%. In particular, bubbling solutions to (0.1.3) will give examples of bubbling
solutions to the complex Monge-Ampere equation (0.1.8), whose bubbling behavior could
be understood from our theory developed in this paper. Those examples might be useful

for studying the geometry related to the degenerate complex Monge—Ampere equations.

0.1.6.  Equation (0.1.7) is a special case” of a general class of equations,
called mean field equations:

he* 1 = 1
(0.1.9) Au—l—p(W—M) —47rjzlaj <5Qj —M> on M,

where h(z) is a positive C'-function on M and p is a positive real number.
Equation (0.1.9) arises not only from geometry, but also from many applica-
tions in physics. For example it appears in statistical physics as the equation
for the mean field limit of the Euler flow in Onsager’s vortex model, hence
its name. Recently the equation (0.1.9) was shown to be related to the self-
dual condensation of the Chern—Simons—Higgs model. We refer the readers
to [9, 17, 45, 46, 51, 52] and references therein for recent developments on
this subject.

Equation (0.1.9) has been studied extensively for over three decades. It
can be proved that outside a countable set of critical parameters p, solutions
u of (0.1.3) have uniform a priori bounds in C? (M ~ {Q1,...,Qn}):

For any closed interval I not containing any of the critical parameters and any
compact subset ® C M ~{Q1,...,Qx}, there exists a constant Cr o such that
|u(z)| < Cr,e for all z € ® and every solution u(z) of (0.1.3) with parameter
pel;

see [b, 12, 14, 41].

The existence of uniform a priori bounds for solutions of (0.1.3) implies
that the topological Leray—Schauder degree d, is well-defined when p is a
non-critical parameter. Recently, an explicit degree counting formula has
been proved in [13, 15], which has the following consequence:

Suppose that p € (R>o~\87N), a; € N for all j and the genus g(M) of M is at
least 1. Then d, > 0, hence the mean field equation (0.1.9) has a solution.®

However when p € 87N~g, a priori bounds for solutions of (0.1.9) might
not exist, and the existence of solutions becomes an intricate question. The

"Namely the case when A is the constant function 1, and p = 47 Z;L: o5

8For any natural number m € N, the Leray-Schauder degree d, is constant in
the open interval (8, 87 (m+1)) by homotopy invariance of topological degree, and
d, = m+ 1 in this open interval according to [15, Thm. 1.3].
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singular Liouville equation (0.1.3) on flat tori with p € 87N is the simplest
class of mean field equations where the parameter p is critical, and the
existence problem for equation (0.1.3) is already a delicate one in the case
when p = 8n. In [43] the second and third authors proved that equation
(0.1.3) has a solution if and only if the Green’s function on the torus has
five critical points; c.f. Theorem A in 0.1.1.

0.1.7.  In this paper we will consider the case when the parameter p is of
the form p = 4nl for some positive integer [ € N. We note that if [ is odd,

= 4nl is not a critical parameter. In this case the degree counting formula
in [15, 16] gives the following result:

Theorem C. Suppose that | = 2n + 1 is a positive odd integer. Then the
Leray-Schauder degree da of of equation (0.1.3) is (1 +1) =n+ 1.

Theorem C will be sharpened in corollaries 0.4.2 and 3.5.1 to:

Let p = 4w (2n+1) for some n € Z>o. Ezxcept for a finite number of tori up to
isomorphism, equation (0.1.3) has exactly n + 1 solutions.

0.2. The above sharpening of Theorem C will be established via the
connection between the Liouville equation (0.1.3) and the Lamé equation
(0.1.2). Indeed the equation (0.1.3) is locally completely integrable according
to the following theorem of Liouville:

Any solution u to (0.1.3) can be expressed locally on E ~ {0} as

81f" (=)
(1+1f(z)P)?

where f(z) is a multi-valued meromorphic function on C\ A (i.e. a meromor-
phic function on an unramified covering of C \ A) such that the right hand
side of the above displayed expression is a well defined doubly periodic function
on C~\ A.

(0.2.1) u(z) = log Vz € B\ {0},

Such a function f is called a developing map of the solution u of (0.1.3).
The parameter p does not show up explicitly in (0.2.1). It enters the
picture when we consider the behavior of f near a lattice point z € A.

0.2.1. When p =4nl, I € N, it is a fact that every developing map f(z)
of a solution to (0.1.3) extends to a single valued meromorphic function on
C. Such a developing map f is not doubly periodic in general; rather it is
SU(2)-automorphic for the period lattice A:

For every w € A there exists an element T = (%Y%) € SU(2) such that

fz+w)=Tf(2) = Z]{((j))j: for all z € C.
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Moreover f(z) has multiplicity | + 1 at points of the lattice A C C, and no
critical point elsewhere on C. Conversely every meromorphic function f(z)
on C satisfying the above two properties is the developing map of a solution
to (0.1.3); see Lemma 1.2.4.

0.2.2.  After replacing f by T'f for a suitable element 7' € SU(2) we get
a normalized developing map f satisfying one of the following conditions:

(i) Type I (the monodromy of f is a Klein four):

fz+w) =—f(2)

f(z—l—wg):ﬁ vz e C.

(ii) Type II (the monodromy of f is contained in a maximal torus): There
exist real numbers 61, 2 such that

(0.2.2)

(0.2.3) flz+w)=e¥f(z) VzeC, Vi=1,2.
Here wq,wy is a Z-basis of A with Im(ws/wy1) > 0. See §1 for more details.

0.2.3.  We have seen that when the parameter p of the Liouville equation
(0.1.3) is 4ml with | € N, solving (0.1.3) is equivalent to finding normalized
developing maps, i.e. meromorphic functions on C with multiplicity [ + 1 at
points of the lattice A and no critical points on C . A, whose monodromy
with respect to A is specified as one of the two types above. It turns out that
Liouville equation (0.1.3) with p/47 € N is integrable in the sense that the
configuration of the zeros and poles of such a normalized developing map can
be described by either system of polynomial equations, or as the zero locus of
an explicitly defined C-valued real analytic function on an algebraic variety.
In other words the Liouville equation (0.1.3) with p/4m € N is integrable
in the sense that the problem of solving this partial differential equation is
reduced to finding the zero locus of some explicit system of equations on a
finite dimensional space; see Theorem 0.4 and Theorem 0.6 below.

0.2.4. Let f(z) be a developing map of a solution u(z) of the Liouville
equation (0.1.3). Of course the formula (0.2.1) expresses u in terms of f.
There is a simple way to “recover” the developing map f from w for a
general parameter p € R-(. Notice first that % of (0.1.3) gives

0 (0%u 1 [0u\> det ou
9z (az2 2 <8z> ) <82 c 0z> i B {0},
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2 is a meromorphic function on E: A simple

computation using (0.2.1) gives the following formula of this meromorphic
function in terms of the developing map f of w:

which implies that wu,, — %u

(0.2.4) Usy — 3uZ = . §<‘§—,//)2

z f/ 2
The right hand side of (0.2.4) is the Schwarzian derivative S(f) of the mero-
morphic function f, while the left hand side is A-periodic, with only one
singularity at 0 which is a pole of order at most 2, hence must be equal to a
C-linear combination of the Weierstrass function @(z;A) and the constant
function 1. It is not difficult to determine the coefficient of p(z;A) in this
linear combination: We know from equation (0.1.3) that

u(z) =2l -log |z| + (a C*°-function)

for all z in a neighborhood of 0 € E. A straightforward calculation shows
that either f(z) has a pole of order [+ 1 at z =0, or f(z) is holomorphic at
z = 0 and its derivative f/(z) has a zero of order [ at z = 0. In either case
the Schwarzian derivative S(f) has a double pole at 0 and

lim 2%S(f) = (1+2)(I + 3) — g(z +2)2 = —(12 421)/2.

z—0

In other words there exists a constant B € C such that

(0.2.5) S(f) = =2+ Dp(z) + B),

where 1 := p/8m =1/2.

On the other hand it is well-known that the “potential” of a second order
linear ODE can be recovered from the Schwarzian derivative of the ratio of
two linear independent (local) solutions of the ODE. In the case of the Lamé
equation (0.1.2) this general fact specializes as follows.

If w1, w2 are two linearly independent local solutions to the Lamé equation
L,pw = 0 in (0.1.2) with a general parameters n and B and h(z) :=
w1(z)/wa(z), then

S(h) = =2(n(n + p(z) + B).

Combining the above discussions, we conclude:

If n = p/8n then any developing map f(z) of a solution u(z) to (0.1.3) can
be expressed as a ratio of two C-linearly independent solutions of the Lamé
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equation (0.1.2) for some B € C.°

We say that the Lamé equation L, pw = 0 on C/A corresponds to a solu-
tion u of (0.1.3) on C/A with p = 8 € 47N if there exist two linearly
independent meromorphic solutions wi, w2 of L, pw = 0 on C such that
wi /we is a developing map of u. This is a property of the parameter B of
the Lamé equation.

0.2.5.  We make a simple observation about a normalized developing map
of a solution to (0.1.3) with p/4m € N.

If f(2) is normalized of type II, then e f(z) also satisfies the type II condition
for all X € R. Thus (0.2.1) gives rise to a scaling family of solutions ux(z),
where

8e**|f'(2)|?
(1 +ef(2)?)*

Consequently if (0.1.3) has a type II solution, then the same equation has
infinitely many solutions.

(0.2.6) ux(z) = log

From (0.2.6), it is easy to see that uy(z) blows up as A\ — +oo. As we have
discussed earlier, if p = 4nl with [ = 2n 4+ 1 an odd positive integer, then
solutions of (0.1.3) have a priori bound in CZ(E \ {0}). Thus we conclude
that when p = 4nl with [ a positive odd integer, (0.1.3) has a solution
because the topological degree is positive. Moreover such a solution must be
of type I by the existence of uniform a priori bound on compact subsets of
E ~ {0}.

Our first main theorem in this paper says that the converse to the state-
ment in the previous paragraph also holds. At the same time we provide a
self-contained proof of the above implication without using the uniform a
priori bound:

Theorem 0.3 (c.f. Proposition 1.5.1 and Theorem 2.2). Let p = 4wl with
I € N. Then equation (0.1.3) admits a type I solution if and only if | is odd.

We will “classify” type I solutions for an odd positive integer [ = 2n + 1
in the next theorem 0.4. Let f(z) be a developing map of a solution of
(0.1.3) satisfying the normalized transformation formula of type I in (0.2.2).
Consider the logarithmic derivative g = (log f)' = f’/f, which is an elliptic
function on the double cover

E' :=C/N - E,

9The “constant” B € C depends on both the (isomorphism class of the) flat
torus E and the solution u(z) of (0.1.3).
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where

A = Zwi + Zwé, w’l = wp and wé = 2ws.

Our next goal is to find all possible type I developing maps f for some
solution w of the Liouville equation (0.1.3) whose parameter p is an odd
integral multiple of 47r. To do so, we have to locate the position of poles of
g, or equivalently the position of zeros and poles of f.

Theorem 0.4 (Type I evenness and algebraic integrability). Let u be a
solution to (0.1.3) with p = 4m(2n+1), n € Z>¢. Let f be a normalized type
I developing map of u, N = Zw; + Z2ws = Zw' + Zwy, and e; := p(%w;; A)
fori=1,2.

(1)
(2)

The solution u(z) is even and the developing map f(z) of u(z) is also
even; i.e. u(—z) = u(z) for all z € E and f(z) = f(—z) for all z € C.
There exist p1,--- ,pn € C satisfying the following properties.

—2p; €N fori=1,...,n,

—pitp; €N foralli#j,1<i,j<n,

— f has simple zeros at %wl and xp; fori=1,...,n,

— f has simple poles at %wl 4w and £p; +wa fori=1,...,n.

— FEvery zero or pole of f is congruent modulo A’ to one of the zeros

or poles listed above.

Note that the unordered set {p; mod A’} C E’ is uniquely determined
by the normalized developing map f.
Let g :=p;+wo,i=1,...,n fori=1,...,n and let

zi = p(ps; A') — ea, Zi = plg N') — e

There exist constants p and C1, . .., Cy which depend only on the mod-
ular constants ey, es, ga(A') and g3(A’) such that the following poly-
nomsal equations hold.

n n
041) > A=Y #=C; and zz=p Vi=1,...n
=1 =1

Conversely let p,C1,...,Cy, be the constants in (3), and suppose that
the 2n-tuple (21, ..., 2n; 21, . . ., Zn) € C?" is a solution of the system of
polynomial equations (0.4.1). There is an even type I developing map
f and p1,...,p, € C with the following properties:
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— f has simple zeros at %wl and +p; fori=1,...,n.
— f has simple poles at %wl 4wy and £p; +we fori=1,...,n.
— zi = p(pi; N') —eg and z; = p(pi + wa; A') — e fori=1,...,n.

We will prove Theorem 0.4 in §2. In view of this result, it is interesting
to know how many solutions the system (0.4.1) has. Since the topological
degree for (0.1.3) with p = 47(2n+1) is known to be n+1 (by Theorem C), it
is reasonable to conjecture that (0.1.3) has n + 1 solutions, and then (0.4.1)
has (n + 1)! solutions due to the permutation symmetry on {1,2,...,n}
(c.f. [44, Conjecture 6.1] where a related version of this counting conjecture
was first formulated). This conjecture had been verified previously up to
n < 5; see Remark 2.7. However for higher n it seems to be a non-trivial
task to work on the affine polynomial system (0.4.1) directly.

We will affirm this conjecture using the connection between the Liouville
equation (0.1.3) and the Lamé equation (0.1.2) discussed earlier.

Theorem 0.4.1. For any n € N, the projective monodromy group of a
Lamé equation Ly (1/2),pw = 0 on E is isomorphic to the Klein-four group
(Z/27)? if and only if it corresponds to a type I solution of (0.1.3), in
the sense that there exist two meromorphic functions wy,ws on C such that
Lyt(i/2),Bw1 = 0= Ly (1/2), pw2 and the quotient wy/wo is a developing
map of a solution of a Liouville equation (0.1.3) with p = 4w(2n+1) and the
monodromy group for wi/ws is isomorphic to (Z/27)?. Moreover, each pa-
rameter B with the above property corresponds to exactly one type I solution
of (0.1.3).

Theorem 0.4.1 will be proved in § 3, Theorem 3.5. Its proof shows that the
number of solutions to (0.1.3) with p = 47w(2n+ 1) is equal to the number of
B’s in C such that all solutions to L,y (1/2), pw = 0 are without logarithmic
singularity. A classical theorem of Brioschi, Halphen and Crawford says that
there exists a polynomial p, (B) of degree n+1 in B whose roots are exactly
the parameter values having the above property. Hence we have the following
corollary which sharpens Theorem C:

Corollary 0.4.2. Let p =4n(2n+1), n € Z>g. There exists a finite set Sy,
of tori such that for every torus not isomorphic to anyone in the exceptional
set S, the Liouville equation (0.1.3) possesses exactly n+1 distinct solutions.

0.4.3. In §3 we will also give a new proof of the Brioschi-Halphen—
Crawford theorem by exploring the fact that the ratio f = w;/wy of two
linearly independent solutions of the Lamé equation L, (1/2)pw = 0 sat-
isfies the equation (0.2.5) for the Schwarzian derivative with n = n—i—%; see
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Theorem 3.2. The new proof has several advantages. It provides a conve-
nient way to compute the polynomial p,(B) for each n. Moreover it is local
in nature. Thus it can be used to treat the mean field equation with multiple
singular sources of the form

l
(0.4.2) Au+ e =4Ar Z ajdg, onkE,
j=1
where Q1, ..., Q; are distinct points in F and aq, ..., q; are positive integers.

In a forthcoming paper [11] we will prove that for generic Q1,...,Q, € E,
equation (0.4.2) has exactly

!
1 .
3 szl(% +1)

distinct solutions provided that 2221 a;j is an odd positive integer.
An immediate consequence of Corollary 0.4.2 is a solution of the counting
conjecture stated in the paragraph after 0.4:

There exists a finite set Sy, of tori such that for every torus not isomorphic
to anyone in the exceptional set S, the polynomial system (0.4.1) has (n+ 1)!
solutions.

This might be helpful when we come to study the excess intersection at oo
for the projectivized version of the system of equations (0.4.1) for general n.

0.4.4. Another consequence of Theorem 0.4 is the holomorphic depen-
dency of f(z;7) on the moduli variable 7 = wy/w; in the upper half
plane H for normalized developing maps f(z;7) of solution to (0.1.3) with
p =4m(2n + 1) as in (0.4); we have not been able to prove this statement
directly from Liouville’s equation (0.1.3). The modular dependency of the
constants p, Cj’s in Theorem 0.4 indicates that the normalized developing
map might be invariant under modular transformations of 7 for some con-
gruence subgroup of SLa(Z). To illustrate this connection between (0.1.3)
and modular forms, we will consider in §4 the simplest case p = 4w, where
(0.1.3) has exactly one solution for any torus. In this situation we can specify
a unique developing map f(z;7) on E. = C/A;, where A; = Z + Z7 and
7 € H; see Proposition 4.2 for the definition of this function f(z;7) and
explicit formulas for it. When f(z;7) is written as a power series

f(z;7) =ao(T) + ax(1)2? + a4(T)z4 +ee,
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for each k the coefficient ay(7) of zF is a modular form of weight k for
the principal congruence subgroup I'(4) which is holomorphic on the upper-
half plane H but may have poles at the cusps of the modular curve X (4);
see Corollary 4.5. In addition we will show that the constant term ag(7) of
f(z;7) is a Q(v/—1)-rational Hauptmodul which is also a modular unit; i.e.
(a) ap(7) is holomorphic and everywhere non-zero on H, (b) ag(7) defines
a meromorphic function on X (4) with Q(y/—1)-rational g-expansion at all
cusps of X (4), and (c) every meromorphic function on X (4) is a rational
function of ag(7). See Corollary 4.4 and Remark 4.4.1 (b).

Underlying the above statements is the fact that the function f(z;7)
satisfies a transformation law for the full modular group SLa(Z); see Propo-
sition 4.3 for the precise statement. Modulo a question 4.6.6 (a) on the ir-
reducibility of certain branched covering of the upper-half plane H, this
transformation law generalizes to the case when p = 4w (2n + 1) for any
natural number n € Zx; see Corollary 4.6.5.

In a forthcoming paper we will consider equation (0.4.2) with multiple
singular sources and show that for each k the space of modular forms of
weight & arising from (0.4.2) is invariant under (suitably defined) Hecke
operators.

0.5. Next we want to classify solutions of the Liouville equation (0.1.3)
with p = 8mn for some positive integer n. By Theorem 0.3 any solution of
(0.1.3), if exists, must be of type II. Hence any solution of (0.1.3) begets
infinitely many solutions. We remark that not every torus admits a solution
to (0.1.3). For instance when p = 8, there are no solutions to (0.1.3) for
rectangular tori, while there do exist solutions for 7 close to e™/3; see [43,
Example 2.5, 2.6]). Indeed [43, Theorem 1.1] asserts that in the case when
p = 8, the Liouville equation (0.1.3) has a solution if and only the Green’s
function Gg for the torus has a critical point which is not a 2-torsion. Hence
by Theorem A the Liouville equation (0.1.3) with p = 87 has a solution for if
and only if the Green function has five critical points. Let M = SLo(Z)\H
and let

Qs :={7 € My | G(z;7) has five critical points }.

By the uniqueness theorem in [43, Theorem 4.1], we know that €5 is open;
while it is easy to see (using the holomorphic (Z/3Z)-action on the torus)
that the image of e™/3 in M lies in Q5. It is important to further investigate
the geometry of this moduli subset €25. In Part II of this series of papers, we
shall use methods for non-linear PDE’s to the Liouville equation (0.1.3) and
the theory of modular forms to prove that €25 is a simply connected domain
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and the boundary 0€25 of € is real-analytically isomorphic to a circle, thereby
settling the conjecture on the shape of Q5 raised in [43, §1p.915].1°

0.5.1.  In this paper (Part I of the series), we classify all type II solutions
for general n € N and study their connection with the geometry of a family
of hyperelliptic curves. This will form the foundation of an investigation on
certain modular forms to be developed in Part IT of this series [10].

We will also consider the logarithmic derivative g = f’/f of a normalized
type II developing map f. The type II condition (0.2.3) implies that g is an
elliptic function on £ = FEj,.

0.5.2.  As was explained in 0.2.4, the Liouville equation (0.1.3) is related
to the Lamé equation (0.1.2) whose parameter 7 is equal to p/8m. In the
case when 7 is a positive integer n, there are explicit formulas for solutions,
of the Lamé equation (0.1.2), called the Hermite—Halphen ansatz; c.f. [29,
[-VII] and [27, pp. 495-498]:

For any ai,...,an € C~ A such that the images [a;] € E of a; under the
projection C - E = C/A, i = 1,...,n, represent n mutually distinct points
in E~ {[0]}, the function

s AT —a;; )
0.5.1 o(2) = = Tim ety TT 22— ais A)
05.1) walz) = ¢ 176
s a solution to (0.1.2) for some B € C if and only if {[a;]} € Y C Sym™(E ~\
{0}), where
(0.5.2)

Z1§_j§n,j¢i (C(ai—a;) + ¢(a;) — ((ai)) =0

for i=1,...,n.

Y, = {{[aﬂ, e [an]}

[a;] € EX{0} Vi, [as] # [a;] for all i # j, }

Moreover if {[a:]}i=1 is a point of Yn and we(z) is a solution of a Lamé
equation (0.1.2) with n =n, then B = (2n —1)> .7, p(as).

Note that wy(z) € C* - we(z) if b = (by,...,b,) and b; = a; (mod A)
1=1,...,n.
0.5.3.  The following properties are known from classical literature.

(i) Each ansatz solution w,(z) of L, pw =0 satisfies

n

wa(z + w) e 62?:1 C(ai;A)w_Z;:l (lﬂ](w;A) . wa(z) \v/w - A

In other words wg(z) is a common eigenvector for the global mon-
odromy representation of A = m(F) on the 2-dimensional space of
local solutions of the Lamé equation L, pw = 0.

10This phenomenon was observed in computer simulations.
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(ii) Every one-dimensional eigenspace of the monodromy representation of
a Lamé equation L, pw =0 is of the form C - wy(z) for some a such
that B = (2n —1)>"" | p(a;). In other words the map = :Y;,, — C
given by {[a;]}?, — (2n —1)> 7", p(a;) is surjective. Note that
mo = for the involution ¢ : {[a;]}1"; — {[—ai]}}]_, on Y.

(iii) For every B € C, the set 7~!(B) is an orbit of the involution ¢, and
7~ Y(B) is a singleton if and only if L, pw = 0 has a Lamé function
as a solution.

The above properties tell us that Y,, can be regarded as the parameter space
of all one-dimensional eigenspaces of the monodromy representations on the
solutions of the Lamé equation L, pw = 0 on E when the parameter B
varies over C. This and the fact that 7 : Y;, — C is a double cover drives
home the compelling picture that Y,, can be regarded as a “spectral curve”
for the global monodromy representation.'’ The algebraic structure on Y;,
is explained in 0.5.4 below.

0.5.4.  The analytic set of solutions of the system of equations

(0.5.3) Z (C(a; —aj;A) +C(aj;;A) = C(ai;A) =0 Vi=1,...,n

1<j<n, j#i
in variables (ai,...,a,) under the constraint that
a; ¢ A Vi=1,....,n and a; —a; €A Vi#j
descends to a locally closed algebraic subvariety of
Sym"™(E ~ {0}) = (E ~ {0})"/5n

because Y,, is stable under the symmetric group 5, and the classical addition
formula (c.f. [67, 20-53 Example 2])

1 ¢'(2) + ¢’ (w)
2 p(z) — p(w)

for elliptic functions allows us to express the definition of Y), algebraically:
Let A be the divisor of E™ consisting of all points of E™ where at least two

= ((z —w) = ((2) + ((w)

U This is more than an analogy: Y,, is indeed a spectral curve in KdV theory.
It parametrizes one-dimensional common eigenspaces for the commutator subring
of the differential operator % —n(n + 1)p(z) in the ring of linear differential
operators in one variable.
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components are equal, and let A be the image of A in Sym™E. Denote by
U the algebraic variety (£~ {[0]})" \ A.

Yn is the closed subvariety of Sym™(E \ {[0]}) \ A whose inverse image Yy, in
the affine algebraic variety U is defined by the system of equations

Yi Y _ L
(0.5.4) Z %_xjfo, Vi=1,...,n.
1<j<n,j#i
Here x;,y; are the pull-back via the i-th projection of coordinates of the
Weierstrass form y? = 42° — go(A)z — g3(A) of E = C/A. For each pair (i, 5)
with ¢ # j, the regular function a:“_LgJ on the affine open subset U(x —a;) Of

U where z; # x; extends to a regular function on U, therefore the above
description defines an affine closed subvariety Y;, of U.

In view of the algebraic structure of Y;,, the classically known facts re-
called in 0.5.3 means that Y,, is “the affine part” of a hyperelliptic curve
and the 7 : Y,, — C is the restriction to Y,, of the hyperelliptic projection.
On the other hand, solutions to the Liouville equation (0.1.3) with p = 8mn
admit the following description.

Theorem 0.6 (Type II evenness and Green/algebraic system). Let u be a
solution to (0.1.3) with p = 8mn on E = C/A and let f be a normalized
developing map of u of type II.

(1) The developing map f is non-zero at points of A.
(2) There are 2n elements p1,...,Pn,q1,---,qn € C with the following
properties.

— [p1l, -y [pnl, [@1]s - - -5 [an] are 2n distinct points in E, where [p;] :=
pimod A for all i and similarly for the [g;]’s

— f has simple zeros at points above [p1],...,[pn] and simple poles
at points above [q1], ..., [qn].

— f is holomorphic and non-zero at every point of C which is not
congruent modulo A to one of {p1,...,Pn,q1,---,qn}-

(3) The zeros and poles of the developing map f are related by

{laals - lanl} = {l=pals - s [=pal}-

(4) There is a unique even solution in the one-parameter scaling family of
solutions uy(z) = log (ﬁfe;% of (0.1.3) with parameter X € R.
(5) The “zero points” p1,...,pn € E of f satisfy the following n equations:

(0.6.1) Zp (pi; A) - 9" (pisA) =0, r=0,...,n—2,
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(0.6.2) > %(pi) =0,

=1

where G(z) is the Green’s function of E.
(6) The meromorphic function g = d%logf = f'/f on E is even and

is determined by the points [p1],...,[pn] € E, while the normalized
developing map f is determined up to C* by [p1],...,[pn], via the
following formulas:

(0.6.3)

R o' (pi; A) . cexn |
9 =3 o gy TS0 e | aterae.

Conversely, if {[p1],-..,[pn]} is a set of n distinct points of E ~ {0} which
satisfies equations (0.6.1) and (0.6.2), and

(0.6.4) {lpa], - Ipnl} O {[=p1, - [=pn]} = 0,

then the function f defined by (0.6.3) is a type II normalized developing map
of a solution of the Liouville equation (0.1.3) with p = 8mn.

Theorem 0.6 will be proved in §5. While the type I system is purely
algebraic, the type II system is somewhat transcendental as it involves the
Green function of E. It is natural to isolate the Green equation Y VG(p;) =
0 and consider the remaining n — 1 algebraic equations (0.6.1) first.

0.6.1. Leta={aj,...,a,} be an unordered set of complex numbers with
distinct images in E ~\ {0} = (C ~ A)/A such that the equation (0.6.1) is
satisfied with p; = a; for i = 1,...,n. Let x = p(2; A), y = ©'(2; A), so that
the torus F is given by the Weierstrass equation

y2 =423 — g2(N)z — g3(A).

Let (z4,9i) = (p(ai; A), 9/ (ai; A)) for i = 1,...,n. Then the system of n — 1
equations (0.6.1) takes the algebraic form

(0.6.5) doaliyi=0, i=01,...,n-2
i=1

Recalled that the algebraic variety Y, is defined by the system of equations
(0.5.4).
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Theorem 0.6.2 (= Theorem 5.8.3). For any set of distinct complex num-
bers x1,...,xy, the two systems of linear equations in variables yi,...,Yyn
(0.6.5) and (0.5.4) are equivalent.

Define X,, C Sym"E by

(zi,4:) € ENE[2] Vi, z; # x; Vi#j }

(066) Xn: {{(Jf'z,yZ) ?:1 Zn lxr'yi:O forr=0.1 n—2
i=1%Yq ylyeeey

where E[2] = 1A/A is the subset of 2-torsion points of E. This variety X,
is an affine algebraic curve, which will be called the (n-th) Liouville curve.

Theorem 0.6.2 implies that

X, = {{lail}_y € Yo | plas) # pla;) whenever i # j, /(a;) # 0 Vi }.

The following theorem says that the Liouville curve X, is the unramified
locus of the Lamé curve X,, for the hyperelliptic projection.

Theorem 0.7 (Hyperelliptic structure on X,, C Y,, C X,,).

(1) Let a = {[ai]}]~, be a point of Y,. The corresponding B in the Lamé
equation, in the sense of the Hermite—Halphen ansatz recalled in 0.5.1,
s given by

B,=(2n-1)> p(a).
=1

(2) The map 7 :Y, — C defined by a — By is a proper surjective branched
double cover.
(3) The map m:Y, — C has a natural extension to a proper morphism

71 X, = PY(C) = CU {oo},

where X, is the closure of X, in Sym™E, for both the Zariski and the
complex topologies.
(4) The restriction

mlx, : Xn = m(Xyn) = Uy,

of ™ to the Zariski open subset X,, C Y, is a finite étale double cover
of the Zariski open subset U, C C. Points of the finite set X, ~ X,
are precisely the ramification points of 7.

(5) The curve X, is a (possibly singular) hyperelliptic curve of arithmetic
genusn and 7 is the hyperelliptic structural morphism. Moreover X,, =
Y, U{[0]"} is the union of Y,, with a single point [0]" := {[0],...,[0]} €
Sym"FE.
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(6) The curve X, is stable under the involution i of Sym"FE, defined by
v:{Py,...,P,} = {=P1,...,—P,} vP,...,P, € E.

The restriction T of i to X,, is the hyperelliptic involution on X,,. The
set of ramification points X, ~ X, of T coincides with the fized point
set of the hyperelliptic involution T on X,,.

(7) The map m induces a bijection from the finite set Y,nX,, to the finite set
C\Uy,. A point {[a;]}}_ of Yy, lies in Y, \X,, if and only if the function
wq as defined in 0.5.1 is a Lamé function. Hence #(Yp~X,) =2n+1
when Y, ~\X,, is counted with multiplicities inherited from C\U,, when
C\ U, is identified with the set of roots of the polynomial £,(B) = 0
of degree 2n + 1 in Theorem B.

(8) The inverse image of the point oo = P1(C)\C under & consists of the
single point 0. This point O™ “at infinity” is a smooth point of X,, for
every torus E.

0.7.1. A complete proof of Theorem 0.7 is given in §7, after some prepa-
ration in §6 on characterizations of Y,, and X, related to the Lamé equations;
see Theorems 7.3, 7.4, Corollary 7.5.2 and Proposition 7.7. In particular, the
affine hyperelliptic curve Y, is defined by the explicit equation

C? = 0,(B;g2,93) with degl,(B)=2n+1.

This curve, called the n-th Lamé curve, is smooth for generic tori. It is an
irreducible algebraic curve since the degree of £, is odd.

Due to its fundamental importance, we offer several proofs, from both
the analytic and the algebraic perspectives, for (part of) the theorem. We
must mention that the polynomial ¢, (B) in Theorem B has been treated
in the literature in several different contexts, including the investigation
of Lamé equations with algebraic solutions [4, 20] and the mathematical
physics related to Lamé equations. Thus a substantial portion of Theorem
0.7 overlaps with existing literature. However there are a number of issues for
which we were unable to locate satisfactory treatments in the literature. For
instance, why the closure X,, of Y, in Sym"FE coincides with the projective
hyperelliptic model'? of the affine curve C? = /,(B) at the infinity point,
instead of the closure in P? of the latter curve.

12Gee 7.6.1.e for the definition of the projective hyperelliptic model defined by
£, (B).
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In this paper we attempt to provide a self-contained account of the hy-
perelliptic structure of X,,, from both the analytic and the algebraic point of
view, for the convenience of the readers. The readers will find in our treat-
ment the precise behavior of the local structure near every a € X, ~ X,,
including the infinity point, and also “the meaning” of the coordinate C' of
the Lamé curve in various contexts (c.f. Theorem 7.4 and Remark 7.4.2, as
well as formulas (5.6.4), (7.1.2), (7.1.4) and (7.4.1)). It is also worth mention-
ing that the coefficients of the polynomial ¢, (B) are effectively computable
by simple recursive relations (c.f. Theorem 7.4 and (7.3.6)).

0.7.2.  Theorem 0.6 tells us that algebraic geometric structure
T (Xn, Ya, Xn) = (P(C),C, Un)

provides a scaffold for analyzing the mean field equation Au+¢e* = 8mndy on
a flat torus: a necessary and sufficient condition for a point to be attached to
a type II solution of the mean field equation (0.1.3) with parameter p = 8mn
is that {p1,...,pn} satisfies the Green equation (0.6.2). Of course one wish
to pursue the above thread to bring about a complete analysis of the set of
all solutions of (0.1.3). The case n = 1, where X1 = E, has been successfully
treated in [43] with a combination of two techniques. Naturally one would
like to extend these methods to higher values of n.

0.7.3.  The first technique is to use the double cover E — P!(C) = S2
and the evenness of u to transform the equation to another one on S? (with
more singular sources). To extend this step to a general positive integer n,
we believe that the hyperelliptic structure 7 : X,, — P!(C) is the right
replacement of F.

It will be shown in Part II of this series of articles that the map

o: X, —E, {plw--,Pn}HU({pl""’pn}):Zpi

is a branched covering of degree %n(n + 1), and the rational function

z(la]) =Y _ai) =Y Clai)  [a] = {[ar],... [an]} € X

on X, is a primitive generator of the extension field K(X,) over K(E).
Using this, a “pre-modular form” Z,(o;7) for 7 € H and o € E; will be
constructed, which has the property that non-trivial solutions to the Green
equation (0.6.2) on X,, correspond exactly to the zeros of the single function
Zn(0;7).
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0.7.4.  The second technique employed for the case p = 87 is to use the
method of continuity to connect the equation for p = 87 to the known case
when p = 47 by establishing the non-degeneracy of the linearized equations
of (0.1.3). For general p, such a non-degeneracy statement is out of reach at
this moment. However, since equation (0.1.3) has a solutions w, for every
p = 8mn ¢ 87N, it is natural to study the limiting behavior of u, as n — n.
If the limit does not blow up, it will converge to a solution u for p = 8mn.
For the blow-up case, we will establish a connection between the location of
the blow-up set and the hyperelliptic geometry of Y,, — P*(C):

Theorem 0.7.5. Let S = {p1,...,pn} be an element of Sym"™E such that
pi # pj whenever i # j. Suppose that S is the blow-up set of a sequence of
solutions uy of the Louiville equation (0.1.3) with parameter py such that
pr — 8mn as k — oo. Then S € Y,,. Moreover,

(1) If px # 8mn for every k then S is a branch (or ramification) point of
Y.
(2) If pr = 8mn for all k then S is not a branch point of Y,

The proof of Theorem 0.7.5 will be given in §8. Theorems 0.7.5 and
0.7 provide rather precise information on the blow-up set of sequences of
solutions of (0.1.3), which we believe will play a fundamental role in future
research on the mean field equations.
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research. C.-L.. C. would like to thank Frans Oort for discussions on equa-
tion (0.6.5) during lunch in November 2011. He would also like to thank
the Institute of Mathematics of Academia Sinica for support during the
academic year 2012-2013, and also the Taida Institute for Mathematical
Sciences (TIMS) and the Department of Mathematics of National Taiwan
University for hospitality.

1. Liouville equations with singular source
1.1. A theorem of Liouville.

1.1.1.  We begin with a quick review of a classical theorem of Liouville.

Proposition 1.1.2. Every R-valued C? solution u of the differential equa-
tion

(1.1.1) Au+e" =0
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i a simply connected domain D C C can be expressed in the form

81f">
(1 +[f]?)?

where f is a holomorphic function on D whose derivative f' does not vanish
on D. Conversely for every meromorphic function f on an open subset V. C
C with at most simple poles whose derivative does not vanish on V, the

72

function log % is a smooth function which satisfies equation (1.1.2).

A proof of Liouville’s theorem 1.1.2 is given in 1.1.8 for the convenience
of the readers.

(1.1.2) u = log

Definition 1.1.3. Let u be a real-valued C?-function on a domain D C C
and satisfies equation (1.1.1) on D.

A developing map f of u is a meromorphic function f defined on a (not
necessarily connected) covering space 7 : D — D of D such that

811 (2)?
(L+[f(R))?
For any pole %y € D of f, the equality (1.1.3) for z = zp means that the

right hand side of (1.1.3) has a finite limit as z — 2y, and this limit is equal
to u(m(Zp)).

(1.1.3) u(z) =log for every Z € D and z = n(2).

Remark 1.1.4. (a) It is easy to see that every developing map f : D —
PP!(C) of a C? solution u of (1.1.1) on D has no critical point on D. In other
words the holomorphic map f : D — P(C) is étale. More explicitly this
means that the derivative f’ of the meromorphic function f does not vanish
at every point where f is holomorphic, and f has at most simple poles.

(b) The proof of Liouville’s theorem 1.1.2 in 1.1.8 provides another inter-
pretation of developing maps: a developing map f for a solution w of (1.1.1)
is an orientation-preserving local isometry, from a covering space of D with
the Riemannian metric 1 e (dz? + dy?), to P!(C) with the Fubini-Study
metric (or equivalently the unit sphere S? with the standard metric) which
has constant Gaussian curvature 1.

Developing maps are not unique. In Lemma 1.1.5 below we show that dif-
ferent developing maps of a solution u are related by special unitary Mobius
transformations.

Lemma 1.1.5. Let u be a C? solution of equation (1.1.1) on a domain
D cC C. Let f be a developing map for uw on a covering space D of D as in
as in Definition 1.1.3.
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(1) The solution u of (1.1.1) and its developing map f are related by'3

1 B f/// 3 f// 2
(1.1.4) Uyy — Euz =7 3 <F> .

(2) Let U be an element of PSU(2) represented by a 2 X 2 special unitary
matric (‘Clg) with a,b,c,d € C. The function Uf = z}cig is also a
developing map of u on D.

(3) Assume that the covering space D of D is connected. Suppose that f
is another developing of u on D. There exists an element T € PSU(2)
such that f: Tf.

Proof. The statements (1) and (2) are easily verified by direct calculations.
It remains to prove (3). Notice first that the Schwarzian derivatives of f
and f are equal by (1). Hence there exists a Mobious transformation 7', say
represented by an element (¢%) € SLy(C), such that f=Tf = %.M
From

f/

8lf'1” 8|(Tf))?
(cf +d)*’

a0

log

we deduce that |af + b|?> + |cf 4+ d|? = 1+ |f|? on D. Hence the quality
laz + b + |cz + d* = 1+ |2

holds on C because meromorphic maps are open. Applying 991log to both
sides of the last displayed equality, we see that the Mobius transformation
T preserves the Fubini-Study metric on P*(C), or equivalently the spherical
metric on the 2-sphere S2. So T is an element of PSU(2), because PSU(2)
is the group of all orientation preserving isometries of P!(C). O

13The right hand side of equation (1.1.4) is the Schwarzian derivative S(f) of
f; the equality here means that the Schwarzian derivative of f descends to the
function u.. — u? on D.

14Here we have used the assumption that D is connected and a basic property of
Schwarzian derivatives: if S(g1) = S(g2) for two locally non-constant meromorphic
functions ¢g; and gs, then g1 and go differ by a Mobius transformation. This is
consequence of the special case that S(g) = 0 if and only if ¢ is a linear fractional

transformation and the cocycle property of Schwarzian derivatives: S(g o h)(z) =

S(9)(h(2)) - W' (2)? + S(h)(2).
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Remark 1.1.6. In the notation of Lemma 1.1.5, let V' be an element of

SU(2) such that VUV ~! = (889 Lo ) for some 6 € R. Then the two devel-

oping maps V f and V f of u are related by
Vi=e"Vy.

1.1.7. Lemmas 1.1.5 can be reformulated as follows. See also 1.1.8.

Let u be a C? solution of equation (1.1.1) on a domain D C C. There
exists a (not necessarily connected) covering space my : Dy univ = D, a left
action of PSU(2) on Dy, and a meromorphic function fy univ @ Dy univ —
PY(C) on Dyuniv satisfying the following properties.

(a) 7 : Dyuniv = D is a left principle homogeneous space for PSU(2).

(b) fuuniv s a developing map for u.

(¢) For any open subset U C D and any developing map f for uly on a
covering space T : U — U of U, there exists a unique holomorphic map

g :U = Dy univ such that f(Z2) = fuumiv(9(Z)) for all Z € U.

1.1.8. A PROOF OF PROPOSITION 1.1.2. From the perspective of differ-
ential geometry, equation (1.1.1) is simply the prescribed Gaussian curvature
equation for the metric

1
g= 5 e (dx2 + dyQ)

on the domain D to have Gaussian curvature K, = 1. Given that u is a
solution of the equation (1.1.1), a simple calculation shows that

(1.1.5) K,=—-e"“Au=1.

So at any given point z; € D, there exists a meromorphic function f;(2)
on a neighborhood of V(z1) of z; such that u(z) = log % for all

z € V(21), because the Fubini-Study metric on C = P}(C) \ {oo} is

4dzdz
(14 22)2

The collection of germs of all such local developing maps f; form a locally
constant sheaf Dev(u) over D with monodromy group PSU(2) according to
Lemma 1.1.5. Note that Dev(u) is the locally constant sheaf attached to
the covering space Dy, yniv in 1.1.7. The locally constant sheaf Dev(u) has
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a global section g because the domain D is simply connected. This global
section g is a developing map of v on D. The holomorphic map g from D to
P!(C) defined by the meromorphic function g is étale as we have remarked in
1.1.4 (b), hence the image § misses some point @ of P!(C). Pick an element
U € PSU(2) which sends @ to co. Then f := Ug is a holomorphic function
on U which is also a developing map of u. ]

1.2. Liouville theory on tori with isolated singular data. It is a
challenge to extend the Liouville theory recalled in the previous section to
oriented Riemann surfaces and with singular sources. In this paper we will
consider the genus one case, so the Riemann surface will be a flat torus
E. Moreover we put just one singular source on F, and we will make this
singular source the additive unity 0 for a holomorphic group law on E.

1.2.1.  We choose and fix a non-zero global holomorphic one-form S on
E, so that integrating 3 along paths starting from 0 gives an isomorphism
[,B:E = C/A for a lattice A C C, so that 3 is the pull-back of the
one-form dz = dx + v/—1dy descended to C/A. The flat torus E will be
identified with C/A in the rest of this paper. Let wj,ws be a Z-basis of A
such that 7 := wq/wy satisfies Im(7) > 0. Let w3 := —w; — wy, so that
w1 + wo +wsg =0.

We will consider the mean field equation
(1.2.1) Au+e“=p-dy, p€Rsp

on E = C/A, where A = 88—; + 88—;, dg is the Dirac measure at 0 and we have

identified L!'-functions with (signed) measures using the Lebesgue measure
dzx dy on C/A, so the equation (1.2.1) means that

/(U‘Ah—{—e“-h)da:dy:p-h(O)
E

for every smooth function h on E. The corresponding geometric problem is
the equation

K,=—-c"“Au=1-—pe "

for the Gaussian curvature K, of the metric g = %e“(sz +dy?) on E, which
has a highly non-classical character.

We will be mostly interested in the case when the parameter p of the
equation (1.2.1) is an integer multiple of 4x. This integrality condition on
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p implies that every developing map of a solution of (1.2.1) is meromorphic
locally on E (and not just on E ~ {0}).

Lemma 1.2.2. Let u be a solution of (1.2.1) on E, where the parameter

= 4xl for a positive integer 1. Let f1 be a developing map of the restriction
to EX {0} of u, so that fy is a holomorphic function on a universal covering
U of E ~ {0} whose derivative does not vanish on U. Then f1 extends to a
meromorphic function on a covering space of E in the following sense: There
erists a covering space 7y : E > E of E such that the following statements
hold.

(a) The holomorphic function fi on U descends to a function fo on the
covering space v~ H(E ~ {0}) of E ~ {0}.

(b) The holomorphic function fa on the open subset v~ (E ~ {0}) of E
extends to a meromorphic function on E.

Equivalently, fo defines a holomorphic map from E to P! (C).

Proof. This statement is local at 0 € E. A proof can be found in [18, 44, 54],
based on the following inequality: For a punctured disk AX with a small
radius € we have

8| /|2
o> [ eda= [ U144
/Az ax (L+[f3)?

where the right hand side is the spherical area under the inverse stereo-
graphic projections covered by f(AX).
Alternatively, from the well-known formula

Alog /2% +y? = 271 - 600

on R?, one sees that every holomorphic map from a neighborhood V of 0 € E
to P}(C) with multiplicity {41 at 0 is a developing map of a solution of (1.2.1)
in V. Since any two local developing maps of any local solution of (1.2.1)
differ by an element of PSU(2), we conclude that every developing map of
every solution of (1.2.1) in a neighborhood of 0 € E “is” a meromorphic
function in a neighborhood of 0 € F. O

Remark 1.2.3. As an immediate consequence of the fact that Alog|z| =
27 - &g, one sees that if a meromorphic function f on an open neighborhood
U of 0 € C such that the locally L' function u = 10g% satisfies
Au+e* = p-dp on U for some real number p, then p = 47 -[, where [+1 € N

is the multiplicity of f at 0. So the parameter p in the equation (1.2.1) must
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be in 47 - Z>¢ if a developing map of a solution u is a meromorphic function
on C. Note also that the equation (1.2.1) has no solution when p = 0, for
otherwise the elliptic curve has a metric with constant Gaussian curvature
1, contradicting the Gauss—Bonnet theorem.

Lemma 1.2.4. Let u be a solution of the of equation (1.2.1) on E. Assume
that the parameter p is of the form p = 4wl where | is a positive integer.

(1) There exists a meromorphic function f on the universal covering C
of E which is a developing map of u. Let f : C — PY(C) be the
holomorphic map corresponding to the meromorphic function f on C.

(2) For every T € PSU(2), the meromorphic function T f is also a devel-
oping map of u. Moreover every developing map of u is equal to T f
for some element T' € PSU(2).

(3) Suppose that zy is an element of the lattice A. The holomorphic map
f: C — PY(C) has multiplicity | + 1 at z. In other words either f is
holomorphic at zg and f' has a zero of order | at zy, or f has a pole
of order l +1 at zp.

(4) The holomorphic map f : C — PY(C) has no critical point outside A.
In other words if z1 € C~ A, then either f is holomorphic at z1 and
1'(z1) #0, or f has a simple pole at z.

Proof. The statement (1) is a corollary of Lemma 1.2.2. The statement (2)
is a consequence of the interpretation of developing maps as local isometries
from the conformal metric %e“ dzdz to the Fubini-Study metric %
and the fact that PSU(2) is the group of all orientation preserving isome-
tries of P2(C) with the Fubini-Study metric; c.f. 1.1.8. The statement (3)
is a consequence of the last paragraph of the proof of Lemma 1.2.2. The

statement (4) follows from 1.1.4 (a). O

Remark 1.2.5. We discuss how to relate solutions of (1.2.1) on C/A and
C/(tA) for t € C*. Suppose that u(z; A) is a solution of the singular Liouville
equation (1.2.1) on C/A and f(z;A) is a developing map on C for u(z; A). It
is easy to check that u(w;tA) := u(t~1w; A) —log(tf) is a solution of (1.2.1)
on the elliptic curve C/tA whose universal covering is the complex plane
C, with coordinate w = tz. Moreover f(t~'w;A) is a developing map for
the solution u(w;tA) on C,,.

Of course the above “gauge transformation rules” reflects the fact that
the three terms of equation (1.2.1) scale differently when the coordinate of
C changes from z to w = tz for a non-zero constant ¢: the equation (1.2.1)
is better written as

2v/—100u + @eu dzN\dZ = p - dp,
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where the last term g is the J-measure at [0] € C/A. The second term

@e“ dzNdz in the above equation depends on the choice of a global holo-
morphic 1-form on the elliptic curve, while the other two terms do not.

Lemma 1.2.6. Let f be a meromorphic function on the universal covering
C of E = C/A. This function f is a developing map of a solution u of
(1.2.1) with parameter p = 4wl € 47N if and only if the following conditions
hold.

(1) The holomorphic map f : C — PY(C) corresponding to f has multi-
plicity [+ 1 at every point above A, and it has no critical point outside

A.
(2) For every w € A, there exists a unique element T € PSU(2) such that

fz+w)=(Tf)(2) VzeC.

Proof. The condition (1) means that the equality Au+e* =4nl-3 o

holds for the function u := % on C. The condition (2) means that u
descends to a function on C/A. O

Definition 1.2.7. Let u be a solution u of the equation (1.2.1) on E, where
the parameter p € 47 -Z>. Let f be a meromorphic function on C which is
a developing map of .

o~

(1) The monodromy representation py of the fundamental group m (F)
A of E attached to the developing map f is the group homomorphism
ps: A — PSU(2) such that

fz+w)=(p(w)f)(z) YweA, VzeC.

(2) The monodromy of the solution u of equation (1.2.1) is the PSU(2)-
conjugacy class of the homomorphism py : A — PSU(2), which de-
pends only on u and not on the choice of developing map f.

1.3. Monodromy constraints. Next we review the monodromy con-
straints on a developing map f of a solution of (1.2.1) on FE, resulting from
the fact that the fundamental group A of F is a free abelian group of rank
two. By Lemma 1.2.6, there exist 71 = pyg(wi), T = pf(w2) € PSU(2) with
the following properties:

f(Z‘l‘Wl):Tlf,

(1.3.1) Fo ) = Tof.
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In addition 7175 = 1577 in PSU(2) because A is commutative.

Lemma 1.3.1. Let I' be a commutative subgroup of PSU(2).
(1) Suppose that T' is isomorphic to the Klein-four group K4 = (7/27)?.
(la) T is conjugate to Ty, where Ty is the image in PSU(2) of

1 0 v—1 0 0 v—1 0 1
0 1)’ 0 —v—-1)"\v-1 0 "\-1 0
(1b) The centralizer subgroup of T' in PSU(2) is equal to T'.

(Lc) The centralizer subgroup of I' in PSLa(C) is also equal to T'.

(1d) The normalizer subgroup NPSU(Q)(F) s 1somorphic to the sym-
metric group Sy. In other words, Npgy(a) (T) is a semi-direct prod-
uct of I' and PSU(2)(T")/T" = Ss, and the conjugation action of
Npgu(2)(I') on I' induces an isomorphism

Npsu(z)(T)/T = Attge(T) = Perm(T' \ {Id}) & Ss,

where Perm(I'\.{0}) is the permutations group of the set '\ {Id}.
(le) The subset {x € PSL(2,C) | z-T'-2~t C PSU(2)} of PSLy(C)
is equal to PSU(2).
(2) If T is not isomorphic to (Z/27)?, then T is contained in a mazimal

torus of PSU(2); i.e. there exists an element Ty € PSU(2) such that
To-T- T, is contained in the image in PSU(2) the diagonal mazimal

torus
eV—10 0
0 VT 0 eR/nZ » C SU(2)

Proof. The spectral theorem tells us that every element of U(2) is conjugate
in U(2) to a diagonal matrix. Using this it is easy to verify the following
assertion, whose proof is omitted here.

Suppose that u is a non-trivial element of PSU(2).

o Ifu® # 1 in PSU(2), then the centralizer Zpsy(2)(u) of u is a mazimal
torus in PSU(2), i.e. a conjugate of the image of the diagonal maximal

torus
eV 10 0
0 e :0 eR/TZ
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o Ifu is an element of order two in PSU(2), then the centralizer subgroup
Zpgu(z)(u) of u in PSU(2) is a semi-direct product of a mazimal torus
of PSU(2) with a group of order two, equal to the normalizer of a maz-
imal torus. Moreover Zpgy(z)(u) contains a unique subgroup which is
isomorphic to (Z/27)°.

The statement (2) follows, so do (1a), (1b) and (1c).

To prove (1d), by (1a) and (1b) it suffices to show that the normalizer
subgroup Npgy2) (T'p) on I’y contains a subgroup S of order 6 which intersect

I trivially. Let § be the image of (ewq*m *efﬂoﬁﬂ) in PSU(2) and let v be

the image of %(\/_}1 \/17—1) in PSU(2). It is straightforward to check that
d has order 2 and induces a transposition on I' \ {Id}, v has order 3 and
§-y-6~1 =71 It follows that Npgy(2)(Lo) is a semi-direct product I'g x 53,
so Npgy(2)(I'o) is isomorphic to Sy. We have proved (1d). (Alternatively, it
is well known that PSU(2) contains a finite subgroup isomorphic to Ss. The
statement (1d) also follows from this fact, (1a) and (1b).)

Finally the statement (1e) follows from (1a), (1d) and (1c): Suppose that
r € PSLy(C) and Ad(z)(I'g) = x-Tg-2~! € PSU(2). By (1a) and (1d),
there exists y € PSU(2) such that y-z commutes with every element of T'y.
By (lc) y - o € Ty, hence z € y~1 - Ty C PSU(2). O

Remark. The group Npgy2)(I') is also isomorphic to SLa(Z/4Z) /{*]2}, the
quotient of SLy(Z) by the subgroup generated by the principal congruence
subgroup of level 4 and {+I}.

Corollary 1.3.2. Let p: A — PSU(2) be a group homomorphism.

(i) If the image of p is isomorphic to (7Z/27)%, then p is conjugate to the
homomorphism which sends wy to the image of ( \/(? _\3__1

0 \/——1)

V=1 0 7°

(ii) If the image of p is not isomorphic to (Z/27)?, then there exists real

numbers 01,602 such that p is conjugate to the homomorphism which

V=16 .
sends w; to (7 eész)forz =1,2.

) and wy to

the image of (

Lemma 1.3.3 below follows from Corollary 1.3.2 and Lemma 1.2.4 (1), (2).

Lemma 1.3.3. Let u be solution of equation (1.2.1) where the parameter
p > 0 is an integer multiple of 4.
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Type L. If the image in PSU(2) of the monodromy of u is isomorphic to
(Z/27,)2, then there exists a developing map f of u such that

fz4+w)=—f(2) V=,

1
f(z4+w2) =—= Vz.
f(2)

The choice of [ is unique up to sign and inverse. More precisely,
the set {f,—f, f~1, —f~1} is uniquely determined by the solution
u.

Type II. Suppose that the image in PSU(2) of the monodromy of u is not
isomorphic to (Z/27)?. There exists a developing map f of u and
two real numbers 01,0y such that

(1.3.2)

fz4+w) = e%alf(z) Vz,

1.3.3 .
( ) fz+wo) =¥ f(2) V.

Moreover, if {61,02} € 37 then the set C; - fUCT - f~1 is uniquely
determined by u, where C{* :={w € C: |w| = 1}.

Definition 1.3.4. (a) Let f be a solution of equation (1.2.1) where the
parameter p > 0 is an integer multiple of 4x. If the image of the monodromy
representation py of f is isomorphic to (Z/2Z)?, then say that f is of type
I; otherwise we say that f is of type II.

(b) A developing map f which satisfies equation (1.3.2) (respectively (1.3.3))
will be said to be normalized of type I (respectively type II).

Lemma 1.3.5. Let f be a developing map of a solution u of equation (1.2.1)
where the parameter p > 0 is an integer multiple of 4.

(1) If f is of type I and T € PGLy(C) is a linear fractional transformation
such that T - f is again a developing map of a solution of equation
(1.2.1) with the same parameter p, then T € PSU(2) and Tf is a
developing map of the same solution u of (1.2.1).

(2) Suppose that f is of type II. There exists a closed subgroup A of
PGLy(C), conjugate to the image in PGL2(C) of the diagonal non-
compact real torus Ag := {(89) : a € RZ}, such that the following
statements hold.

(2a) T - f is a developing map of a solution ury of equation (1.2.1)
with the same parameter p.

(2b) u, , # Uy, for any two distinct elements T1, Tz in A.
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Proof. The statement (1) follows from Lemma 1.2.6 and Lemma 1.3.1 (1e).
To show (2), we may assume that f is normalized of type II and take A
to be the image in PGL(2,C) of Ap. Then the statement (2a) follows from
Lemma 1.2.6 and Lemma 1.3.3. The statement (2b) follows from Lemma
1.1.5(3) because the only element of A which is conjugate in PGL2(C) to
an element in PSU(2) is the unity element of A. O

1.3.6. Logarithmic derivatives of normalized developing maps. In
this article we approach the mean field equations (1.2.1) with p = 4l
[ € N5 through the logarithmic derivative

/!

g:=(logf)' =

of a normalized developing map f of a solution of (1.2.1). Recall that such
developing maps are meromorphic functions f on C satisfying 1.2.6 (1) and
either of equations (1.3.2), (1.3.3).

Lemma 1.3.7. Suppose that f is a normalized developing map of a solution
of (1.2.1), and | := p/4r is a positive integer. Let g := f'/f.

(1) The developing map f on C is holomorphic and non-zero at every point
of A;i.e. f(A) C PY(C) ~ {0,00}.

(2) The meromorphic function g on C has a zero of order | at every point
of A, no zeros and at most simple poles on C . A.

(3) If f is of type I, then g descends to a meromorphic function on E =
C/A.

(4) If f is of type I, then g descends to a meromorphic function g on the
double cover E' = C/N', where N' =7 -wi +Z - 2ws.

Proof. The statements (3) and (4) are immediate from the equations (1.3.2)
and (1.3.3) for normalized developing maps.

Clearly g has at most simple poles on C. Lemma 1.2.4 (4) implies that ¢
has no zeros on C\ A. For any point zg € A, if f has either a zero or a pole at
z0, then g will have a simple pole at every point of A, and the meromorphic
function g on E' = C/A’ defined by g will have no zero but at least one pole,
a contradiction. Therefore f has values in C* in a neighborhood of zy; we
have proved the statement (1). Lemma 1.2.4 (3) then implies that ¢ has a
zero of order [ at every point of A. We have proved statement (2). U

1.4. Type I solutions. In this subsection we will show that the existence
of solution of (1.2.1) such that the image of the monodromy representation
is (Z/27Z)* implies that the parameter | = p/4r is an odd positive integer.



Mean field equations, hyperelliptic curves and modular forms 161

1.4.1. Notation for type I.

o Let w] =wi, wh =2wq and let A" :=7Z -} +7Z - wh.

e Let p(z) = p(z;A’) be the Weierstrass p-function for the lattice A" C
C.

e Let ((2) = ¢(5;A) = — [Fp(u)du = 271 + --- be the Weierstrass
¢-function and let o(z) = o(2;A') = exp [“((u)du = z + -+ be the
Weierstrass o-functions for A’ C C.

e Let g be the logarithmic derivative of the normalized developing map
f of a type I solution u of (1.2.1). Let g be the function on E’ defined

by g.

The standard references for elliptic functions are [67, Ch. 20}, [1, Ch. 7] and
[39, Ch. 18 §1]; we have followed the notation in [1, Ch. 7]:*

e wi,w) form a Z-basis of the lattice A’ with Im(w)/w}) > 0. Note that
the latter condition means that (w},w}) is an oriented basis for the
standard orientation of the complex plane.

e 1, = n(wj;A') for i = 1,2, where w — n(w; A’) is the Z-linear function
from A’ to C such that

C(z+w;N) =(2) + n(w; A) VzeC, Ywe N.
e The classical Legendre relation
mewh = wy = 2my/~1
means that
n(@)f —n(B)a = 2rv—=1¢(a, f) Va,B € A,

where 1) : A’ x A’ — Z is the alternating pairing on A’ which sends an
oriented Z-basis (w},w}) of A’ to 1.

1.4.2.  Recall that the type I condition implies that

9(z +wi) = g(z) vz

(141) g(z+w2) = —g(2) Vz.

15The notation in [39] is the same as in [1] except that Im(w;/wz) > 0. The
notation in [67] is: 2w}, 2w} form a Z-basis of A’ with Im(wj/w]) > 0, and {(z +
2w A = (¢(2) + 2n(A) for i =1, 2.
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According to Lemma 1.3.7, the meromorphic function g on E’ has zeros of
order [ at the two points of A/A’, no zeros and at most simple poles elsewhere
on FE'.

From 1.3.7 (1), the principal divisor (g) of the meromorphic function g
on E’ has the form

@ =005+ [wlp— > P
Peg=1(o0)

where [wa] g = we mod A’ is the image of we in E’, and Zpeg,l(oo) P is the
polar divisor (). of g, an effective divisor of degree 2[ which is a sum of 2/
distinct points of E’. Clearly the sum of the polar divisor under the group
law of E’ is equal to £ times the 2-torsion point [ws]p. We know from the
condition ¢g(z + w2) = —g(z) that the polar divisor (g) of g is stable un-
der the translation by the 2-torsion point [wa]g:. Let Py, ..., P, be a set of
representatives of the quotient of g~'(occ) under the translation action by
[wo]pr. The sum pp (Pi,...,P) = Py +pg ---+pg P, of this set of represen-
tatives under the group law of E’ is a 2-torsion point because the sum of
the polar divisor (§)s is [2] g/ ([w2] /). Moreover it is clear that the image of
pe (Pi, ..., F) in the quotient group E'[2]/{0g, [w2]r/} is independent of
the choice of representatives Pi, ..., P;. The following lemma says that this
image is equal to the non-trivial element of E’'[2]/{0g/, [we]g }-

Lemma 1.4.3. Notation as above. The sum Py +g/ ---+pg P, in E' of any
set of representatives of the quotient g—'(c0)/{0p, [we]m} is congruent to
the non-zero 2-torsion point %4 mod A" modulo the subgroup {Og, [wo]e'} of
the group of all 2-torsion points of E'.

1.4.4. Lemma 1.4.3 is a consequence of a more precise statement Lemma
1.4.5; the latter uses Weierstrass o-function. The o-function is essentially the
odd theta function 611(z) with half-integer characteristics, up to rescaling
of the z-variable, a harmless factor —7 - e 2%°/2 and the product

000(0) - 001(0) - 010(0)

of three even theta constants. (We adopt the notations of theta functions
from [49].) We recall some of the basic properties of the o-function below.

(i) The function

o(z) =o(zN) =2 ][] [(1_5)'GXP<§+QZ—;>}

weA'~{0}



(iii)

(iv)
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is an entire odd function on C, with simples zeros on points of A’ and
non-zero elsewhere. In addition ((z) satisfies the following transforma-
tion law for translation by elements of A’.

(14.2)  o(z+0a) =ela) - "DEF3) . 5(2)  VzeC, Vae N,
where € : A’ — {£1} is the quadratic character on A’ given by

w={1 if o e 2/
AW=1-1 if agan

Suppose that m is a positive integer and ai,...,am;b1,...,b, are
elements of C. The meromorphic function

[[i2y 0(z = ai)
20z —bi)
on C is A-periodic if and only if > 7" a; = Y ., b;. Moreover if

Yo a; = Yty by, then the principle divisor of the meromorphic func-
tion on £/ = C/A’ defined by [[;*, o(z — a;) /][]~ 0(z — b;) is

h(zyat,...,am;br, ... by) =

m m

> laile = _[bile,

i=1 =1

where [a;]g/ (respectively [b;] /) is the image of a; (respectively b;) in
E fori=1,...,m.

Suppose that (a1,...,am;b1,...,by) and (daf,...,al,;b},...,b,,) are
two 2m-tuples of complex numbers such that " a; = Y ", by,

Yriar =Y bl al = a; (modA’) and b, = b; (modA’) for i =

i=1" i=1"i "

1,...,m. Then
[[Zio(z—a) [[Z0(z—a)

[[i2, o(z = b;) [TiL, o(z = b))

Let h be a non-constant meromorphic function on E’. Let

al,...,am,bl,...,bm

be elements of C such that the principle divisor of h is equal to
Yoitilailer — D2 [bi] . Then there exists a constant A € C* such
that

h([z]E) :A-% vz e C.
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Note that (ii) and (iii) are consequences of the transformation law (1.4.2) in
(i), and (iv) follows from (ii).

Lemma 1.4.5 ([44]). Let l be a positive integer. Let pi,...,p;q1,-..,q be
elements in C . A satisfying

(1.43) St Y g =l
and p; +we = ¢; (mod A') fori=1,...,1. Let

ol (2)al(z — wo)
Hé:l o(z — pi) Hé:l o(z — q)

be the meromorphic function on C attached to the 4l-tuple

(1.4.4) h(z) =

(07"'7O7w27'"7w2;p17'"apl7QI7"'7QI)

as in 1.4.4 (ii). Note that h(z) descends to a meromorphic function on E’
whose principle divisor is

l l

l-0p +1- [wz]'E - Z[]%]E - Z[%]E

according to 1.4.4 (ii).
(a) The function h(z) satisfies h(z + w2) = —h(2) if and only if

Zp,- = 1w (mod A).

=1

Namely, 22:1 pi s congruent to either twy or fwi 4wy modulo A’
b) Suppose that p1 + --- +p; = Lwi (mod A'). There exist elements
2
Plo D)5 4t - -5 qp in C satisfying the following conditions.

(bl) pi=p; (mod A') and ¢, = ¢; (mod A') fori=1,...,1,

(b2) Sisy 7 = e,

(b3) ¢ =p, 4wy fori=1,...,1—1 and ¢ = p; + wa — w1,
_ o' (2)0" (z—w2)

(b) 1(2) = oG T, o

(c) Suppose that p1+ -+ p; = 2w +wa (mod A’). There exist elements
Plo D) 4y - -, qp in C satisfying the following conditions.
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(cl) pi =p; (mod A') and ¢} = ¢; (mod A') fori=1,...,1,
(c2) Fimy P = w1 + w2,

(€3) ¢i =p 4wy fori=1,...,1—1, and q; = p; — w2 — w1,
(C4) h(z) _ ol(2)o! (z—ws2)

[Tio,o(z=p) iz, 0(2—4))
Proof. Clearly (b2) and (b3) implies that

m m
dopi+Y g =1-w,
=1 =1

therefore (b4) follows from (bl)—(b3) by 1.4.4 (iii). Similarly (c1)—(c3) im-
plies (c4).

We will prove (a), (bl)-(b3), and (cl)—(c3) simultaneously from the
transformation law (1.4.2) and the condition (1.4.3).

Because p; + ws = ¢; (mod A’) for each 7, (1.4.3) implies that 2221 pi =
m- % +n-wy (mod A') for integers m,n € {0,1}. By adjusting p; we may
assume that Zizlpi =m- G +n-ws. Let

o pi:=p;fori=1,...,1,

e ¢i:=pi+wyfori=1,....,1—1, and

o g :=p +wy — (Mmwi + 2nwy).

By 1.4.4 (iii) h(z) = i UU(;(;Z;U)Z (F[Z:Uj23(z—q;) holds. It remains to use the trans-

formation law (1.4.2) to see whether h(z + wq) = —h(z2).

There are only four possibilities for the pair (m,n), namely

(m,n) = (i) (0,0), (i) (1, 0), (iii) (0,1), or (iv) (1, 1).

One verifies by direction calculations that h(z 4+ w2) = h(z) if m = 0, while
h(z 4+ we) = —h(z) if m = 1.

For instance when (m,n) = (0,0), h(z+w2) and h(z) differ by the factor
of automorphy

(—1)" exp(ln22) _
(=1)! explmn iy (2 = pi)]
meaning that h(z 4+ wa2) = h(z).
When (m,n) = (1,0), h(z + wz2) and h(z) differ by the factor

9

(—1) D exp(ln2)
explne 01 (2 — i) + (2 — m) (2 — o — 3wi) +mi(z — pr — 3wi))]
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which is —1 since Y p; = %wl. The other two cases are checked similarly.
We have proved lemmas 1.4.5 and 1.4.3. U

1.4.6. In order to construct type I solutions from the elliptic function g,
we need to find all the other constraints imposed on its poles.

Let p1,...,p; be points of C such that Ui:l p; + A are the simple zeroes
of the developing map f and Ui;:1 p; +wo + A’ are the simple poles of f. Let
P; :=p; mod A’ and let Q; := p; +wy mod A’ for i = 1,...,1. We know that

Pla"'vaQla"':Ql
are 2[ distinct points of (C~ A)/A = E' \ {0g, [w2]r' }; equivalently

We also know that

¢
Zpi = % (mod A)
i=1

according to Lemma 1.4.3. By 1.4.4 (iv) we know that there exists a constant
A € C* such that

. ol(z) - ol(z — wa)
Hi'=1 o(z = pi) - Hé:l o(z — )

where q1,...,q are elements of C such that

(1.4.5) g(z)=A

)

l l
(1.4.6) ¢ =pi+wy (mod A') Vi, and Zpi + Zqi = lwo.
i=1 i=1

Notice that the residue of g(z) at z = p; is given by Ar; for j = 1,...,1,
where

! !
(1.4.7) T = — U(pﬂ%f(]%:&)z) forj=1,...,1L
Hi:l,;ﬁj o(pj —pi) - [lizi o(pj — @)
It is immediate from 1.4.4 (ii) that the formula (1.4.7) for r; is indepen-
dent of the choice of q1,...,q satisfying (1.4.6), with py,...,p; fixed, and
also independent of the choice of p1,...,pj—1,pj+1,...,p; in their respective
congruence classes modulo A’ when the ¢;’s and p1+- - - +pj_1+pjp1+- -+
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are fixed. One checks by a routine calculation that the right hand side of
the formula (1.4.7) remains the same when p; is replaced by p; +«a and g; is
replaced by a for any element o € A’. So the right hand side of the formula
(1.4.6) is a meromorphic function of (Py,...,F) € E' x --- x E'.

Lemma 1.4.7. Let p1,...,p; be elements of C such that U,ZL-:1 pi + N are
the zeroes of the developing map f and Uézl pi +ws + A’ are the poles of f.
Let q1,...,q be elements of C satisfying the conditions in (1.4.6). Then

(1.4.8) rL=ry = =1

where the non-zero complex numbers ri,...,r; are defined by (1.4.7) and
the elements qi,...,q € C appearing in the formula (1.4.7) satisfies the
conditions in (1.4.6).

Proof. Write g = f'/f as in (1.4.5) for a suitable constant A € C*. Then
Arj=1for j=1,...,1, hence ry =rg = --- = 1. O

Proposition 1.4.8. Let py,...,p; be elements of C with the following prop-
erties.

(i) Y0 pi=wi/2 (mod A),
(i) pi —pj #0 (mod A) whenever i # j, and
(iii) the residue equalities (1.4.8) hold, wherer1, ..., r; are defined by (1.4.7)
and the elements q1,...,q € C satisfy the conditions in (1.4.6).

Let h be an elliptic function on E' defined by (1.4.4). Let A := 7’1_1 and let
g1:=A-h.

(a) s =---=s8 =—r; =--- = —r, where

Ul(Qj) ) Ul(Qj — wo)

(1.4.9) S5 = i 7
[lizio(a; = pi) - TTizy, 25005 — i)

for j=1,...,L.

Consequently the residue of the simple pole P; (respectively Q;) of the
meromorphic function A-h on E' is equal to 1 (respectively —1). Here
P;:=p; mod\ € E' and Q; := ¢ modAN € E' fori=1,...,1.

(b) If h is an odd function, then the following statements hold.

(bl) The subset {P1,..., P} C E'\{0g,w2]y} is stable under the
involution of E' induced by “multiplication by —17.
(b2) Ezactly one of Pi,..., P, is a two-torsion point of E'; this point

is either 4 mod A" or % + wy mod A’.
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(b3) [ is an odd integer.

(c) Conversely suppose that the condition (bl) is satisfied, or equivalently
conditions all (b1)—(b3) hold. Then h is an odd function; i.e. h(—z) =
—h(z) for all z € C.

(d) Assume h is an odd function, or equivalently that conditions (b1)—(b3)
hold.

(d1) There exists a normalized type I developing map f1 of a solution
of (1.2.1) with parameter p = 4zl such that f{/f1 = g1.

(d2) f1 and —f1 are the only normalized type I developing map whose
logarithmic derivative is g1 .

(d3) f1 is an even function, i.e. fi(—z) = fi(z) for all z € C.

Proof. We know that h(z + wy) = —h(z) for all z € C by Lemma 1.4.5 (a).
So the statement (a) follows from the assumption that r = -+ = ry.

The set {Pi,..., P} is the set of all (simple) poles with residue 71 of the
meromorphic differential hdz on E’. The assumption that A is odd means
that hdz is invariant under “multiplication by —1”, so the statement (bl)
follows. The statement (b2) follows because of assumption (i). The statement
(b3) follows from (a) and (b2).

Suppose that (b1)—(b3) hold. Let n = (2l —1)/2. After renumbering the

pi’s we may assume that P,y = —P, P40 = —P»,..., P, = —P, and
P, = [wo| . According to 1.4.4 (iii), we have
(1.4.10)

o2t (2) . o Tl (2 — wa) - o™ (2 + wa)

(M, o(z=ps) - o(z+ps)] - [[1iey o(z—pi—w2) - o(z4+pitw2)] - o(z— D) - o(z+ L —w2)

h(z)=

Using the fact that o(z) is an odd function, we get

h(—z) o(z+wz)-o(z—%) 0(z+% —w)

W) oz w) ozt §) oz § @)
= (_1) LeRE L Tz 6(7717772).2 I

by the transformation law for the o-function. We have proved (c).

Assume again that (b1)—(b3) hold, so that [ = 2n+1 is odd and h(z) is
an odd function. Then g¢1(z) is an odd meromorphic function on E’ which
has simple poles with residue 1 at Pi,..., Pop+1 and has simple poles with
residue —1 at @1, ..., Q2p+1. From the proof of 1.4.8 (d) may and so assume
that p1 = pyy, for i = 1,...,n, and p, = %, ¢, = G + ws, so that h(z)
is given by equation (1.4.10). For each of the 4n + 2 poles of g1(z) dz, the
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integral along a sufﬁciently small circle around the pole is +27. Hence the
line integral fo g1(w) dw is well-defined as an element of C/27/—17Z and
the function

fa(z) = exp /Oz g1(w) dw

is a well-defined meromorphic function on C with simple poles at points in
the union U2”+1 g+’ of A'-cosets, simple zeros at points in U2”+1 pi+A,
neither zero nor pole elsewhere on C. In particular f3(z) is holomorphic and
non-zero at points of A. Notice that fa(z) = fa(—2) for all z € C because g1
is odd.

The fact that g;(w)dw is invariant under translation by w; implies that

f2(Z+OJ1)Z/Owlg1(w)dw-f2(z) VzeC.

Similarly the fact that gi(w + w2) = —g1(w) implies that

fo(z +w2) - fa(z) = /sz g1(w) dw.

To prove (d) it suffice to show that
w1
(1.4.11) / g1(w)dw =7v—1 (mod 27v—17Z),
0

for then f1(z) = \/f2(w2)~! - f2(2) will be a normalized developing map of
type I (for a solutlon of equatlon (1.2.1) with p = 2n + 1), for either of

the two square roots of fo(ws)~!. Clearly these are the only two normalized
developing maps of type I whose logarithmic derivatives are equal to g;.

To compute the integral [ g1(w) dw modulo 27v/—1Z, let C be the
path from 0 to ws, obtained from the oriented line segment 072 from 0 to
w9 near by replacing the e-neighborhood of each pole of g;(w)dw by the half
circle of radius € to the right of 072> , for all sufficiently small ¢ > 0. Clearly
the integral fcé g1(w) dw is independent of e. Write C, the union of the
small half circles and the “straight part” C! of C.. Let my (respectively ms)
be the number of poles of g1 with residue 1 (respectively —1) on the line
segment Ows.

The fact that g1(w)dw is invariant under multiplication by —1 implies
that the integral of gi(w) over C! is 0, so [ g1(w)dw converges to (m1 —
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mgy) - m/—1 as € — 0. In other words
/ g1(w) dw = (m1 —mg) - mV/—1
Ce

for all (sufficiently small) € > 0. On the other hand the assumptions (b1) and
(b2) tells us that m; —mg is an odd integer. We have proved the statements
(d1)-(d3). 0

1.5. Type II scaling families and blow-up points. In type II, it fol-
lows from (1.3.3) that g = f’/f is an elliptic function on E. From §1.2, g
has zero only at z = 0. Thus by Lemma 1.2.4,

o'(2)
[Ti_i oz — pi)

for p;’s being simple zeros/poles of f with > p; = 0. Now the Weierstrass
function o is with respect to E. Also the points p;’s are unique up to elements
in A as long as the constraint »_ p; = 0 is satisfied.

(1.5.1) g(z)=A

Proposition 1.5.1. For p = 4nl with | being odd, there are no type II,
i.e. blow-up, solutions to the mean field equation

Au+e* = pby on E.

Proof. If there is a solution u with developing map f, then g = f'/f is
elliptic on E with residues at p;, ¢ = 1,...,l, being +1. Since [ is odd, the
sum of residues of g is non-zero, which contradicts to the classical fact that
the sum of residues of an elliptic function must be zero. O

Therefore we may set | = 2n. Let p1,...,p, be zeros and pnp41,-...,DPon
be poles of f. The residue of g at z = p; is given by Ar; with
o a'(p))
i .

Hi:l,;ﬁj o(p;j — pi)

(1.5.2)

Then we have equations
(153) 7’1:-~-:7"n:—7"n+1:...:_712n.

Recall that
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Lemma 1.5.2. In order for f to verify (1.3.3), it is equivalent to require
that the periods integrals are purely imaginary:

/ g(z)dz iR, i=1,2.
L;

Another characteristic feature for type II is that any solution must exist
in an one parameter scaling family of solutions. To see this, notice that if
f is a developing map of solution u then ef also satisfies (1.3.3) for any
A € R. In fact e f is a developing map of uy defined by (0.2.6):

8e*A|f'(2)|?
L+ e?[f(2)[?)?

ux(z) = log (

and it is clear that uy is a scaling family of solutions of (1.2.1).
Let zo be a zero of f. We know that zp #Z 0 and f’(zp) # 0. Thus

ux(z0) ~ 2\ — 400 as A — 400
while if f(z) # 0 then
ur(z) ~ —2X — —oc0 as A — +o0.

Points like zg are referred as blow-up points.
Thus as A — +oo, the blow-up set of u) consists of the zeros of f.
Similarly, as A — —oo, the blow-up sets of u) consists of the poles of f.

Remark 1.5.3. In general it is very hard to solve the residue equations
(1.4.8) (for type I) and (1.5.3) (for type II) directly, though some simple
cases had been treated in [43, 44] for p = 47, 87 and 127.

2. Type I solutions: evenness and algebraic integrability

Let p = 4wl, | € N. Let u be a type I solution and f be a developing map
of u. In this section we will prove Theorem 0.4 stated in the introduction.
Proposition 1.5.1 proves that if [ is odd then the solution is of type I. We
will start by proving the converse in Theorem 2.2, i.e., if the solution is
of type I then [ must be odd. At the same time the evenness of u will
follow.
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2.1. The evenness of solutions. Recall that the logarithmic deriva-
tive
f/

QZ(Ing)/—?

of the developing map f is an elliptic function on E' = C/A’ with A’ =
Zwi + Z2ws. For the ease of notations we will use w] = w; and wh = 2ws.
In the following all the elliptic functions are with respect to the torus
E'.

Since g has zero at z = 0 of order [, it also has zero of order [ at z = ws.
There are no other zeros hence it has simple poles at p1,...,p; and q1,...,q
where p;’s are simple zeros of f and ¢;’s are simple poles of f modulo A’.
We may assume that

¢G=pi+wy, t=1,...,1
From .
f(z) = f(0) exp/o g9(w) dw,
the residues of g are 1 at p;’s and —1 at ¢;’s. Thus we may write g as

l

(2.1.1) 9(z) = Z(C(Z —pi) —C(z —pi —w2)) tc

=1

By (1.4.1), it is easily seen that ¢ = In/2.
There are also other useful equivalent forms of g:

l

i=1
!
_ 1 Z o' (2 —pi)
2= p(z—pi) —e2

l
1 d
=75 221 1 log(p(z — pi) — e2)

by the addition formula.

Remark 2.1.1. The middle formula says that up to a constant g(z) is
the sum of slopes of the [ lines from the point (p(w2), ©'(w2)) = (e2,0) to
the points (p(z — p;), 9’ (2 — pi)) of the torus £’ under the standard cubic
embedding into C? U {0}, fori =1,...,1.
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The only constraint that remains is the order of zero of g at z = 0.
Namely

0=g0)=40)=---= g(l—l)(o).
Notice first that

29(0) = 3" ) _ 5

p(pi) — ez

is the first (degree one) symmetric polynomial of the slops s(p;). It is rea-
sonable to expect that some of the higher derivatives ¢(™ (0) are also higher
degree symmetric polynomials of slops. The expectation turns out to be true
only for m even and for odd degree polynomials:

Proposition 2.1.2. The even order derivatives g'*)(0), j =0,. .., [Z_Tl], of
g from a basis of the odd degree symmetric polynomials in s;’s up to degree
[ forl being odd and up to degree | — 1 for | being even.

Proof. Consider the slope function

( ' (2)
p(z) — e
= —2¢(2) + ((z t w2) + (2 — w2)
= —2(¢(2) — C(z —wa) —1m2/2).

By differentiating the last equation, we get

s(z )=—10g p(2) —e2) =

(2.1.2)

s 25(2) = pl2) — plz — w2)
-+ D
—@() 2 p(Z)—GQ

where we have used the half period formula with
1= (e1 —ex)(e3 — ex) = ere3 — (e1 + e3)ea + €3 = 23 + eqes.
Also

1, Iy pg’ .
(P —e2)

:s(p—eg—i— a )
p—e2

(Notice the variations on signs with (2.1.3).) Then we have
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Lemma 2.1.3. The slope function satisfies the following ODE:

1
(2.1.4) s = 583 — Gegs.

Proof. We will compute s” in a different way, namely

//

AN i A ol VS

2.1.5 s =
(2.1.5) p—e2 (p—e)?  p—e

It is elementary to see

69> — % = 6(p — e2)? + 12e5(p — e2) + 6e3 — %2

and
6e3 — %2 = 6e2 + 2(ejea + ezey + e1e3) = 2(2e3 + ere3) = 2p.

Thus (2.1.5) becomes

2
s’ =12eg — 52 + 6(p — e2) + £
P—e2
Then
" = —2s5' + 69 — 2pus
p—e2
3 4us 2us
= —24eys +25° — 12s(p — e3) — +6s(p — e2) —
p—e2 P — €2

= —24e9s + 255 —63(@—62 + )
P —e2
= —24e9s + 253 — 35",

where the last equality is by (2.1.4). The lemma follows.

To proceed to higher even derivatives, we notice that
(2.1.6) (sM)" = (ks 1s") = k(k — 1)s"72(s")? + ksP 15",

By (2.1.3) and (2.1.4),
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which is an even degree polynomial in s of degree 4 by Lemma 2.1.3. Thus
(s%)" is odd in s of degree k + 2 if k is odd. By induction we then have that
s(27) is a degree 2j + 1 odd polynomial in s.

The proposition now follows easily from

l

(2.1.7) 29%7)(0) = ) s (i)
i=1
and general facts on symmetric polynomials. O

Now we are ready to prove

Theorem 2.2. Let p = 4xwl. If the developing map f satisfies the type I
relation (1.3.2), then [ is odd. Furthermore g(—z) = —g(z) and u(—z) =

Proof. Consider the polynomial

By Proposition 2.1.2, the relations
0=g(0) =g¢"(0) = - = g@5D(0)

lead to the vanishing of all odd symmetric polynomials of s(p;)’s in the
expansion of S(x).

If | = 2n, then S(x) consists of only even degrees and its roots s(p;)
must appears in pairs. Without loss of generality we may assume that

(2.2.1) s(p1) = —s(pnt1), 5(p2) = —8(Pn+2), - - -5 8(Pn) = —3(p2n).

Notice that the slope equation

¢ (a) ¢ (b)
——— =5(a) = —-s(b) = ——————
o@-e T
leads to b = —a or b = a + wy. To see this, notice that under the cubic

embedding z — (p(2), 9'(2)), s(a) is slope of the line ¢, connecting the im-
ages of z = wo and z = a, with the unique third intersection point being
z = —a —wy and s(—a — we) = s(a). Thus the slope function defines a
branched double cover

s: B — PY(C).
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(From (2.1.3), it has 4 branch points given by ©(z) = ez &+ \/11.)

In particular the line with slope —s(a) = s(—a) and passing through
(e2,0) must be {_, = £y, That is, b = —a or b = a + w9 as claimed.

In our case (2.2.1), we must conclude p,+1 = —p; since p; +ws = ¢ can
not appear in p;’s. In the same way we conclude that

(2.2.2) Di = —Pitn, 1=1,...,n.

In particular  p; = 0. But this violates > p; = %wl modulo A’ (which
follows from g(z + w2) = —g(2) in Lemma 1.4.5), hence [ is odd.

For I =2n+1, S(z) is a polynomial with odd degree terms only. In par-
ticular there is a root = 0 of S(x) and we may assume that s(p2,+1) =0
(namely poni1 = w1 or §(w) +wh) = w1 + wa).

Consider the polynomial S(z)/x with only even degree terms. In exactly
the same manner as above we conclude that (2.2.2) still holds and

n

S(x) =z [ [ (& = s(pi) (@ + s(p:))-

=1

It is clear that now g(—z) = —g(z). Then f(—z) = f(z), which implies
that u is an even function. O

2.3. The polynomial system. The remaining statements in Theorem
0.4 which have not been proved yet are that these points [p1],...,[p,] on E
are determined by the polynomial equations (0.4.1) in p(p;)’s.

Philosophically this follows easily from (2.1.1) and (2.1.3). Indeed it is
clear that the odd order derivatives of g at z = 0 will involve only rational
expressions with denominator being powers of p(p;) — ea and with at most
even derivatives p(2)®)(p;) in the numerator (all expressions in —p; are
transformed into expressions in p;). The latter can be written as polynomi-
als in p(p;) and thus the polynomial system is obtained.

Proof of Theorem 0.4. To write down the complete set of polynomial equa-
tions explicitly, recall that we have

l

Z(C(z —pi) — C(z — pi —w2) —1m2/2),

Q
—
N
~—
I



Mean field equations, hyperelliptic curves and modular forms 177

l

—g" D (2) =3 (0" (2 — pi) — (2 = pi —w2))  Ym € Zxo,
=1

and the half period formula (let G(p) = p(p + w2))

5= ey +
v P — €2

where p = (e; — e2)(esz — e2). Equivalently (p — e2)(0 — e2) = .

In the proof of Theorem 2.2, the even order derivatives ¢(>)(0) = 0,
j=0,...,n, leads to the evenness of solutions. We will show that the re-
maining odd order differentiations g(2j+1)(0) =0,7=0,...,n—1, leads to
the desired polynomial system.

To calculate g1 (0), we first notice that

Lemma 2.3.1. For every k € N, (p*)" is a degree k + 1 polynomial in ¢.
Indeed

(1) = 2k(2k + Dt — Lh(2k — )b — k(k — 1)gsg* 2.

Proof. Since (pF)" = kp*~ g/, we get

(pk)// _ k(k‘ _ 1)@k_2(p/)2 + k‘pk_lp/,.

The lemma follows from Weierstrass’ cubic relations between g’ and g.

O

Now we set x; = p(pi), i = 9(pi) = p(pi + we) for i =1,...,n. It is
clear that (z; —e2)(Z; —ez) =pforalli=1,... n.

During the following computations, we assume that po,11 = %wl and

Pn+i = —p; for ¢ = 1,...,n. For the other case pa,11 = %wl + wo, we could

replace f by 1/f to reduce to the former case, since f and 1/f give rise to
the same solution u.
For j = 0 we have from (2.3.1) that

n n
—g’(O) = Qin + e — 22.@' —e3 =0.
=1 =1

This is the degree one equation (m = 1) with ¢; = —1(e1 — e3) # 0.
For 7 =1, since
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l l

l l
—gm:Z@//—Z@”:GZQQ—GBZ@Q,
1 1

1 1

the equation ¢”’(0) = 0 becomes
n n
doai =D 3= (] - ).
i=1 i=1
2 _ .2

This is the degree two equation (m = 2) with ¢ = —%(e? — €3).

The general case follows from Lemma 2.3.1. Suppose that gt (0) =0
gives rise to a new polynomial relation Y . o] — > " & = ¢;. A fur-
ther double differentiation increases the degree of the polynomial in @ by
one, hence it gives rise to a new relation y i ; a:f“ ->n, :%g“ = Cjt+1,
with the universal constant c;i1 being determined by c1,c2, g2, g3 recur-
sively.

Therefore we conclude that z; = p(p;), & = p(pi +w2), @ = 1,...,n,
satisfy the polynomial system:

n n
}: J §:~J_ R
T; — T =c¢j, j=1,...,n,
i=1 i=1
(x; —e2)(Ty —e2) =p, i=1,...,n,

which is easily seen to be equivalent to the system (0.4.1).
Conversely, any solution of the polynomial system gives rise to a function
g which satisfies

gI0)=0, j=0,1,...,2n.

From g, the developing map f is then constructed by Proposition 1.4.8.
O

Remark 2.3.2. In the next section we will prove that except for a finite
set of conformal equivalence classes of tori, the mean field equation (0.1.3)
has exactly n + 1 solutions for p = 4nl with [ = 2n + 1. This implies
that, except for those tori, the above polynomial system has exactly n + 1
solutions up to permutation symmetry by S,. Equivalently it has (n + 1)!
solutions.

Since the ¢;(7)’s are all holomorphic in 7, solutions (x;(7),Z;(7)) of
the polynomial system, hence the developing map f(z;7), should then de-
pend on 7 holomorphically. It is not so obvious how to prove the holo-
morphic dependence of f(z;7) in the moduli space of tori by other meth-
ods.
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Example 2.4. For p =4n,l =1 and n = 0. Then p; = %wl. The polyno-
mial system is empty and the solution wu is unique. This was first proved in
[43].

Example 2.5. Consider the case p = 127, i.e. [ =3 and n = 1. Let p; = a.

po = —a and p3 = %wl. Then the equation ¢’(0) = 0 becomes
7
2((pla) — e2) — =) —e3) =0,
(p(a) — e2) o) — + (e1 —e3)

That is, we get a degree 2 polynomial in p(a):

(p(a) —e2)” + T(er —es)(pla) —e2) —p=0

and then

p(a) = ez + f(es — e1) = §1/(e3 — €1)? + 16(e1 — e3)(e3 — €2).

These are exactly the solutions obtained in [44] via a different method.
In particular there are precisely two solutions of the mean field equation on
any torus E with non-zero discriminant (e3 —e1)? + 16(e; — e2)(e3 — e2) # 0
for the double cover E’, and with p = 127. The case with zero discriminant
will be discussed in Example 3.6.

Example 2.6. Consider the case p = 207, i.e. [ = 5 and n = 2. The full set
of polynomial equations in x;’s and Z;’s is given by

- 1
T+ wy — T — T2 =c1 = —5(e1 — e3),
2, .2  ~2  ~2 1,2 2
ry +ay — I — I3 = cy = —5(e1 — €3),

(71 —€2)(Z1 — €2) =

(w2 — €2)(T2 — €2) = p.
Now the number of solutions N/ (here n = 2) for x1.x9,Z1, T2 can be
calculated by the Bezout theorem to be Nj =1x2x2x2—7r =8 —r§°
where r5° is the number of solutions at oo, counted with multiplicity, of

the projectivized system of polynomial equations. The projective system
is

X1+ Xo— X1 — Xo = c1Xo,
X2 4 X2 - X} — X2 = X2,
(X1 — e Xo)(X1 — eaXo) = pXg,
(X — e2X0)(Xo — e2Xp) = uX2.
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And the infinity solutions are given by setting Xy = 0:

X1+X2:X1+X2, X12+X22:X12+X22,
X1X1=0, XX,=0.
This shows that {X, Xo} = {X}, X»}. Since these four variables are not all
zero, it is easy to see that there are precisely two solutions given by
Pi: X1=0=Xy, Xo=2X #0,
PQI XQZOZXl, X1:X2§é0
It remains to compute the multiplicity of P, and P%. Consider Py first.
Slnce it is in the chart U := {X1 # 0}, in terms of y; = X/Xl, 1=1,2,

= X»/X; and yo = Xo/X1, Pi has coordinates (3/07?/1 Y2, 92) = (0,0, 1,0)
and the system at point P; reads as f; =0,¢=1,...,4, where

fi=y1+y2—1—192— 1o,

fo=yi+ (e —1)?+2(y2 — 1) — 35 — 2y,

f3 = (y1 — eayo) (1 — eayo) — pyg = y1 + -+

fa=(y2 — eay0) (G2 — e2y0) — pyy = (y2 — D2+ G + -+ .
From these expressions, the appearance of degree one monomial in each
fi shows that the local analytic coordinates (yo,y1,y2 — 1,%2) at the point

Py can be replaced by fi, f3, fo, fa accordingly, and thus the multiplicity is
one. Indeed P; = (0,0,1,0) is a simple point of {f; = 0} by computing the

Jacobian
O(f1, f2, f3, fa)
(Yo, y1, Y2, J2)
Similarly the multiplicity at P, is one. Thus 75° = 2 and Nj = 8 — 2 =
6.

det (0,0,1,0) =e; —e3 # 0.

Since any reordering of p;’s leads to the same solution, also it is easy
to see that for generic tori we do not have any solution with z; = z9, so
finally

Ny=Nj/2A=3=2+1.

Remark 2.7. The above method can be extended to the casen = 3, p = 287
to show that N3 = 4 since in this case the infinity solutions are still zero
dimensional. It fails for n > 4 since positive dimensional intersections at
infinity do occur and excess intersection theory is needed. The cases n = 4
and n = 5 were recently settled in [42] where the infinity solutions are one
dimensional.
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3. Lamé for type I: finite monodromies
In this section we prove Theorem 0.4.1 (c.f. Theorem 3.5).

3.1. From mean field equations to Lamé. The second order equa-
tion

(3.1.1) Lypw:=w"(z) — (n(n+1)p(z) + B)w(z) =0

is known as the Lamé equation with two parameters 1 and B; the pa-
rameter 7 is called the inder and B is the called the accessary parame-
ter.

3.1.1. Recall that for any two linearly independent solutions w; and ws
of a general second order ODE w” = Iw, the Schwarzian derivative

B3 R 2
S =37 =3 (7)
of h = w;/we satisfies S(h) = —2I, hence for any two linear independent
local solutions wy, wy of the Lamé equation (3.1.1) we have

S(ez) = —2(n(n+ 1)p(z) + B).

Conversely if hy is meromorphic function with S(h1) = —2(n(n+1)p(z)+ B,
then S(hi) = S(37t) for a chosen pair of linearly independent solutions
w1, we of (3.1.1), therefore hy is equal to a linear fractional transformation
of 5—;, or equivalently there exists a pair of linearly independent solutions
w3, wy of (3.1.1) such that h; = ws/wy.

3.1.2.  Suppose that u is a solution of the mean field equation
(3.1.2) Au+ e = pdo

on a flat torus £ = C/A, A = Zw; + Zwa, and f is a developing map of u

on a covering space of the punctured torus E ~\ {0}. As in §1, locally u is

expressed in f via

81f"(2)P?

u(z) =log —————.
B = R

Let n:= p/8n. By (1.1.4), we have
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sy
(3.1.3) =T 5<7)

1
u = =20y + 1) + O(1),

| =

= Uzz —
where the last equality follows from the asymptotic expansion
u ~ 4nlog |z

at z = 0 and that u is smooth outside z = 0 in E. The expression of
S(f) in w shows that it is a meromorphic function on E, which is holo-
morphic outside {0} and its polar part at z = 0 is given by the last ex-
pression in (3.1.3). Therefore there exists a constant B = B(FE,n,u) such
that

(3.1.4) S(f) = uzz — guZ = =2(n(n + p(z) + B).

It follows that there exist two linearly independents solutions wi and ws
of the Lamé equation (3.1.1) with accessary parameter B(F,n, u) such that

f=wi/ws.

3.1.3. The Lamé equation (3.1.1) had been studied in the classical lit-
erature in two special cases, very extensively in case when the index 7 is
a positive integer, and somewhat less so in the case when the index n is
a half-integer, i.e. 2n = 2n + 1 is an odd positive integer. We have seen
in the previous sections that the former case corresponds to type II so-
lutions while the latter case is for type I solutions. The main objective
of this section is to prove that for any odd positive integer 2n + 1, on
all but a finite number of isomorphism classes of elliptic curves, there are
precisely n 4 1 solutions to the mean field equation Au + e* = 47(2n +
1)do.

The following theorem is due to Brioschi [7], Halphen [27, pp.471-473]
and Crawford [19] in the late nineteenth century; see [19] for a complete
proof. See also [53, pp.162-164] for a succinct presentation of Halphen’s
transformation as well as [67, p. 570] for Crawford’s procedure for analyzing
Brioschi’s solution.

Theorem 3.2. Let n be a non-negative integer.

(a) There exists a monic polynomial p,(B;A) = pp(B, g2(A), g3(A)) of de-
gree n+ 1 in B with coefficients in Z[%—A); gi"i—A)] such that the Lamé
equation Ly /5w =0 on C/A has all solutions free from logarithm
at z =0 if and only if p,(B;A) = 0.
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This polynomial pn(B,g2,93) € Z[%}[B,gg,gg] is homogeneous of
weight n + 1 if B, g2, g3 are given weights 1,2, 3 respectively.

(b) For any lattice A outside a finite subset S,, of homothety classes of
lattices in C, the polynomial p,(B;A) has n + 1 distinct roots.

Proof. The logarithm-free solutions of the Lamé equation L, i/ppw = 0
were first discovered by Brioschi [7, p. 314], but the underlying structure are
more transparently exhibited using Halphen’s transformation [27, p.471]
as carried out in detail by Crawford [19]. The statement (a) is proved in
[19]; see also [53, p.164] for a presentation of Crawford’s proof. A slightly
different proof of (a) following the same train of ideas can be found in [3,
p. 26-28|.

Crawford’s proof provides a recursive formula for p,(B;A). When A is
of the form Z++/—1aZ with a € R+, this recursive formula also produces a
Sturm sequence starting with p,(B), therefore p,(B;A) has n + 1 distinct
real roots; see [19, p.94].'6 This implies that the discriminant of the poly-
nomial p,(B;A), which is a modular form for SLg(Z), is not identically 0.
The statement (b) follows. See §3.3 for remarks on Sturm’s theorem used in
Crawford’s proof. O

Remark 3.2.1. We will give an alternative proof of part (a) of Theorem
3.2 in §3.4, which is essentially local near z = 0. Our proof not only provides
a new construction of the polynomial p,(B), it also generalizes to the case
with multiple singular sources. This generalization will be presented in a
later work; c.f. [11].

3.3. Remark on Sturm’s theorem. Crawford’s proof in [19, p.94] that
the polynomial p,(B;A) has n + 1 distinct real roots for rectangular tori
uses a fact closely related to Sturm’s theorem on real roots of polynomials
over R, not found in standard treatment of this topic, such as [64, 11.3]
and [33, 5.2].17 We have been able to find only one reference of this fact,
as a “starred exercise” in [63, p. 149 ex. 30]. In Proposition 3.3.3 below we

16The statement that p,(B) has n + 1 distinct real roots was proved in [19,
p. 94] under the condition that the z-coordinates of the three non-trivial two-torsion
points, e; = p(w;/2; A) for ¢ = 1,2, 3, are real numbers. This is the case when the
lattice A is of the form A, with 7 € v/—=1Rsy.

1"This fact must be familiar to all educated scientists in the late nineteenth
and early twentieth century, often used freely without comments in mathematical
writings at the time. This is the case for the proofs in [67, p. 557] and [53, p. 163] for
the existence of 2m + 1 distinct real roots of the polynomial I,,(B) corresponding
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provide a mild generalization of the usual form of Sturm’s theorem for the
convenience of the readers. Its corollary 3.3.4 is equivalent to [63, p.149
ex. 30].

Definition 3.3.1. A sequence of non-zero polynomials

fO(x)vfl(l')w . afm(x) € R[l‘]

is a Sturm sequence on (a, b] if the following two properties hold.
(i) fm(z) is either positive definite or negative definite on (a, b].

(ii) Suppose that £ € (a,b] and f;(§) = 0 for some ¢ with 1 < i < m — 1.
Then f;—1(§) and f;11(§) have opposite signs (in the sense that either they
are both non-zero with opposite signs, or are both zero).'®

Remark. There is an extra condition in the conventional definition of a
Sturm sequence: f1(€) and fo(§) have the same sign for every root & of
fo(x) in (a,b]. This condition has been dropped in Definition 3.3.1 above.

3.3.2. Definition. Let fy(x), fi(x),..., fm(z) be a Sturm sequence.

(1) For every real number &, define o(§) to be the total number of changes
of signs in the sequence (fo(6*), f1(€7), ..., fm—1(6¥), fin(€))."

(2) Define a {—1,0,1}-valued “local index” function ey, ) on R attached to
a real polynomial fy(x) € R[z| as follows.

e Suppose that fo(¢) = 0% and mult,—¢ fo(2) is odd.?! Define

1 if fo(€T) and f1(€) have the same sign
€fo(a) (§) = —1 if fo(€") and f1(€) have opposite signs

to 2m + 1 Lamé functions for the equation

dPw

T2 (m(m+ Dp(z;A)+ B)w=0

when A = Z + /—1aZ for some a € R+ and m € N o. However this then-well-
known fact is no longer part of the general education for mathematicians today.

18The latter possibility is ruled out by condition (i).

YHere we used f;(¢7) to make sure that each term has a well-
defined sign. In view of condition (ii), we could have used the sequence
(fo(€M), f1(E), -+, fn—1(E), fm(£)) in the definition, suppress zeros when counting
the number of variations of signs in it.

20£,() # 0 i fo(€) = 0, by (i) and (i),

2For a zero £ of fo(x), the sign of fo(z) changes when x moves across £ if and
only if mult,—¢ fo(z) is odd.
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® ¢ ) (&) = 0 if mult,—¢ fo(z) is even. In particular ef, ,)(§) = 0 if
fo(§) #0.

(3) Define Zy, (,)((a,b]) € Z by

Zg ) ((@,0]) == > epw)(©).

¢e(asb]

This number Zy, (,)((a,b]) counts the number of zeros of fo(z) with odd
multiplicity with a signed weight given by €y, ;). It can be thought of as
some sort of “total Lefschetz number” for fo(z)](q)-

Proposition 3.3.3. Let fo(x), fi(z),..., fm(x) be a Sturm sequence on
(a,b]. Then

Zto(@)((a,0]) = o (a) — a(b),

i.e. o(a) —o(b) is the number of zeros of fo(x) in the half-open interval (a, b]
with odd multiplicity, counted with the sign €y, ().

Proof. Condition (ii) ensures that crossing a zero in [a, b) of any of the inter-
nal members fi(x),..., fm—1(x) of the Sturm chain makes no contribution
to changes of o(§). Each time a zero & of fy(x) with odd multiplicity is
crossed, o(§) decreases by ey, (,)(£) as & moves from the left of §y to its right.
On the other hand, moving across a zero of fy(x) with even multiplicity does
not change the value of 0. So the o(b) — o(a) is equal to the total number of
zeros of fo(x) in (a, b] with odd multiplicity, counted with the sign €, ;). [

Corollary 3.3.4. Let fo(x),..., fm(x) be a Sturm sequence on (a,b]. Let
n € N be a non-negative integer. If o(a) —o(b) = £n and fo(x) has at most
n distinct real roots in (a,b], then fo(x) has exactly n distinct real roots in
the half-open interval (a,b]. In particular if a = —o00,b = oo, deg(fo(x)) =n
and o(—o0) — o(00) = +£n, then fo(x) has n distinct real roots.

3.4. A proof of Theorem 3.2 (a). Let’s start with any f as the quotient
of two independent solutions of Lamé equation L, 1/, pw =0 at z =0 and
consider v(z) = log f'(z). It is readily seen that

1 f// / 1 f/l 2
" N2 _ —

=30 = (F) —5(F) =5
We remark that the function v satisfies the similar equation as u in (3.1.3),
but v is analytic in nature while u is only a real function.
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The indicial equation at z = 0 is given by A2 = A —n(n +1) = (A —
(m+ 1)(A+mn) = 0. If there are logarithmic solutions, the fundamental
solutions are given as

(3.4.1) wi(z) = 2T hi(2), wa(2) = Ewi(2)log z + 2 "hy(z),
where £ # 0 and hq, hy are holomorphic and non-zero at z = 0. But then

awy + bwsy

f= cwi + dws
is easily seen to be logarithmic as well if ad —bc # 0, thus the Lamé equation
has no logarithmic solutions at z = 0 if and only if we have one nontrivial
solution quotient f to be logarithmic free at z = 0.

Now suppose that the Lamé equation has no solutions with logarith-
mic term. Let f be a ratio of two independent solutions. Without lose of
generality, we may assume that f is regular at 0. Since n =n + % and

(3.4.2) S(f) = =2((n+ 3)(n + 3)p(2) + B),

to require that f is logarithmic free at z = 0 is equivalent to that f(z) =
co + Cong22?" T2 4+ ... near z = 0 with ¢y # 0.
Recall that

1 2%k
p(z) = a2t ;(% +1)Gry12

where G, = Y cp. 1/ w?* is the standard Eisenstein series of weight 2k for
SLa(Z). It is customary to write go = 60G2 and g3 = 140G3. It is also well
known that all G;’s are expressible as polynomials in go, g3.
We will show that the solvability of the Schwarzian equation (3.4.2) for
f being of the proposed form is equivalent to the statement that B satisfies
pn(B) = 0 for some universal polynomial p, (B, g2, g3) of degree n+1. Indeed,
let
v:=log f' = logconio(2n+2)+ (2n + 1) log 2z + Zdjzj.
Jj=1

For convenience we set e; = (j 4+ 1)dj41 for j > 0 and then

2n+1 .
I _ E: ]
Vo=
2 —I-. €z
720
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The degree z~! terms in
1
= 5(0) = =2((n+ 1) (n+ 3)p(2) + B)

match by our choice. That there is no z~! term in the right hand side of
(3.4.2) shows that ey = 0. Then the constant terms give e; — 32(2n+ 1)e; =
—2B, i.e. ney = B. For n = 0, we must conclude B = 0. Thus we set
po(B) = B.

Similarly, for j > 1, the degree j terms in the LHS give

(j+Dejy1 — 222n+ L)ejr1 — 3 Z €iej—i.

Since there is no odd degree terms in the right hand side of (3.4.2), by
considering j = 1,3,5,... we first conclude inductively that e; = 0 for ¢
even.

Next we consider degree j = 2,4,6,... terms inductively. Write E, =
eor_1 for k > 1. Then j = 2k leads to

k
(34.3) 2(k —n)Epyr — 3 Y EiEpy1—i = —2(n+ 3)(n+ 3)(2k + 1)Gpp1.
=1

We have just seen that nE; = B. If we assign degree k to Gy, then (3.4.3)
shows inductively that Ey = FEy(B,ge,g3) is a degree k polynomial in B
which is homogeneous in B, gs, g3 of degree k up to k < n.

Now put k = n in (3.4.3), the first term vanishes and we must have

(B, g2,93) : ZEEn+1 i —8(n+12(n+ 3G

vanishes too. Up to a multiplicative constant, this p,(B) is the degree n +
1 polynomial in B we search for. Indeed, by our inductive construction
through (3.4.3), the leading coefficients ¢, of p,(B) depends only on n.
Hence p, (B, g2,93) := ¢, pn(B, g2,g3) is monic in B and homogeneous of
degree n + 1 in B, g9, g3.

Conversely, if p,(B) = 0, then Fy, ..., E, can be solved by (3.4.3) up to
k=mn-—1. For k=n—1, p,(B) = 0 is equivalent to (3.4.3) at k = n. By
assigning any value to E, 1, we can use (3.4.3) for k > n + 1 to find Ej,
j > n+ 2. Thus this f is a solution to the Schwarzian equation (3.4.2) and
is free from logarithmic terms. The proof is complete. O
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Remark 3.4.1. Notice that F,, 11 = eap+1 = (2n+2)dap42 is a free param-
eter. All Ey’s are determined by B and E,,41. For any B with p,(B) = 0, the
three constants cg, conto and E,41 provide the three dimensional freedom
for f due to the freedom of SLg(C) action on f.

Remark 3.4.2. We have seen that the type I developing map f(z) is even.
This also follows form our proof of Theorem 3.2 since we do not assume the
a priori evenness during the proof.

To apply Theorem 3.2 to study mean field equations for p = 47(2n+ 1),
the essential point is the following theorem.

Theorem 3.5 (= Theorem 0.4.1). Let n be a non-negative integer. The
projective monodromy group of the Lamé equation Ly (i/2) pw = 0 is iso-
morphic to Klein’s four-group (Z/27)* if and only if there exists two mero-
morphic solutions wy,ws on C of the above Lamé equations such that g—; 18
a type I developing map of a solution of the mean field equation Au+ e =
47 (2n + 1)dg. Moreover, each such value of the accessary parameter B with
the above property gives rise to exactly one type I solution.

Proof. Let u be a type I solution of the mean field equation Au+e" = pdy
on C/A and let f be a normalized developing map of u satisfying the type
I transformation rules (1.3.2). We know from Theorem 2.2 that there exists
a non-negative integer n such that p = 47(2n + 1), and we have seen that
there exists a complex number B such that the Schwarzian derivative S(f)
of f is equal to —2((n + 3)(n + 2)p(z;A) + B). Then local solutions of
the Lamé equation L, 1/ pw = 0 are free of logarithmic solutions, and
there exists two solutions wy,we over C such that f = Z—; The projective
monodromy group of the equation L, /9 pw = 0 is canonically isomorphic
to the monodromy group of the meromorphic function 5—;, which is a Klein
four group K4 by the type I transformations (1.3.2). We have proved the
“only if” part of Theorem 0.4.1.

Conversely, suppose that the projective monodromy group of a Lamé
equation L, 1o gw = 0 is a Klein-four group. Then all local solutions
of this Lamé equation are free of logarithmic singularities, and there are
for two linearly independent solutions wi,ws of this equation which are
meromorphic functions over C. It is easy to check from basic theory of linear
ODE'’s with regular singularities that the holomorphic map {*:C — P}(C)
has no critical point outside A, and has multiplicity 2n 4+ 2 at points of A.

Let p : A — GL2(C) be the monodromy representation of the differ-
ential equation L, /5 pw = 0 attached to the basis wy,ws of solutions of
Lytij25w = 0. Let p: A — PSLy(C) be the composition of p with the
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canonical projection GLy(C) — PSLa(C). Because PSU(2) is a maximal
compact subgroup of PSLy(C), the finite subgroup Im(p) of PSLy(C) is a
conjugate of a subgroup of PSU(2), i.e. there exists an element S; € GLy(C)
such that S;-Im(p)-S; ' € PSU(2). By Corollary 1.3.2, there exists an ele-
ment Sy € PSU(2) such that Sy-Sy-p(w;)-S; Syt and Sp-Sy-p(wa)-Sy S5
are the image in PSU(2) of (\/? % yand (2 \/__1) respectively. Write

v—1 V=1 0
. — (ab . awitcws ; H f 3 f
Sy - 51 (23). Then f : hotdus is a developing map of a solution o

Au+ e* = 47(2n+ 1)dp, by Lemma 1.2.6, and it is normalized of type I by
construction. We have proved the “if” part of Theorem 0.4.1. The uniqueness
assertion in the last sentence of Theorem 0.4.1 is clear from the correspon-
dence we have established, between solutions of the mean field equation
Au+e" = 4m(2n + 1)dg and Lamé equations L, 11/2 g w = 0 such that no
solution has logarithmic singularity. O

Corollary 3.5.1. On any flat torus C/A, the mean field equation Au+e* =
4w (2n + 1) 6 at most n + 1 solutions. It has exactly n + 1 solutions except
for a finite number of conformal isomorphism classes of flat tori.

Proof. This is an immediate consequence of theorems 3.2, 3.5 and 0.4.1. [

Corollary 3.5.2. Forn = n+%, the monodromy group M of Ly, 112 pw =0
on an elliptic curve C/A is finite if and only if it corresponds to a type I
solution of the mean field equation Au+ e* = 47(2n + 1)dg on C/A as in
Theorem 3.5.

Proof. 1t was shown in [4, Thm. 2.3] that the monodromy group of the Lamé
equation Ly, (1/9),pw = 0 is finite if and only if no solution of L, (1/2) pw =
0 has logarithmic singularity, and if so the projective monodromy group
Ly 4(1/2),w = 0 is isomorphic to (Z)27)2. O

Example 3.6. By (3.4.3), it is easy to determine p,(B). For example,

B2 - %927
B3 — 7gyB + 20g3.

e T

[ V] =

38
(I

For p = 12x, the two solutions to the mean field equation collapse to the
same one precisely when p;(B) has multiple roots. This is the case if and
only if go = 0, which means that 7 = e™/3,

To see this from Example 2.5 is a little bit trickier. We may solve

(63 — 61)2 + 16(61 — 62)(63 — 62) =0
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in terms of the modular function

€3 — €2

A1) =

€1 — €9
where 7/ = W) /w] = 2w /wy = 27. A simple calculation leads to

—1)?
Q;rl*:—m,ie.Az+MA+1:0

Then the corresponding j invariant is

M —A+1)3 A
() =28 AT sy A g
i) N\ 1) N—1)2

In general it would be difficult to determine 7/ from j. Fortunately the
value j = 243353 appears in the famous list of elliptic curves with complex
multiplications (see e.g. [30]) and it is known that

7 =v=3 (mod SLy(Z)).

Take 7 in the fundamental region, then there is a unique choice of 7, namely
T=1(1+v=3)= e™=1/3 which gives rise to

2r =1++v-3=v-3=17" (mod SLy(Z)).

4. Singular Liouville equations with p = 47w and modular
forms

In §2, we discussed how to find all type I solutions by solving a system of
polynomial equations which depends holomorphically on the moduli param-
eter 7 of the torus E; = C/A,; = C/(Z+Z7), where T varies in the upper-half
plane H. In this section, we consider the simplest case

(4.0.1) Au+e" =4mwdy in E,

and show that certain modular forms of level 4 are naturally to the solutions
of (4.0.1) as 7 varies. The general case with multiple singular sources will
be considered in a subsequent work.
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4.1. Notation.

e Let H be the upper-half plane. The group SLa(R) operates transitively
on H through the usual formula (¢5%) -7 = g:j:g

e Let j(,7) be the 1-cocycle of SLa(R) for its action on H, defined by
j(v;7) =cr +dfor any v =(2%) € SLy(R) and any 7 € H.

e Denote by K4 the subgroup of PSU(2) C PSLy(C) isomorphic to

(Z/27)?, consisting of the image in PSU(2) of the four matrices

10y (V-1 0 0 V-1 0 1
(1) (ot =) (A o) e (B o)
We know from Lemma 1.3.1 (1b) that the centralizer subgroup of K4
in PSL2(C) is equal to itself.

e Let N(K4) be the normalizer subgroup of Ky in PSU(2), which is
also equal to the normalizer subgroup of Ky in PSLy(C). We know
from Lemma 1.3.1 (1d) that N(K}) is a semi-direct product of K4 with
S3 and N(K4) is isomorphic to S4. Moreover the conjugation action

induces an isomorphism from N(Ky)/K, to the permutation group of
the three non-trivial elements of Kjy4.

Proposition 4.2. (a) For any 7 € H, there exists a unique normalized
developing map f(z;7) for the unique solution u(z) of the equation (4.0.1)
which has the following properties.

ord;—q f(2,7) =0 Va# 3 (modA)
EFET)], Lo =0, =f(z7)|,, € C.

(4.2.1)

(4.2.2)

(4.2.3)

(424)  flz+171)=—f(2), flz+77)=1/f(x7) VzeC.
(4.2.5) f(=z;7)=f(z;7) VzeC.

( ) f(%T;T)Zl Vz e C.

( ) Ol"dz=1/2 flzim)=1

( ) ord,—(1/2)+- f(z;7) = -1

(b) The function f(z;7) in (a) is characterized by properties (4.2.1), (4.2.4),
(4.2.6) and (4.2.7), i.e. if h(z) is a meromorphic function on C which
satisfies (4.2.1), (4.2.4), (4.2.6) and (4.2.7) for an element 7 € H, then
h(z) = f(z;7) for all z € C.
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(¢) The function f(z;T) can be expressed in terms of Weierstrass elliptic
functions:

foim) = el OG=hiA) oGk A)
0(G—i-3A) o(G+i+5iAr)
(4.2.9) _ _ehnmanaen, _CGid) oGk - oA
' (3+3: A7)

Proof. (a) For any 7 € H, we have proved that in §2 that equation (4.0.1)
has a unique solution u(z;7), z € E, and there exists a normalized type I
developing map f(z;7) for u(z;7). Because the centralizer subgroup of Ky
in PSU(2) is K} itself, normalized type I developing maps consists are of
the form ~ - f with v € K4. Properties (4.2.1)-(4.2.5) are satisfied by all
4 normalized developing maps. The first part of (4.2.4) and (4.2.6) implies
O VIS
V=1 0
if necessary, we may assume that fl(%;’l') = 0. Then f(z;7) has a simple
zero at z = 1 by (4.2.1), and properties (4.2.7)(4.2.8) hold for f. Similarly
properties (4.2.1), (4.2.4) and (4.2.5 for f imply that f(5;7) = £1. Changing
f to (‘/[;_1 7\27—1) - f if necessary, we have produced a normalized developing
map satisfying (4.2.1)—(4.2.8).

that f(z;7) has either a zero or a pole at z = % Changing f; to (

(b) Suppose that h(z) is a meromorphic function which satisfies properties
(4.2.1), (4.2.4), (4.2.6) and (4.2.7). Then h(z) descends to a meromorphic
function on C/2A; which has simple zeros at :t% mod 2A,, simples poles at
:l:% + 7mod 2A; and no zeros or poles elsewhere just like f(z, 7). Therefore
h(z) = c¢- f(z;7) for some ¢ € C*. This constant c is equal to 1 by (4.2.7).

(c) For the first equality in (4.2.9), it suffices to show that the function

z
i ain), 05
1

satisfies conditions (4.2.1), (4.2.4), (4.2.6) and (4.2.7) according to (b). The
properties (4.2.1), (4.2.4) and (4.2.7) follows quickly from the transformation
law for the Weierstrass o-function o(z;A;) and the fact that the entire
function o(z; A;) has simple zeros at points of A; does not vanish elsewhere.
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The condition (4.2.6) is equivalent to

a(ig— BA) e A)(147),

which follows from the transformation law of o(z;A;) with respect to the
element 7 € A,;. We have proved that the first equality

o(G—1iA0) oG+ Ay)
oG5 oGHi+EA)

flz )= (T Ar)-(147)

n (4.2.9). The second equality in (4.2.9) follows from the classical formula

o(u+v;A)-o(u—uv;A)

(4.2.10) plusb) = (v ) = == A o2 (0 )

The last equality in (4.2.9) is equivalent to

(4.2.11) p(5; Ar) —p(3 +5i Ar) _einmm)«m).m,
@(%, AT) - p(%v AT) 02(%4_%;1&7_)

which is easily verified using (4.2.9) and the transformation law of the Weier-
strass o-function o (z; A;) with respect to the lattice A,. We have proved part
(c) of Proposition 4.2. O

Proposition 4.3. Let f(z;7) be the developing map specified in Proposi-
tion 4.2.

(a) There exists a unique group homomorphism 1 : SLa(Z) — N(Ky) such
that

(4.3.1) f(j(’}/,T)_l'Z; v-7) =v(y)-fz7) Vze C, Vr € H.

Here ¥(v)-f(z;1) = % if ¥(v) is the image of(_“(i %) in PSU(2).

(b) The homomorphism 1 is surjective. The kernel Ker(v) of ¢ is equal to
the subgroup of SLa(Z) generated by +ls and the principal congruence sub-
group T'(4) of level 4, consisting of all v € SLa(Z) with v =1y (mod 4). The
zm)erse image "1 (Ky4) of K4 under 1) is the principal congruence subgroup

['(2). (In other words 1 induces an isomorphism SLo(Z/4Z)/{£ls} =
N(Ky4), and also an isomorphism SLo(Z/27) = N(K4)/K4 = Ss.)

() ¥((31)) = the image in PSU(2) of the wunitary matriz
(<

€ ‘/051/4 no=1a ) and Y(( 2 })) = the image in PSU(2) of r(_ll D).
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Proof. (a) It is easily checked that for each v € SLo(Z), f(j(v,7) " 12; v-7) is
a developing map of the unique solution of (4.0.1), and that for each w € A,
we have f(j(v,7) Vz+w; v-7) = £f(z;7)*L. Since f(j(y,7) "Lz +w; y-T)
and f(z; 1) are developing maps for the same solution of (4.0.1), there exists
an unique element () € PSU(2) such that the equality (4.3.1) holds. The
fact that f(j(y,7) 'z +w; v-7) = £f(2;7)*! for each w € A, means that

Y(v) € N(Ky).

For all y1,7, € SLo(Z), we have

fGonye, )z e ) = FU (e ) i (e, ) Tz e (e T)
=) f((2 )z T)
=P(m)Y(r) - fz 1),

therefore ¢ (v1v2) = ¥(71)- ¥ (72). We have proved statement (a).

(b) We get from (a) that for any v = (¢ Z) in SLy(Z) we have
(4.32) f((v, 1) e tuy-THv; 7o7) = () f(2+ (uatve) T+ (ubtvd); T)
for all u,v € Q. For any given v € I'(2), we have

(ua+ve)T+ (ub+vd) = ur +v (mod 2A,)  V(u,v) € 72,

so the equality (4.3.2) for all (u,v) € Z? implies that ¢(y) commutes with
every element of K4. Hence () € K4 for any v € I'(2).

Suppose that v € I'(4). Then
(ua+ve)T+(ub+vd) = ur +v (mod 2A,)  V(u,v) € 372,
and the equality (4.3.2) with z = 0 implies that
(W) ) (ur +v; 7) = fluym+ vy 7) V(u,v) € 372

Because we already know that i¢(vy) € Ky, the last equality implies that
() = Io. We have proved that I'(4) C Ker(¢).

Suppose that v = (%) € Ker(¢). As before we have

(4.3.3) f(j(%T)_lz—i-u*y-T—i-v; ~v-7) = f(z+ (ua+ve)T+ (ub+vd); T)
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for all (u,v) € Q2. The transformation law (4.2.4) for f(z;7) and the above
equality for (u,v) € Z? imply that

(ua 4 ve)T + (ub +vd) = ur +v (mod 2A,)  V(u,v) € Z2,

therefore v € I'(2). The equation (4.3.3) with z = 0 and u,v € 1Z tells us
that

fluy-m+v; y-1) = f((uatve)T+ (ub+vd); T) V(u,v) € %ZQ.
The properties (4.2.4), (4.2.6) and (4.2.7) imply that

_ 2
(ua + ve)T + (ub+ vd) = £(ur +v) (mod 2A,)  V(u,v) € 37,

therefore v € {£I2}-I'(4). We have proved the statement (b).

(c) We want to compute 7' := ¢(31) and S := (% {). The defining
relation for T is

(4.3.4) flz;7+1)=T- f(z;7) VzeC, VreH.
Substituting z by z + w in (4.3.4) with w € A, gives us two equalities

T(? _\%>:<¢? _\%).T and (\% f).T:T,G _01>

in PSU(2). A easy computation with the above equalities reveals that ~ €
(ewjﬂ e*w%/‘l) Ky, ie. f(z;m74+1) = £/—1- f(z; T):tl. Since f(%; T) =
f(%; 7+4+1) = 0, the possibilities narrow down to f(z; 7+1) = £v/—1-f(2; 7).
It remains to determine the sign, which amounts to computing f (T‘zH; T)

From the first equality in (4.2.9) we get

F(TEL 1) = —edn(msdn)-(47) o(5; M) - o(TH25 Ar)
2 S WAL=

— eiln(Ti A-)=n(1; A7)
S |

The second equality in the displayed equation above follows from the trans-
formation law of the Weierstrass o-function, while the last equality follows
from the Legendre relation n(1;,A;)T — n(7; A;) = 2m/—1. We conclude
that

flz T 4+1) =vV=1-f(z 1),
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which gives the formula for 7= ((}1)).

Finally let’s compute S. The defining relation for S is
(=72 -2 =5 f(z7)

The functional equation for z — z+w with w € A; gives us two equalities

1 0\ _ (01 1 0 _ 0 1
S'(o —1)‘(1 0)’5 and (0 —1)'5_5'(1 o)
in PSU(2). A straight-forward computation gives four possible solutions of
S, which translates into

[P NY (L R SN (CL

flz;1)—1 flzsm)+1
The requirement that f (—%; —%) = 1 eliminates two possibilities: the two
1.1

+ signs above are both —1. The requirement that f(5; ——) = 0 shows that

flzm)—1
flz; )+ 1

We have proved the statement (c). O

Recall that the quotient I'(4)\H has a natural structure as (the C-points
of) a smooth affine algebraic curve Y (4). The compactified modular curve
X (4) is the smooth compactification X (4) of Y (4). As a topological space
X (4) is naturally identified as the quotient by I'(4) of HUP!(Q); the topol-
ogy of the latter is described in [56, p.10]. The complement X (4) \ Y (4),
called the cusps of X (4), is a set with 6 elements naturally identified with
I'(4)\P'(Q), or equivalently the set P'(Z/4Z) of Z/4Z-valued points of the
scheme P! over Z. It is well-known that X(4) has genus zero; c.f. [56,
(1.6.4),p. 23].

The general discussion in §2, of which the present situation is the special
case p = 4m, implies that the function 7 — f(0;7) is holomorphic on H.
Proposition 4.3 implies that the holomorphic function 7 +— f(0;7) on H
descends to a holomorphic function hx (4 on the open modular curve Y'(4).
The next corollary says that hx (4 is a Hauptmodul for X (4).

Corollary 4.4. (a) The holomorphic function hx (4 on Y (4) is a meromor-
phic function on X (4) which defines a biholomorphic isomorphism h§((4)

from X (4) to P1(C). This isomorphism W (y) @ equivariant with respect to
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P, for the action of SLa(Z)/{£1d2}-I'(4) on X(4) and the action of N(K4)
on P(C).

(b) We have explicit formulas for hx4)(t) = f(0,7):

*(1iAr)  _ p(5 A —p(h+ 55 Ar)
25+ A (T Ar) — (5 Ar)

(4.4.1) h(r)= _ein(Ti An)- (14 7)

(c) The isomorphism h}(4) sends (the image of) the standard cusp “co -
V=17, that is the point co € P*(Q), to the point 0 € P1(C).

Proof. The formula (4.4.1) in (b) follows immediately from the formulas
(4.2.9) for f(z;7).

There are two ways to see that hx(4) is a meromorphic function on
X (4). One can use either of the two formulas in (b) and classical results on
Weierstrass elliptic functions. The other way is to use Picard’s theorem: we
know that f(0,7) # 0 for all 7 € H. The ¢-equivariance of f(0,7) implies
that

f(0,7) & {£1,+V/—-1,0,00} V7 €H,

for the set {£1,+1/—1,0,00} is the orbit of N(Ky) on P'(C). So hy 4
cannot have essential singularities at any of the cusps.

From the meager information in the previous paragraph we can already
conclude that the holomorphic map hx 4 from X(4) to P!(C) has degree
1: Because X (4) has exactly 6 cusps, the map h X (4) is totally ramified over
the six points of {#1,++y/—1,0,00} C P!, and the Hurwitz formula forces
the degree of hx(4) to be 1.

The fact that hy4) sends the standard cusp oo - v/—1 to 0 can be seen
by an easy computation, using the formula (4.4.1) and the g-expansion of
the Weierstrass p-function

1 mn
(zw\/l__l)z p(Z;AT) = 5 + 3 Z nq qZ + qz Z nq:

1 - qz m,n>1 m,n>1
in the range |g¢;| < |¢.| < |¢-|~*, where ¢, = 2™V and ¢, = €2™V1% for
7€ Hand z € C. 0

Remark 4.4.1. (a) The fact that f(0; 7) is a Hauptmodul for the principal
congruence subgroup I'(4) is classical; see [58, p. 176]. We have not been able
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to locate in the literature the transformation formula in Proposition 4.3, but
formula is not difficult to prove starting from the formula (4.2.9) for f(z;7).
Perhaps the only new thing here is the phenomenon that type I solutions of
the Liouville equation Au + e* = 47(2n + 1)dp on elliptic curves produce
modular forms for I'(4) in an organized way.

(b) Clearly the function f(0; 7) is a modular unit in the sense that it is a
unit in the integral closure of C[j] in C(X(4)), where j is the j-invariant
and C(X(4)) is the function field of the modular curve X (4) over C. It
turns out that f(0; 7) is actually a unit of the integral closure of Q[j] in
the function field of the modular curve X (4), - over Q(v/—1); see [38,
Thm. 1, p. 189].

Corollary 4.5. For k=0,1,2,... € N, let ai(7) be the holomorphic func-
tion on H defined by

(4.5.1) f(z;7m) = Z ar(7) 2F, ze€C, T eH,
k=0

where f(z;T) is the developing map in Proposition 4.2. For each k > 0,
ax (1) is a holomorphic function on H and defines a modular form of weight
k for the congruence subgroup I'(4) in the sense that

ag(y-m) =j(v.m)"ax(r) ¥y eT(A).
Moreover ay (1) is meromorphic at the cusps of X (4) for every k € N.

Proof. The transformation formula (4.5.1) follows immediately from Propo-
sition 4.3. The fact that f(z;7) is holomorphic on C x H implies that ax(7)
is a holomorphic function on H. The last assertion that ay(7) is meromor-
phic at the cusps is most easily seen from the explicit formula (4.2.9) for

fz7). O

4.6. Generalization to p = (2n+1)4nw. The considerations leading to
the transformation formula (4.3.1) with respect to SLg(Z) for the normalized
developing map f(z;7) for the unique solution of Au + e* = 47 - dy on
C/A; specified in Proposition 4.2 can be extended for all type I cases. In
4.6.1-4.6.5 below we formulate the basic geometric structures which lead
to a generalization of (4.3.1), and ends with an unsolved irreducibility and
monodromy question in 4.6.6.
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Definition 4.6.1. Let n be a non-negative integer.

(1)

Let M, be the set of all pairs (u(z),7), where 7 € H and u(z) is a
solution of the mean field equation Au+ e* = 4(2n + 1)7 - Jp on the
elliptic curve C/A.

Let m, : M, — H be the map which sends a typical element (u(z),7)
in M,, to the point 7 of the upper-half plane H. Note that m, is
surjective according to Theorem 0.4.

Let D, be the set of all (f(z),7), where 7 is an element of H and f(z)
is a developing map of a solution of Au+ ¥ =4(2n+ 1) -y on the
elliptic curve C/A; whose monodromy group is equal to the standard
Klein’s four subgroup K4 C PSU(2) in the notation of 4.1.

Let py, : D, — M, be the map which sends a typical element (f(z),7) €
D,, to the element (log %,7) of Ml,,, and let 7, = 7, o p, :
D,, — H,, be the natural projection map which sends each element
(f(z),7) € Dy to 7.

Let D), be the subset of D, consisting of all pairs (f(z),7) € D’ such
that and f(z) is a normalized type 1 developing map for an element
(u(z),7) € M, satisfying the monodromy condition that f(z+ 1) =
—f(z) and f(z+7) = f(z) ! forall z € C. Let p}, : D/ — M,, be the
restriction to I, of p,, and let 71, = wop/, : D' — H, be the restriction
to D, of m,.

Define ¢, : M,, — D/ be the map which sends a typical element
(u(z),7) € M}, to the element (f(z),7) € D/, such that f(3) =0 and
f(5)=1.

This map ¢, is well-defined because for each normalized type I devel-
oping map (f(z),7) € D, we have

f(3)=0o0r 0o,  f(3) ==L

these four possibilities are permuted simply transitively by the action
of K, through fractional linear transformations.

Lemma 4.6.2. Let M, D, D] be as in Definition 4.6.1 above.

(1)

FEach of the three sets M,,, D, and D, has a natural structure as a
one-dimensional complexr manifold such that the maps 7, : M,, — H,
7in : Dy — H and 7, : D), — H are finite surjective holomorphic
maps. Moreover there exists a discrete subset R, C H which is sta-
ble under the natural action of the modular group SLo(Z) on H with
|SLa(Z)\Ry| < oo, such that m,, 7, and 7, are unramified over the
complement H . R, of R,,.
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(2) The action of the finite group N(K4) on D, via linear fraction trans-
formations is holomorphic, making p, : D, — M, an unramified
Galois cover with group N(Ky). Similarly the map p), : D), — M,, is
a holomorphic unramified Galois cover for the action of the standard
Klein’s four group K4 in PSU(2).

(3) The map ¢y, : M, — D, is a holomorphic section of pl, : D), — M.
Consequently p, : D, — M, is a trivial Galois cover with group
N(Ky) and pl, : D], — M, is a trivial Galois cover with group Kjy.

Proof. The statement (1) for m, : M,, — H follows from theorems 0.4 and
3.2. The part of statement (1) for 7, : D, — H and 7], : D/, — His a
consequence of theorems 0.4 and 3.2 and the group-theoretic lemmas 1.3.1
and 1.3.2.

The action of N(K4) on D, is easily seen to be continuous and is simply
transitive on every fiber of p, : D, — M,,. The first part of statement (2)
follows. The second part of (2) is proved similarly.

The fact that p), o ¢, = idyy, is immediate from the definition. It is not
difficult to see that ¢, is continuous, which implies that ¢,, is holomorphic.
The first statement in (3) is proved; the rest of (3) follows. O

Definition 4.6.3. Define compatible actions of the modular group SLo(Z)
on M, and D, as follows. For any element v € SLy(Z), any element
(u(z),7) € M, and any element (f(z),7) € D, such that p,((f(z),7)) =
(u(2),7),

e 7 sends (u(z),7) € M, to the element
(u(i(7,7)-2) +1og(li(7, T)*), 7 7) € My,

e and v sends (f(z),7) € D, to the element

(f(J(’Y:T)Z)? 7'7_) € Dy.

It is easy to check that p, : D, = M,, is SLy(Z)-equivariant, i.e.

pn(’y ) (f(z)aT)) =7 pn((f(z)aT))
for every « € SLa(Z), and every element (f(z),7) € D,.

Lemma 4.6.4. (1) The actions of SLa(Z) on D, and M, defined in 4.6.3
are holomorphic.
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2) The holomorphic maps
( D D
Pn Dy —>M,, 7™ : M, -H and 7x,=m,op,:D, > H

are equivariant for the SLo(Z)-actions on Dy, M,, and H.
(3) The actions of SLa(Z) and N(K4) on D, commute.

(4) The submanifold D), C D, is stable under the action of the principal
congruence subgroup T'(2) of level 2 in SLa(Z).

Proof. That the action of SLy(Z) on D,, and M, is continuous can be verified
without difficulty, from which (1) follows. The proofs of statements (2)—(4)
are easy and omitted. O

Corollary 4.6.5. Suppose that M, is connected.

(a) There exists a group homomorphism
U 2 SLa(Z) — N(Ky)

such that
On (7 (f(2),7)) = Un(7) - dn((f(2), 7))
for all v € SLa(Z) and all elements (f(z),7) € M,,.
(b) The homomorphism 1, in (a) satisfies
I'(4) C Ker(vy,) and 9,(I'(2)) C Ky.

4.6.6. Questions. (a) Is M, connected???

(b) Suppose that M, is connected. What is the Galois group of the ramified
cover mp : M, — H,, ? Is it the symmetric group Sp+1?

5. Type II solutions: evenness and Green’s functions

In this section we give a proof of Theorem 0.6 concerning type II solutions.
By Proposition 1.5.1, we may assume that p = 8nm (I = 2n). Let u be a
solution of (0.1.3), and f be a developing map of u. We recall that uy in
(0.2.6) is a one parameter family of solutions of (0.1.3).

22We think the answer is very likely “yes”, but we don’t have a proof.
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5.1. Evenness of solutions for p = 8n.

Theorem 5.2. There is a unique even solution within each normalized type
1I family of solutions of the singular Liouville equation Au+e" = 8nm dg on
a torus E, n, wheren is a positive integer. In other words for any normalized
type II developing map f of a solution u of the above equation, there exists
a unique A € R such that the solution

NP
e (T B

of the same equation satisfies uy(—z) = uy(z) Vz € C.

Proof. Let f be a normalized type II developing map of a solution u of
(0.1.3). It is enough to show that there exists a unique A € R such that
fr(z) := e - f(2) satisfies fr(—2) = ¢/ fr(2) for a constant ¢ with |¢| = 1.

Let g := f'/f, the logarithmic derivative of f; it is a meromorphic func-
tion on E = C/A because f is normalized of type II. It suffice to show that
g is even, for then

f(0)?
f(z)

and the unique solution of A is given by A = —log |f(0)].

f(=2) = f(0)exp /OZ g(w) dw =

We know from Lemma 1.3.7 that f is a local unit at points of A and g
is a meromorphic function on E which has a zero of order 2n at 0 € E, no
other zeros and 2n simple poles on E. Moreover the residue of g is equal to
1 at n of the simple poles of g, and equal to —1 at the other n simple poles.

Denote by Py, ..., P, the n simples poles of g with residue 1 on £ = C/A,
corresponding to zeros of the developing map f, and let Q1,...,Q, be the
n-simple poles of g with residue —1, corresponding to simple poles of f.
Let p1,...,pn € C be representatives of Py,..., P, € C/A; similarly let
q1,---,qn € C be representatives of Q1,...,Q, € C/A. The condition on
the poles of g allows us to express g in terms of the Weierstrass (-function:

(5.2.1) 9(2) =D (z=pi) =Y ((z—a)+ D> (pi) = Y Cla)
i=1 i=1 i=1 i=1

for a unique constant ¢, because g(z) — D", C(z — pi) + >y C(2 — @)
is a meromorphic holomorphic function on E. Of course the constant c is
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completely determined by the elements p1,...,pn;q1,--.,qn € C:
c=> Cp) - Ca)
i=1 i=1

It remains to analyze the condition that g(z) has a zero of order 2n at 0 € E,
ie.

n

=> o D(py) Z@” %)
0

i=1

d"g
dz"|,_

(5.2.2) 0=—g"(0)= -

forr=1,...,2n — 1 because

n

T) Z) e Zp(’ril)(z _pz) — Zp(r 1)(2 —q; )
=1 =1

Only the conditions that ¢**1(0) = 0 for s = 0,1,...,n — 1 will be used
for the proof of Theorem 5.2. The vanishing of the even-order derivatives of
g will be explored in the proof of Theorem 5.6.

By Lemma 5.4 below, relations (5.2.2) for r = 1,3,5,...,2n — 1 imply
that the sets {p(p1),...,9(pn)} and {p(ql),...,p(qn)} are equal as sets
with multiplicities. Because Pi,..., Py; Q1,...,Q, are 2n distinct points
on E, it follows that p(p;) # e(p;j) whenever i # j and {Q1,...,Qn} =
{=P1,...,—P,} as subsets of E'\ {0} with n elements. From the expression
(5.2.1) of g and the fact that ((z) is an even function on C one sees that
g(z) is even. Theorem 5.2 is proved modulo the elementary Lemma 5.4. [

We record the following statements from the proof of Theorem 5.2.

Corollary 5.3. Let f be a normalize type II developing map of a solution
u of the equation Au+ e* = 8nw dg for a positive integer n. Then the zeros
pi’s of f modulo A correspond to n elements Py, ..., P, € E~ {0} and the
poles q;’s of f modulo A correspond to n elements Q1,...,Qn, € E ~ {0}.
Moreover the following statements hold.

(a) {Q1,...,Qn} ={—P1,...,—P,} as subsets of Ex{0} with n elements.
(b) ¢'(p;) # 0, or equivalently P; is not a 2-torsion point of E, for i =
1,...,n.

(c) p(psi) # p(pj) for any i, j=1,...,n such that i # j.
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Lemma 5.4. (a) For each positive integer j, there exists a polynomial
h;(X) € C[X] of degree j + 1 such that

o®(2) = () () = hy(o(2))

as meromorphic functions on C.

(b) For every symmetric polynomial P(Xq,...,X,) € C[Xy,...,X,], there
exists a polynomial Q(W1y,...,Wy) € C[Wh,...,W,] such that

n n

P(p(zl)v ceey p(zn)) = Q( @(Zz)’ Z W(Q) (Zz)v Z @(4) (Zz)v RN Z p(2n_2)(zi))

=1 i=1 i=1
as meromorphic functions on C™.

Proof. Taking the derivative of the Weierstrass equation

0 (2)? = 4p(2)" — gap(2) — g,

and divide both sides by 2¢'(z), we get
1
oD (2) = 6p(2)" - L o

An easy induction shows that p(27)(z) is equal to h;j(p(z)) for a polynomial
hi(X) € C[X] of degree j + 1 and the coefficient a; of X’*! is positive.
In fact one sees that a; = (25 + 1)! when one compares the coefficient of
27272 in the Laurent series expansion of p(*)(z) and h;(p(z)). We have
proved the statement (a).

The statement (b) follows from the fact that every symmetric polynomial
in C[Xy, ..., X,] is a polynomial of the Newton polynomials p1 (X1, ..., X,),
oo (X1, ..., Xn), where pj(Xq,...,Xp):=> 1" X/ forj=1,...,n. O

5.5. Green/algebraic system for p = 8nmw. Let u be a type II even
solution of the singular Liouville equation Au + €* = 8nmdy on a torus
E = C/A, where n is a positive integer. As before let f be a normalized
developing map of u and let ¢ = (log f)' = f'/f. Let p1,...,pn € C be
the simple zeros of f modulo A and let —p1,..., —p, be the simple poles
of f modulo A as in Corollary 5.3. Let P, = pymodA,..., P, = p,modA;
they are exactly the blow-up points of the scaling family wu) of solutions of
Au + e* = 8nm dy.
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5.5.1. Two approaches to the configuration of blow-up points. We
will investigate the constraints on the configuration of the points Py, ..., P,
with two approaches outlined below. The plans are executed in §5.6 and §5.7
respectively.

A. In the first approach we have the relations (5.2.2) for r = 2,4,...,2n—2
and also the condition that the period integrals of the meromorphic differ-
ential g(z)dz on E are purely imaginary; the latter comes directly from
the assumption that the image of the monodromy of the type II developing
map lies in the diagonal maximal torus of PSU(2). The first n — 1 con-
ditions translate into a system of polynomial equations in the coordinates

o(P1)s-- - 0n), 0 (P1), ..., 9 (pn) of the n points P, ..., P,:
(5.5.1) O (p1)e"(p1) + -+ ' (Pu)p"(Pn) =0, Vr=0,...,n—2,

while the monodromy constraint becomes
“ 0G
5.2 —(p;) =
(552) > o) =0

where G is the Green’s function on E as in (0.1.1).

The method used in this approach also shows that the n equations (5.5.1)
and (5.5.2) are also sufficient: if P, = pymodA,..., P, = p,modA are n
elements in E with distinct z-coordinates o1 (pl), e p(pn) satisfying equa-
tions (5.5.1) and (5.5.2) and none of Pi,..., P, is a 2-torsion point of F,
then there exists a normalized type II developing map f for a solution of
Au+e* = 8nm §y such that p1, ..., p, is a set of representatives of the zeros
of f modulo A.

B. In the second approach, results on blow-up solutions of a mean field
equation on a Riemann surface provides the following constraints

oG oG .
(5.5.3) na(pz) = Z | a(p, —pj), for t=1,2,...,n
1<j<n,j#i

on the blow-up points Py,..., F,.

5.5.2. We will see in 5.7 that the system of equations (5.5.3) is equivalent
to the combination of (5.5.2) and the following system of equations

(5.5.4) Zp erpﬂ):o, fori=1,...,n.
o (D))
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Moreover for elements (P, ..., P,) € (ENE[2])" with distinct z-coordinates
(1), ..., p(pn), the two systems of equations (5.5.1) and (5.5.4) are equiv-
alent.?® This means that among elements of the subset Bl,, C E™ consisting
of all n-tuples (P, ..., P,) € (E~{0})" satisfying the constraints (5.5.2) for
blow-up points, those satisfying the non-degeneracy condition

(5.55) ¢(p) #0 and p(p) # p(pj) wheneveri#j V1<ij<n

are indeed blow-up points of the scaling family wu)(z) of a type II solution
of the singular Liouville equation Au + e* = 8nmw dy on F.

We recall some properties about period integrals and Green’s functions
in lemmas 5.5.3-5.5.4 below, before returning to the first approach outlined
in 5.5.1.

Lemma 5.5.3. For anyy € C and any w € A = Hy(E;Z), the w-period of
the meromorphic differential % on E =C/A is given by

W) o ) — () - (mod 2m
(5.5.6) /L p(z)—p(y)d =2w-((y) —2n(w) -y (mod 27mv/—17Z).

Here Ly, : [0,1] — C is any piecewise smooth path on C such that L, (1) —
L,(0) = w and p(z) # p(y) for all z € L,([0,1]).

Proof. This is a reformulation of [44, Lemma2.4]. Note that meromorphic

differential % on E has poles at 0 and £y (mod A) with residues 0

and +1 respectively, therefore the period integral I,(y) := [, p%y)pdz is
well-defined modulo 27+/—1Z. The addition formula for p( ) gives
oly)dz  _ ¢(z)dz
p(z) —ply)  p(z) —py)

—2¢(z+y; N)dz + 2¢(z; N)dz + 2((y; A)d=z

The lemma follows after an easy calculation, using the functional equation
for ¢(z;A) and the fact that - log o(z) = ((z) and; see [44, Lemma 2.4] for
details.

Alternatively, one computes

L) = /L (20l +1) ~ 20(0)dz = ~200) + 20()

ZFor every m € N, E[m] denote the subgroup of m-torsion points on E.
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and determine the constant of integration up to 2w/ —17Z by evaluation at
2-torsion points of E. O

Lemma 5.5.4. Let G be the Green’s function on E = C/A as in (0.1.1).
The following formulas hold.

1 1 )
(5.5.7) G(z) = = log |A(A)= ceENEN2 LG40 A) on E,

(5.5.8) — 4 aa—f(z) =((z;A) —n(z;A) Vz e C.
In the first formula (5.5.7), n(z; A) is the quasi-period and A(A) is the non-
zero cusp form of weight 12 for SLa(Z) given by the formula

o TT)12 00
A(A) = g2(A)° — 27gs(A)? = % - TL 0™

m=1

where ¢z = 2™V =1 7 = wy Jwy with Im(7) > 0.
Remark 5.5.5. (a) An equivalent form of 5.5.4 (a) is

™ Im(z)2

6_ Im(t) . A(C/A7—>7$ . 0[1/2}(2;7-)

17

1
G(z; Ar) = ~5- log

for the Green’s function G(z; A;) on the elliptic curve C/A;, where 7 is an
element of the upper-half plane and A; = Z + Z-7)). Here we have used the
general notation for theta functions with characteristics

7_) — Z e —17(m+a)? | 627r\/—_1(m+a)(z+b).

meZ

The equivalence of the two formulas follows from the formulas

olz _ _len(lvl\?) ‘ 0[12](z;7)
(A =2 021 )00l 7671 (25 )
and
0181 (25 701215 MO 7) = 2 (1P = 2 (0 [T (1)
m=1

(b) The function Z(z;A) := {(z;A) — n(z;A) = —4#%—? appeared in [28,
p.452]; we will call it the Hecke form. For any integers a,b and N > 1 such
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that ged(a,b, N) = 1 and (a,b) # (0,0) (mod N), Z(&+27; Z + Z7) is a
modular form of weight one and level IV, equal to the Eisenstein series

— N- E{V(Tv S5 a, b>|5:0

'
=— N-Im(7)* - Z (m7+n)"tmr + 0|7
(m,n)=(a,b) mod N =0

See [28, p.475].

Proof of Lemma 5.5.4. The formula (5.5.7) is proved in [40, II, §5]. The
equivalent formula in 5.5.5 (a) is proved in [23, p.417-418]. See also [43,
§7] and [44, §2]. The formula (5.5.8) follows from (a) by an easy computa-
tion. O

Theorem 5.6. Let n be a positive integer. Let P, =p;modA,i=1,....n
be n distinct points on E = C/A such that {Py,...,P,}n{—=P1,...,—P,} =
0. In other words p(p1), ..., ©(pn) are mutually distinct and none of the P;’s
is a 2-torsion point of E. There exists a normalized type II developing map f
for a solution u of Au+e* = 8mndy on E such that f(p1) =--- = f(pn) =0
if and only if

(5.6.1) i:—;

=1

Q
Q

and

(5.6.2) PP P+ -+ ¢ (Pn)e"(pn) =0 for r=0,...,n—2.

Notice that (5.6.1) is the same as (5.5.2) and (5.6.2) is the same as
(5.5.1).

Proof. We use the notation in the proof of Theorem 5.2 and continue with
the argument there. The logarithmic derivative ¢’ = f'/f of a normalized
type II developing map has simple poles at the 2n points +P;,...,+F, and
is holomorphic elsewhere on E. Moreover the residues of g at P; (resp. at
—P;) is 1 (resp. —1) for each i. Therefore
¢ (p1) ¢ (pn)
(563 = m ey T 66 - o)
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because g(0) = 0. We know two more properties of ¢g: (a) g(z) has a zero of
order 2n at z = 0, and (b) for any w € A and any piecewise smooth path
L, :[0,1] — C such that L(1) — L(0) = w and

L(0, 1) N [(UZypi + A) U (U, —pi + A)] =0,
we have

/ gdz € vV—1R.
Lw

To see what property (a) means, we expand g(z) at z = 0 as a power series
in p(z):

- ) . Z—m—l
=2 p»/p ) =Y (L e olz)

jzlp m=0 \j=1

Because g has exactly 2n simple poles and is holomorphic elsewhere on F,
we see that order,— g(z) = 2n if and only if all n — 1 equations in (5.6.2)
hold.

We know that 7(z;A)y — zn(y; A) =0 (mod v—1R) for all y,z € C
because the left-hand side is R-bilinear, and we know from the Legendre
relation that the statement holds when y, z are both in A. By Lemma 5.5.3,

/L g(=)dz =23 (wl(py) — n(@)p;) (mod 2rv/=12)

Jj=1

= 2w - Z n(p;)) (mod v—IR)

for all w € A. Therefore property (b) holds for g given by (5.6.3) if and only
(5.6.1) holds. We have proved the “only if” part of Theorem 5.6.
Conversely suppose that equations (5.6.2) and (5.6.1) hold. We have seen
that the meromorphic function g(z) given by (5.6.3) has a zero of order 2n
at z = 0 and the period integrals of gdz are all purely imaginary. Therefore
f(z) = exp fo w)dw is a type II developing map for a solution of the
singular L10uv1lle equatlon Au + e = 8mn dg. O

Remark 5.6.1. The property (a) that the order of the meromorphic func-
tion

©'(p1) ¢’ (Pn)
p(2) — p(p1) ©(2) — p(pn)
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on F at z =0 is equal to 2n is also equivalent to: 3C € C* such that

(5.6.4) > 9 ) [J0(2) = ppi) = C.
=1 ]

5.7. Analytic approach to the configuration of the blow-up set.

5.7.1.  We may also study the set {p1,...,p,} from the analytic point of
view. As we have already seen, {p;} represents the blow-up set of the family
of solutions uy as A — oo. The equations which determine the position of
blow-up points are of fundamental importance in the study of bubbling solu-
tions of semi-linear equations such as mean field equations, Chern—Simons—
Higgs equation, Toda system in two dimension, or scalar curvature equation
in higher dimensions. Hence we will derive these equations from the analytic
perspective.

We recall the definition of blow-up points for a sequence of solutions uy,
k € N, to the mean field equation

(5.7.1) Auy, + " = pg oo on E

with possibly varying singular strength pg such that pr — p = 8mn for some
n € N. If p,, = 8mn for all k, this goes back to the situation wy in (0.2.6) as
has been discussed. It is important to consider blow-up phenomenon from
a sequence of solutions ug with pp — p. (It is known that if p ¢ 87N then
there is no blow-up phenomenon [12].)

Definition 5.7.2. A subset S = {P1,...,P,} C E = C/A is called the
blow-up set of the sequence of solutions (uy)nen of (5.7.1) with p, — 8mn if
for all %

u(P;) = +oo as k — oo,

while if P € S then
up(P) — —oo as k — oo.

Points P; in the blow-up set are called blow-up points of the sequence of
solutions (uy).
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It is also shown in [12] that m = n and the configuration of the blow-up
points { Py, ..., P,} satisfies the following equations:

(5.7.2) nG.(P)= > G.P-PF), i=12,..n,
j=1,#%

where z is the coordinate for C and G, = %—f. Notice that the system
of equations (5.7.2) is the same as the equations (5.5.3). Summing the n
equations in (5.7.2) from i = 1,...,n, we get

(5.7.3) zn: G.(F) =0,
=1

since %—f is an odd function. The last equation (5.7.3) is the same as the

Green equation (5.5.2) and (5.6.1).

Lemma 5.7.3. Let {Py,...,P,} be a set of n mutually distinct points in
E~ {0} =C/A~A{[0]}, and let p1,...,pn be elements of C such that P; =
[pi] :=pimod A fori=1,...,n. The system of equations (5.7.2) for the set
{P1,...,P,} is equivalent to the combination of the Green equation (5.7.3)
and the following system of equations

(5.7.4) Z (C(pi —pji A) +<¢(pj; A) — ¢(pis A)) =0, i=1,...,n
1<j<n, j#i

Notice that for each 4, the sum in the left-hand side of (5.7.4) is inde-
pendent of the choice of representatives py,...,p, € Cof P1,..., P, € C/A.

Proof. We have seen that the n equations in (5.7.2) imply the Green equation
(5.5.2). It suffices to show that under (5.7.3), the system of equations (5.7.2)
is equivalent to the system of equations (5.7.4).

We know from (5.5.8) that G.(P;) = ((pi; A) — n(pi; A) for each i. So
the Green equation (5.7.3) means that y ;" | ((pi; A) = >y n(pi; A). For
each ¢ the i-th equation in (5.7.2) becomes

n- [Clos A) —nlps MDA = D (Coi —pii A) = n(pis A) + n(pj; A)
1<j<i, j#i
which is equivalent to the i-th equation in (5.7.4) because Y ;" ; ((pi; A) =
>oic n(pis A).- O

Remark 5.7.4. Part of the condition for the blow-up set {Py,..., P,} of a
sequence of solutions (ug) as in Definition 5.7.2 is that
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(5.7.5) P; # P; for i#j,
instead of the stronger property
(5.7.6) {P1,...,P.}n{=P,...,—P,} =10

which is satisfied when {p1,...,p,} are zeros of a normalized developing
map of a solution of Au + e* = 8rn dg.

5.8.  Equivalence of algebraic systems (5.6.2) and (5.7.4) under
(5.7.6)

5.8.1.  In light of Theorem 0.6, the analytic discussion in §5.7 suggests
that the system of equations (5.5.2) + (5.6.2) may be equivalent to the
system of equations (5.5.2) + (5.7.4) under the constraint that P; # P;
whenever i # j and P; # —P; for all 4, j.

Since the Green equation (5.5.2) is the only non-holomorphic equation
shared by both systems, one might optimistically ask

Are the two holomorphic systems of n — 1 equations (5.6.2) and (5.7.4) equiv-
alent?

Note that the sum of the n equations in (5.7.4) is zero, hence we may remove
one equation from (5.7.4).

5.8.2.  To answer this question, we recall the addition formula

1¢'(2) = p'(u)
2 p(2) — p(u)

Thus (5.7.4) with additional constraint p; # £p; for i # j is equivalent to

= ((z+u) = ¢(2) = ((w).

(5.8.1) Zp +ppﬂ):o, i=1,...,n.
i (p])

Let (x;,yi) = (p(pi), 9’ (pi)). As points on E they are related by the
defining cubic curve equation y? = p(z;) = 423 — gaz; — g3. Then (5.8.1) and
(5.6.2) can be written as the following systems respectively:

(582) S UEB g ot
Jj=1,#i Ti = Ty
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where x; # x; for i # j is imposed, and
n
(5.8.3) d ayi=0, 1=0,...,n-2
i=1
Both systems of equations (5.8.2) and (5.8.3) are linear in the y;’s, and in

fact we can prove their equivalence in a general context:

Proposition 5.8.3. For a given set of mutually distinct elements

T1,...,2, € C, the linear systems of equations
Y +Y; .
1<j<n, j#i

and

n
(5.8.5) doal-v;=0, VI=0,...,n-2

i=1
i variables Y1, ...,Y, are equivalent.

Proof. The system (5.8.4) corresponds to the n x n matrix

n

z: 1 1 1 1
szaqka T1—T2 T1—T3 T1—Tn
1 = 1 1 1
T2—T1 2. T2—Tk  Ta—Tz T2—T
A, = k1,42 :
n—1
1 1 ... ... 1
Tp—2T1 Tp—IT2 k:lxnizk
that is, A, = (a;;) € Mn(Q(z1,...,2y)), where a;; = —— if j # 4, and
i

aj; = ZZ:L# rlxk if j = 4, which is the sum of all the other entries in the
same row. Note that the sum of all rows in A,, is the zero row vector. In
particular, det 4,, = 0.

The system of equations (5.8.5) corresponds to the (n — 1) X n matrix

1 1
J:‘l PR xn
By, = .
x?—Q xn72
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Let b = (b1,...,by), where b; is the determinant of the (n—1) x (n—1) minor
of B, without the i-th column. Then b;’s are given by the Vandermonde

determinant:
bz‘ = H (a:k — xl).
1<I<k<n;l,k#i
Let C), be the (n — 1) x n matrix consisting of the first n — 1 rows of 4,
and define ¢ = (¢q,. .., ¢,) similarly.

We want to prove that ¢ # 0, which implies that rank A, = n — 1 and
the kernel of A,, is spanned by c. Then the equivalence of these two linear
systems simply means that b and ¢ are proportional to each other.

We claim that

_ D)™ - 1)
a Hk;«éi(xk — ;)

Due to symmetry, it is enough to consider the case ¢ = n. We will show
that the order of ¢,, along the divisor xp — x; is non-negative for all k,[ # n.
This will imply that ¢, is a constant times [[}] (z) — z) "

Again by symmetry, it is enough to check the case k = 1,1 = 2. The only
terms which may contribute poles along z; — z; are a1, a2, as; and aso.
If we subtract the second row by the first row, and then add the resulting
first column into the second column, we get the following (n — 1) x (n — 1)
matrix

(5.8.6) ¢

1=1,...,n.

1

e, T T - X ..k
r (1 —x2)%x % - %
* (1 —x2)%x % -0 % ’
* (x1 — @)% x -+ %
where r = 3", —1_as well as all entries labeled by *, does not have pole
j73 T1—Z; ) )

along the divisor x; — 2. This shows that det (a;;)1<s,j<n—1 has non-negative
order along x1 — x2. So there exists an element d,, € C such that

Hk<n<mk - xn)

By Lemma 5.8.4 below we have d,, = (n — 1)! # 0. Then (5.8.6) holds
and we have ¢ # 0. Now we note that

[Tipi(@r — 1) (n—1)! 1<l<k<n

()" T1 (T — 1) 1
b; = Lsi<hks ; H (z — x7)Cis

i.e. b is parallel to c¢. Hence the equivalence is proved. O
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Lemma 5.8.4. The constant d,, in (5.8.7) is (n — 1)L

We offer two proofs.

The first/analytic proof. It is easy to see that d; = 1. If we may show
that d,, = (n — 1)d,,—1 for n > 2 then we are done. We observe that

n = lim dn1
H2§k<n(33k - l‘n) T —00 Hk<n(xk _ xn)

which, by the definition of ¢, and (5.8.7), is equal to

n

§ : Ty L1 T .. Ty
T1—Tk T1—T2 T1—T3 T1—Tn—1
k=2
n
1 Z 1 1 .. 1
To—T1 To—Tg T2—T3 T2—Tn—1

lim k=172
T1—00 .

Tn—-1—2%1 Tn—1—T2 1 Tn—1—Tk

Since
n

. z1
lim E —_— =N — 17

by evaluating the limit, the determinant becomes

n
Z 1 1 1 . 1
h—3 T2—Tk T2—XT3 T2—Ta T2—Tn—-1
1 i 1 1 1
T3—T2 T3 —Tk T3—Tq Y T3—Tn—-1
(n—1) k=2,#3
1 1 2 1
LTn—1—T2 Tn—-1—3 o T k:2§n—l Tn—1—Tk
dp—1
=(n-1 r

)H2§k<n($k —Tn)

Thus d, = (n — 1)d,—1 as expected. O

The second/algebraic proof. It is enough to consider the specialization
z; = fori=1,...,n, where ¢ = e2™/™ is the n-th primitive root of unity.
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Let A" = (aj;) be the specialized matrix and A" = (a;;) the Hermitian
matrix with

1 e
‘ 1_7@_1 if i # j,
a;'j = Za;j =3y n—1
— 5 = 5 ifi=j.
k:ll ¢ 2

Here the diagonal entries af;, = %(n — 1) follows from the fact that

1,1 _1—§"—k+1—<k_1
1_<k 1_Cn—k_1_ck_<n—k+1_ :

Let V be the underlying vector space of the group ring Q[Z/nZ] =
D,ez /nZQ [7]. Then (A”)! is the matrix representation of the following
operator T on V with respect to the basis [1], [2],- - [n]:

n—1 1 )
T=— +Zl_<jm.

Jj=1

We put the Hermitian inner product on V' so that [i]’s are orthonormal. It
is easy to diagonalize A”. Indeed, for a € Z/nZ, let

> (Tl € Qz/nZ).
i€Z/nZ

Then V' is also the orthogonal direct sum of the one dimensional subspaces
Vo := Q- 4. It is easily seen that [j]-x, = (?%x,. Hence z,’s are eigenvectors
of T with eigenvalues

n—1

n—1 ¢ie
A = + -
2 = 1-¢
In fact Ay, =a—1for a =1,...,n. To see this, we rewrite \, as
n—1 1— Cja n—1a—1
O S e e B B Do
j=1 j=1 k=0

By changing the order of summation, for ¥ = 0 we get n — 1, while for
k=1,...,a—1 we get 27:_11 (7% = —1. Hence A\, = a — 1 as expected.
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The diagonalization in terms of matrices reads as

0
1

CA" = C,

n—1

where the a-th row vector of C' = (2;5)1<i j<n, 2ij = (™% corresponds to zg.
Now we work on A"~V and A" 'T € End(A"~'V). For a square matrix

B, A"'B = adj(B)! is the “non-transposed” cofactor matrix. It has the

covariant property that A" 1B By = (A" 1Bp)(A" 1 By). We find

(n—1)!

An—lA// — An—lc«—l 0

AIC

Hence
(588) (AnilA//)ni = (n — 1)!(An71071)n1(/\n710)12‘.

To compute the right hand side, from C.C* = nl, and C.(A""1C)t =
(det C)I,,, we get

A"IC =n"1(det C)C.
Also C~! = n=1C?. The same reasoning implies that
Ao = pm(DATICE = 7 (det OO = (det O) 71O
In particular, (5.8.8) becomes

(n—1)!

(An—lA//)m — Cz

By definition of ¢;, the equation (5.8.7) for d,, specialized to z; = ¢’
reads as (notice that H;L;ll(l — ) =n)

_1\ntiAn—=1 4\ | (_1)n+idn _ (_1)n+idnci(_1)n—l
GO A = @) — n '

Since (—1)""(A"1A"),; = (=1)""(=1)""L(A"~1A"),;, the above two ex-
pressions lead to d,, = (n — 1)!. O
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Remark. We found the algebraic proof first which gives the value d,, =
(n — 1)!. The shorter and more elementary analytic proof came much later
which was inspired by the factorial nature of d,,. Then we were informed by
Y. Zarhin that Lemma 5.8.4 appeared in [55, §1], with a different proof.

Corollary 5.8.5. For Pi,...,P, € E satisfying P; # P; for i # j and
P; # —Pj for alli, j, the system of equations (5.6.2) is equivalent to (5.8.1),
hence also equivalent to (5.7.4).

Remark 5.8.6. We record two easy observations about the system of linear
equations

(5.8.9) dshvi=0, 1=0,...,n-2

with s1,...,s, in C.

(a) If s1, ..., s, are mutually distinct, and (y1,. .., yy) is a solution of (5.8.9)
in which one y; is 0, then all y;’s are equal to zero.

(b) If s1,...,s, are not mutually distinct, then (5.8.9) only has trivial
solutions in the following sense: We have a set {t1,...,t,} consisting of
mutually distinct numbers such that {si,...,sp} = {t1,...,tm}. Suppose
that (y1,...,yn) is a solution of (5.8.9), let zj = >_ 1,4 5=, ¥i for
i =1,...,m. Then the system of linear equations for y1,...,y, becomes

Zsé'zj:O for{=0,...,n—2,
j=1

and z; = -+ = z;, = 0 by the non-vanishing of the Vandermonde determi-
nant.

6. Lamé for type II: characterizations of X,, and Y,
6.1. An overview for this section.

6.1.1. In §5, we have proved that for each positive integer n, for every
solution u of the mean field equation

(6.1.1) Au+ e = 8mn - on C/A
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there exists a set a = {aj,...,ay} of n complex numbers which satisfies
(5.5.2), (5.6.2) and (5.7.6) such that

n

i TTe [ @)
(6.1.2) F(2) = ful2) ;Ep[;mw@m»d’

is a normalized type II developing map of u. Moreover every set a =
{ai1,...,a,} of complex numbers satisfying conditions (5.6.1), (5.6.2) and
(5.7.6) gives rise to a solution of the above mean field equation.

6.1.2.  In this section we will leave the Green equation (5.6.1) alone and
consider those a = {a1,...,a,} satisfy only the equations (5.6.2) under the
constraint (5.7.6), that is, we consider a in the set X,, defined in (0.6.6) in
the introduction. We would like to characterize a € X,, in terms of certain
Lamé equations.

6.1.3.  We will make use of the following addition formulas freely:
o'z
P'(w)

1¢'(2) — ¢'(u)

(6.05) SIE O (et~ 62) - )
L g
610 1 (ZFEE) o4+ o) + ol

Definition 6.1.4. Let A be a cocompact lattice in C. Let n > 1 be a
positive integer. Let [a] = {[a1],...,[an]} be an unordered list of n elements
in (C/A)~{[0]}, possibly with multiplicity. Define a meromorphic function

fia)(2) on C by
(6.1.7) fla(2) = flg(2; M) Hexp/ w—a;) —C(w+a;)+2¢(a;)) dw.

where q; is a representative in C of [a;] for each i =1,... n.
Note that f,) depends only on the element {[ai],...,[as]} of the sym-
metric product Sym™(C/A~ {[0]}) and not on the choice of representatives
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a; € [a;]. Because ((z;A) = & log o(2; A), we get from (6.1.4) an equivalent
definition

z—az
z+al

::]:

(6.1.8) fra)(2) = (=)™ - 222z S(@)
=1

Note also that fi,)(0) =1 and fig(—2)- fiq(2) = 1 for all 2.

Definition 6.1.5. Let a = {a1,...,a,} be an unordered list of elements of
C~ A. The Hermite-Halphen ansatz function w,(z) attached to the list a is
the meromorphic function on C defined by

(6.1.9) wa(2) = wa(z A) i= X @ T % ,
=1

Remark. (a) In classical literature the functions wg(z) arise as explicit
solutions of the Lamé equation

(6.1.10) w" = (n(n+1)p(z) + B)w

see [29, I-VII], [27, p.495-497] and also [67, §23.7].

(b) Clearly we have
flay(2) = wa(2)

w_g(2)’

where —a is the list {—ay,..., —ay,} and [a] is the list {[a1],...,[an]}.

(¢) If b={b1,...,b,} is a list such that b; —a; € A for all i = 1,...,n, then
l"u’—: € C*, a non-zero constant.

Lemma 6.1.6. If a list [a] = {[a1],...,[an]} of n elements of (C/A)~{[0]}
satisfies (5.6.1), (5.6.2) and the non-degeneracy condition (5.7.6), then there
exists a constant B = Bjg) such that the Schwarzian derivative of f|,) satisfies

S(fia)) = —2(n(n + 1)p(z; A) + Byy).

Proof. By Theorem 5.6, f[, is a normalized developing map for the mean
field equation (6.1.1), and the assertion follows from (3.1.4). O
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6.1.7.  The constant B, in Lemma 6.1.6 can be evaluated by a straight-
forward computation; the answer is

(6.1.11) By =(2n—1))  plai; A).
=1

On the other hand there is a proof of the formula (6.1.11) for By, without
resorting to messy computations, via Lamé’s differential equation (6.1.10)
because fi, can be written as the ratio of two linearly independent solu-
tions of (6.1.10). The idea is this: use the Hermite-Halphen ansatz functions
wq(z) to find solutions to Lamé equations, and the constant B can be com-
puted from the ansatz solutions w,. Then fa = w,/w_, has the expected
Schwarzian derivative by ODE theory.

We take this approach since it requires less computation to prove the
formula (6.1.11) for B, and it leads to a characterization of the set Y,, defined
in (0.5.2) as the set of all unordered lists a = {[a1],...,[an]} of n elements
in (C/A) ~ {[0]} such that w,(z;A) satisfies a Lamé equation (6.1.10) for
some B € C, see Theorem 6.2. We then move back to characterize the set
X, defined in (0.6.6) as the set of all a’s such that ordzzof[/a] (2) = 2n, which
is the highest possible value of ord.—of[,(2); see Theorem 6.5. This leads to
the important consequence that for a € Y,,, a € X,, if and only if ¢ = —a,
and a characterization of X, via the Schwarzian derivative.

The following result is known in the literature, see e.g. [27]. We reproduce
its proof here for the sake of completeness.

Theorem 6.2 (Characterization of Y,,). Let n > 1 be a positive integer.
Let a = {a1,...,an} be an unordered list of n elements in C . A. Let w,
be defined as in (6.1.9). Let [a] be the unordered list {[a1],...,[an]}, where
[a;] == a;mod A € C/A for each i.

(1) There exists a constant B € C such that the meromorphic function w,
on C satisfies the Lamé equation (6.1.10) if and only if the following
conditions hold.

— [a;] # [aj] whenever i # j, and

— the a;’s satisfy
(6.2.1)
> (Clai — ajA) = C(a A) + ((aj5A) =0, i=1,...,n.
J#i

In other words the necessary and sufficient condition is that a is a
point of the variety Y, in the notation of (0.6.6).
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(2) If the system of equations (6.2.1) holds for a, then w, satisfies the
Lamé equation (6.1.10) whose accessary parameter B of the equation
18
n
B=By=02n-1)) pla;A
i=1

Proof. If there are two indices i1 # iz such that [a;,] = [as,], then w,(a;,) =
wh(ai,) = 0. If wy(z) is a solution of the second order linear ODE (6.1.10),
then all higher derivatives of wg(z) vanish at z = a;,, so we(z) is identi-
cally zero, a contradiction. We have shown that the [a;]’s must be mutually
distinct if wg(2) is a solution of (6.1.10).

The logarithmic derivative

w; (25 A)

TV > (Clas A) + ¢z — as A) = ¢(2A))

i
of w, is an elliptic function on C/A. Applying d% again, we get
ENe)
W W
—Z (2) — p(z — a;) —i—Z a;) +((z —a;) — C(z))2

(6.2.2) +§C i)+ ¢z = ai) = ¢(2)) (¢la) +C(= — aj) = ((2))

= 2np(2) + 3 p(a)

+ > (Cla) + ¢z = ai) = ((2)) (¢(ay) + (= = aj) = ¢(2))
i

where we have used the consequence

(Clai) + ¢z — ai) — €(2))” = (=) + plai) + p(z — ai).

of (6.1.5) and (6.1.6) to add up the first two sums after the second equality
sign in (6.2.2) to get the last expression of “, in (6.2.2).

The sum in the last line of (6.2.2) is an elhptlc function on C/A with a
double pole at 2 = 0 with Laurent expansion 7z - +0(1); denote this function
by Fy(z). Therefore w, satisfies a Lamé equation (6.1.10) for some B € C
if and only if Fj(z) has no pole outside of [0] € C/A.
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Suppose [a;,] appears in the list [a] = {[a1],...,[as]} r times with r > 2
for some ig € {1,...,n}. Then F,(z) has a double pole at z = a;,, where it
has a Laurent expansion

Fu(2) =r(r—1)(z —a;,) 2+ O((z — a;,) 7).

We have shown that if Fj,(z) is holomorphic outside A, then [a;] # [a;]
whenever ¢ # j.

Under the assumption that [a1], ..., [a,] are mutually distinct, the func-
tion F,(z) is holomorphic on (C/A)~{[z],. .., [as]} and has at most simple
poles at [z1],...,[2zn]. Therefore F,(z) is holomorphic outside A if and only
if its residue at z = a; is zero for i = 1,...,n, which means that

S (ClagiA) + Clai — azi A) — ClassA)) =0, ¥1<i<n.
#i
This proves the statement (1) of Theorem 6.2.
We know that there a constants By € C such that

(6.2.3) F.(z) =n(n—1)p(z;A) + Bi,

because Fy(z) is holomorphic on C/A \ {[0]} and its Laurent expansion at
z=01is n(n—1)- 272+ O(1). To determine B;, we need to compute its
Laurent expansion at z = 0 modulo O(z). From

((z —ai A) = —((ai A) — plas A)z + O(22),

F,(z) = Z < - % —pla;; N)z + O(zz)) ( . plaj; A)z+ 0(22))

— z
i#j

—n(n— 1)2—12 +200-1) Y plas ) +O()

In particular By = 2(n — 1). From (6.2.2) we get

Z’)_ =n(n+1)p(zA) + (20— 1) Y plas; A).

1=1

We have proved the statement (2). O
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Remark 6.2.1. (a) Clearly that the necessary and sufficient condition in
Theorem 6.2 (1), which defines the variety Y,,, depends only on the list [a] =
{la1], ..., [an]} of elements in (C/A) \ {[0]} determined by a.

(b) It is also clear that a list a = {ay, ..., ay,} satisfies the condition in 6.2 (1)
if and only if the list —a = {—aq,...,—a,} does.

Proposition 6.3. Let a = {ai,...,a,} be an unordered list of elements in
C~NA,n>1.

(1) The function we(z) is a common eigenvector for the translation action
by elements of A:

wa(z +w) — Wiz C(aisA)—n(wih)- 20, as Vw € A.
wg(2)

This “eigenvalue package” attached to w, is the homomorphism

Xa: A—=C*, wr e@ 2imi Slash)=n(wA) 300 ey, ¢ A,

which depends only on the list [a] = {[a1], ..., [an]}-

(2) If wq satisfies a Lamé equation (6.1.10), then so does w_g.

(3) For any unordered list b = {b1,...,bn} of elements in C \ A, the
functions w, and wy, are linearly dependent if and only if either [b] = [a]
or [b] = [—a], where [—a] is the unordered list {[—ai1],...,[—an|} of
elements in C/A.

(4) The homomorphisms xq and X—q are equal if and only if there exists
an element w € A such that

631 S clash)=TEN gy, o
=1 i=1

2 2’

in which case Im(y,) C {£1}.

(5) Suppose that w, and w_, are two solutions of a Lamé equation (6.1.10),
and [a] # [—a]. Then xq # X—a. Moreover C-w, and C-w_, are char-
acterized by the monodromy representation of (6.1.10) as the two one-
dimensional subspaces of solutions which are stable under the mon-
odromy.

Proof. The statement (1) is immediate from the transformation formula for
the Weierstrass o function. The statements (2) and (3) are obvious and easy
respectively. The statement (4) is a consequence of the Legendre relation for
the quasi-periods.
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Suppose that [a] # [—a] and x4 = X—q. By (3) the monodromy represen-
tation of the Lamé equation (6.1.10) is isomorphic to the direct sum x, ® xp,
and the character x, has order at most 2 by (4). Consider the algebraic form

Py 1, d
Y —y—(n(n—l—l):c—l—B)y:O

(6.3.2) p(m)@ + §p/(:c)d$

of the Lamé equation (6.1.10). The monodromy group M of (6.3.2) contains
the monodromy group (6.1.10) as a normal subgroup of index at most 2,
therefore M is a finite abelian group of order dividing 4. In particular the
monodromy representation of the algebraic Lamé equation (6.3.2) is com-
pletely reducible. However one knows from [65, Thm.4.4.1] or [4, Thm. 3.1]
that the monodromy representation of (6.3.2) is not completely reducible, a
contradiction. We have proved the first part of (5). The second part of (5)
follows from the first part of (5). O

Proposition 6.4. Suppose that [a] ={[a1],. .., [an]} and [b]={[b1], ..., [bn]}
are two points of Y, n > 1. If >0 p(ai A) = D0 p(bi; A), the either
[a] = [b] or [a] = [-1].

Proof. Pick representatives a; € [a;] and b; € [b;] for each i = 1,...,n.
Suppose that [b] # [a] and [b] # [—a]. The functions wy(2) and wy(z) are
linearly independent by Proposition 6.3 (3) because [b] # [a], and they satisfy
the same Lamé differential equation because By, = Bp). By either [65,
Thm.4.4.1] or [4, Thm. 3.1], that image of the monodromy representation
of the Lamé equation Cf;;;’ — (n(n + 1)p(2;A) + Big)w = 0 is not contained
in C*Iy, for otherwise the monodromy group of the algebraic form of the
above Lamé equation on P!(C) is contained in the product of C*Iy with a
subgroup of order two in GL2(C). So C - w, and C - wy, are the two distinct
common eigenspaces of the monodromy representation of the above Lamé
equation on C/A. If follows that C-w_, = C-wg and C-w_p = C-w_y, i.e.
[a] = [—a] and [b] = [—b]. Therefore the cardinality of the monodromy group
of the above Lamé equation divides 4, and the cardinality of the monodromy
group of the algebraic form of the same Lamé equation divides 8, which again
contradicts [65, Thm.4.4.1] and [4, Thm. 3.1]. O

Theorem 6.5 (Characterization of X, by ord,—o f[’a](z)). Let n > 1 be

a positive integer. Let a = {[ai1],...,[an]} be an unordered list of n non-
zero points on the elliptic curve C/A. Let ay,...,a, be representatives of
[a1], ..., [an] in C A

(0) fiq is a constant if and only if [a] = [~a], where [~a] is the unordered
list{[—a1],...,[—an]} of n non-zero elements in the elliptic curve C/A.
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(1) If [a] # [—a], then ord,—q f[’a](z) < 2n.
(2) Assume that [a] # [—a]. Then ordzzof[’a}(z) = 2n if and only if the
Weierstrass coordinates (p(ag; A), 9 (a;; N)) of [a1],...,[an] in C/A

satisfy the following system of polynomial equations.
n

(6.5.1) Z o' (ai; A) - p"(ai; A) =0, for k=0,...,n—2.
i=1

Moreover if the above equivalent conditions hold, then
— @ (a;; N) #0 foralli=1,...,n, and
— p(ai; A) # p(aj; A) whenever i # j.
In other words [a] is a point of the variety X,, defined in (0.6.6).

Proof. The divisor div(f[,) of the meromorphic function fi, on C is stable
under translation by A, and div(f],)) mod A is the formal sum (or 0-cycle)

n n

Z[an] - Z[_an]

i=1 =1

of points of C/A. So if J[q] is & constant, the above formal sum is 0, meaning
that [a] = [—a]. Conversely if [a] = [—a], then

S Claish) ==Y ¢laiA) =0
=1 i=1

and f,) is equal to the constant function 1. We have proved statement (0).

Let (z4,9i) := (p(ai; A), @' (a;; A)). We have

AR
6.5.2 f’a = fil -
022 ] = el Epu;A)—p(ai;A)
and
- Yi . Yi p(z,A)fl _ © n Cr
;p(Z)A)_I’z i—1 I_LUZp(z’A)—l _;<;ylxl>g‘)(z7[\)

We conclude that
e ord.—q fig(2) > 2n if and only if Y 1" | yirk =0for k=0,...,n— 1,
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e ord.— fiq(2) = 2n if and only if >, yirk = 0for 0 <k <n-2
while 37 w1 # 0.

Suppose that ord,—q f[’a](z) >2n,ie Y0 yak =0fork=0,...,n—1.
If 4, ..., z, are distinct, we get from the non-vanishing of the Vandermonde
determinant that y; = --- = y, = 0, meaning that [a1],...,[ay] are all 2-
torsion points. That contradicts the assumption that [a] # [—a]. So we know
that x1, ..., x, are not all distinct. Apply the argument in Remark 5.8.6 (b):
let {s1,...,8m} ={z1,..., 2y} as sets without multiplicity, let

zj = Z Yi for i=1,...m,

all ¢ s.t. s;=t;

and we have z; = --- = 2, = 0. Note that for each j, the y;’s which appear
in the sum defining z; differ from each other at most by a sign £1, so that
the sum z; is either 0 or a non-zero multiple of a y;. Note that we have
cancelled a number of pairs ([a;,],[—a;,]) in forming the reduced system of
equations

szsfzo for k=0,...,n—1.

j=1
That z; = -+ = z,, = 0 means that, after removing a number of pairs
([ai,], [—as,]) from the unordered list [a], we are left with another unordered
list [b] with [b] = [—b]. So again we have [a] = [—a], a contradiction with

proves the statement (1). The first part of statement (2) follows.

It remains to prove the second part of (2). We are assuming that [a] #
[—a] and S0, y;a¥ = 0 for k = 0,...,n — 2. If there exists i1, between
1 and n such that z;, = z;,, the same argument in the previous paragraph
produces a contradiction that [a] = [—a]. Therefore z1, ..., z, are mutually
distinct. If there is an ig such that y;, = 0, then 1 = --- = y, = 0 by
Remark 5.8.6 (a), contradicting the assumption that [a] # [—a]. O

We have seen in Proposition 5.8.5 that X,, C Y,,, where X, is defined
in (0.6.6) and Y;, is defined in (0.5.2). The following proposition, which is a
consequence of Theorem 6.5, describes the complement of X, in Y.

Proposition 6.6. Let [a] = {[a1],...,[an]} be a point of Y., i.e. [a;] # [0]
for each i, [a;] # [a;] whenever i # j and the equations (6.2.1) hold. Then
[a] € X, if and only if [a] # [—a].

Proof. The “only if” part is part of the definition of X,,. Assume that [a] #
[—a]. We mush show that a € X,,. We know from Theorem 6.2 and 6.5 (0)
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that w, and w_, are linearly independent solutions of the Lamé equation
(6.1.10). If a ¢ X,,, then the lists [a] and [—a] have common members. So
either (A) there exist two indices i1,iy such that iy # io and [a;,] = [—a4,],
or (B) there exists an index i3 such that [a;,] = [—a;,]. We start with a
non-canonical process to reduce the length of the list [a] while keeping the
associated functions w, and w_, unchanged up to some non-zero constants:
First remove all a;’s such that [a;] = [—a;] from the list a. In the resulting
reduced list, remove both a;, and a;, from the list if i1 # is and [a;,] = [—ay,]-
Keep doing so until we get a sublist b = {b1,...,by} of a such that [b] and
[—b] have no common members, m < n, and there exists a non-zero constant
C' € C* such that

Wy Wq

=0, =¢ o =9 Jar
w_p W—q
The Schwarzian derivative S(f,)) satisfies
(6.6.1) S(f[a]) = —2(n(n + 1)@(2) + B[a]).

Let
2n := ord,—g f[/a](z)
Theorem 6.5 (1) tells us that

2n = ord.— f[’b] (z) <2m < 2n.

But then
e |
S(fla) = E — 5(@) = —2n(n + 1); + O(1),
which contradicts (6.6.1). Therefore [a] € X,. O

The characterization of X, in terms of the Schwarzian derivative follows
similarly:
Corollary 6.7 (Characterization of X, by S(f)). Let n > 1 be a positive
integer. Let ay, ..., a, be complex numbers in C~\ A, let [a] be the unordered

list {[a1],...,[an]} and let [—a] be the unordered list {[—a1],...,[—an]}. Then
[a] € X,, if and only if [a] # [—a] and

(6.7.1) S(fa)) = =2(n(n + D)p(z;A) + (2n — 1) Y p(as; A)).
=1
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Proof. 1f [a] € X,, then [a] # [—a] by definition, and a € Y,, because X,, C
Y. It follows that fjq = wq Jw_q is a quotient of two linearly independent
solutions of a Lamé equation (6.1.10) and the formula for S(f,) follows from
Theorem 6.2 and the standard ODE theory.

Conversely, if (6.7.1) holds then ord,—¢ f(z) = 2n. Hence a € X,, by
Theorem 6.5. O

Remark 6.8. We would like to point out the striking similarity between the
solution w, to the Lamé equation and the defining power series of complex
elliptic genera in the Weierstrass form studied in [66]. In a certain context
of topological field theory, complex elliptic genera serves as the genus one
partition function. In contrast to it, the mean field equation studies local
yet very precise analytic behavior of a genus one curve. It would be very
interesting to uncover a good reason that will account for the similarity
between these two theories.

7. Hyperelliptic geometry on X,,

We have seen in Proposition 6.4 that the fibers of the map = : ¥, — C
which sends a typical point of Y,, represented by an unordered list [a] =
{la1], ..., [an]} of n elements in C/A ~ {[0]} to

m([a)) = By = (2n—1)- Y _ p(ai; A)
=1

are exactly the orbits of the involution ¢ : [a] — [—a] on Y;,. We have also
seen that the complement Y,, . X, of X,, CY,, is the set of all points of Y,
fixed by the involution ¢. In turn the fact that both X, and Y,, are locally
the locus of common zeros of n — 1 holomorphic functions on n-dimensional
complex manifolds suggest that X,, and Y;, are both one-dimensional. The
fact that there exists a two-to-one map from X, — C suggest that X,
is the unramified locus of a possibly singular hyperelliptic curve, Y, is a
partial compactification of X,,, ¢ is the hyperelliptic involution on Y,,, and
m Y — C is the hyperelliptic projection. This section is devoted to the
proof of Theorem 0.7, which asserts that the above guesses are indeed true,
and provides more detailed information about this hyperelliptic curve. Due
to its fundamental importance, we shall give two different treatments of this
result, one based on the theory of ordinary differential equations and another
one based on purely algebraic method.

The analytic method continues the train of ideas in §6, that points of Y,
corresponds to the ansatz solutions of Lamé equations with fixed index n but
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varying accessory parameters. With the analytic method it is easier to show
that the closure X, of X, in the n-th symmetric product Sym"E = E"/S,, of
E =C/Ais Y, U{oo}, where “c0” stands for the point {0,...,0} of Sym"E.
Moreover one gets a recursively defined polynomial ¢,,(B) of degree 2n + 1
in B, whose roots are the image of the ramification points of 7 : Y, — C, i.e.
fixed points of the involution ¢ on Y,. With the algebraic method one gets
not only the same polynomial ¢, (B), but also an explicit regular function
C on X, such that C? = ¢,,(B). In particular, X,, has arithmetic genus n.
The algebraic method also allows us to analyze the limiting equations at oo
and prove that oo is a smooth point of X,,.

We emphasize that a priori there is no definite reason that the compact-
ification of Y}, in Sym™E should agree with the projective hyperelliptic model
of X,, defined in 7.6.1.e. Such an identification is one of the main statements
we will establish; see Proposition 7.7.

7.1. Review of linear second order ODE. The starting point of this
section is the following simple well-known observation on a second order
ODE

(7.1.1) w” = Tw
Recall that the Wronskian

w1 w2
wh Wt
1 2

(7.1.2) C = ‘

= wlwé — wgw/l = wiws - — log —
z

of two linearly independent solutions w1, ws is obviously a non-zero constant
since C" = 0. If the product X = wjws is easier to get hold of, then we may
express the solutions wy, ws in terms of C' and X: we have

XN_w wy O _why wy

X w1 w27 X w9 w1 ’

hence
wy X' -C wy X' +C

w1 2X ’ w9 2X '

In particular,

(7.1.3) wlzXl/Qexp<—§/%>, wy = X2 exp <%/C§(—Z)
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From

(X’+C)’: (w_é)’: wy (w_é)LI_M
2X w9 w9 w9 4X2 ’

one finds easily that
(7.1.4) C?=X"?—2X"X +4IX2

Differentiating (7.1.4) we see that the product X = w; - we of any two
solutions wy,wy of the equation (7.1.1) satisfies

(7.1.5) X" —AIX'—2I'X = 0.

This third order ODE is known as the second symmetric power of the equa-
tion (7.1.1) and can easily be derived directly. In this way, (7.1.4) is simply
the first integral of (7.1.5) with integration factor —2.X.

Conversely suppose we have a non-trivial solution X of the second sym-
metric power (7.1.5) of (7.1.1). Then X" — 2X"”X +4I1X? is a constant?*
and the constant C' is defined up to sign by (7.1.4), so we get a pair of func-
tions wy, ws defined by (7.1.3). It can be checked easily using (7.1.4) that
wy and wy are indeed solutions of the equation (7.1.1).

Remark 7.2. The product X = wj-wy has appeared implicitly in our
previous discussions, in the sense that there exists a developing map for a
solution of the mean field equation Awu + e* = 8mndy whose logarithmic
derivative is equal to —C'/ X for some non-zero constant C'. To see this, recall
that for any given solution of the above mean field equation on C/A, there
exist two independent solutions of a Lamé equation

d?w

i (n(n+1)p(z;A)+ B)w=0

such that wq/we =: f is a developing map of u. Then

(v —wiwy)/wi  —C -C

7.2.1 : .
( ) g f wy Jws w1w2 X

We start with the analytic approach of Hermite-Halphen; c.f. [27, p. 499]
and [67, §23.7].

240f course if this constant is zero, then the functions wy,wy defined by (7.1.3)
are linearly dependent.
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Theorem 7.3. Let n > 1 be a positive integer.

(i)

(iii)

There ezist polynomials s1(B), s2(B), s3(B),...,sy(B) in B with co-
efficients in Q[g2(A), g3(A)] with the following properties:

— for every element [a] = {[a1],...,[an]} € Yn and anyi=1,... n,
the i-th elementary polynomial of {p(ai;A),...,p(an;N)} is
equal to s;(Bjq)), where By := (2n — 1) 371, p(ai; A).

— 51(B) = (2n — 1)7'B, and s;(B) is of degree i with leading coef-
ficients in Q* fori=2,...,n.

— si(B) is homogenous of weight i fori = 2,...,n if B, g2, g3 are
given weights 1,2, 3 respectively.

The fibers of the map m: Y, — C defined by

m: {(ziy) ey = B = (@2n—1) ) =,
i=1

are orbits of the involution ¢ : [a] — [—a] onY,. In other words
7 (Byg) = {[a], [~a]} Vld] € Y,

The subset X,, C Y, is the complement in Y, of the fixed point set
(Yo)" of the involution ¢; it is also equal to the subset of Yy, consisting
of all elements [a] = {[a1],...,|an]} € Y, such that ¢'(a;; A) # 0
for all i and p(a;; ) # p(a;;A) for all pairs (i,j) with i # j and
1 <i,5 <n. Moreover X, is a locally closed smooth one-dimensional
complex submanifold of Sym"(C/A).

The set (Y,)' = Y, N\ X, is a finite subset of Y, with at most 2n + 1
elements. Up to C* the set of all ansatz functions w,(z) with [a] € Y}
coincides with the set of all Lamé functions of index n. In other words
Y =Y, N\ X, is in natural bijection with the set of all Lamé functions
of index n up to non-zero constants.

The closure X, of X, in Sym™(C/A) consists of Yy, and a single “point
at infinity” [0]" := {[0],...,[0]}: X, = Y, U {[0]"}.

The map 7 : Y,, — C extends to a surjective continuous map 7 : X,, —
PY(C) which sends the point [0]" to co € P(C).

7.3.1. PROOF OF THEOREM 7.3 (i). Consider the Weierstrass equation

y: =

p(w) = 42° — gow — g3, where (2,y) = (p(2),¢/(2)), and we set

(i, yi) = (p(a;), @ (a;)) for [a] = {[ai1],...,[an]} € Yn. Pick a; € [a;] for
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i =1,...,n. Consider the following pair of ansatz solutions A, (2), A_,(2)
the Lamé equation

d*w
(7.3.1) 2 (n(n+1)p(z;A) + B)w =0,
where
(7.3.2) Mo(z) 1= 0 _ eyicon T 22 = 20
3. o(2) = =5 = .

Let X[a] (2) = Au(2)A_4(2) be the product of this pair. Note that if [a] & X,
then [a] = [—a] by Proposition 6.6 and A, = A_,. From the addition theorem
we have

- "oz +ai; No(z — ai; A)

Xo(z) = (-1)"

() = (=1) ljl o(z;N)20(ai; A)?
(7.3.3) -
= (-1)" [ [(0(z:A) = pai; A) = X (p(z; 1))
i=1

a polynomial of degree n in the variable z.
We know that X|,)(z) satisfies the second symmetric power of the Lamé
equation (7.3.1)

- .
X 4(n(n+ )p(z;A) + B)d—X —2n(n+1)¢'(2,A)X(2) =0,

3.4) —
(7.34) dz3 dz

it is thus a polynomial solution in the variable x, to the algebraic form

X 3dp d*°X dX
p 5 (P’ +n-3)a+B)— ~2n(n+1)X =0,

of (7.3.4), where p(z) is the cubic polynomial

p(z) = 4a3 — g2(A)x — g3(A)
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in the Weierstrass equation for C/A. As a result, X, () will be determined
by B and certain initial conditions.

Indeed, write X, (z) = (=1)"(2" —s12" 1 +- -4 (=1)"s,), then (7.3.5)
translates into a linear recursive relation for each y =n—1,...,0, where we
set sg = 1 by convention:

0=2n—pu)2u+1)(n+p+1)sy—y —4(p+1)Bsp_py—1
(7.3.6) + 392 (1 + 1) (1 +2) (20 + 3)sp— 2
- 93(,“ + 1)(” + 2)(” + 3)5n7,u73'

Since B = (2n — 1)s1, the initial relation for 4 = n — 1 is automatic. Let
51(B) := (2n — 1)7'B. The recursive relations (7.3.6) with s; substituted
by s;(B) define polynomials sa(B),...,s,(B) € Q|g2, g3] which satisfy the
first condition listed in Theorem 7.3 (i). Moreover we see from the recursive
relations that s; is a polynomial of degree j in B, and it is homogenous of
weight n if B, g9, g3 are given weights 1,2, 3 respectively, for j = 1,...,n,
We have proved Theorem 7.3 (i). O

7.3.2.  PROOF OF THEOREM 7.3 (ii). The first sentence of Theorem 7.3 (ii)
is a restatement of Proposition 6.4. We give another proof here more in line
with the proof of (i). Suppose now we have two elements

[a] = {laa], - [anl}s (O] = A{[ba); - [bal} € V2

such that

> ol A) =Y plaj; A).
i=1 i=1
Let X4 (x) be the polynomial in x of degree n such that X, (p(2;A)) =
Ao(2)A—a(2); similarly let X be the polynomial of degree n such that
Xy (9(z;A)) = Ap(2)A_p(2). Then X, and X both satisfy the same equa-
tion (7.3.5), and we get from the recursive relations (7.3.6) that X5 = X,
ie.

[ = plas; A) = [ [ (& — p(bi; 1))

i=1 i=1
Therefore {p(ai;A),...,plan; AN} = {p(b1;A), ..., 0(bn; A)} as unordered
lists.

We claim that either [a] = [b] or [a] = [—b] as unordered lists. Otherwise
after renumbering the a;’s and the b;’s, there exist integers r,s > 1 with
r + s < n such that the following hold:
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We know from Theorem 6.5 (0) that wy(z) and wy(z) are linearly indepen-
dent because [a] # [£b], and they satisfy the same Lamé equation with index
n because Bj,) = Bjy). So the Schwarzian derivative of wq/wp is

S(wa/wp) = 2(n(n +1)p(2; A) + Byy).

On the other hand conditions (i)—(iv) tells us that wg,/wy is equal to a non-
zero constant times the function fig = we/w_., where [c] = {c1,..., ¢}, so
S(fig) = 2(n(n + 1)p(2;A) + Bjg)). The condition (v) above tells us that
[c] # [—c], so we get from Proposition 6.5 (1) that ord.—¢ fig < 2r < 2n -2,
which implies that S(fig) # 2(n(n + 1)p(z; A) + Bjy). We have proved the
first sentence of (ii): if Bj,) = By, [a], [b] € Ya, then either [a] = [b] or
[a] = [-b].

The second sentence of Theorem 7.3 (ii) is the content of Proposition 6.6.
The argument below provides a different proof and also the rest of the state-
ment (ii) at the same time. Suppose that [a] = {[a1], ..., [a,]} is a given point
of Y,,. As in §7.1, we know that
(737) (X1 (92 A)))” = 2 X (925 A) e Xy (0(=: )

+4 (n(n+1)p(z;A) + Bjy) Xig(p(2;A))?

is a constant because its derivative vanishes identically; write this constant
as C2. This constant C? can be evaluated by plugging in z = a; in equa-
tion (7.3.7), for any ¢ with 1 <7 < n:

aX[q 2

02:( dx

(p(ais A)) - ¢/ (as; 1))
foreachi=1,...,n.

Suppose that C? = 0. We know from §7.1 that w, and w_, are linearly
dependently, therefore [a] = [—a]. The above argument also tells us that
71 (Byq)) is the singleton {[a]}. In this case wy(z) is a Lamé function of
index n: up to C* it is a square root of X, (p(2; A)), a polynomial of degree
n in p(z;A). We also see that [a] € X,,, because for each ¢ we know that
either ©'(a;; A) =0 or p(a; A) is a multiple root of X, ().
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On the other hand, suppose that C? # 0. Then
dX[a]

X

@ (a;;A) #0 and (p(a;; A)) #£0 for i=1,...,n.

Therefore [a] # [—al, and [a], [—a] € X,,. After making a choice of a square
root C of C2, one can “pick out” [a] from the pair {[a],[~a]} using C' and

{p(ar;A), ..., p(an; A)}, by
_ dX[g

dx

(7.3.8) C (p(ai; A)) - ¢ (ai; A)

The above formula shows that the map 7 : Y,, — C is a local isomorphism
near [a] and [—a]. The procedure reviewed in §7.1 tells us that the pair of
ansatz functions wq, w_, are determined up to C* by X, (x), so ' (By,)) =
{la], [—a]} in this case. We have proved Theorem 7.3 (ii). O

Remark 7.3.3. The proofs of Theorem 7.3 (i) and (ii) employed the method
in [27, pp. 498-500] and [67, pp. 570-572] which gives a recursive formula for
the product of a pair of ansatz solutions w, and w_, in terms of the auxiliary
parameter By, then bootstrap to find the ansatz pair wq, w—q.

The ansatz solutions parametrized by Y;, are eigenfunctions for the trans-
lation action of the lattice A, and they are also eigenfunction for the differ-
ential operator j—; —n(n+ 1)p(z;A). In this sense Y, can be regarded as
the spectral curve of this second order differential operator.

Theorem 7.3 (v) asserts that for every B € C there exist an element
[a] € Yy, such that By, = B. We discuss the dichotomy whether 7 :Y,, — C
is ramified above B from the perspective of the translation action of A on
the solution space of the Lamé equation Ly, -

1. CASE [a] € X,,, equivalently [a] # [—a]. In this case C-w, and C-w_, are
one-dimensional spaces of solutions of the same Lamé equation L, g, but
their eigenvalue packages for the translation action by A are different, hence
the ansatz solutions C-w, and C-w_, are intrinsic to the Lamé equation

Ln,B[a] .

2. CASE [a] € X,,, equivalently [a] = [—a]. The assumption that [a] & X,
is equivalent to [a] = [—a]. We have seen in the proof of 7.3 (ii) that up to a
non-zero constant wg(z) is a square root of a polynomial of (z; A); in other
words w, is a Lamé function. In this case the action of A on the space of
solutions of the Lamé equation Ly, g, is not diagonalizable, and the Lamé
functions C-w, are the only A-eigenfunctions among the space of solutions
of the Lamé equation Ly p,,.
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7.3.4.  PROOF OF THEOREM 7.3 (iii). We have seen in the last paragraph
of Remark 7.3.3 that (Y},)" is in natural bijection with the set of all Lamé
functions of index n up to C*. One knows from classical literature that there
exists a polynomial ¢,,(B) € Q[g2(A), g3(A)] of degree 2n + 1 in the variable
B, explicitly defined by recursion, whose roots are precisely the Bj,’s with
[a] € (Yn)"; see Theorem B in §0. Theorem 7.3 (iii) follows.

The definition of this polynomial ¢, (B) will be reviewed in the proof of
Theorem 7.4. It is known that £,,(B) has 2n+ 1 distinct real roots when the
lattice has the form A = Z++/—1tZ for some t € R~. This fact is stated on
line 13, page 221 in Liouville’s letter [47], where Liouville said that one can
use Sturm’s method to prove that the polynomial ¢, (B), written as R(B)
in loc. cit., has 2n + 1 (real) roots and therefore there are 2n + 1 Lamé
functions. The proof in [27, pp.471-476] goes through a change of variable
u=2v, y = p'(v;A), which has the advantage that every Lamé function is
rationally expressible in terms of p(v, A) and ¢'(v; A); this proof is sketched
in [53, p. 163]. In [67, §23.41] Lamé functions “of the third kind” (in the case
when n is even) is discussed, with the other three cases left as exercises.
Sturm’s method, in the form of Corollary 3.3.4, was used in all references
above. O

7.3.5.  PROOF OF THEOREM 7.3 (iv)—(v).

Suppose that [a] = {[a1],...,[as]} is a point of X,,. By definition there
exists a sequence [a]; = {[ak1], ..., [arn]} € X, which converges as k — oo.
Let By = By, = (2n — 1) 311 p(ags; A). Then B := limg o By, exists as
an element of CU {co} = P1(C). Let X (z) = X[q],(z) be the polynomial of
degree n in z determined by Bj through the recursive relation (7.3.6). We
discuss the two cases (a) B € C and (b) B = oo € P(C).

(a) Suppose that B # oco. By (7.3.6) the coefficients s;(By) of Xj(x) are
uniformly bounded for j = 1,...,n. Thus the roots xp; = p(ag;;A) €
C of Xg(z) are uniformly bounded as well. This implies that a; ¢ A for
i=1,...,n, We, — Wg, [a]x — [a] in Sym™(C/A), and w, is a non-trivial
solution of the Lamé equation w” = (n(n+1)p(z; A) + B)w. Notice that we
must have a; # a; whenever i # j. For otherwise w,(2) has multiplicity at
least 2 at z = a;, which implies that w, is identically zero, a contradiction.
We conclude that [a] € Yj,.

(b) Suppose that B = oco. We claim that [a;;] — [0] for all ¢ = 1,...,n.
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Change the variable to t = 1. Look at the polynomial

Yie(y) = sa(Br) " 4" X (™)

(739) n Sn—1(Bk), n— n—1 s1(Bk n
=y = eyt g ()T 4 ()

whose roots are {p(ar,1;A) 7L, ..., p(akn; A)~'}. The assumption that By —
oo as k — oo tells us that Yi(y) — 3™ as k — oo, which implies that all the
roots p(ak,i)_l of Y3 (y) go to 0 as k — oo. Therefore a; — 0 as k — oo for
alli=1,...,n.

Combining the cases (a) and (b), we draw the following conclusions.

e The map m,|x, : X, — C extends to a continuous map 7, : X, —

PL(C).
e The inverse image 7, !(c0) of the point co € P!(C) under 7 consists
of a single point [0]" = {[0],...,[0]}.

e The inverse image 7~ 1(C) of C under 7 is contained in Y,,. In other
words X,, \ {[0]"} C Y,,.

e Because 7, is compact by definition, and we already know that 7, (X},)
contains the complement of a finite subset of C, therefore 7, is surjec-
tive.

We have proved Theorem 7.3 (v) and half of (iv).

To complete the proof of Theorem 7.3 (iv), we need to show that (Y;,)" C
X Let [a] € (Yy,)" be a given element of Y, \ X,,. We know that there exists
an element [b] € X,, such that By = By, and have seen [b] € Y,. Theorem

7.3 (ii) tells us that either [b] = [a] or [b] = [—a]. In either case we conclude
that [a] = [~a] = [b] € X,,. We have proved Theorem 7.3. O
Corollary 7.3.6. Let ([alx)ken = ({[ar1],- -, [akn]})ken be a sequence of

elements in X, indexed by N. If there exists an i between 1 and n such that
laki] = [0] in C/A, then [ak;] — [0] in C/A for alli=1,...,n.

Remark 7.3.7. The proof of Theorem 7.3 (i) has appeared in [27, p.499-
500]. The proof in [67, §23.7] is essentially the same, except that X (z)
is expressed as a polynomial in x — ey and recursive formula was given
for the coefficients of powers of x — es. We may compare our argument
with [67, §23.7] on such a polynomial solution X to (7.3.5), which is indeed
the origin where X (z) and A, were first found during our study. Let X =
Yoo o er(z—e2)" " be a solution of (7.3.5) in descending power. Since p(z) =
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4(x —e1)(x — ex)(x — e3), there is a recursive formula for ¢,:

dr(n+3—r)2n+1-r)c,
=(n+1-r)(12e(n—7r)(n—-2-r) — 4ea(n® +n —3) — 4B) ¢
- 4(n+ 1- T)(n-i- 2 — T')(?l-i- % — 7")(61 — 62)(62 — eg)cr_g.

The above recursive formula is slightly different from (7.3.6). Given ¢p = 1
and c¢j, we can solve co,...,c, and express them as polynomials in ¢; and
B. The recursive formula forces c¢,+1 = -+ = co, = 0. The next coefficient
Con+1 appears as another “free parameter”, and the coefficients of higher
order terms are expressed as polynomials of ¢;. The condition that X (x) is
a polynomial is that ¢; = 0 for all [ > n. Thus X () is a polynomial solution,
which is determined by ¢; and B.

From (—1)"A,A_q = [T7 (& — e2) + (e2 — 71)) = X1y, (& — €)™,
we see that ¢; = ) 1" | (ea — x;) = nex — Yy ;- x; = nea — B. Hence X is a
polynomial in B.

Remark 7.3.8. The statement of Theorem 7.3 (iv), that X,, = Y;, U {00},
does not seem to have appeared in the literature, but this fact must be known
as it follows quickly from the method of recovering the ansatz pair wq, w_q
from their product. The behavior of X, or Y,, at B = oo is important, which
will be discussed in Proposition 7.5).

We would like to rephrase Theorem 7.3 in purely algebraic terms without
appealing to solutions of Lamé equations. It is given below, whose proof uses
system (5.6.2) instead of (5.8.1).

Theorem 7.4. Let n > 1 be a positive integer. Let s1,. .., sy, € Q[g2, g3][B]

be the polynomials in Theorem 7.3 (i) defined recursively by the relation
(7.3.6).

(1) The space X, admits a natural projective compactification X, as a
possibly singular, hyperelliptic curve defined by the following equation
in (B,C):

02 — En(Ba 92(A)7 93(A))
=4B 5721 +493(A) Sp—2 Sp — g2(A) Sp—1 8n — g3(A) 8371.

(2) The discriminant discg(¢n(B)) € Q[ge, g3] in the variable B of the
polynomial £, (B) is a non-zero polynomial in two variables g, gs; it is
homogeneous of weight 2n(2n + 1) if g2, g3 are given weights 2 and 3
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respectively. In other words discp(ln(B)) € Q[g2(A), g3(A)] is a non-
zero modular form of weight 4n(2n + 1) for the full modular group
SLo(Z), holomorphic on H and also on the cusps.

Remark. The polynomial ¢,,(B, g2, g3) has degree 2n + 1 in the variable B;
it is homogeneous of weight 2n + 1 in B, go and g3 when B, go, g3 are given
weights 1, 2, 3 respectively. The projective curve X, has arithmetic genus n;
it is smooth unless discg (¢, (B))(A) = 0.

Proof. Let p(x) = 423 — gox — g3 and let q(x) = []"

iz1(z —zj). The set X,
is defined by 2n — 1 polynomial equations

n
i=1

in the 2n variables z1,...,Zn;y1,...,yn and n(n + 1)/2 inequalities
rviFr; Vi#Fj, 1<4,7<1 and y;#0 Vi=1,...,n.

Applying Cramer’s rule to the n — 1 linear equations » -, :L‘f y; =0 in
y;’s, we conclude that there is a constant?® C' € C* such that

C
(7.4.1) y=—— i=1,...,n.
1 (zi — z5)

Since ¢'(z;) = [[;4;(7: — x;), we get
(7.4.2) () () =C? i=1,...,n,

and so q(z)|(p(x)¢'(z)? — C?). This implies that there are hy, ..., h,,a,b € C
such that

(7.4.3) p)d (@) —C* _ zn: LA

q(@)? 2 (e —w)

It is easy to compute (e.g. using power series expansion of p,q at x;)

/ 2 2
q(%‘)2 ~ Res,_, i
q(z) q(x)

25This “constant” C depends on n and the lattice A.

h; = Resg—z,p(x)
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— @) 24" (@)
= pl(l‘i) + 2])(332)%
From (7.4.3) we get
(7.4.5) p(2)d (z)2 — C? = En: (G (az + b)¢*(2).

—~ (z—x)

Comparing coefficients of 2?"*! and 22" on both sides, we get
n
(7.4.6) a=4n?, b= 8”2561' =8ns;
i=1

(recall that g(z) = 2™ — sy 2™ 1 + -+ + (=1)"s,, and so 81 = Y| T;).
Now, in a similar and easier manner, we write

P(z)q(x) _ Z”: p'(i)
— (

+ (12nx 4 12s,),
(@) lo—a )

(7.4.7)

p(w)q”(x):i p(xi) q"(xi)
(

a(@) ) gz T A= Da+ 8= 1)s1).

i=1
Then (7.4.4), (7.4.5), (7.4.6) and (7.4.7) lead to
(74.8)  pd? —p'dqa—2pd"q+4(n(n+ )z + (2n —1)s1)¢*> — C* = 0.

One more differentiation gives

/ 1

0=p'q"+2pdq" —p"'dqa—vd"a—0d*—20d"qa—2pq"q—2pq"q
+4n(n +1)¢® +8(n(n+ )x + (2n — 1)s1)qq
= —2q(pq" + 3p'q" — A((n* + n — 3)z + B)¢' — 2n(n + 1)q),

which is (—2¢) times the linear ODE (7.3.5), and so the same recursive
relation (7.3.6) shows that ¢ is determined by s;.

Suppose we have two different points = {(z1,91),..., (Tn,yn)} 2’ =
{(1'/1, yll)ﬂ te (l';w yiz)} in Xn such that ﬂ-n(g) = Z?:l Ty = Z?:l (L‘; = ﬂ-n(g)v
by rearrangement we have z; = x for all ¢ and then y, = £y, for all i. If
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y; =y, for some ¢, then by (7.4.1),
'’ C

Hj;éi(xg - x;) - Hj;éi(xi — ;)

which implies that C' = C” and y; = y; for all j, a contradiction. Hence
y; = —y. for all .. We have shown that if two different points z,2’ of X,
have the same image in C under the map m,, then 2’ = +(z), where ¢ is the
involution on X, defined by “multiplication by —1” on C/A.

The constant terms in formula (7.4.8) leads to

(7.4.9) Cc? = ¢, (B) =4B 531 + 493 Spn—9 Sp — G2 Sn—1 Sn — §3 S?L_l,

where s = si(B) is a polynomial of degree k and B = (2n — 1)s;. Thus
deg ¢, = 2n+1. Equation (7.4.9) provides a natural algebraic (hyperelliptic)
compactification Xn of X,,.

To make this precise, we show that X, is mapped onto those B € C
with C? = /,(B) # 0. Indeed we define s, by sx(B) and w;’s by q(x) =
2" — 512" 4+ -+ (=1)"s, = [[L;(z — ;). Then (7.4.8) holds, and by
substituting z = x; we get p(z;)¢ (z;)? = C? as in (7.4.2).

If C # 0, we get p(x;) # 0 and ¢'(x;) # 0 which give the non-degenerate
conditions. Now we define

- c C
() Hj;éz’(xi - ;)

Then y? = p(z;) and {(z;,y;)} solves the system of equations

#0, i=1,...,n.

n
Zﬁyi:o k=0,....,n—2,
i=1

hence gives rise to a point in X,.

If C = 0, we have either p(x;) = 0 or ¢’(x;) = 0 for all i = 1,...,n.
Let x; = p(a;). In the former case a; = —a; is a half period and y; = 0. In
the latter case z; = z; for some j # i. Notice that {(z;,y;)} still satisfies
the equations ;" ; :ztfyZ =0 for k=0,...,n — 2 since they define a closed
set. The same argument in the proof of Theorem 6.5 shows that [a] = [—al,
where [a] = {[a1],. .., [an]}.

If B — oo, then the first n elementary symmetric polynomials for the
unordered list xfl, ...,z all go to 0, because the i-th elementary symmet-
ric polynomial in z7, ...,z is 8; fori=1,...,n. Since z; = p(a;), we
get a; — 0 for all 5. That is, 77 1(c0) = (0,...,0).

rrn
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We have proved Theorem 7.4 (1) at this point. The statement of Theorem
7.4(2) is a consequence of the second paragraph of 7.3.4 in the proof of
Theorem 7.3 (iii). There we recalled that for a rectangular lattice A, with 7€
v/ —1Rs, the polynomial ¢,,(B;A,) in B has 2n + 1 distinct real roots, and
gave references for this fact. Clearly this fact implies that the discriminant
of £,(B) is not identically zero. Theorem 7.4 (2) follows. O

Example 7.4.1. For n =1, s =1, s = B and then
C2 = El(B) = 433 — ggB — 33

which is exactly the equation for F, since X; = E.
Forn=2,s5=1, s1 = %B, So = %BQ — %gz, and then

C? = l5(B) = £B° — Lg2B* + 1g3B* + 143 B — 9293
= & (B* = 392)(4B% — 992 B + 27g3).

In terms of sq, it is C2 = £2(3s1) = (357 — go)(4s3 — gas1 + g3).
Forn =350 =13y = 1B, 5 = A5~ Los 39 = B LB+ dgs
and then

C? = (5(B)
= ooz B(16B° — 50495 B* + 237695 B

+ 418593 B — 364509293 B + 9112595 — 3375g3)
= 51(52sY — Rgost + Zgast + 39351 — 5920351 + 195 — 1595)-

Remark. The referee has kindly informed us that the curve C? = l5(B)
appeared in [22, p.63] as a hyperelliptic curve C' whose affine coordinates
(z,w) are related to (B, C) here by z = —B and w = \/—1%.

The paper [22] is based on the general construction of spectral curves
I'), introduced in [35, §1]. Note that the factors eg(a")z% of the ansatz
function w,(z) in Definition 6.1.5 appeared in [35, p.284] up to a factor

—o(a;): the function ®(z, ) in [35] is —eg(a)Z%.
Explicit examples of Riemann surfaces associated to (finite gap) Lamé

potentials and Treibich—Verdier potentials can be found in [62].

Remark 7.4.2 (Meaning of the parameter C'). We have introduced the same
notation C' in various places. Indeed they are all equivalent: The constant C
in (7.4.1) coincides with the constant C' in (5.6.4) by setting w = z; = p(a;)
in (5.6.4). It also coincide with the Wronskian C' defined in (7.1.2) up to sign
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by comparing (7.2.1) with the expression of ¢g(z) in (5.6.3) (using (5.6.4) and
(7.3.3)). These equivalences allow us to study the hyperelliptic curve Y, from
both the analytic and algebraic point of views at the same time.

Remark 7.4.3 (Relation to KdV theory). There are several methods for
computing compute £, (B) in the literature, e.g. [20, 65]. It is also interesting
to note that the hyperelliptic curve X, also appears in the study of KdV
equations, where it is known as the spectral curve.

Indeed in KdV theory, a differential operator Po,41 of order 2n + 1 is

constructed by
n

P2n+1 = z(frlz—l(z) - %fn—l(z))Ll7

=0
where L = —d?/dz?+u(z), fo(z) = 1 and fi(2) satisfies the recursive relation

(7.4.10) fro1 = =3 +ufy + 3 f, k=0,1,2,---.
Using the recursion (7.4.10), we have

[P2n+1> L] = 2f7,z+1'

A potential u(z) is called a stationary solution to an n-th KdV hierarchy
equation if f  ; = 0. Let

n

F(z E) = an—l(z)El'

1=0
Then F(z; E) satisfies
(7.4.11) F" — 4(u— E)F' — 24'F = 0.

Conversely, if F(z; E) is a monic polynomial in E of degree n and satisfies
(7.4.11), write F(z; E) = Y1 fa—1(2)E". Then fi(2) satisfies (7.4.10) with
fr =0 for k > n + 1. By integrating (7.4.11), we obtain

(7.4.12) 1F'F — 3(F")? — (u— E)F? = Ropt1(E),

where Rg,11(F) is independent of z and is a monic polynomial in E of
degree 2n 4+ 1. The spectral curve for the potential u, if u is a stationary
solution of the n-th KAV hierarchy, is by definition the hyperelliptic curve

y? = Ron1(E);



Mean field equations, hyperelliptic curves and modular forms 245

it parametrizes one-dimensional eigenspaces of the commutator subring of
the differential operator L in the space of ordinary differential operators.

If u(z) = n(n+1)p(z) is the Lamé potential and B = —FE, then (7.4.11)
is identical to (7.3.4) with F'(z; E) = X (z). As we have seen already, X (z) is
also a polynomial in p(z). By using x = p(z), (7.4.8) is identical to (7.4.12)
(with C? = 4Rg,,11(F) and E = —B). By this adjustment, the curve (7.4.9)
is identical to the spectral curve in KdV theory. For more details see [24,
Ch.1§2].

The Lamé potential is a very special type of finite gap potentials. There
is an extensive literature. The readers may consult [31, 21, 32, 50, 48, 34,
35, 36, 57, 62, 37, 59, 60, 61].

The Lamé potential is also a special case of Picard potential [26]; the
system of equations (5.7.4) (i.e. equations for Y,, (0.5.3)) appeared in [25,
(3.8) in p.82]. According to [25, Rmk. 3.3], that was the first time after [§]
when (5.7.4) reappeared in mathematical publications. However in a com-
ment in [25, p.83] the authors said that the conditions (5.7.4) appear to be
too difficult to be handled directly, so they turned to develop another method
to compute the spectral curve.

The following proposition arises from the study of the process B — oo.
When z; — 0o, we have y; — 0o too. Asymptotically (z;,y;) ~ (t2,2t3) hence
Saby, ~ 23 tf’”k. The uniqueness of 7 !(c0) suggests the uniqueness of
solutions of the limiting equations up to permutations. It turns out to be
true and can be proved along the similar reasoning as above.

Proposition 7.5. Consider the following system of n—1 homogeneous equa-
tions in P"1(C) (n > 2) with coordinates t1,. .., t,:

n
(7.5.1) > e =, k=1,2,...,n—1,
=1

subject to the non-degeneracy conditions [[}_, t; # 0 and [[,_;(t; +t;) # 0.
Then the solution exists uniquely up to permutations.

Proof. When B — o0, by either (7.3.9) or (7.4.2) we see that all ¢;’s have the
same order | B] 1/2_Since the polynomial system in ¢;’s comes from the leading
order terms of the original system wfyi = 0, by passing to a subsequence
if necessary, in the limit B — oo we get a point [ty : --- : t,] € P"~! solving
the limiting equations. In fact [t] € P(To(X,)) C P(Tp(Sym™E)).

However a more careful argument is needed to verify the nondegeneracy
conditions. We recall that for a € X,,, p(a;)’s are the roots of the polynomial
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X(z) where the coefficients s;(B)’s satisfy the recursive relation (7.3.6).
Thus p(a;)/B tends to the roots of the limiting polynomial X

Xoo(x) = 2™ — 512" L 4+ 502" 2 4 -+ 4 (=1)"5,,,
where we set 5o = 1 and

2(n—k+1)
E(2n—2k+1)2n—k+1)

(752) Sk Sk—1, k=1,...,n.

To prove (p(a;) — p(a;))/B # 0 as B — oo is equivalent to showing that
X has n distinct roots, a statement which does not seem to be obvious.
Instead, we use (7.4.1) in its analytic form

(7.5.3) C = ¢'(a) [ [(ola:) — o(ay)).
j#i

Obviously |C| ~ |B|"™*t1/2 and |¢/(a;)| ~ |g(as)|[>/? ~ |B|>/2. Thus if there is
some j such that |p(a;) — p(a;)| = o(1)|B| as |B| — oo then (7.5.3) yields

|B"TY/2 ~ |Cf < o(1)|B"T2,
which is a contradiction. Therefore we have

i 249 iy 9100

B—oo B—oo B

for i # j. Now we write (p(a;), ' (a;)) = (zi,y:) ~ (t2,2t3). Then the leading
term of >, xfy; is 23", t?k+3 for k =0,...,n — 2. By passing to B — oo,
the limit of t;/|B|'/? (still denoted by t;) then satisfies

n
D et =, 1<k<n-1,
=1

and t; +t; # 0 for any 4, j. This proves the existence of solutions.

The remaining task is to prove the uniqueness. While it may be possible
to prove this by working harder on the asymptotic equations, however, owing
to its elementary nature, we will offer a purely elementary argument using
only basic algebra.

Before we proceed, notice that the loci [T¢; = 0 or [],_;(t; +¢;) = 0
provide positive dimensional solutions to the system. Thus it is crucial to
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analyze the non-degenerate conditions. By a Vandermonde-like determinant
argument, it is easy to see that under the assumption ¢; # 0 for all i, we
have t; # —t; for all i # j if and only if 7 # t? for all ¢ # j.

Let q(t) = [1j_,(t —t;) = Yig(—1)"sit"™", where s; is the i-th ele-
mentary symmetric polynomial in ¢;’s, and p; = 1", té being the Newton
symmetric polynomial for all { > 0. Then

/ ! n
q@)  d(=1) 1 1 “om
+ = — =2 Pam—11 .
«®) " a(=1) Zi_lt—ti 11 m; "

The conditions p3 = ps = -+ = pa,—1 = 0 imply that (comparing degrees)

@)  d(=t) _2p1  (=1)"2p2n+1
q(t) = q(=t) 2 t2q(t)g(—t)

Denote by u = t2, u; = t2, G(u) = q(t)q(—t) = [[/—; (u—u;), this then could
be regarded as an equality in C(u) as

n

Z ti p1, (=1)"pant1
U — U

pot o uG(u)

From now on we denote ' = d/du, then

(=1)"p2n+1
t; = Resy—y, = —2——
! u= u,G’(ul)

In particular, u3G'(u;)? = C? is independent of i, where C' = (—1)"pap+1.
So G(u) | udG'(u)? — C? and we may perform division to write

WG (u)? - C?* zn: hi

2
G(u)2 +n“u+ 2nm

o W W
for some h; € C and 7y = > | u;. Using series expansion in u — u; we
calculate
3 2 2 3
uwG(u)* = C 324 2u; G”(ui)’
G(u)? G'(ui)?
hence there are a,b € C such that

Resy=y;

PG (u)? - C? 3uPG(u) | 2uPG"(u)

Glu)? Glu) + Glu) + au +b.
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By division again, it is clear that
203G (u) = 2(n(n — Du+2(n — 1)7)G(u) + - -
and 3u?G’(u) = 3(nu + 71)G(u) + - - - . Hence
a=-n(n+1), b=—-02n+ 1)1,

uwPG”? — 3uG'G — 2u*G"G — (au + b)G? = C2.

Differentiation and simplification lead to —G(u) times the equation
203G + 9u?G" — 2((n? +n —3)u+ (2n — 1)11)G —n(n+1)G = 0.

Write G(u) = Y1 o(=1)"r_ju’ (so 9 = 1 and 7, = 0 if K < 0 or
k > n by convention), the above linear third order ODE translates into the
recursive relation:

(i — n)(QZ + 1)(2 +n+ l)Tn_i = —2(i + 1)(277, — 1)7’17'”_,'_1.

This rather short recursion (instead of four terms) is due to the fact that
the ODE has an irregular singularity at u = 0. It is consistent for ¢ = n
(0 = 197—1) and for i = n — 1 (11 = 71), and then all 7, £k > 2, are
completely determined by 7. This proves the uniqueness of solution up to
permutations. Il

Remark. The non-degeneracy conditions in Proposition 7.5 are essential:
when n > 4 the set of all degenerate solutions has a natural structure as a
positive dimensional algebraic variety.

7.5.1. Question. Let (b1 :...:b,) € P""1(C) be a non-degenerate solu-
tion of equation (7.5.1). Let K, be the smallest subfield of C which contains
ba/bi,. .., bn/b1. Is [K, : Q] = n!?%0

Corollary 7.5.2. The curve X,, is smooth at the infinity point [0]".

Proof. The idea is that the solutions sought in Proposition 7.5 describe the
tangent directions of X, at 0", in the sense that the projectivized tangent
cone of X,, at [0]" is the affine open subset projective spectrum of the ring

fR = (C [tlu L 7tn] /(Z?lt3k+1

26The answer is likely “yes”, but we don’t have a proof.

>1§k§n—1 ’
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associated by localization to the homogeneous element

n

Hti' H (ti +15)

i=1  1<i<j<n

of R. Once we know this then the existence and uniqueness statement in
Proposition 7.5 is equivalent to the smoothness of X,, at 0". However the
above description of the projectivized tangent cone of X,, at [0]" is not self-
evident from the definition of X, as the closure of X,, in Sym™(C/A). So we
proceed slightly differently.

Let (r1,...,r,) be a non-degenerate solution of the system of equations
in Proposition 7.5. From the non-vanishing of the Vandermonde determinant
one sees that » ;" | r; # 0. From Hensel’s lemma one sees that there exists
a morphism « from the spectrum of a formal power series ring C[[t]] to the
inverse image in Sym” (C/A) of X,, which sends the closed point of Spec C[[t]]
to [0]™, such that

T it 0 Yi=1,...,n

Yi
The condition that 71 +---+r, # 0 tells us that o induces an isomorphism
between C[[t]] and the completed local ring of X,, at the point [0]™. O

7.6. Comparing the compactifications X,, and X,, of X,,.

7.6.1. At this point we have two compactifications of the smooth alge-
braic curve X,,. We summarize the situation.

7.6.1.a. By definition X, is a locally closed algebraic subvariety of the
symmetric product Sym™(C/A). The first compactification X,, of X, is the
closure of X, in Sym™(C/A). We have seen that X,, contains the closed
subvariety Y,, of Sym"™(C/A\{[0]}). The latter variety Y,, classifies all ansatz
solutions modulo C* to Lamé equations of index n € Nyg.

7.6.1.b. The map “multiplication by —1” on C/A defines an involution 7 on
Sym™(C/A). The subvarieties X,,, Yy, X,, of Sym™(C/A) are stable under the
involution . The restriction of i to X,, is an involution ¢ on X,,. It turned
out that X, is the complement in X,, of the fixed point set (X,)* of the
involution z. One of the fixed points of 7 is the point [0]" = {[0],...,[0]}
of Sym™(C/A); the rest are all in Y,,. In particular X,, \ Y,, = {[0]"}. Tt is
known that #(X,)" < 2n + 2, and the equality #(X,,)* = 2n + 2 holds for
all A outside of a finite number of homothety classes of lattices in C.
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7.6.1.c. The map 7, : Y,, — C which sends a point [a] € Y,, to the accessary
parameter B, of the Lamé equation satisfied by the ansatz function w, is
an algebraic morphism from Y;, to the affine line A! over C. The morphism
7 @ Y, — Al extends to a morphism 7, : X, — P! This projection
morphism 7, is compatible with the involution ¢ in the sense that 7,, = 7,0,
and 7, (z) = 7,(2) for two points z, 2’ € X,, if and only if either = 2’ or
i(z) =2

In particular 7, induces a bijection from the fixed point set (X,)* to a
finite subset %,, C P!(C). This ramification locus ¥, for 7, is the disjoint
union of {oo} with a finite subset ¥,, C C. The restriction m,|x, of 7, to
X,, makes X,, an unramified double cover of the complement A'\Y%, of ¥,
in Al

7.6.1.d. The ramification locus %, is the set of roots of a polynomial ¢,,(B)
(n(B) = 4Bs? + 4g3(A) s, 257 — g2(N)sn_150 — g3(A)s2_4

of degree 2n + 1 in the variable B with coefficients in Q[g2, g3], where the
polynomials Sy, Sp—1,Sn—2 € Qlg2, g3][B] are defined recursively by equa-
tions (7.3.6), starting with sp = 1 and s; = (2n — 1)7!B. The recursive
relation (7.3.6) implies that ¢, (B, g2, g3) is homogenous of weight 2n 4 1 if
g2, g3 are given weights 1,2, 3 respectively; the coefficient of B>"*! in /,,(B)
is a positive rational number.?”

7.6.1.e. The polynomial ¢,(B) gives rise to another compactification X,
of X,,. Let X' be the zero locus of the homogeneous polynomial

~ ~

F (A, B,C) = C?Ar~! — A1y, (B/A)

in the projective plane P? with projective coordinates (A :B:C ). By defini-
tion X,, is the partial desingularization of X, changing the local structure
near the singular point (0 : 0 : 1) by replacing the structure sheaf near
(0:0:1) by its normal closure in the field of fractions. More explicitly we
replace a small Zariski open neighborhood of the point (0:0: 1) in X by
the corresponding open neighborhood of the curve

v =u- (WP, (1/u))

2TThe coefficient of B in s;(B) is
20 n(n—1)(n—2)---(n—i+1)

2n—1 " [@n)(@n—1)(2n—2)-(@n—i+1)]-[(2n—1)(2n—3)(2n—5)-(2n—2i+1)] fori=1,...,n.
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near (u,v) = (0,0); the coordinates are related by

1 v

u

:C:

| G
| O

)

The natural morphism X, — X is a homeomorphism, and is a local iso-
morphism outside the point co which maps to the point (0: 0: 1) € X*.
The projective curve X, is reduced, irreducible and has arithmetic genus n;
we call it the “hyperelliptic model” of X,,.

We have a “hyperelliptic involution” 7 on X, given by

~ ~

i:(A:B:C)— (A:B:-0)

in projective coordinates. The X, is the complement in X, of the fixed
point set (Xn)z of the hyperelliptic involution. We also have a morphism
#in : Xp — P, defined by #,: (A: B:C)~ (A: B) over the open subset

of X,, where A is invertible, and 7,: (A: B : ) — (g : g) over the open

subset of X,, where (' is invertible. One of the fixed points i is co. The map
7, induces a bijection from (Xn)‘ to X,,.

The hyperelliptic projection 7, is compatible with the hyperelliptic in-
volution i on X,,, in the sense that #,(P) = 7, (P’) if and only either P’ = P
or P = i(P), for any two points P, P’ € X,,. The restriction of the triple
(Xn,frn,i) to the open subset X, C X, is naturally identified with the
restriction to X, of the triple (X,,, T, ).

7.6.2. A natural and inevitable question is:

Is there an isomorphism between the two triples (Xn,Tn,t) and (Xn,Tn,t)
which extends the natural isomorphism between the complements of the fixed
point sets of T and ©?

The parallel properties of the two compactifications reviewed in 7.6.1 suggest
that the answer is likely “yes”. Since both X, and X, are reduced and
irreducible, to answer this question affirmatively, we need to show that the
natural identification of the “common open” dense subset X,, of both sides
extends to an isomorphism.

We will see in Lemma 7.6.4 that methods in the previous part of this
section already shows that the identity map on X,, extends to a morphism
¢ : X,, = X, of algebraic varieties. That ¢ is a morphism at o = [0]" is a
consequence of (and equivalent to) Corollary 7.5.2.



252 Ching-Li Chai et al.

The following properties of the morphism ¢ : X,, — X, between reduced
irreducible complete algebraic curves are easily deduced from previous ar-
guments:

(a) ¢ is bijective on points, i.e. ¢ is a homeomorphism.
(b) ¢ is an isomorphism over X,, = X,, \ (X,,)".
(¢) ¢ is an isomorphism near the point co = [0]". This is a rather trivial

case of Zariski’s Main Theorem and is easily verified directly.

So we are left with showing that ¢ is a local isomorphism at each point of
(Y,,)", ramification points “at finite distance”.

7.6.3.  The properties in 7.6.2 (a)—(c) of the morphism ¢ : X,, — X,, do
not formally imply that ¢ is an isomorphism: it may happen that there
exists a point P € Y,, C X,, such that the injection

(b* N OXH,(ﬁ(P) — OXn,P

induced by ¢ between the stalks of the structure sheaves of X,, and Xn at P
and ¢(P) is not an isomorphism. If this “undesirable” phenomenon happens
at one ramification point P € Y,,, the arithmetic genus of X,, will be strictly
smaller than n, the arithmetic genus of X,,. To put it differently, the fact
that ¢ : X,, — X, is a bijective morphism tells us that the hyperelliptic
model X,, can “only be more singular” than X,,.

If we can show that the arithmetic genus of X,, is n, it will follow that
¢ is an isomorphism. This approach may well be possible, but we will take
an easier route: We have seen that the discriminant disc(¢,,(B)) of £,(B) is
a non-zero holomorphic modular form for the full modular group SLy(Z). If
the discriminant disc(¢,,(B)) does not vanish when evaluated at the lattice
A C C in question, then the polynomial ¢,,(B;A) has 2n + 1 distinct roots
in C and X, is smooth, which forces the morphism ¢ : X,, — X, to be an
isomorphism.

Suppose now that the elliptic curve we are given is A;, = Z + Zry for
some 19 € H such that disc(¢,,(B))(Ar,) = 0. The idea now is to embed the
given situation in a one-parameter family such that the morphism ¢ is an
isomorphism outside the central fiber, then use purity (Hartog’s theorem):

Let T vary in a small open disk D C H containing 1o such that disc(€, (B))(A-) #
0 for all T € D and get a family of maps (¢r : Xn,r — Xn .+ )reD parametrized
by D. Use the fact that ¢, is an isomorphism for all T in the punctured disk
D* =D~ {7'0} and that ¢, is an isomorphism outside a finite subset of Xn,m
to show that ¢+, itself is an isomorphism.
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Details will be carried out in Proposition 7.7

Lemma 7.6.4. The identity map idx, : X, = X, on X,, extends uniquely
to a morphism ¢ : X,, = X,,.

Proof. Let (x1,y1),--., (Tn,yn) be the Weierstrass coordinates of the prod-
uct E" = E x --- x E. The affine coordinate B of X is given by B =
(2n —1) Y1 ; ;. From the proofs of Theorems 7.3 and 7.4 we see that the
other affine coordinate C' of X, can be expressed by polynomials in the z;’s
and y;'st C = y; - [[; (i — ;) for all i = 1,... . n. It follows that the
birational map ¢ from X, to X, isa morphism at every point of X,, \ {co}.
Corollary 7.5.2 implies that ¢ is a morphism at co as well. O

Proposition 7.7. The morphism ¢ : X, — X, is an isomorphism.

Proof. We may and do assume that the given lattice A is A, for an element
70 € H. Let (z1,%1), .., (n,yn) be the Weierstrass coordinates of E™ as in
the proof of Lemma 7.6.4, where E = C/A. It suffices to prove the following

Claim: For every monomial h(x,y) in x1,...,Tn,Y1,s---,Yn, the restric-
tion to X,, of its Sp-symmetrization

s, (h) = () ™! Y hlo(z), o(y))

o€ES,

1s the pull-back under ¢ of a polynomial in B and C.

We have seen in the proofs of Theorems 7.3 and 7.4 that the restriction
to X,, of every symmetric polynomial in z1,...,z, can be expressed as a
polynomial in B. Because

C[$1, <oy Ty Y1y e 7y’n] /(yz2 - 41.? + g2Ti + g3)1§z§n

is a free module over the ring of symmetric polynomials C[z1, . .., z,]%" with
basis given by monomials of the form

n n

r.Ss __ T S;

zry* = [[= - I1v
=1 =1

with 0 < r;, <nm—idand 0 < s; <1 foralli=1,...,n, and the sym-
metrization operator Ilg is linear over the ring of symmetric polynomials
in x1,...,2,, it suffices to prove the claim in the case when h(z,y) is one
of the above basis elements 2" y*. In principle one should be able to show
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directly that the symmetrization Ilg (z"y®) of 2"y is a polynomial in B
and C. Here we take an easier way out usi_ng purity_as indicated in 7.6.3.

Let 7 vary over H, and consider the fiber product over H of n copies
of the universal elliptic curve whose fiber over 7 € H is E; = (C/A;).
Over the open subset of the n-time fiber product of E ~\ {[0]}, we have
affine coordinates x1,¥1,...,Tn, yn as before. Let X, be the relative affine
spectrum over H of

) xla"'vxnaylv"'ayna] /( Z?:l xé Yj, 1=0,1,..,n-2, >
(T h<icg(@i — zj)) y? — 4x? + go(Ar)xi + g3(Ar), 1<i<n
Let X, be the relative projective curve over Oy defined by the homogeneous
polynomial

Fo(A,B,C) = C2A™ 1 — A+l (B/A)

as in 7.6.1.e, where g = g2(A;) and g3 = g3(A;) in the definition of ¢, (B).
Let ® : X;, — X be the morphism extending the identity map on X,,. Let U
be the complement in X}, of the set of all ramification points over those 7’s
where the discriminant disc(¢,,(B)) vanishes, so that U is the complement of
the union of the section co and a discrete set of points in X,. We know that
® is an isomorphism over U. Notice that the two-dimensional variety X7 is
normal outside the zero locus of A, because it is regular in codimension one
and Cohen-Macaulay (in codimension two).

For any symmetrized monomial IIg (z"y%) of 2" y* considered earlier,
we know that its restriction to U is equal the pull—ba_nck of the restriction
to the a regular function on the open subset ®(U) of codimension at least
2. By purity (or Hartog’s theorem for normal analytic spaces) this regular
function on ®(U) extends to a regular function h, s on the complement in
X7 of the section (0 : 0 : 1) “at infinity”. Restricting to the fiber over 7
and the Claim follows. We have proved the ¢ is an isomorphism for every
elliptic curve of the form E. = C/A,, for any element 7 in the upper-half
plane H. O

Remark 7.7.1. There is a variant of the proof following the same idea, but
uses Zariski’s Main Theorem instead of purity: take the closure X,, of X, in
the n-th symmetric product of the universal elliptic curve. Apply Zariski’s
Main Theorem to the map from the normalization of X,, to X*. One needs
to be careful when it comes to the operation of taking the closure, for in
general this operation does not commute with the operation of passing to a
fiber. Details are left to the interested readers.
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8. Deformations via blow-up sequences

8.1. In this section we will prove Theorem 0.7.5 concerning the blow-up
set of a blow-up sequence uy to the mean field equation Aug + e = prdg
with pr — 8mn on E = C/A. Recall that the assumption that wuy is a blow-
up sequence means that the subset S C E consisting of all elements P € FE
such that limy_, o ug(P) = oo is a non-empty finite subset of F; this subset
S is called the blow-up set of the blow-up sequence (ug).

8.1.1.  The following facts are known,; see for instance [6, Thm. 3, p. 1237],
[41, p. 1256).

(i) limg_oo ux(x) = —oo for all x € E\.S, uniformly on compact subsets
of EX.S,

(ii) There exists an (87N>p)-valued function P — ap on S such that
the limit limg_,, €"*|g converges to the measure ) p.gapdp on E,
where dp denotes the delta-measure at P for all P € S.

Note that ) p. g ap = 87n because i) g €' = pg for all k, and this sequence
converges to 8mn by assumption.

Clearly the blow-up set of a blow-up sequence does not change if we pass
to a subsequence, therefore we may assume either (1) p # 8mn for all k, or
(2) px = 8mn for all k. Theorem 0.7.5 asserts that the blow-up set S is an
element of Y,, and ap = 87 for all P € S; moreover S € X,, in case (1) and
S e Y,~X, in case (2).

8.1.2.  Part (2) of the Theorem 0.7.5, namely the case p = 8mn, follows
easily from results in §5, 6 and 7. Suppose that n is a positive integer (u)gen
is a blow-up sequence of solutions of Au + e = 87dy on E = C/A. By
Theorems 5.2, 5.6, Proposition 5.8.3 and Theorem 6.5, for each k there
exists an element [a*)] € X, and a real number \; € R such that

( ) ) 1 862>\k ’f[/a(k)] ’2
T R T N fLa ()72

VE,

where fi,0)(2) = wy,e)(2) /w0 (2) is the quotient of the ansatz functions as
in Definitions 6.1.4 and 6.1.5. The curve X, being projective, after pass-
ing to a subsequence we may and do assume that the sequence [a*)] € X,
converges to a point [rg] € X,,. We claim that [zo] € X, i.e. 2o is not a ram-
ification point of 7, : X,, — P!(C). For otherwise the sequence of functions
f[w}(z) converges to the constant function 1, uniformly on compact subsets
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of F, which implies that u; cannot be a blow-up sequence, a contradiction
which proves the claim.

From the fact that [zo] € X, it follows that the sequence f,.)(z) con-
verges to fi;,]. Therefore the sequence A; goes to oo, and § = [zo] € X,.
We have proved Theorem 0.7.5(2). The remaining case (1) when py # 87mn
for all k£ will be proved in Theorem 8.4 and Corollary 8.6. O

8.2. The setup. Let n be a positive integer. Write p = 8, n € R*.
Consider a solution u be of

(8.2.1) Au+ e = 8mndy

on B = C/A, A = Zwi +Zwa, where the parameter n € R satisfies |[n—n| <
%. When the parameter n satisfies n — % <n<n+ %, the topological Leray—
Schauder degree of the equation (8.2.1) is non-zero, hence it has solution.
Let (uk)ren be a sequence of solutions of (MFE-eta) with parameters ny
in the above range, and assume that limy ,., 7z = n. We are interested in
knowing the behavior of this sequence (uy).

8.2.1.  The natural map C~NA — E~{[0]} is a Galois covering space
with group A. We know that C~ A has a universal covering isomorphic to
the upper-half plane H. Let z : H — C~ A be a universal covering map;
here we have abused the notation and use the same symbol “z” for both
the coordinate function on C and this covering map. Denote by [z] the
composition of z with the natural projection map C\A — E~{[0]} =: E*,
so that [z] : H — E* is a universal covering map of E*.

8.2.2. Let I' € PSLy(R) be the discrete subgroup of PSLs(R) consisting
of all deck transformations of the covering map [z] : H — E*, so that T’
is naturally isomorphic to the fundamental group of £* Let A C I' be the
group of all deck transformations of the covering map z : H — C~A. We
know that A is a normal subgroup of I', and the quotient I'/A is naturally
isomorphic to A, the Galois group of the Galois cover C~\A — E*, therefore
A is equal to the subgroup [I',T'] of I" generated by all commutators.

The fundamental group of E~ {[0]} is a free group in two generators,
so I' is a finitely generated Fuchsian subgroup of PSLa(R). The Fuchsian
subgroup A C T is not finitely generated; it is a free group with a set of free
generators indexed by A.



Mean field equations, hyperelliptic curves and modular forms 257

Let H* be the union of H and the set of all cusps®® with respect to T,
with the usual topology as defined in [56, pp. 8-10] which is compatible with
the I'-action. Note that H* is contractible.

Lemma 8.2.3. (1) The map z : H — C\A extends uniquely to a continuous
A-invariant map z* : H* — C, which lifts the continuous I'-invariant map
[2]* : H* — FE extending [z] : H — E*.

~

(2) The maps z* and [2]* induce homeomorphisms A\H* = C and T'\H* =
E respectively.

Proof. The existence of the latter map [z]* : H* — E is well-known, and the
existence of the former map z* : H* — C follows from the existence of the
latter because H* is contractible. We have proved (1). The statement (2)
follows from the statement (1). O

8.2.4. Choose and fix free generators 71,72 of I' such that the image of
4; in T'/[[,T] =2 A is w; for i = 1,2. Let ¢g € H* be the unique cusp such
that 2*(cg) = 0 and the stabilizer subgroup Stabr(cp) of ¢ in I' is equal to
the cyclic subgroup generated by the commutator [J1,72] := 17271 1’72_ L
It follows that the inverse image z*(0) of 0 € C under z*:H* — C is equal
to [[,T-¢p.

8.2.5.  According to Proposition 1.1.2, for each k there exists a meromor-
phic function fj(¢) on H such that

8| £, |2

2.2 =log —% |
(8.2.2) ug o z = log TESADE

The Schwarzian derivative

of ® is equal to

_ Lu (e

S(80) = o 02— 5 (TE) = —20mlm + Dol )+ By)

Z8Recall that a cusp with respect to I' is an element of P*(R) = R U {co} which
is fixed by a parabolic element in T
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for some constant By. Thus f;, can be written as a ratio of two independent
solutions of the Lamé equation

d*w
Pl (77k(77k + Dp(z;A) + Bk)w~
8.2.6. Choose and fix a branch of log z on H, i.e. a holomorphic function

on H whose exponential is equal to the function z : H — C~ A; we abuse
the notation and denote this function again by log z.
The indicial equation of the Lamé equation above is given by

N =X =l +1) = (A= (me + 1) (A +mk) = 0.

The difference nx + 1 — (—nx) = 2n, + 1 of the two roots of the above indicial

equation is not an integer because of the assumption that |, — n| < %
Hence there exist two linearly independent solutions wy, 1, w2 on H which

near cg are of the form
_ +1) log = _ —milogz
wiy = eMTIBZ (B 10 2), Wy =€ "% (hy o0 2),

where hy 1(2) and hy 2(2) are holomorphic functions in an open neighbor-
hood of z = 0 with the property that hy 1(0) = 1 = h2(0). The quotient

Wi,1

(8.2.3) fio = s

is a meromorphic function f; on H such that

(8.2.4) fi(co) = Jim i (€) = 0
and
(8.2.5) Pe(F3 A7 Ao - €) = VI (6) Ve e HL

Lemma 8.2.7. Let T}, € PSLy(C) be the linear fractional transformation
such that £, = Ty, - fx. The limit

lim fk(f) =: fk(CQ)

E—co

exists in P1(C) and is equal to Ty-0, the image of 0 € P(C) under the linear
fractional transformation Tj.
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Lemma 8.2.8. (a) If f;(0) = 0, then there exists a constant Ay € C* such
that fk = Ak . fk

(b) If £,(0) = oo, then there exists a constant A € C* such that then
fr. = Ak /i

Proof. Let T}, be the linear fractional transformation such that fi = T} - fx
as in the proof of Lemma 8.2.7.

If fi.(co) = 0 = &(0), then there exists a unique element A; € C* such
that Ty is the image of ( ‘%’“ 9); the statement (a) follows. If fi(co) = oo, then
there exist a unique element Aj, € C* such that T}, is the image of (9 4).
We have proved (b). O

8.3. Normalizing fi’s through monodromy.

8.3.1. Let pg, : I' = PSU(2) be the monodromy representation attached
to the developing map f, of the solution uy, defined by

fe(v-&) =pe.(v) - ()  Vyel, V6 eH.

Note that
pr.(71-72) = pr. (1) g (2) V1,2 €T
Let Sk ; = pg, (7)) € PSU(2) for i = 1,2. Then we have

(8.3.1) fr.(%i - &) = Ski - f(§) fori=1,2, V¢ € H.

Let

(8.3.2) Bri=Sk2 Sk Sy Spt = pr([2,71]) € PSU(2).

8.3.2.  So far we have not imposed any restriction on the developing map

fi, of the solution uy of Au+e" = pi-dy. Modifying f by a suitable element
of PSU(2), we may and do assume that S; 1 = pg, (71) lies in the diagonal
maximal torus of PSU(2), i.e. there exists 6 € R/27/—1Z and ay, b, € C
with |ag|? + [bx|? = 1 such that

vIe g b
. (& o ag k
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in matricial notation. Note that we have

agay + 6_2\/__19"’ bk% akbk(—l + 62‘/__19’“)>

(8.3.4) Bk = [Sk2,Sk1] = — 7
@b (1 — e 27100 by Be?V =10 4y

in PSU(2).

Lemma 8.3.3. Recall that we have assumed that Sy 1f, = 20, n — % <
Nk = pr/87 < n—l—% and N # n. Suppose in addition thatn—% < < n—i—%,
then fk(Co) e C*.

Proof. We need to show that fi(cg) is not equal to 0 nor to co. Suppose first
that f;(co) = 0. By Lemma 8.2.8 (a) there exists a constant Ay € C* such
that fy = A - fx. The monodromy relation (8.2.5) for f; implies that

B 5 627r\/j1nk 0
[Sk,27 Sk,l] = pfk([727 71]) = 0 627r\/7717];C

in PSU(2). Comparing with (8.3.4), we get ay, - by, - (e2V~1% — 1) = 0. But
we know that b, # 0 and 2V =10 # 1, for otherwise Si 1 would commute
with S, o, contradicting the assumption on 7. We conclude that a; = 0. In
other words becomes

2

(8.3.5) £.(716) = 206, (¢),  £,(326) = — f:&) Ve € H.

Therefore the logarithmic derivative

df,
dz

d
gk = E(log fp) = £,

of f;, descends to a meromorphic function gy on the elliptic curve E’' :=
C/N', where ' = Zwy + Z2ws. Moreover we know that g has a simple
pole at O0mod A’ with residue 27, + 1, and the equation (8.3.5) tells us
that g has a simple at wo mod A’ as well. On the other hand because f}, is
a developing map of a solution uj to the equation Au + e“ = 8wy g, the
meromorphic function f, has multiplicity 1 at all points above [0] = 0 mod A.
So the meromorphic function g, on E’ has two simple poles but no zero, a
contradiction. We have proved that fx(cg) # 0.

Suppose that fi(cp) = co. By Lemma (8.2.8) (b) there exists a constant
Aj € C* such that f, = Ay/fr. The same argument as in the previous case
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shows that the logarithmic derivative of fj, descends to a meromorphic func-
tion on C/A’ which has at least two simple poles but no zero, a contradiction
again. ]

Lemma 8.3.4. Notation and assumptions as in 8.3.2 and Lemma 8.3.3.
Let v, € PSU(2) be the element

8.3.6 (o
( -9- ) Yk = 0 627“/*_1%

in PSU(2). Let pg, qi be elements of C* such that

dk
‘pk|2 + |q]€‘2 =1 and fk((o) = —.

Pk
Let
P —aqk
8.3.7 T, = (2 =
( ) k <Qk pk>
(1) The equality
(8.3.8) [Sk2: Skl =T i - T

holds in PSU(2).
(2) Explicitly, the equality in (1) means that either

(8.3.9)
[1 - (’pk‘Qe—‘zﬂnk 4 ‘qk’26zﬁnk)]ak — p—qu(ezﬁnk o e—zﬁm)%
R e e L e e L
or
(8.3.10)
[+ (IprlPe™ ™ + |gil*e™ ™ )Jar = —Prgr(e”™™ — e ™ )by,

€% (Ipi e gy 2Ty = B (e —e

In both cases we have ay - by # 0, for all k.
(3) If (8.3.9) holds, then

g2 = [(1— |pr|Pe/ 71 — |q| 22/~ ) |2
B okl [(e e —e ) 2 [(1 — [pe[2e 2/ — [qy 2 2
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’a ’2 _ |pk|2|Qk|2 |(e2\/jnk_672\/jmk)’2
S ok Rlqel? (v — e 2 (1 — [pg[2e e — |gi 2e 2

and

st _ L= pelPe T — i Per

1 — [pg[2eV ™ — |qg|?e>vrm

so |ag|?, |bx|? and e are all determined by e*V=1" and fi(co). In
addition ay,- by, is also determined by €2V~ and fy,(co).
(4) If (8.3.10) holds, then

(L Ipie ™ + g e )

bl =
s x| qr|* [ (€27 —e V1) [2 4 (1 + |pg|2e>"1 + [ g |2e2v 1) [2
a2 = |prl?lqe | (e —e ) 12

S TowlPlawl? (e — e 2 4 (1 + [pgl2e 7 + [gi P2
and

1_|_ ’pk‘Qeszﬁnk + ‘qk’2€2ﬁnk
L [pyPer e gy Zer e

so |ap|2, |bk|? and 7% are all determined by €2V~ and £,(co). In
addition ay- by is also determined by e2V=Ime gnd f1:(co).

62\/ij _

Proof. (1) Clearly limg_,¢, (T} - f)(§) = 0. By Lemma 8.2.8 there exists a
constant ¢ € C* such that Ty - f, = ¢ fr. We have

Ty [Sk2, Skt (&) = Tt ([Y2,91) &) = ck T ([Y2, 1] €) = cr Vi - fr(§)
for all & € H, therefore
T[Sk, Skt = e i - e = i - (erfr) = - T - .

So Ty [Sk,2, Sk1] = vk - Tk, in PSU(2). We have proved the statement (1).

(2) The equality [Sk2,Sk1] = T, ' - vk - T) in PSU(2) is equivalent to the
equality

Ska - Sk2 - Spy =Sy Tt - T
when both sides are regarded as elements of SU(2) with Sk 1, Sk 2 given by
(8.3.3) and T}, given by (8.3.7). A straightforward calculation shows that

‘]%‘2 eV "1k + ‘Qk‘Q e 21Nk —Pr qk<62«/jl77k _ e’-’ﬁﬂk))

-1 o
Tk Vi - Tk = ( pkq_k(e_gmnk _ eQMnk) |pk|2e_zmnk + |qk|2egmnk
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and

- V=16,
Q. bk e’
-1
Sk Sk2-Spy = (

_E 672\/7_1&. a

The statement (2) follows: the equation (8.3.9) corresponds to the case S, ; -
Sk2 - Sk_i = S’k_% -Tk_1 - vk - Tk, while the equation (8.3.10) corresponds to
the case Si,1- Sk - S,;i = —S,;% -T,;l e+ Tk

The formulas in (3) and (4) for |ax| and |bg| follow from (8.3.9) and
(8.3.10) respectively, through routine calculations which are omitted here.
Notice that these formulas imply that -b; # 0. Recall that we already know
that ay # 0, for otherwise Sy would commute with Sj ;. We also know
that pg - qx # 0, for f(co) # 0,00. The assumptions on 7y implies that
||p|?e 2" + |gi|2e> ™| < 1, so we know from (8.3.9) and (8.3.10) that
ar, # 0 in both cases.

The formulas in (3) and (4) for €2V~ follows from (8.3.9) and (8.3.10)
respectively. For instance if we multiply the second equation in (8.3.9) by the
complex conjugate of the first equation in (8.3.9), cancel out the non-zero
factor @gby on both sides, then we get the formula for e2V=1% in (3).

These formulas clearly show that in both cases |ag|, [by| and e2mV~10
are determined by e2™V=Ine and fr(co) and not on the choices of py and gy.
That ay, - b is also determined by e?™ and fi(¢o) in each of the two cases
follows quickly from (8.3.9) and (8.3.10). O

We are ready to prove the remaining case (1) of Theorem 0.7.5. Let’s
recall the situation. We are given a (ug)g is a blow-up sequence of solutions
such that Aug + e* = 8mnr dp on E = C/A for each k, limg_,oomp = n
with {P,..., Py} as the blow-up set of this blow-up sequence. We may
and do assume that n — % <M < n+ % and 1, # n for all k. We know
from [12] that m = n, P; # [0] for each i = 1, and limy_,o, ux(P) — —o0
P e E~{Py,...,P,}, uniformly on compact subsets of ~\{P,...,P,}.

Theorem 8.4. There is a constant A € C* such that limy_,o f(§) — A
uniformly on compact subsets of the inverse image H\[2]"*({[0], P4, .. ., Pn})
of EN{[0], Pr,..., P,}. Furthermore we have { Py, ..., P,} ={—Pi,...,—P,}.

8.5. Proof of Theorem 8.4.

8.5.1.  We first note that there exists a constant B € C such that the
Lamé equations
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(8.5.1) w' = (T}k(nk +1Dp+ Bk)w
converge to
(8.5.2) w” = (n(n+1)p+ By)w

because limy_,, 7 = n and limy_,,, By = B. This is a consequence of the fact
that uy , and wuy, ., converge uniformly on compact sets in Ex{p1,...,pn}

8.5.2.  For each k choose a normalized developing map f, of uj as in 8.3.2,
and choose pi,qr € C* such that |pg|? + |qr|?> = 1 and fi.(co) = qr/pk- By
Lemma 8.2.8 there exists for each k a constant ¢, € C* such that

prfk —ar _ el
qktk + P ’
where f; = wy1/wg2 is a solution of the Lamé equation (8.5.1) on the

universal covering H of E~\{[0]} defined in 8.2.6. Equivalently,

PrCrfr + ak

8.5.3 f=——
( ) g —qrCkfr + Pk

The convergence of the Lamé equations (8.5.1) implies that after passing to
a subsequence if necessary, there exist solutions wi,wsy of (8.5.2) on H such
that limy_,oo wi; = w; for i = 1,2 and limy_,o0 i = | := w1 /w2, uniformly
on compact set in F away from the discrete set of poles and zeros of w; and
wy. Clearly

wi = (n(n+1)p + B)uw;,

and locally near ¢g the w;’s can be written in the form
wi(§) = eTVIB7 (hyoz),  wa(€) = e "BF - (hy - 02)
where h1, ha holomorphic functions in a neighborhood of ¢, such that

lim h;(§) =1 fori=1,2.

E—reo

Most of our analysis will be based on the limiting behavior of (8.5.3) as
k — oo.

Again passing to a subsequence if necessary, we may and do assume
that there exist p,q € C with |p|? + |¢|?> = 1 such that p, — p and ¢, — ¢
as k — oo. Similarly we may and do assume that there exist a,b € C with
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la]?+|b|? = 1 such that a;, — a and b, — bas k — co. Let A := q/p € P1(C).
Clearly

lim £,(0) = lUim qx/px = A.

k—o0
We may and do assume moreover that the limit limy_,., exists in P*(C); let

c:= lim ¢y.
k—o00

8.5.3.  Our first claim is that ¢ is either 0 or co. Suppose that ¢ € C*.
Let

_ peitg

—qcf+p
Then fj(&) — £(§) for all £ outside some discrete subset ¥ of H. Hence
81.f'(2)[?

(L4 [f(2)[*)?
uniformly on compact sets outside some discrete set of H. This contradicts

to our assumption that uy blows up as k — oo, We have proved that either
c=0or c=o0.

Up oz — uoz=log

8.5.4. Next we claim that
AeC* and c=0.

This claim and the equation (8.5.3) imply that lim,_,~ fx(§) = A for all £
outside of some discrete subset of H, and the first statement of Theorem 8.4
follows.

8.5.5.  We will show that A # co. Suppose to the contrary that A = oo,
ie.p=0and |¢g| = 1.

Our first step is to show that a := limg_.o, ap = 0. Write . := 62”\/__1”k;
clearly limy_,, ar = 1. Passing to a subsequence if necessary, we may and
do assume that either (8.3.9) holds for all k£ or (8.3.10) holds for all k. In
the case when (8.3.10) holds for all k, taking the limit of both sides of the
first equation in (8.3.10), we see immediately that limg_,o ax = 0. In the
case when (8.3.9) holds for all k, substitute |pg|> by 1 — |gx|? in the first
equation of (8.3.9), then divide both sides by «y — oz,;l , we get

1 2 -
= Dt qr b
<ak+1+\%’>ak Dk Gk bx
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Taking the limit of the above equality as k — oo, again we conclude that
a = limy_, o ar =0, so |b| = 1.

We will analyse the two possibilities of ¢ separately and show that both
lead to contradictions. Suppose first that ¢ = 0. From (8.5.3) it is clear that

However, if we select £ so that f(§) # oo and f(g2&) # oo (such £ certainly
exists), then

s _ agfi(§) — bi
(8.5.4) £r.(728) = Sk ofk(§) = G — 0,

which contradicts the previous conclusion that |f(52£)] — oo. So ¢ # 0.

Suppose next that ¢ = co. Again by (8.5.3) we have

f&)#0 = fi(§) —0,

and convergence is uniform on compact sets outside the zeros of §. But then
fi:(72¢) — oo, which contradicts fx(72£) — 0 provided that §(32€) # 0.
We have shown that the assumption A = oo leads to assumption for both
possible values of ¢. We have proved that A # oo, i.e. A € C.

8.5.6. Now we know that f;,(0) — A with A € C. Substituting fx o z =
22+ 1 O(|2*1+2) near ¢ into (8.5.3), we get

froz =2+ 52204 (14 O(l2])).
Px Dy

On the other hand we know from general facts about blow-up sequences
that the regular part of ug(z) at z = 0 tends to —oo, i.e.

(ug 0 z — 4my, log |2])
8| | 2|
(1+ [fk 0 2[2)?

z=

8lerl2(2 1)2
_log S+ 1

= 10 =
8 2=0 s (1 + [£:(0)]2)2

—0Q,

which implies that ¢z — ¢ = 0.
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8.5.7.  We still need to exclude the possibility that A = 0. Suppose to the
contrary that A = 0, or equivalently |p| = 1 and ¢ = 0. The same argument
used at the beginning of 8.5.5 shows that a = 0 and |b] = 1. Since ¢ = 0, by
(8.5.3),

f(§) #o0 = £i(§) — 0.
Then by the expression (8.5.4) we have f;(12€) — 0o whenever §(§) # oo,
hence f(72¢) = oo by the above implication. But as before we may select &

so that both §(§) # oo and f(72§) # oo. This is a contradiction. We have
proved that A € C*.

8.5.8. It remains to show that the blow-up set is stable under [—1]g, i.e.
{P1,....,P,} ={-P1,...,—P,}. From (3.1.3), we see that

S(fr(=2)) = S(fi)(—2) = =2(n(n + Vp(=2) + Bi) = S(fr(2)),

hence fj,(—z) is also a developing map for uy. Since fi(z) is normalized in the
sense of 8.3.2, fi(—z) = f;, o (—2) is also normalized, so our results applies
to fy(—z) as well. We conclude that fi(—z) — A outside {Pi,...,P,}.
This implies that this set coincides with {—Py,...,—F,}. We have prove
Theorem 8.4. ]

Corollary 8.6. Let u be a blow-up sequence of solutions to (0.1.3) with
pr = 8w — 8mn, ni # n for all k. Let S = {P,...,P,} be the blow-up
set. Then S is a finite branch point of the hyperelliptic curve C? = £,(B).

Proof. The blow-up set S satisfies equations (5.7.2), or equivalently (5.7.4),
thus S € Y,,. Now Theorem 8.4 implies that {P;}-y = {—P;}},, hence
S € Y,~X,, i.e. it is a branch point of 7 : X,, — P!(C). O

8.7. Further remarks.

8.7.1.  Consider the regular part of the Green function

- 1
G(z,9) =Gz —q) + ﬂlog!z —q|.

Let S = {Py,...,P,} C E be a set of n distinct points on E = C/A;
pick representatives p1,...,pn € C of Pi,...,P,. For i =1,...,n we define
fou(2) 7= 87(G(z,pi) — G(pi, pi))

+ Y (G(z — pj) — G(pi — pj) — 870(G(2) — G(p1)),
J#i
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pi = oxp(8m(G(pipi) + Y G(pj — pi)) — 8nG(py)).
i

Then we have the important global quantity associated to the set S:

n efpi(z) —1 1
D(S) = 1im S i / 7—/ —,
)= 2 ( onB.(p) 12Dl Jreve, 12— pil*

=1

where 2; is any open neighborhood of p; in E such that Q; N Q; = 0 for
i#j,and U, Q; = E.

Under the hypothesis of Corollary 8.6, it was shown in [16] for n = 1
and in [45] for general n € N, but in a slightly different context, that

pr —8mn = (D(S) + o(1)) exp(— mj@xuk).

In general it is difficult to compute D(S) even for n = 1. In the case
n = 1, the hyperelliptic curve is the torus E and the branch points consist
of the three half-periods. In the very special case that T is a rectangular
torus, the sign of D(iw;) has been calculated: D(3w;3) < 0 and D(3w;) > 0
for i = 1,2. Furthermore D(%wi) < 0 if and only if %wi is a minimal point
[16].

It is clear that when D(S) # 0, its sign provides important information
when we study bubbling solutions (blow-up sequence) with p # 8mn (e.g. if
D(S) > 0 then the bubbling may only occur from the right hand side). Also
in the case pr = 8nn for all k, if a blow-up family u) exists then D(S) =0
trivially for S begin the blow-up set.

In particular, we pose the following

Conjecture 8.7.2. For rectangular tori, there are n branch points on the
associated hyperelliptic curve with D(S) < 0, and n + 1 branch points with
D(S) > 0.

Conjecture 8.7.2 is known only when n = 1 as mentioned above.

8.7.3.  Theorem 8.4 provides a connection between singular Liouville equa-
tions and the branch points of the associated hyperelliptic curve. We expect
the phenomenon to hold true for other related equations. For example we
might ask the following question on Chern—Simons-Higgs equation:
Suppose that u. is a sequence of bubbling solutions of the Chern—Simons—Higgs
equation

Aue + %e“e(l —e"*) =8mndy in E.
€
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Is the bubbling set {p1,...,pn}, as € = 0, a branch point of the hyper elliptic
curve C? = £,(B)?

This has recently been answered affirmatively for n = 1 and for E a

rectangular torus [45, 46].
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