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ABSTRACT. For projective conifold transitions between Calabi-Yau three-
folds X and Y, with X close to Y in the moduli, we show that the com-
bined information provided by the A model (Gromov–Witten theory in
all genera) and B model (variation of Hodge structures) on X, linked
along the vanishing cycles, determines the corresponding combined in-
formation on Y. Similar result holds in the reverse direction when linked
with the exceptional curves.
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0. INTRODUCTION

0.1. Statements of main results. Let X be a smooth projective 3-fold. A
(projective) conifold transition X ↗ Y is a projective degeneration π : X→
∆ of X to a singular variety X̄ = X0 with a finite number of ordinary dou-
ble points (abbreviated as ODPs or nodes) p1, · · · , pk, locally analytically
defined by the equation x2

1 + x2
2 + x2

3 + x2
4 = 0, followed by a projective

small resolution ψ : Y → X̄. In the process of complex degeneration from
X to X̄, k vanishing spheres Si

∼= S3 with trivial normal bundle collapse
to nodes pi. In the process of “Kähler degeneration” from Y to X̄, the ex-
ceptional loci of ψ above each pi is a smooth rational curve Ci

∼= P1 with
NCi/Y

∼= OP1(−1)⊕2. We write Y ↘ X for the reverse process.
Notice that ψ is a crepant resolution and π is a finite distance degener-

ation with respect to the quasi-Hodge metric [35, 36]. A transition of this
type (in all dimensions) is called an extremal transition. In contrast to the
usual birational K equivalence, an extremal transition may be considered

1



2 Y.-P. LEE, H.-W. LIN, AND C.-L. WANG

as a generalized K equivalence in the sense that the small resolution ψ is
crepant and the degeneration π preserves sections of the canonical bundle.
All known Calabi–Yau 3-folds with the same fundamental group are con-
nected through extremal transitions, of which conifold transitions are the
most fundamental. It is therefore a natural starting point of investigation.

We study the changes of the so-called A model and B model under a pro-
jective conifold transition. In this paper, the A model is the Gromov–Witten
(GW) theory of all genera; the B model is the variation of Hodge structures
(VHS), which is in a sense only the genus zero part of the quantum B model.

In general, the conditions for the existence of projective conifold transi-
tions is an unsolved problem except in the case of Calabi–Yau 3-folds, for
which we have fairly good understanding. For the inverse conifold transi-
tion Y ↘ X, a celebrated theorem of Friedman [8] (see also [14, 34]) states
that a small contraction Y → X̄ can be smoothed if and only if there is a to-
tally nontrivial relation between the exceptional curves. That is, there exist
constants ai 6= 0 for all i = 1, . . . , k such that ∑k

i=1 ai[Ci] = 0. These are rela-
tions among curves [Ci]’s in the kernel of H2(Y)Z → H2(X)Z. Let µ be the
number of independent relations and let A ∈ Mk×µ(Z) be a relation matrix
for Ci’s, in the sense that the column vectors span all relations. Conversely,
for a conifold transition X ↗ Y Smith, Thomas and Yau proved a dual
statement in [33], asserting that the k vanishing 3-spheres Si must satisfy a
totally nontrivial relation ∑k

i=1 bi[Si] = 0 in VZ := ker(H3(X)Z → H3(X̄)Z)
with bi 6= 0 for all i. Let ρ be the number of independent relations and
B ∈ Mk×ρ(Z) be a relation matrix for Si’s. It turns out that µ + ρ = k [5]
and the following exact sequence holds.

Theorem 0.1 (= Theorem 1.14). Under a conifold transition X ↗ Y of smooth
projective threefolds, we have an exact sequence of weight two Hodge structures:

(0.1) 0→ H2(Y)/H2(X)
B−→ Ck At

−→ V → 0.

We interpret this as a partial exchange of topological information be-
tween the excess A model of Y/X (in terms of H2(Y)/H2(X)) and the excess
B model of X/Y in terms of the space of vanishing cycles V. To study the
changes of quantum A and B models under a projective conifold transition
of Calabi–Yau 3-folds and its inverse, the first step is to find a D-module
version of Theorem 0.1. We state the result below in a suggestive form and
leave the precise statement to Theorem 4.1:

Theorem 0.2 (= Theorem 4.1). Via (0.1), the trivial logarithmic connection on
(C ⊕ C∨)k → Ck induces simultaneously the logarithmic part of the Gauss–
Manin connection on V and the Dubrovin connection on H2(Y)/H2(X).

Note that the Gauss–Manin connection on V determines the excess B
model and Dubrovin connection on H2(Y)/H2(X) determines the excess
A model in genus zero. The logarithmic part of the connection determines
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the residue connection and hence the monodromy. One can interpret The-
orem 0.2 heuristically as ”excess A theory’ + excess B theory ∼ trivial”. In
other words, the logarithmic parts of two flat connections on excess theo-
ries “glues” to form a trivial theory. This gives a strong indication towards
a unified A + B theory.

”Globalizing” this result, i.e., going beyond the excess theories, is the
next step towards a true A + B theory, which is stilll beyond immediate
reach. Instead we will settle for results on mutual determination in implicit
form. Recall that the Kuranishi spaceMX̄ is smooth due to the unobstruct-
edness result of Ran, Kawamata and Bogomolov–Tian–Todorov.

Theorem 0.3. Let X ↗ Y be a projective conifold transition of Calabi–Yau three-
folds such that [X] is a nearby point of [X̄] inMX̄. Then

(1) A(X) is a sub-theory of A(Y).
(2) B(Y) is a sub-theory of B(X).
(3) A(Y) can be reconstructed from a refined A model of X◦ := X \ ⋃k

i=1 Si
“linked” by the vanishing spheres in B(X).

(4) B(X) can be reconstructed from a refined B model of Y◦ := Y \ ⋃k
i=1 Ci

“linked” by the exceptional curves in A(Y).

The meaning of these slightly obscure statements will take the entire pa-
per to spell them out. Here we give only brief explanations.

(1) is mostly due to Li–Ruan, who in [21] pioneered the mathematical
study of conifold transitions in GW theory. The proof follows from degen-
eration arguments and existence of flops (cf. Proposition 2.1).

For (2), we note that there are natural identifications of MY with the
boundary of MX̄ consisting of equisingular deformations, and MX with
MX̄ \D where the discriminant locus D is a central hyperplane arrangement
with axis MY (cf. §3.3.2). Therefore, the VHS associated to Y can be con-
sidered as a sub-VHS system of VMHS associated to X̄ (cf. Corollary 3.19),
which is a regular singular extension of the VHS associated to X.

With (3), we introduce the “linking data” of the holomorphic curves in
X◦, which not only records the curve classes in X but also how the curve
links with the vanishing spheres

⋃
i Si. The linking data on X can be identi-

fied with the curve classes in Y by H2(X◦) ∼= H2(Y) (cf. Definition 5.2 and
(5.3)). We then proceed to show, by the degeneration argument, that the
virtual class of moduli spaces of stable maps to X◦ is naturally a disjoint
union of pieces labeled by elements of the linking data (cf. Proposition 5.6).
Furthermore, the Gromov–Witten invariants in Y is the same as the num-
bers produced by the component of the virtual class on X labeled by the
corresponding linking data. Thus, the refined A model is really the “linked
A model” and is equivalent to the (usual) A model of Y (for non-extremal
curves classes) in all genera. The vanishing cycles from B(X) plays a key
role in reconstructing A(Y).

For (4), the goal is to reconstruct VHS on MX from VHS on MY and
A(Y). The deformation of X̄ is unobstructed. Moreover it is well known
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that Def(X̄) ∼= H1(Y◦, TY◦). Even though the deformation of Y◦ is ob-
structed (in the direction transversal to MY), there is a first order defor-
mation parameterized by H1(Y◦, TY◦) which gives enough initial condition
to uniquely determine the degeneration of Hodge bundles on MX̄ near
MY. A technical result needed in this process is a short exact sequence
0 → V → H3(X) → H3(Y◦) → 0 which connects the limiting mixed
Hodge structure (MHS) of Schmid on H3(X) and the canonical MHS of
Deligne on H3(Y◦) (cf. Proposition 6.1). Together with the monodromy
data associated to the ODPs, which is encoded in the relation matrix A of
the extremal rays on Y, we will be able to determine the VHS onMX near
MY. In the process, an extension of Schmid’s nilpotent orbit theorem [31]
to degenerations with certain non-normal crossing discriminant loci is also
needed. See Theorem 3.13 for details.

0.2. Motivation and future plans. Our work is inspired by the famous
Reid’s fantasy [27], where conifold transitions play a key role in connecting
irreducible components of moduli of Calabi–Yau threefolds. Theorems 0.2
and 0.3 above can be interpreted as the partial exchange of A and B mod-
els under a conifold transition. We hope to answer the following intriguing
question concerning with “global symmetries” on moduli spaces of Calabi–
Yau 3-folds in the future: Would this partial exchange of A and B models lead
to “full exchange” when one connects a Calabi–Yau threefold to its mirror via a
finite steps of extremal transitions? If so, what is the relation between this full
exchange and the one induced by “mirror symmetry”? To this end, we need to
devise a computationally effective way to achieve explicit determination of
this partial exchange. One missing piece of ingredients in this direction is a
blowup formula in the Gromov–Witten theory for conifolds, which we are
working on and have had some partial success [18]. 1

More speculatively, the mutual determination of A and B models on X
and Y leads us to surmise the possibility of a unified “A + B model” which
will be invariant under any extremal transition. For example, the string
theory predicts that Calabi–Yau threefolds form an important ingredient of
our universe, but it does not specify which Calabi–Yau threefold we live in.
Should the A + B model be available and proven invariant under extremal
transitions, one would then have no need to make such a choice.

The first step of achieving this goal is to generalize Theorem 0.2 to the
full local theory, including the non-log part of the connections. We note
that the excess A model on H2(Y/X) can be extended to the (flat) Dubrovin
connection on Y while the excess B model on H3(X/Y) can be extended to
the (flat) Gauss–Manin connection on X. We hope to be able to “glue” the
complete A model on Y and the complete B model on X as flat connections
on the unified Kähler plus complex moduli.

1For (smooth) blowups with complete intersection centers, we have a fairly good solu-
tion in genus zero.
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especially those from the physics perspective. (See [29] for a partial list.)

1. THE BASIC EXACT SEQUENCE FROM HODGE THEORY

In this section, we recall some standard results on the geometry of pro-
jective conifold transitions. Definitions and short proofs are mostly spelled
out to fix the notations, even when they are well known. Combined with
well-known tools in Hodge theory, we derive the basic exact sequence, which
is surprisingly absent in the vast literature on the conifold transitions.

Convention. In §1-2, all discussions are for projective conifold transitions
without the Calabi–Yau condition, unless otherwise specified. The Calabi–
Yau condition is imposed in §3-5. Unless otherwise specified, cohomology
groups are over Q when only topological aspect (including weight filtra-
tion) is concerned; they are considered over C when the (mixed) Hodge-
theoretic aspect is involved. All equalities, whenever make sense in the
context of mixed Hodge structure (MHS), hold as equalities for MHS.

1.1. Preliminary on conifold transitions. ([5])

1.1.1. Local geometry. Let X be a smooth projective 3-fold and X ↗ Y a pro-
jective conifold transition through X̄ with nodes p1, . . . , pk as in §0.1. Locally
analytically, a node (ODP) is defined by the equation

(1.1) x2
1 + x2

2 + x2
3 + x2

4 = 0,

or equivalently uv − ws = 0. The small resolution ψ can be achieved by
blowing up the Weil divisor defined by u = w = 0 or by u = s = 0, these
two choices differ by a flop.

Lemma 1.1. The exceptional locus of ψ above each pi is a smooth rational curve
Ci with NCi/Y

∼= OP1(−1)⊕2. Topologically, NCi/Y is a trivial rank 4 real bundle.

Proof. Away from the isolated singular points pi’s, the Weil divisors are
Cartier and the blowups do nothing. Locally near pi, the Weil divisor is
generated by two functions u and w. The blowup Y ⊂ A4 ×P1 is defined
by z0v − z1s = 0, in addition to uv − ws = 0 defining X, where (z0 : z1)
are the coordinates of P1. Namely we have u/w = s/v = z0/z1. It is now
easy to see the exceptional locus near pi is isomorphic to P1 and the normal
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bundle is as described (by the definition of OP1(−1)). It is topologically
trivial since all Z/2 Stiefel–Whitney classes wk’s are zero. �

Locally to each node p = pi ∈ X̄, the transition X ↗ Y can be considered
as two different ways of “smoothing” the singularities in X̄: deformation
leads to Xt and small resolution leads to Y. Topologically, we have seen
that the exceptional loci of ψ are äk

i=1 Ci, a disjoint union of k 2-spheres.
For the deformation, the classical results of Picard, Lefschetz and Milnor
state that there are k vanishing 3-spheres Si

∼= S3.

Lemma 1.2. The normal bundle NSi/Xt
∼= T∗Si

is a trivial rank 3 real bundle.

Proof. From (1.1), after a degree two base change the local equation of the
family near an ODP is ∑4

j=1 x2
j = t2 = |t|2e2

√
−1θ . Let yj = e

√
−1θxj for

j = 1, . . . , 4, the equation leads to

(1.2) ∑4
j=1 y2

j = |t|2.

Write yj in terms of real coordinates yj = aj +
√
−1bj, we have |~a|2 = |t|2 +

|~b|2 and~a ·~b = 0, where~a and~b are two vectors in R4. The set of solutions
can be identified with T∗Sr with the bundle structure T∗Sr → Sr defined
by (~a,~b) 7→ r~a/|~a| ∈ Sr where Sr is the 3-sphere with radius r = |t|. The
vanishing sphere can be chosen to be the real locus of the equation of (1.2).
Therefore, NSr/Xt is naturally identified with the cotangent bundle T∗Sr,
which is a trivial bundle since S3 ∼= SU(2) is a Lie group. �

Remark 1.3. The vanishing spheres above are Lagrangian with respect to the
natural symplectic structure on T∗S3. A theorem of Seidel and Donaldson
[32] states that this is true globally, namely the vanishing spheres can be
chosen to be Lagrangian with respect to the symplectic structure coming
from the Kähler structure of Xt.

By Lemma 1.2, the δ neighborhood of the vanishing 3-sphere S3
r in Xt is

homeomorphic to trivial disc bundle S3
r × D3

δ . By Lemma 1.1 the r neigh-
borhood of the exceptional 2-sphere Ci = S2

δ is D4
r × S2

δ , where δ is the
radius defined by 4πδ2 =

∫
Ci

ω for the background Kähler metric ω.

Corollary 1.4. On the topological level one can go between Y and Xt by surgery
via ∂(S3

r × D3
δ) = S3

r × S2
δ = ∂(D4

r × S2
δ).

Remark 1.5 (Orientations on S3). The two choices of orientations on S3
r in-

duces two different surgeries. The resulting manifolds Y and Y′ are in gen-
eral not even homotopically equivalent. In the complex analytic setting the
induced map Y 99K Y′ is known as an ordinary (Atiyah) flop.

1.1.2. Global topology.

Lemma 1.6. Define µ := 1
2 (h

3(X)− h3(Y)) and ρ := h2(Y)− h2(X). Then,

(1.3) µ + ρ = k.
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Proof. The Euler numbers satisfy χ(X)− kχ(S3) = χ(Y)− kχ(S2). That is,

2− 2h1(X) + 2h2(X)− h3(X) = 2− 2h1(Y) + 2h2(Y)− h3(Y)− 2k.

By the above surgery argument we know that conifold transitions preserve
π1. Therefore, 1

2 (h
3(X)− h3(Y)) + (h2(Y)− h2(X)) = k. �

Remark 1.7. In the Calabi-Yau case, µ = h2,1(X)− h2,1(Y) = −∆h2,1 is the
lose of complex moduli, and ρ = h1,1(Y) − h1,1(X) = ∆h1,1 is the gain of
Kähler moduli. Thus (1.3) is really ∆(h1,1 − h2,1) = k = 1

2 ∆χ.

In the following, we study the Hodge-theoretic meaning of (1.3).

1.2. Two semistable degenerations. To apply Hodge-theoretic techniques
on the degenerations, we factor the transition X ↗ Y as a composition of
two semistable degenerations X → ∆ and Y → ∆.

The complex degeneration
f : X → ∆

is the semistable reduction of X→ ∆ obtained by a degree two base change
X′ → ∆ followed by the blow-up X → X′ of all the four dimensional nodes
p′i ∈ X′. The special fiber X0 =

⋃k
j=0 Xj is a simple normal crossing divisor

with ψ̃ : X0 ∼= Ỹ := Bläk
i=1{pi} X̄ → X̄ being the blow-up at the nodes and

with Xi = Qi
∼= Q ⊂ P4, i = 1, . . . , k being quadric threefolds. Let X[j] be

the disjoint union of j + 1 intersections from Xi’s. Then the only nontrivial
terms are X[0] = Ỹ äi Qi and X[1] = äi Ei where Ei = Ỹ ∩Qi

∼= P1×P1 are
the ψ̃ exceptional divisors. The semistable reduction f does not require the
existence of a small resolution of X0.

The Kähler degeneration
g : Y → ∆

is simply the deformations to the normal cone Y = Blä Ci×{0}Y × ∆ → ∆.
The special fiber Y0 =

⋃k
j=0 Yj with φ : Y0 ∼= Ỹ := Bläk

i=1{Ci} Y → Y being
the blow-up along the curves Ci’s and Yi = Ẽi

∼= Ẽ = PP1(O(−1)2 ⊕ O),
i = 1, . . . , k. In this case the only non-trivial terms for Y[j] are Y[0] = Ỹ äi Ẽi
and Y[1] = äi Ei where Ei = Ỹ∩ Ẽi is now understood as the infinity divisor
(or relative hyperplane section) of πi : Ẽi → Ci

∼= P1.

1.3. Mixed Hodge Structure and the Clemens–Schmid exact sequence.
We apply the Clemens–Schmid exact sequence to the above two semistable
degenerations. A general reference is [11]. We will mainly be interested in
H≤3. The computation of H>3 is similar.

1.3.1. The cohomology of H∗(X0), with its canonical mixed Hodge struc-
ture, is computed from the spectral sequence Ep,q

1 (X0) = Hq(X[p]) with the
differential d1 = δ the combinatorial coboundary operator δ : Hq(X[p]) →
Hq(X[p+1]). The spectral sequence degenerates at E2 terms. The weight fil-
tration on H∗(X0) is induced from the increasing filtration on the spectral
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sequence Wm :=
⊕

q≤m E∗,q. Therefore, GrW
m (H j) = Ej−m,m

2 , GrW
m (H j) = 0

for m < 0 or m > j. Since X[j] 6= ∅ only when j = 0, 1, we have

H0 ∼= E0,0
2 , H1 ∼= E1,0

2 ⊕ E0,1
2 , H2 ∼= E1,1

2 ⊕ E0,2
2 , H3 ∼= E1,2

2 ⊕ E0,3
2 .

The only weight 3 piece is E0,3
2 , which can be computed by

δ : E0,3
1 = H3(X[0])−→ E1,3

1 = H3(X[1]).

Since Qi, Ẽi and Ei have no odd cohomologies, H3(X[1]) = 0 and H3(X[1]) =

H3(Ỹ). We have thus E0,3
2 = H3(Ỹ).

The weight 2 pieces, which is the most essential part, is computed from

(1.4) H2(X[0]) = H2(Ỹ)⊕
⊕k

i=1
H2(Qi)

δ2−→H2(X[1]) =
⊕k

i=1
H2(Ei).

We have E1,2
2 = cok(δ2) and E0,2

2 = ker(δ2). The weight 1 and weight
0 pieces can be similarly computed. For weight 1 pieces we have E0,1

2 =

H1(X[0]) = H1(Ỹ) ∼= H1(Y) ∼= H1(X), and E1,1
2 = 0. The weight 0 pieces

are computed from δ : H0(X[0]) → H0(X[1]) and we have E0,0
2 = H0(Ỹ) ∼=

H0(Y) ∼= H0(X), and E1,0
2 = 0. We summarize these calculations as

Lemma 1.8. There are isomorphisms of MHS:

H3(X0) ∼= H3(Ỹ)⊕ cok(δ2),

H2(X0) ∼= ker(δ2),

H1(X0) ∼= H1(Ỹ) ∼= H1(Y) ∼= H1(X),

H0(X0) ∼= H0(Ỹ) ∼= H0(Y) ∼= H0(X).

In particular, H j(X0) is pure of weight j for j ≤ 2.

1.3.2. Here we give a dual formulation of (1.4) which will be useful later.
Let `, `′ be the line classes of the two rulings of E ∼= P1×P1. Then H2(Q, Z)
is generated by e = [E] as a hyperplane class and e|E = `+ `′. The map δ2
in (1.4) is then equivalent to

(1.5) δ̄2 : H2(Ỹ) −→
⊕k

i=1
H2(Ei)/H2(Qi).

Since H2(Ỹ) = φ∗H2(Y)⊕⊕k
i=1〈[Ei]〉 and [Ei]|Ei = −(`i + `′i), the second

component
⊕k

i=1〈[Ei]〉 lies in ker(δ̄2) and δ̄2 factors through

(1.6) φ∗H2(Y)→
⊕k

i=1
H2(Ei)/H2(Qi) ∼=

⊕k

i=1
〈`i − `′i〉

(as Q-spaces). Notice that the quotient is isomorphic to
⊕k

i=1〈`′i〉 integrally.
By reordering we may assume that φ∗`i = [Ci] and φ∗[Ci] = `i − `′i

(cf. [16]). The dual of (1.6) then coincides with the fundamental class map
ϑ :

⊕k
i=1〈[Ci]〉 −→ H2(Y). In general for a Q-linear map ϑ : P → Z, we

have im ϑ∗ ∼= (P/ ker ϑ)∗ ∼= (im ϑ)∗. Thus

(1.7) dimQ cok(δ2) + dimQ im(ϑ) = k.
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We will see in Corollary 1.11 that dim cok δ = µ and dim im ϑ = ρ. This
gives the Hodge theoretic meaning of µ + ρ = k in Lemma 1.6. Further
elaboration of this theme will follow in Theorem 1.14.

1.3.3. On Y0, the computation is similar and a lot easier. The weight 3 piece
can be computed by the mapH3(Y[0]) = H3(Ỹ) −→ H3(Y[1]) = 0; the
weight 2 piece is similarly computed by the map

H2(Y[0]) = H2(Ỹ)⊕
⊕k

i=1
H2(Ẽi)

δ′2−→H2(Y[1]) =
⊕k

i=1
H2(Ei).

Let h = π∗(pt) and ξ = [E] for π : Ẽ→ P1. Then h|E = `′ and ξ|E = `+ `′.
In particular the restriction map H2(Ẽ) → H2(E) is an isomorphism and
hence δ′2 is surjective. The computation of pieces from weights 1 and 0 is
the same as for X0. We have therefore the following lemma.

Lemma 1.9. There are isomorphisms of MHS:

H3(Y0) ∼= H3(Y[0]) ∼= H3(Ỹ),

H2(Y0) ∼= ker(δ′2) ∼= H2(Ỹ),

H1(Y0) ∼= H1(Ỹ) ∼= H1(Y) ∼= H1(X),

H0(Y0) ∼= H0(Ỹ) ∼= H0(Y) ∼= H0(X).

1.3.4. Slightly abusing the notation, we denote by N the monodromy op-
erator for both X and Y families. N induces the weight filtrations on
Schmid’s limiting Hodge structures on H∗(X) and H∗(Y).

Lemma 1.10. We have the following exact sequences (of MHS) for H2 and H3:

0→ H3(X0)→H3(X)
N−→H3(X)→ H3(X0)→ 0,

0→ H0(X)→ H6(X0)→ H2(X0)→H2(X)
N−→ 0,

0→ H3(Y0)→H3(Y) N−→ 0,

0→ H0(Y)→ H6(Y0)→ H2(Y0)→H2(Y) N−→ 0.

Proof. These follow from the Clemens–Schmid exact sequence, which is
compatible with the MHS. Note that the monodromy is trivial for Y → ∆
since the punctured family is trivial. By Lemma 1.8, we know that H2(X0)
is pure of weight 2. Hence N on H2(X) is also trivial and the Hodge struc-
ture does not degenerate. �

Corollary 1.11. (i) ρ = dim im(ϑ) and µ = dim cok(δ2).
(ii) H3(Y) ∼= H3(Y0) ∼= H3(Y[0]) ∼= H3(Ỹ) ∼= GrW

3 H3(X).
(iii) Denote by K := ker(N : H3(X) → H3(X)). We have H3(X0) ∼= K.

More precisely, GrW
3 (H3(X0)) ∼= H3(Y) and GrW

2 (H3(X0)) ∼= cok(δ2).
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Proof. By Lemma 1.8, h2(X0) = dim ker(δ2). It follows from the second and
the fourth exact sequences in Lemma 1.10 that h2(X) = dim ker(δ2) + 1−
(k + 1). Rewrite (1.4) as

(1.8) 0→ ker(δ2)→ H2(X[0])
δ−→H2(X[1])→ cok(δ2)→ 0,

which implies dim ker(δ2) + 2k = dim cok(δ2) + 2k + h2(Y).
Combining these two equations with (1.7), we have ρ = h2(Y)− h2(X) =

k− dim cok(δ2) = dim im(ϑ). This proves the first equation for ρ in (i).
Combining the first equation in Lemma 1.9 and the third exact sequence

in Lemma 1.10, we have

(1.9) H3(Y) ∼= H3(Y0) ∼= H3(Ỹ).

This shows (ii) except the last equality.
By Lemmas 1.10 and 1.8, K ∼= H3(X0) ∼= H3(Ỹ) ⊕ cok(δ2) ∼= H3(Y) ⊕

cok(δ2), where the last equality follows from (1.9). This proves (iii).
For the remaining parts of (i) and (ii), we investigate the non-trivial terms

of the limiting Hodge diamond for Hn := Hn(X):

(1.10) H2,2
∞ H3

N∼

��

H3,0
∞ H3 H2,1

∞ H3 H1,2
∞ H3 H0,3

∞ H3,

H1,1
∞ H3

where Hp,q
∞ Hn = Fp

∞ GrW
p+q Hn. H3,0

∞ H3 does not degenerate by [36] (which
holds for more general degenerations with canonical singularities, and first
proved in [35] for the Calabi–Yau case). We conclude that H1,1

∞ H3 ∼= cok(δ2)

and GrW
3 H3(X) ∼= H3(Y). Thus µ = h2,2

∞ H3 = h1,1
∞ H3 = dim cok(δ2). �

1.3.5. We denote the vanishing cycle space V as the Q-vector space generated
by vanishing 3-cycles. We first define the abelian group VZ from

(1.11) 0→ VZ → H3(X, Z)→ H3(X̄, Z)→ 0,

and V := VZ ⊗Z Q. (The exactness holds for 3-fold isolated singularities.)

Lemma 1.12. (i) H3(X̄) ∼= K ∼= H3(X0).
(ii) V∗ ∼= H2,2

∞ H3 and V ∼= H1,1
∞ H3 = cok(δ2).

Proof. Dualizing (1.11) over Q, we have 0 → H3(X̄) → H3(X) → V∗ → 0.
The invariant cycle theorem in [1] implies that H3(X̄) ∼= ker N = K ∼=
H3(X0). This proves (i).

Hence we have the canonical isomorphism V∗ ∼= H2,2
∞ H3 = F2

∞GW
4 H3(X).

Moreover, the non-degeneracy of the pairing (Nα, β) on GW
4 H3(X) implies

that H1,1
∞ H3 = NH2,2

∞ H3 ∼= (H2,2
∞ H3)∗ ∼= V∗∗C

∼= VC. This proves (ii). �
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Remark 1.13 (On threefold extremal transitions). Most results in §1.3 works
for more general geometric contexts. The mixed Hodge diamond (1.10)
holds for any 3-folds degenerations with at most canonical singularities
[36]. The identification of vanishing cycle space V via (1.11) works for 3–
folds with only isolated singularities, hence Lemma 1.12 works for any 3-
fold degenerations with isolated canonical singularities.

Later on we will impose the Calabi–Yau condition on all the 3-folds in-
volved. If X ↗ Y is a terminal transition of Calabi–Yau 3-folds, i.e., X0 = X̄
has at most (isolated Gorenstein) terminal singularities, then X̄ has unob-
structed deformations [24]. Moreover, the small resolution Y → X̄ induces
an embedding Def(Y) ↪→ Def(X̄) which identifies the limiting/ordinary
pure Hodge structures GrW

3 H3(X) ∼= H3(Y) as in Corollary 1.11 (iii).
For conifold transitions all these can be described in explicit terms and

more precise structure will be formulated.

1.4. The basic exact sequence. We may combine the four Clemens–Schmid
exact sequences into one short exact sequence, which we call the basic exact
sequence, to give the Hodge-theoretic realization “ρ + µ = k” in Lemma 1.6.

Let A = (aij) ∈ Mk×µ(Z) be a relation matrix for Ci’s, i.e.,

∑k
i=1 aij[Ci] = 0, j = 1, . . . , µ,

give all relations of the curves classes [Ci]’s. Similarly, let B = (bij) ∈
Mk×ρ(Z) be a relation matrix for Si’s:

∑k
i=1 bij[Si] = 0, j = 1, . . . , ρ.

Theorem 1.14 (Basic exact sequence). The group of 2-cycles generated by excep-
tional curves Ci (vanishing S2 cycles) on Y and the group of 3-cycles generated by
[Si] (vanishing S3 cycles) on X are linked by the following weight 2 exact sequence

0→ H2(Y)/H2(X)
B−→
⊕k

i=1
H2(Ei)/H2(Qi)

At
−→V → 0.

In particular B = ker At and A = ker Bt.

Proof. From §1.3.2, cok(δ2) = cok(δ̄2) and (1.8) can be replaced by

(1.12) 0→ H2(Ỹ)/(ker δ̄)
D−→

⊕k

i=1
H2(Ei)/H2(Qi)

C−→ cok(δ2)→ 0.

By Lemma 1.12 (ii), we have cok(δ2) ∼= V. To prove the theorem, we need
to show that H2(Ỹ)/ ker δ̄ ∼= H2(Y)/H2(X), and D = B, C = At.

By the invariant cycle theorem [1], H2(X) ∼= H2(X̄). Since H2(X̄) injects
to H2(Y) by pullback, this defines the embedding ι : H2(X) ↪→ H2(Y) and
the quotient H2(Y)/H2(X).

Recast the relation matrix A of the rational curves Ci in

0→ Qµ A−→Qk ∼=
⊕k

i=1
〈[Ci]〉

S−→ im(ϑ)→ 0
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where S = cok(A) ∈ Mρ×k is the matrix for ϑ, and im(ϑ) has rank ρ. The
dual sequence reads
(1.13)

0→ (im ϑ)∗ ∼= (Qρ)∗
St
−→(Qk)∗ ∼=

⊕k

i=1
H2(Ei)/H2(Qi)

At
−→(Qµ)∗ → 0.

Compare (1.13) with (1.12), we see that (Qµ)∗ ∼= V. From the discussion in
§1.3.2, we have (im ϑ)∗ = H2(Y)/H2(X).

We want to reinterpret the map At : (Qk)∗ → V in (1.13). This is a
presentation of V by k generators, denoted by σi, and the relation matrix
of which is given by St. If we show that σi can be identified with Si, then
(Qµ)∗ ∼= V and B = St = ker At is the relation matrix for Si’s.

Consider the following topological construction. For any non-trivial in-
tegral relation ∑k

i=1 ai[Ci] = 0, there is a 3-chain θ in Y with ∂θ = ∑k
i=1 aiCi.

Under ψ : Y → X̄, Ci collapses to the node pi. Hence it creates a 3-cycle
θ̄ := ψ∗θ ∈ H3(X̄, Z), which deforms (lifts) to γ ∈ H3(X, Z) in nearby
fibers. Using the intersection pairing on H3(X, Z), γ then defines an ele-
ment PD(γ) in H3(X, Z). Under the restriction V, we get PD(γ) ∈ V∗.

It remains to show that (γ.Si) = ai. Let Ui be a small tubular neighbor-
hood of Si and Ũi be the corresponding tubular neighborhood of Ci, then
by Corollary 1.4, ∂Ui

∼= ∂(S3
i × D3) ∼= S3 × S2 ∼= ∂(D4 × Ci) ∼= ∂Ũi. Now

θi := θ ∩ Ũi gives a homotopy between ai[Ci] (in the center of Ũi) and ai[S2]
(on ∂Ũi). Denote by ι : ∂Ui ↪→ X and ι̃ : ∂Ũi ↪→ Y. Then

(γ.Si)
X = (γ.ι∗[S3])X = (ι∗γ.[S3])∂Ui = (ι̃∗γ.[S3])∂Ũi

= (ai[S2], [S3])S3×S2
= ai.

The proof is complete. �

Remark 1.15. We would like to choose a preferred basis of the vanishing co-
cycles V∗ as well as a basis of divisors dual to the space of extremal curves.
These notations will fixed henceforth and will be used in later sections.

During the proof of Theorem 1.14, we establish the correspondence be-
tween Aj = (a1j, · · · , akj)

t and PD(γj) ∈ V∗, 1 ≤ j ≤ µ, characterized by
aij = (γj.Si). The subspace of H3(X) spanned by γj’s is denoted by V ′.

Dually, we denote by T1, · · · , Tρ ∈ H2(Y) those divisors which form an
integral basis of the lattice in H2(Y) dual (orthogonal) to H2(X) ⊂ H2(Y).
In particular they form an integral basis of H2(Y)/H2(X). We choose Tl’s
such that Tl corresponds to the l-th column vector of the matrix B via bil =
(Ci.Tl). Such a choice is consistent with the basic exact sequence since

(AtB)jl = ∑k
i=1 at

jibil = ∑k
i=1 aij(Ci.Tl) =

(
∑ aij[Ci]

)
.Tl = 0

for all j, l. We may also assume that the first ρ× ρ minor of B has full rank.
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2. GROMOV–WITTEN THEORY AND DUBROVIN CONNECTIONS

In §2.1 the A model A(X) is shown to be a sub-theory of A(Y). We then
move on to study the genus 0 excess A model on Y/X associated to the ex-
tremal curve classes in §2.2. As a consequence the (nilpotent) monodromy
are calculated in terms of the relation matrix B at the end of §2.3.

2.1. Consequences of the degeneration formula for threefolds. Gromov–
Witten theory on X can be related to that on Y by the degeneration formula
through the two semistable degenerations introduced in §1.2.

In the previous section, we see that the monodromy acts trivially on
H(X) \H3(X) and we have H3

inv(X) = K ∼= H3(Y)⊕H1,1
∞ H3(X) ∼= H3(Y)⊕

V. There we implicitly have a linear map

(2.1) ι : H j
inv(X)→ H j(Y)

as follows. For j = 3, it is the projection H3
inv(X) ∼= H3(Y)⊕ V → H3(Y).

For j = 2, it is the embedding defined before and the case j = 4 is the same
as (dual to) the j = 2 case. For j = 0, 1, 5, 6, ι is an isomorphism.

The following is a refinement of a result of Li–Ruan [21]. (See also [22].)

Proposition 2.1. Let X ↗ Y be a projective conifold transition. Given ~a ∈
(H≥2

inv(X)/V)⊕n and a curve class β ∈ NE(X) \ {0}, we have

(2.2) 〈~a〉Xg,n,β = ∑ψ∗(γ)=β
〈ι(~a)〉Yg,n,γ.

If some component of~a lies in H0, then both sides vanish. Furthermore, the RHS
is a finite sum.

Proof. A slightly weaker version of (2.2) has been proved in [21, 22]. We
review its proof with slight refinements as it will be useful in §5.

A cohomology class a ∈ H>2
inv(X)/V can always find an admissible lift to

(ai)
k
i=0 ∈ H(Ỹ)⊕

⊕k

i=1
H(Qi)

such that ai = 0 for all i 6= 0. We apply J. Li’s algebraic version of de-
generation formula [20, 22] to the complex degeneration X  Ỹ ∪E Q,
where Q = ä Qi is a disjoint union of quadrics Qi’s and E := ∑k

i=1 Ei.
One has KỸ = ψ̃∗KX̄ + E. The topological data (g, n, β) lifts to two ad-
missible triples Γ1 on (Ỹ, E) and Γ2 on (Q, E) such that Γ1 has curve class
γ̃ ∈ NE(Ỹ), contact order µ = (γ̃.E), and number of contact points ρ. Then
(γ̃.c1(Ỹ)) = (ψ̃∗γ̃.c1(X̄))− (γ̃.E) = (β.c1(X))− µ. The virtual dimension
(without marked points) is given by

dΓ1 = (γ̃.c1(Ỹ)) + (dim X− 3)(1− g) + ρ− µ = dβ + ρ− 2µ.

Since we chose the lifting (~ai)
k
i=0 of~a to have~ai = 0 for all i 6= 0, all inser-

tions contribute to Ỹ. If ρ 6= 0 then ρ − 2µ < 0. This leads to vanishing
relative GW invariant on (Ỹ, E). Therefore, ρ must be zero.
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To summarize, we get

(2.3) 〈~a〉Xg,n,β = ∑ψ̃∗(γ̃)=β
〈~a0 | ∅〉(Ỹ,E)

g,n,γ̃ ,

such that

(2.4) ψ̃∗γ̃ = β, γ̃.E = 0, γ̃Q = 0.

(2.3) also holds for ai a divisor by the divisor axiom.
We use a similar argument to compute 〈~b〉Yg,n,γ via the Kähler degenera-

tion Y  Ỹ ∪ Ẽ, where Ẽ is a disjoint union of Ẽi (cf. [16, Theorem 4.10]).
By the divisor equation we may assume that deg bj ≥ 3 for all j = 1, . . . , n.
We choose the lifting (~b)k

i=0 of~b such that~bi = 0 for all i 6= 0. In the lifting
γ1 on Ỹ and γ2 on π : Ẽ = äi Ẽi → äi Ci, we must have γ = φ∗γ1 + π∗γ2.
The contact order is given by µ = (γ1.E) which has the property that
µ = 0 if and only if γ1 = φ∗γ (and hence γ2 = 0). If ρ 6= 0 we get
dΓ1 = dγ + ρ− 2µ < dγ and the invariant is zero. This proves

(2.5) 〈~b〉Yg,n,γ = 〈φ∗~b | ∅〉(Ỹ,E)
g,n,φ∗γ,

with φ∗γ̃ = γ, γ̃.E = 0, γ̃Ẽ = 0.
To combine these two degeneration formulas together, we notice that in

the Kähler degeneration, γ̃ ∈ NE(Ỹ) can have contact order µ = (γ̃.E) = 0
if and only if γ̃ = φ∗γ for some γ ∈ NE(Y) (indeed for γ = φ∗γ̃). Choose
~b = ι(~a) and (2.2) follows. The vanishing statement (of H0 insertion) fol-
lows from the fundamental class axiom.

Now we proceed to prove the finiteness of the sum. (This is not stated
in [21].) For φ : Ỹ → Y being the blow-up along Ci’s, the curve class
γ ∈ NE(Y) contributes a non-trivial invariant in the sum only if φ∗γ is
effective on Ỹ. By combining (1.6), (2.3) and (2.5), the effectivity of φ∗γ
forces the sum to be finite. Equivalently, the condition that φ∗γ is effective
is equivalent to that γ is F-effective under the flop Y 99K Y′. (i.e. effective
in Y and in Y′ under the natural correspondence [16]). Recall that under
the flop the flopping curve class in Y is mapped to the negative flopping
curve in Y′. Therefore, the sum is finite. �

Remark 2.2. The phenomena (2.2), including finiteness of the sum, were ob-
served in [12] for Calabi–Yau hypersurfaces in weighted projective spaces
from the numerical data obtained from the corresponding B model gener-
ating function via mirror symmetry.

Corollary 2.3. Gromov–Witten theory on even cohomology GWev(X) (of all gen-
era) can be considered as a sub-theory of GWev(Y). In particular, the big quantum
cohomology ring is functorial with respect to ι : Hev(X)→ Hev(Y) in (2.1).

Proof. We first note that ι is an injection on Hev. Proposition 2.1 then implies
that all GW invariants of X with even classes can be recovered from invari-
ants of Y. The only exception, H0, can be treated by the fundamental class
axiom. Therefore, in this sense that GWev(X) is a sub-theory of GWev(Y).
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In genus zero, this can be rephrased as functoriality. Observe that the
degeneration formula also holds for β = 0. For g = 0, this leads to the
equality of classical triple intersection (a, b, c)X = (ι(a), ι(b), ι(c))Y. Since
the Poincaré pairing on Hev(X) is also preserved under ι, we see that the
classical ring structure on Hev(X) are naturally embedded in Hev(Y).

To see the functoriality of the big quantum ring with respect to ι, we
note that (ι(a).Ci) = 0 for any a ∈ Hev(X) and for any extremal curve
Ci in Y. Furthermore, for the invariants associated to the extremal rays
the insertions must involve only divisors by the virtual dimension count.
Hence for generating functions with at least one insertion we also have

∑β∈NE(X)
〈~a〉Xβ qβ = ∑γ∈NE(Y)〈ι(~a)〉

Y
γqψ∗(γ).

Note that the case of H0 is not covered in Proposition 2.1, but it can be
treated by the fundamental class axiom as above. �

Remark 2.4. It is clear that the argument and conclusion hold even if some
insertions lie in H3

inv(X)/V ∼= H3(Y) by Proposition 2.1.

The full GW theory is built on the full cohomology superspace H = Hev⊕
Hodd. However, the odd part is not as well-studied in the literature as the
even one. In some special cases the difficulty does not occur.

Lemma 2.5. Let X be a smooth minimal 3-fold with H1(X) = 0 (e.g., Calabi–Yau
threefold). The non-trivial primary GW invariants are all supported on H2(X)
and hence, by the divisor axiom, reduced to the case without insertion. More gen-
erally the conclusion holds for any curve class β ∈ NE(X) with c1(X).β ≤ 0 for
any 3-fold X with H1(X) = 0.

Proof. For n-point invariants, the virtual dimension of Mg,n(X, β) is given
by c1(X).β + (dim X − 3)(1− g) + n ≤ n. Since the appearance of funda-
mental class in the insertions leads to trivial invariants, we must have the
algebraic degree deg ai ≥ 1 for all insertions ai, i = 1, . . . , n. Hence in fact
we must have deg ai = 1 for all i and c1(X).β = 0. �

2.2. The even and extremal quantum cohomology. From now on, we re-
strict to genus zero theory.

Let s = ∑ε sεT̄ε ∈ H2(X) where T̄ε’s form a basis of H2(X). Then the
genus zero GW pre-potential on H2(X) is given by

(2.6) FX
0 (s) =

∞

∑
n=0

∑
β∈NE(X)

〈sn〉0,n,β
qβ

n!
=

s3

3!
+ ∑

β 6=0
nX

β qβe(β.s),

where nX
β = 〈〉X0,0,β, and qβ the (formal) Novikov variables.

FX
0 (s) encodes the small quantum cohomology of X (and the big quan-

tum cohomology if X is minimal by Lemma 2.5), except in the topological
term s3/(3!) where we need the full s ∈ Hev(X).
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Similarly we have FY
0 (t) on H2(Y) where

(2.7) t = s + u ∈ H2(Y) = ι(H2(X))⊕
⊕ρ

l=1
〈Tl〉.

Namely we identify s with ι(s) in H2(Y) and write u = ∑
ρ
l=1 ulTl . FY

0 can
be analytically continued across those boundary faces of the Kähler cone
corresponding to flopping contractions. In the case of conifold transitions
Y ↘ X, this boundary face is naturally identified as the Kähler cone of X.

The following convention of indices on Hev(Y) will be used:
• Lowercase Greek alphabets for indices from the subspace ι(Hev(X));
• lowercase Roman alphabets for indices from the subspace spanned

by the divisors Tl’s and exceptional curves Ci’s;
• uppercase Roman alphabets for variables from Hev(Y).

The generating function associated to an extremal curve C ∼= P1 can be
derived from the well-known multiple cover formula

EC
0 (t) = ∑∞

d=1 nN
d qd[C]ed(C.t) = ∑∞

d=1
1
d3 qd[C]ed(C.t)

as NC/Y = OP1(−1)⊕2. Define

EY
0 (t) :=

1
3!

t3 + ∑k
i=1 ECi

0 (t) = EY
0 (u) +

1
3!
(t3 − u3),

where ECi
0 (t) = ECi

0 (u) depends only on u. Then the degeneration formula
is equivalent to the following restriction

FX
0 (s)− s3

3!
=
(

FY
0 (s + u)− (s + u)3

3!
− EY

0 (u) +
u3

3!

)∣∣∣
qγ 7→qψ∗(γ)

,

where q[Ci ]’s are subject to the relations induced from the relations among
[Ci]’s. More precisely, let A = (aij) be the relation matrix and define

rj(q) := ∏aij>0 qaij[Ci ] −∏aij<0 q−aij[Ci ].

Then we have

Lemma 2.6. FY
0 (s+u) =

[
FX

0 (s) + EY
0 (u) +

1
3! ((s + u)3 − s3 − u3)

]
rj(q)=0, 1≤j≤µ

.

A splitting of variables of FY
0 would imply that QHev(Y) decomposes

into two blocks. One piece is identified with QHev(X), and another piece
with contributions from the extremal rays. However, the classical cup prod-
uct/topological terms spoil the complete splitting.

The structural coefficients for QHev(Y) are CPQR = ∂3
PQRFY

0 . We will
determine them according to the partial splitting in Lemma 2.6.

For FX
0 (s), the structural coefficients of quantum product are given by

Cεζι(s) := ∂3
εζιF

X
0 (s) = (T̄ε.T̄ζ .T̄ι) + ∑β 6=0(β.T̄ε)(β.T̄ζ)(β.T̄ι) nX

β qβe(β.s).
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Recall that B = (bip) with bip = (Ci.Tp) is the relation matrix for the
vanishing 3-spheres. For EY

0 (u), the triple derivatives are

Clmn(u) := ∂3
lmnEY

0 (u)

= (Tl .Tm.Tn) + ∑k
i=1 ∑∞

d=1(Ci.Tl)(Ci.Tm)(Ci.Tn) qd[Ci ]ed(Ci .u)

= (Tl .Tm.Tn) + ∑k
i=1 bilbimbinf(q[Ci ] exp ∑ρ

p=1 bipup).

(2.8)

Here f(q) = ∑d∈N qd = q
1−q = −1 + −1

q−1 is the fundamental rational func-
tion with a simple pole at q = 1 with residue −1 (cf. [16]). We note that
due to the existence of cross terms in Lemma 2.6, Clmn’s do not satisfy the
WDVV equations.

Denote by T̄ε ∈ H4(X) the dual basis of T̄ε’s, and write Tl , 1 ≤ l ≤ ρ
the dual basis of Tl’s. Also T̄0 = T0 = 1 with dual T̄0 = T0 the point class.
Since Hev(Y) = ι(Hev(X))⊕

(⊕ρ
l=1 QTl ⊕

⊕ρ
l=1 QTl) is an orthogonal de-

composition with respect to the Poincaré pairing on H(Y), we have four
types of structural coefficients

Cι
εζ(s) = Cεζι(s), Cn

lm(u) = Clmn(u), Cn
εm = Cεmn, Cε

mn = Cεmn,

where the last two are constants. If we consider the topological terms
1
2 (s

0)2s0′ + s0 ∑ε ulul′ where we relabel the indices by ul′ = ul and s0′ = s0,
then a few more non-trivial constants C000′ = 1, Cmn′0 = δmn are added.

2.3. The Dubrovin connection and monodromy. The Dubrovin connec-
tion on THev(Y) is given by ∇z = d− 1

z ∑P dtP ⊗ TP∗. By Corollary 2.3, it
restricts to the Dubrovin connection on THev(X). For the complement with
basis Tl’s and Tl’s, we have

z∇z
∂l

Tm = −δlmT0,

z∇z
∂l

Tm = −∑ρ

n=1 Clmn(u)Tn −∑ε
ClmεT̄ε,

z∇z
∂ε

Tm = −∑ρ

n=1 CεmnTn.

(2.9)

Along u = ∑
ρ
l=1 ulTl there is no convergence issue. Thus we drop the

Novikov variables henceforth.
From (2.8), the degeneration loci D consists of k hyperplanes in H2(Y):

Di := {vi := ∑ρ

p=1 bipup = 0}, 1 ≤ i ≤ k,

which is the Kähler degenerating locus at which Ci shrinks to zero volume.
There is a monodromy matrix corresponding to Di, whose main nilpotent
block N(i) = (N(i),mn) ∈ Mρ×ρ is the residue matrix of the connection in
(2.9). The divisor D =

⋃k
i=1 Di is not normal crossing.

Lemma 2.7. In terms of {Tn} and dual basis {Tn}, the block N(i) is given by

N(i),mn =
1
z

bimbin.
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Proof. Since dvi = ∑
ρ
l=1 bil dul , we get from (2.9) and (2.8) that

N(i),mn = −1
z

bimbin Res
vi=0

−1
evi − 1

which gives the result. �

Corollary 2.8. In terms of {Tn} and dual basis {Tn}, the nilpotent monodromy
at u = 0 along ul → 0 has its main block given by Nl = 1

z Bt
l Bl , where Bl is

obtained from B by setting those i-th rows to 0 if bil = 0.

Proof. This follows from Lemma 2.7, which can also be provd directly. To
determine Nl,mn along ul → 0 at the locus u = 0, we compute

Nl,mn = −1
z

k

∑
i=1

bilbimbin Res
q=1

−1
ebilul − 1

=
1
z

k

∑
bil 6=0; i=1

bimbin =
1
z
(Bt

l Bl)mn.

This proves the result. �

Corollary 2.9. The Dubrovin connection on X is the monodromy invariant sub-
system on Y at u = 0.

3. PERIOD INTEGRALS AND GAUSS–MANIN CONNECTIONS

From this section and on, we assume the Calabi–Yau condition: KX ∼=
OX, H1(OX) = 0. Recall that the Kuranishi spaceMX̄ is smooth. In §3.1, we
review well known deformation theory of Calabi–Yau 3-folds with ODPs
to derive a local Torelli theorem for X̄. IdentifyingMY with equisingular
deformations of X̄ inMX̄, we show that periods of vanishing cycles serve
as (analytic) coordinates of MX̄ in the directions transversal to MY. To
study monodromy, Bryant–Griffiths formulation is reviewed in §3.2 and the
asymptotics of (β-)periods near [X̄] is computed in §3.3. The monodromy
is determined explicitly in terms of the relation matrix A (Corollary 3.18).
The technical result (Theorem 3.13) is a version of nilpotent orbit theorem
with non-SNC boundary, which is also needed in §6. Following these dis-
cussions, B(Y) is shown to be a sub-theory of B(X) (Corollary 3.19).

3.1. Deformation theory. The main references for this subsection are [14,
28], though we follow the latter more closely. Let ΩX̄ be the sheaf of Kähler
differential and ΘX̄ := Hom(ΩX̄,OX̄) be its dual. The deformation of X̄ is
governed by Ext1(ΩX̄,OX̄). By local to global spectral sequence, we have

0→ H1(X̄, ΘX̄)
λ→ Ext1(ΩX̄,OX̄)

→ H0(X̄,Ext1(ΩX̄,OX̄))
κ→ H2(X̄, ΘX̄).

(3.1)

Since Ext1(ΩX̄,OX̄) is supported at the ordinary double points pi’s, we
have H0(X̄,Ext1(ΩX̄,OX̄)) =

⊕k
i=1 H0(Opi) by a local computation.

We rephrase the deformation theory on X̄ in terms of the log deformation
on Ỹ. Denote by E ⊂ Ỹ the union of the exceptional divisors of ψ̃ : Ỹ → X̄.
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Lemma 3.1. Rψ̃∗KỸ = ψ̃∗KỸ = KX̄ and hence H0(KỸ)
∼= H0(KX̄)

∼= C.

Proof. Apply the Serre duality for the projective morphism ψ̃ and we have
Rψ̃∗KỸ

∼= (ψ̃∗OỸ ⊗ KX̄)
∨. Since X̄ is normal rational Gorenstein, ψ̃∗OỸ

∼=
OX̄. This proves the first equation, from which the first part of the second
equation follows. The second part follows from KX̄

∼= OX̄. �

Lemma 3.2. Ω2
Ỹ(log E) ∼= KỸ ⊗ (ΩỸ(log E)(−E))∨.

Proof. On Ỹ there is a perfect pairing ΩỸ(log E) ⊗ Ω2
Ỹ(log E) → KỸ(E).

Since Ỹ is nonsingular and E is a disjoint union of nonsingular divisors, all
sheaves involved are locally free. Hence the lemma follows. �

Lemma 3.3 ([28, Lemma 2.5]). Lψ̃∗ΩX̄
∼= ψ̃∗ΩX̄

∼= ΩỸ(log E)(−E), where
Lψ̃∗ is the left-derived functor of the pullback map.

Proof. The second isomorphism can be seen by a local calculation of the
blowing-up of an ordinary double point. The first isomorphism follows
from the facts that X̄ is a local complete intersection and an explicit two-
term resolution of ΩX̄ exists. We sketch the argument here and refer to [28]

for more details. Locally near a node, defined by (1.1), one has 0 → O
2~x−→

O4 → Ω → 0. Pulling it back to Ỹ, we see that ψ̃∗(2~x) : O→ O4 is injective
on Y and therefore higher left-derived functors are zero. �

Lemma 3.4 ([28, Proposition 2.6]). RHom(ΩX̄, KX̄)
∼= Rψ̃∗Ω2

Ỹ(log E). In
particular, Ext1(ΩX̄, KX̄)

∼= H1(Ω2
Ỹ(log E)).

Proof. By Lemma 3.2, Rψ̃∗Ω2
Ỹ(log E) ∼= Rψ̃∗Hom(ΩỸ(log E)(−E), KỸ). By

Lemma 3.3 and the projection formula, the RHS is isomorphic to

RHom(ΩX̄, Rψ̃∗KỸ)
∼= RHom(ΩX̄, KX̄)

with the last isomorphism coming from Rψ̃∗KỸ
∼= KX̄ in Lemma 3.1. �

From the general deformation theory, the first term H1(X̄, ΘX̄) in (3.1)
parameterizes equisingular deformation of X̄. Thanks to the theorem of
Kollár and Mori [15] that this extremal contraction deforms in families, this
term parameterizes the deformation of Y. Therefore, the cokernel of λ in
(3.1), or equivalently the kernel of κ, corresponds to the deformation of
singularity. Since the deformation of X̄ is unobstructed [14], Def(X̄) has
the same dimension as Def(X), which is h2,1(X). Comparing the Hodge
number h2,1 of X and Ȳ (cf. §1) we have the dim ker(κ) = µ.

Proposition 3.5. 0→ H1(X̄, ΘX̄)
λ→ Ext1(ΩX̄,OX̄)→ V∗ → 0 is exact.

Proof. The residue exact sequence on Ỹ is 0→ ΩỸ → ΩỸ(log E) res−→ OE →
0. Taking wedge product with ΩỸ we get 0→ Ω2

Ỹ → Ω2
Ỹ(log E) res−→ ΩE →

0. Part of the cohomological long exact sequence reads

H0(ΩE)→ H1(Ω2
Ỹ)→ H1(Ω2

Ỹ(log E))→ H1(ΩE)
κ−→ H2(Ω2

Ỹ).
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Since H1(E) = 0, the first term vanishes. By Lemma 3.4, the third term is
equal to Ext1(ΩX̄,OX̄). Indeed, it is not hard to see that this exact sequence
is equal to that in (3.1) (cf. [28, (3.2)]).

Using similar arguments as in §1.3.2, we have

0→ H1(Ω2
Ỹ)→ H1(Ω2

Ỹ(log E))→
⊕k

i=1
〈(`i − `′i)〉

κ̄−→
H2(Ω2

Ỹ)⊕k
i=1〈(`i + `′i)〉

.

From (1.5) and Lemma 1.12 (ii) we have H2(Ỹ) δ̄2−→ ⊕k
i=1〈(`i − `′i)〉 →

V → 0. Now by comparing the dual of the maps δ̄2 and κ̄, we see that
ker(κ) = cok(δ̄2)∗ = V∗. The proof is complete. �

This proposition shows that the deformation of Y naturally embeds to
that of X̄, with the transversal direction given by the periods of the vanish-
ing cycles. Moreover, the above discussion also leads to important conse-
quences on the infinitesimal period relations on Ỹ and on X̄.

Corollary 3.6. On Ỹ, the natural map

H1((ΩỸ(log E)(−E))∨)⊗ H0(KỸ)→ H1(Ω2
Ỹ(log E))

coming from infinitesimal log deformations of (Ỹ, E) is an isomorphism.

Proof. This follows from Lemma 3.1 and Lemma 3.2. �

Corollary 3.7. On X̄, the natural map

H1(RHom(ΩX̄,OX̄))⊗ H0(KX̄)→ Ext1(ΩX̄, KX̄)

coming from infinitesimal deformations of X̄ is an isomorphism.
Indeed, both the LHS and RHS are isomorphic to Ext1(ΩX̄,OX̄).

Proof. This is a reformulation of Corollary 3.6 via Lemma 3.4. �

Since X̄ is rational Gorenstein, RHom(ΩX̄,OX̄) has cohomology only in
degrees 0 and 1. Indeed, R0Hom(ΩX̄,OX̄)

∼= ΘX̄ and R1Hom(ΩX̄,OX̄)
∼=

Ext1(ΩX̄,OX̄)
∼=
⊕k

i=1 Opi . By a Leray spectral sequence argument, this
gives (3.1) as well and H1(RHom(ΩX̄,OX̄))

∼= Ext1(ΩX̄,OX̄).
Interpreting Corollary 3.7 as a local Torelli type theorem, we conclude that

the differentiation of the holomorphic 3-forms on any deformation param-
eter of X̄ is non-vanishing.

3.2. Vanishing cycles and the Bryant–Griffiths/Yukawa cubic form. Re-
call the Gauss–Manin connection ∇GM on Hn = Rn f∗C ⊗ OS → S for a
smooth family f : X → S is a flat connection with its flat sections being
identified with the local system Rn f∗C. It contains the integral flat sections
Rn f∗Z. Let {δp ∈ Hn(X, Z)/(torsions)} be a homology basis for a fixed ref-
erence fiber X = Xs0 , with cohomology dual basis δ∗p’s in Hn(X, Z). Then δ∗p
can be extended to (multi-valued) flat sections in Rn f∗Z. For η ∈ Γ(S,Hn),
we may rewrite it in terms of these flat frames with coefficients being the
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“multi-valued” period integrals “
∫

δp
η” as η = ∑p δ∗p

∫
δp

η. Let (xj) be a

local coordinate system in S. Since ∇GMδ∗p = 0, we get

∇GM
∂/∂xj

η = ∑
p

δ∗p
∂

∂xj

∫
δp

η.

Thus as far as period integrals are concerned, we may simply regard the
Gauss–Manin connection as partial derivatives.

When the family contains singular fibers, by embedded resolution of sin-
gularities we may assume that the discriminant loci D ⊂ S is a normal
crossing divisor. It is well-known that the Gauss–Manin connection has at
most regular singularities along D by the regularity theorem. Namely it
admits an extension to the boundary with at worst logarithmic poles.

Given a projective conifold transition X ↗ Y, we have seen, from Theo-
rem 1.14 and Remark 1.15, that

H3(X) ∼= H3(Y)⊕ H3(Y)⊥ ∼= H3(Y)⊕V ⊕V ′,

where V and V ′ are isotropic and are dual to each other under intersection
pairing. We choose a basis {γj}

µ
j=1 of V ′ by requiring that

PD(γj)([Si]) ≡ (γj.Si) = aij, 1 ≤ j ≤ µ,

where Si’s are the vanishing 3-spheres and A = (aij) is the relation matrix
of the exceptional curves Ci’s. Additionally, let {Γj}

µ
j=1 be the basis of V

dual to {γj}
µ
j=1 via intersection pairing. Namely (Γj.γl) = δjl .

Lemma 3.8. We may construct a symplectic basis of H3(X):

α0, α1, · · · , αh, β0, β1, · · · , βh, (αj.βp) = δjp,

where h = h2,1(X), with αj = Γj, 1 ≤ j ≤ µ.

Proof. Notice that V ⊂ H3(X, Z) is generated by [S3
i ]’s, and hence is totally

isotropic. Let W ⊃ V be a maximal isotropic subspace (of dimension h+ 1).
We first select αj = Γj for 1 ≤ j ≤ µ to form a basis of V. We then extend it
to α1, · · · , αh, and set α0 ≡ αh+1, to form a basis of W.

To construct βl , we start with any δl such that (αp.δl) = δpl . Such δl’s
exist by the non-degeneracy of the Poincaré pairing. We set β1 = δ1. By
induction on l, suppose that β1, · · · , βl have been constructed. We define

βl+1 = δl+1 −∑l
p=1(δl+1.βp)αp.

Then it is clear that (βl+1.βp) = 0 for p = 1, · · · , l. �

With a choice of basis of H3(X), any η ∈ H3(X, C) ∼= C2(h+1) is identi-
fied with its “coordinates” given by the period integrals ~η =

( ∫
αp

η,
∫

βp
η
)
.
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Alternatively, we denote the cohomology dual basis by α∗p and β∗p so that
α∗j (αp) = δjp = β∗j (βp). Then we may write

η = ∑h
p=0 α∗p

∫
αp

η + β∗p

∫
βp

η.

The symplectic basis property implies that α∗p(Γ) = (Γ.βp) and β∗p(Γ) =

−(Γ.αp) = (αp.Γ). This leads to the following observation.

Lemma 3.9. For 1 ≤ j ≤ µ, we may modify γj by vanishing cycles to get γj = β j.
In particular, (γj.γl) = 0 for 1 ≤ j, l ≤ µ and α∗j (Si) = (Si.β j) = −aij.

Lemma 3.10. For all i = 1, . . . , k, PD([Si]) = −∑
µ
j=1 aij PD(Γj).

Proof. Comparing both sides by evaluating at αl’s and βl’s for all l. �

Let Ω be the non-vanishing holomorphic 3-form on the Calabi–Yau three-
fold. Bryant–Griffiths [3] showed that the α-periods xp =

∫
αp

Ω form the

projective coordinates of the image of the period map inside P(H3) ∼=
P2h+1 as a Legendre sub-manifold of the standard holomorphic contact
structure. It follows that there is a holomorphic pre-potential u(x0, · · · , xh),
which is homogeneous of weight two, such that uj ≡ ∂u

∂xj
=
∫

β j
Ω. In fact,

(3.2) u = 1
2 ∑h

p=0 xpup = 1
2 ∑h

p=0 xp

∫
βp

Ω.

Hence Ω = ∑h
p=0(xp α∗p + up β∗p). In particular,

∂jΩ = α∗j + ∑h
p=0 ujp β∗p, ∂2

jlΩ = ∑h
p=0 ujlp β∗p.

By the Griffiths transversality, ∂jΩ ∈ F2, ∂2
jlΩ ∈ F1. Hence we have the

Bryant–Griffiths cubic form, which is homogeneous of weight −1:

ujlm = (∂mΩ.∂2
jlΩ) = ∂m(Ω.∂2

jlΩ)− (Ω.∂3
jlmΩ) = −(Ω.∂3

jlmΩ).

This is also known as Yukawa coupling in the physics literature.
For inhomogeneous coordinates zi = xi/x0, the corresponding formu-

lae may be deduced from the homogeneous ones by noticing that ∂Iu is
homogeneous of weight 2− |I| for any multi-index I.

Under a suitable choice of the holomorphic frames respecting the Hodge
filtration, the Bryant–Griffiths–Yukawa couplings determine the VHS as the struc-
tural coefficients of the Gauss–Manin connection:
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Proposition 3.11. Let τ0 = Ω ∈ F3, τj = ∂jΩ ∈ F2, τ j = β∗j − (xj/x0)β∗0 ∈ F1

for 1 ≤ j ≤ h, and τ0 = β∗0 ∈ F0. Then for 1 ≤ p, j ≤ h,

∇∂p τ0 = τp,

∇∂p τj = ∑h
m=1 upjm τm,

∇∂p τ j = δpj τ0,

∇∂p τ0 = 0.

(3.3)

Proof. We prove the second formula. Since upj has weight 0, we have the
Euler relation x0 upj0 + ∑h

m=1 xm upjm = 0. Hence

∂p∂jΩ = ∑h
m=1 upjm β∗m + upj0 β∗0

= ∑h
m=1 upjm

(
β∗m −

xm

x0
β∗0

)
= ∑h

m=1 upjm τm.

It remains to show that τ j ∈ F1. By the Hodge–Riemann bilinear relations,
it is enough to show that τ j ∈ (F3)⊥. This follows from

(τ j, Ω) =
(

β∗j −
xj

x0
β∗0, ∑h

p=0(xpα∗p + upβ∗p)
)
= −xj +

xj

x0
x0 = 0.

The remaining statements are clear. �

3.3. Degenerations via Picard–Lefschetz and the nilpotent orbit theorem.
Let X → ∆ be a one parameter conifold degeneration of threefolds with
nonsingular total space X . Let S1, · · · , Sk be the vanishing spheres of the
degeneration.. The Picard–Lefschetz formula asserts that the monodromy
transformation T : H3(X)→ H3(X) is given by

(3.4) Tσ = σ + ∑k
i=1 σ([Si])PD([Si]),

where σ ∈ H3(X). It is unipotent, with associated nilpotent monodromy
N := log T = ∑∞

m=1(T − I)m/m. Since Si has trivial normal bundle in X,
we see that (Si.Sj) = 0 for all i, j. In particular T = I + N and N2 = 0
(cf. §1). The main purpose here is to generalize these to multi-dimensional
degenerations, and in particular to the local moduliMX̄ near [X̄].

3.3.1. VHS with simple normal crossing boundaries. Even though the discrim-
inant loci for the conifold degenerations are in general not SNC divisors, by
embedded resolution of singularity they can in principle be modified to be-
come ones. We will begin our discussion in this case for simplicity.

Let X → ∆ := ∆ν × ∆ν′ 3 t = (t, s) be a flat family of Calabi–Yau 3-folds
such that Xt is smooth for t ∈ ∆∗ := (∆×)ν × ∆ν′ . Namely, the discriminant
locus is a SNC divisor: D :=

⋃ν
j=1 Z(tj) = ∆ \ ∆∗. Around each punctured

disk tj ∈ ∆×, 1 ≤ j ≤ ν, we assume the monodromy is unipotent with
nilpotent Nj. Let zj = log tj/2π

√
−1 ∈ H (the upper half plane) and let

zN = ∑ν
j=1 zjNj. Note that NjNl = Nl Nj since π1(∆

∗) ∼= Zν is abelian.
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If for any t = (t, s) we assume that Xt acquires at most canonical sin-
gularities, then NjF3

∞|Dj = 0 and N2
j = 0 for each j (cf. Remark 1.13).

Different Nj may define different weight filtration Wj and each bound-
ary divisor Z(tj) corresponds to different set of vanishing cycles. In our
case, the structure turns out to be simple. The degeneration along the
curve w 7→ t(w) = (wn1 , · · · , wnν) shows that (zN)2 = 0 for any z 6= 0.
This, together with the commutativity of Nj, then implies that NjNl = 0
for all j, l. For ODP (conifold) degenerations, this is also clear from the
Picard–Lefschetz formula (3.4). Indeed (Si1 .Si2) = 0 for all i1, i2 implies that
NjNl = 0 for all j, l.

Let Ω denote the relative Calabi–Yau 3-form over ∆. By Schmid’s nilpo-
tent orbit theorem [31] (cf. [35, 36]), a natural choice of Ω takes the form

Ω(t) = ezNa(t) = ezN
(

a0(s) + ∑ν

j=1 aj(s)tj + · · ·
)

= a(t) + zNa(t) ∈ F3
t ,

(3.5)

where a(t) is holomorphic, Nja0(s) = 0 for all j.
In order to extend the theory of Bryant–Griffiths to include the boundary

points of the period map, namely to include ODP degenerations in the cur-
rent case, we need to answer the question if the α-periods θj(t) :=

∫
Γj

Ω(t)
may be used to replace the degeneration parameters tj for 1 ≤ j ≤ ν. For
this purpose we need to work on the local moduli spaceMX̄.

3.3.2. Extending the Yukawa coupling towards non-SNC boundary. As in §3.1,
X̄ has unobstructed deformations and MX̄ = Def(X̄) is smooth. Since X̄
admits smoothing to X, dimMX̄ is exactly h = h2,1(X). The discriminant
loci D ⊂ MX̄ is in general not a SNC divisor. Comparing with the local
A model picture on Y/X in §2.3, the discriminant loci D is expected to the
union of k hyperplanes. (We intentionally use the same notation D.)

Recall Friedman’s result [8] on partial smoothing of ODPs. Let A =
[A1, · · · , Aµ] be the relation matrix. For any r ∈ Cµ, the relation vector
A(r) := ∑

µ
l=1 rl Al gives rise to a (germ of) partial smoothing of those ODP’s

pi ∈ X̄ with A(r)i 6= 0. Thus for 1 ≤ i ≤ k, the linear equation

(3.6) wi := ai1r1 + · · ·+ aiµrµ = 0

defines a hyperplane Z(wi) in Cµ.
The small resolution ψ : Y → X̄ leads to an embeddingMY ⊂ MX̄ of

codimension µ. As germs of analytic spaces we thus have MX̄
∼= ∆µ ×

MY 3 (r, s). Along each hyperplane Di := Z(wi)∆µ ×MY, there is a mon-
odromy operator T(i) with associated nilpotent monodromy N(i) = log T(i).
A degeneration from X to Xi with [Xi] ∈ Di a general point (not in any Di′

with i′ 6= i) contains only one vanishing cycle [S3
i ] 7→ pi. We summarize

the above discussion in the following lemma.
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Lemma 3.12. Geometrically a point (r, s) ∈ Di corresponds to a partial smooth-
ing Xr of X̄ for which the i-th ordinary double point pi remains singular. Hence,
for r generic, the degeneration from X to Xr has only one vanishing sphere S3

i .
Moreover, the Picard–Lefschetz formula (3.4) says that for any σ ∈ H3(X),

N(i)σ = (σ([S3
i ]))PD([S3

i ]).

Even though the embedded resolution brings he discriminant locus to a
SNC divisor, some information might be lost in this process. Therefore we
choose to analyze the period map directly by way of the following nilpotent
orbit theorem. We call the configuration D =

⋃k
i=1 Di ⊂ MX̄ a central

hyperplane arrangement with axisMY following the usual convention.

Theorem 3.13. Consider a degeneration of Hodge structures over ∆µ ×M with
discriminant locus D being a central hyperplane arrangement with axis M. Let
T(i) be the monodromy around the hyperplane Z(wi) with quasi-unipotency mi,
N(i) := log((T(i))mi)/mi, and suppose that the monodromy group Γ generated by
T(i)’s is abelian. Let D denote the period domain and Ď its compact dual. Then
the period map φ : ∆µ ×M \D→ D/Γ takes the following form

φ(r, s) = exp

(
k

∑
i=1

mi log wi

2π
√
−1

N(i)

)
ψ(r, s),

where ψ : ∆µ ×M→ Ď is holomorphic and horizontal.

Proof. We prove the theorem by induction on µ ∈ N. The case µ = 1 is es-
sentially the one variable case (or SNC case) of the nilpotent orbit theorem.
The remaining proof consists of a careful bookkeeping on Schmid’s deriva-
tion of the multi-variable nilpotent orbit theorem from the one variable case
(cf. [31, §8], especially Lemma (8.34) and Corollary (8.35)).

The essential statement is the holomorphic extension of

(3.7) ψ(r, s) := exp

(
−

k

∑
i=1

mi log wi

2π
√
−1

N(i)

)
φ(r, s) ∈ Ď

over the locus D. For p 6∈ {0} × M, we can find a neighborhood Up of p
so that the holomorphic extension to Up is achieved by induction. Notice
that the commutativity of N(i)’s is needed in order to arrange ψ(r, s) into
the form (3.7) with smaller µ. Namely,

ψ = exp

− ∑
wi(p)=0

mi log wi

2π
√
−1

N(i)

exp

− ∑
wi(p) 6=0

mi log wi

2π
√
−1

N(i)

 φ

 .

Let R≥1/2 := { (r, s) | |r| ≥ 1
2 }. Then we have a unique holomorphic

extension of ψ over R≥1/2. Now by the Hartog’s extension theorem we then
get the holomorphic extension to the whole space ∆µ ×M. The statement
on horizontality follows from the same argument in [31, §8]. �
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Remark 3.14. (i) Let D =
⋃k

i=1 Di ⊂ Cµ be a central hyperplane arrangement
with axis 0. Then Cµ \D can be realized as (C×)k ∩ L for L ⊂ Ck being a
µ dimensional subspace. Since π1((C

×)k) ∼= Zk, a hyperplane theorem
argument shows that π1(C

µ \D) ∼= Zk, hence abelian, if µ ≥ 3. However,
for µ = 2 π1(C

2 \D) is not abelian if k ≥ 3. Indeed, the natural C× fibration
C2 \⋃k

i=1 Di → P1 \ {p1, · · · , pk} leads to

0→ π1(C
×) ∼= Z→ π1(C

2 \
⋃

Di)→ Z∗(k−1) → 0,

where the RHS is a k− 1 free product of Z.
(ii) Theorem 3.13 is applicable to the conifold transitions since the mon-

odromy group is abelian and mi = 1 for all i. This follows from the Picard–
Lefschetz formula (3.4) and the fact [Si].[Si′ ] = 0 for all vanishing spheres.

Proposition 3.15. There is a holomorphic coordinate system (r, s) in a neigh-
borhood of [X̄] ∈ MX̄ such that s is a coordinate system of MY near [X̄] and
rj =

∫
Γj

Ω, 1 ≤ j ≤ µ, are the α-periods of the vanishing cycles. Moreover, the
Calabi–Yau 3-form Ω(r, s) takes the form

Ω = a0(s) +
µ

∑
j=1

Γ∗j rj + h.o.t.−
k

∑
i=1

wi log wi

2π
√
−1

PD([Si]).

Here h.o.t. denotes terms in V⊥ which are at least quadratic in r1, · · · , rµ, and
wi = ai1r1 + · · ·+ arµrµ =

∫
Si

Ω defines the discriminant locus Di for 1 ≤ i ≤ k.

Proof. By Theorem 3.13 and the fact N(i1)N(i2) = 0, we may write

Ω(r, s) = exp

(
k

∑
i=1

log wi

2π
√
−1

N(i)

)
a(r, s)

= a(r, s) +
k

∑
i=1

log wi

2π
√
−1

N(i)a(r, s) ∈ F3
(r,s),

(3.8)

where a(r, s) = a0(s) + ∑
µ
j=1 aj(s) rj +O(r2) is holomorphic in r, s. As

∫
Γl

Ω
is a single valued function, the integral

∫
Γl

vanishes on the second term
above and we have

θj :=
∫

Γl

Ω =
∫

Γl

a = ∑µ

j=1

( ∫
Γl

aj(s)
)

rj + O(r2).

By Corollary 3.7, the µ× µ matrix (τl j(s)) :=
( ∫

Γl
aj(s)

)
is invertible for all

s. Thus, θ1, · · · , θµ and s form a coordinate system.
Now we replace rj by the α-period θj for j = 1, . . . , µ. In order for Theo-

rem 3.13 to be applicable, we need to justify that the discriminant locus Di

is still defined by linear equations in rj’s. This follows form Lemma 3.10∫
Si

Ω = (Ω, PD([Si])) = −∑µ

j=1 aij(Ω, PD(Γj)) = −∑µ

j=1 aijrj =: −wj.
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Denote by h.o.t be terms in V⊥ which are at least quadratic in rj’s. The
above choice of coordinates implies that

Ω = a0(s) +
µ

∑
j=1

Γ∗j rj + h.o.t. +
k

∑
i=1

µ

∑
j=1

log wi

2π
√
−1

N(i)Γ∗j rj.

Then ∑
µ
j=1 N(i)Γ∗j rj = −∑

µ
j=1 aijrj PD([Si]) = −wi PD([Si]) by Lemma 3.12

and 3.9. The proof is complete. �

Consequently one obtains the asymptotic forms of β-periods and Bryant–
Griffiths form in terms of the above coordinate system (r, s). For β-periods

up(r, s) =
∫

βp

Ω = up(s) + h.o.t.−
k

∑
i=1

wi log wi

2π
√
−1

∫
βp

PD([Si])

since Ω(s) = a0(s). Thus

up(r, s) = up(s) +
k

∑
i=1

wi log wi

2π
√
−1

aip + h.o.t. for 1 ≤ p ≤ µ

up(r, s) = up(s) + h.o.t. for p > µ.

The Bryant–Griffiths form is then obtained by taking two more derivatives.
For example, for 1 ≤ p, m, n ≤ µ, upm = O(r) + ∑k

i=1
log wi+1
2π
√
−1

aipaim and

(3.9) upmn = O(1) +
k

∑
i=1

1
2π
√
−1

1
wi

aipaimain.

Remark 3.16. The specific logarithmic function in Proposition 3.15, which is
written in terms of linear combinations of α-periods, has appeared in the
literature in examples, such as those studied in [4, p.89] where there are 16
vanishing spheres with a single relation. To our knowledge, it hasn’t been
studied in this generality.

3.3.3. Monodromy calculations. As a simple consequence, we determine the
monodromy N(l) towards the coordinate hyperplane Z(rl) at r = 0. That
is the monodromy associated to the one parameter degeneration γ(r) along
the rl-coordinate axis (rl ∈ ∆ and rj = 0 if j 6= l). Let Il = {i | ail 6= 0} and
let Al be the matrix from A by setting the i-th rows with i 6∈ Il to 0.

Lemma 3.17. The sphere S3
i vanishes in Z(rl) along transversal one parameter

degenerations γ if and only if i ∈ Il , i.e., ail 6= 0.

Proof. The curve γ lies in Di = Z(wi) if and only if ail = 0. Thus for those
i 6∈ Il , the ODP pi is always present on Xγ(r) along the curve γ. In particular
the vanishing spheres along γ are precisely those Si with i ∈ Il . �

To calculate the monodromy N(l), recall that (cf. Lemma 3.9) Γ∗j ≡ α∗j =

−PD(β j). The Picard–Lefschetz formula (Lemma 3.12) then says that

N(l)Γ∗j = ∑i∈Il
(Γ∗j . PD([Si]))PD([Si]) = −∑i∈Il

aij PD([Si]).
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Corollary 3.18. For 1 ≤ p ≤ µ,∫
βp

N(l)Γ∗j = −∑
i∈Il

aij(Si.βp) = ∑
i∈Il

aijaip = (At
l Al)jp,

while for p = 0 or µ + 1 ≤ p ≤ h we have
∫

βp
N(l)Γ∗j = 0.

Corollary 3.19. The B(Y) is a sub-theory of B(X) by setting r = 0 and taking the
monodromy invariant sub-system. In fact a0(s) represents the family of Calabi–
Yau 3-forms Ω(s) overMY and the α, β periods along it gives the VHS on Y.

3.3.4. On topological logarithmic Gauss–Manin connection. We study the topo-
logical logarithmic Gauss–Manin connection associated to our conifold de-
generations. That is, we seek a topological frame of the bundle R3π∗C of
a local family π : X → MX̄ near the Calabi–Yau conifold [X̄]. By Lemma
1.12 and the Hodge diamond (1.10), part of the frame comes naturally from
H3(Y), while the remaining part is modeled on V∗ and V. By the same pro-
cedure as in the proof of Proposition 3.15, the topological frame modeled
on V∗ ∼= H2,2

∞ H3 can be chosen to be

vj := exp

(
k

∑
i=1

log wi

2π
√
−1

N(i)

)
Γ∗j

= Γ∗J +
k

∑
i=1

log wi

2π
√
−1

N(i)Γ∗j = Γ∗j −
k

∑
i=1

log wi

2π
√
−1

aij PD([Si])

(3.10)

for 1 ≤ j ≤ µ. Notice that the correction terms lie in the lower weight piece
H1,1

∞ H3 and vj is independent of s. Moreover, vj is singular along Di if and
only if aij 6= 0, i.e., Si vanishes in Z(rj) by Lemma 3.17.

On V ∼= H1,1
∞ H3, we choose the (constant) frame by

(3.11) vj := exp

(
k

∑
i=1

log wi

2π
√
−1

N(i)

)
PD(Γj) = PD(Γj), 1 ≤ j ≤ µ.

From (3.6), (3.10) and Lemma 3.10, it is easy determine the Gauss–Manin
connection on this partial frame over the special directions ∂/∂rp’s:

∇GM
∂/∂rp

vm =
1

2π
√
−1

k

∑
i=1

aip

wi

(
− aim PD([Si])

)
=

1
2π
√
−1

k

∑
i=1

µ

∑
n=1

aipaimain

wi
vn.

(3.12)

Proposition 3.20. Near [X̄] ∈ MX̄, ∇GM is regular singular along Di’s and
smooth elsewhere. The connection matrix P on the block V∗ ⊕V takes the form

P =
k

∑
i=1

dwi

wi
⊗ Pi =

k

∑
i=1

dwi

wi
⊗

µ

∑
m,n=1

aimain vn ⊗ (vm)
∗

where Pi is a constant matrix in the topological frame vm’s and vn’s.
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Note that there are no higher order terms in rj’s and ∇GM is block-
diagonalized, in contrast to results in (3.9) and the discussions in §6 where
holomorphic frames are considered.

4. LOCAL TRANSITIONS BETWEEN A(Y) AND B(X)

The basic exact sequence in Theorem 1.14 provides a Hodge theoretic re-
alization of the numerical identity µ+ ρ = k. Now H2(Y)/H2(X)⊗C ∼= Cρ

is naturally the parameter space of the extremal Gromov–Witten invariants
of the Kähler degeneration ψ : Y → X̄, and V∗ ⊗ C ∼= Cµ is naturally the
parameter space of periods of vanishing cycles of the complex degenera-
tion from X to X̄. Both of them are equipped with flat connections induced
from the Dubrovin and Gauss–Manin connections respectively. Thus it is
natural to ask if there is a D module lift of the basic exact sequence.

We rewrite the basic exact sequence in the form

H2
C(Y)/H2

C(X) ∼= Cρ B // Ck V∗C ∼= CµAoo

with AtB = 0. This simply means that Ck is an orthogonal direct sum of the
two subspaces im(A) and im(B). Let A = [A1, · · · , Aµ], B = [B1, · · · , Bρ],
and consider the invertible matrix S = (si

j) := [A, B] ∈ Mk×k(Z), namely
si

j = aij for 1 ≤ j ≤ µ and si
µ+j = bij for 1 ≤ j ≤ ρ.

Denote the standard basis of Ck by e1, · · · , ek with coordinates y1, · · · , yk.
Let e1, · · · , ek be the dual basis on (Ck)∨. We consider the standard (trivial)
logarithmic connection on the bundle Ck ⊕ (Ck)∨ over Ck defined by

(4.1) ∇ = d +
1
z

k

∑
i=1

dyi

yi
⊗ (ei ⊗ e∗i ),

where z is a parameter. It is a direct sum of k copies of its one dimensional
version. We will show that the principal (logarithmic) part of the Dubrovin
connection over Cρ (cf. (2.8)) as well as the Gauss–Manin connection on Cµ

(cf. (3.9)) are all induced from this standard logarithmic connection through
the embeddings defined by B and A respectively.

Recall the basis T1, · · · , Tρ of Cρ with coordinates u1, · · · , uρ, and the
frame T1, · · · , Tρ, T1, · · · , Tρ on the bundle Cρ ⊕ (Cρ)∨ over Cρ. Notice that
Tj corresponds to the column vector Bj = Sµ+j, 1 ≤ j ≤ ρ. Let T̂j corre-
spond to the column vector Aj = Sj for 1 ≤ j ≤ µ with dual T̂ j’s. Then

Tj = ∑k
i=1 bij ei = ∑k

i=1 si
µ+j ei,

and dually ei = ∑
µ
j=1 si

j T̂ j + ∑
ρ
j=1 si

µ+j T j = ∑
µ
j=1 aij T̂ j + ∑

ρ
j=1 bij T j.
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Denote by P the orthogonal projection P : Ck ⊕ (Ck)∨ → Cρ ⊕ (Cρ)∨.
Using (4.1) we compute the induced connection ∇P near~0 ∈ Cρ:

∇P
Tl

Tm = ∑k
i, i′=1 bilbi′m

(
∇ei ei′

)P

=
1
z

k

∑
i=1

bilbim

yi
(ei)P =

1
z

ρ

∑
n=1

k

∑
i=1

bilbimbin

yi
Tn.

(4.2)

We compare it with the one obtained in (2.8) and (2.9):

∇z
Tl

Tm = −1
z

ρ

∑
n=1

(
(Tl .Tm.Tn) +

k

∑
i=1

bilbimbin
qi

1− qi

)
Tn,

where qi = exp ∑
ρ
p=1 bipup = exp vi. The principal part near ui = 0, 1 ≤ i ≤

ρ, gives 1
z ∑

ρ
n=1 ∑k

i=1
bilbimbin

vi
Tn, which coincides with (4.2) by setting vi = yi

for 1 ≤ i ≤ ρ. We summarize the discussion in the following:

Theorem 4.1. Let X ↗ Y be a projective conifold transition through X̄ with k
ordinary double points. Let the bundle Ck ⊕ (Ck)∨ over Ck be equipped with the
standard logarithmic connection defined in (4.1). Then

(1) The connection induced from the embedding B : Cρ → Ck defined by
the relation matrix of vanishing 3 spheres for the degeneration from X
to X̄ gives rise to the logarithmic part of the Dubrovin connection on
H2(Y)/H2(X).

(2) The connection induced from the embedding A : Cµ → Ck defined by
the relation matrix of extremal rational curves for the small contraction
Y → X̄ gives rise to the logarithmic part of the Gauss–Manin connection
on V∗, where V is the space of vanishing 3-cycles.

Part (1) has just been proved. The proof for (2) is similar (by setting
z = 2π

√
−1 and wi = yi, cf. (3.9)) and is omitted. We remark that the two

subspaces B(Cρ) and A(Cµ) are indeed defined over Q and orthogonal to
each other, hence A and B determine each other up to choice of basis.

5. FROM A(X) + B(X) TO A(Y) + B(Y)

In this section we prove Theorem 0.3 (3). The main idea is to refine the
GW invariants on X to respect the linking data on the vanishing cycles. The
GW theory of Y can then be reconstructed from the linked GW theory of X.

5.1. Overview.

5.1.1. B(X)⇒ B(Y). This is explained in §3: The VHS on Y is contained in
the logarithmic extension of VHS on X as the monodromy invariant sub-
theory alongMY ⊂MX̄. This is the easy part of the implication.
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5.1.2. A(X) + B(X)classical ⇒ A(Y). What we already know about A(Y)
consists of the following three pieces of data:

(1) A(X), which is given,
(2) the extremal ray invariants on divisors {Tl}

ρ
l=1 determined by the

relation matrix B of the vanishing 3-spheres, and
(3) the topological cup product on H2(Y). Since Y comes from surgeries

on X along the vanishing spheres, this is determined classically.
The ingredient (2) obviously does not come from A(X) but can be com-
puted explicitly. As discussed in §2.2 for g = 0 case, the extremal ray invari-
ants of all genera can be obtained from invariants of the a single (−1,−1)
curves by the relation matrix A. Therefore, the ingredients needed for (2)
is local and independent of the transition. The genus zero case was already
discussed. The g = 1 invariants for (−1,−1) curves was computed in [2]
(and justified in [10]) and g ≥ 2 invariants in [7].

We make a quick comment on reconstruction in genus zero. Using the
notations in (2.7), (1)–(3) above give the initial conditions on the two coor-
dinates slices u = 0 and “s = ∞” (i.e., β = 0) respectively. Naively one
may wish to reconstruct the genus zero GW theory on the entire cohomol-
ogy from these two coordinate slices. When Y is Fano, this is often possible
by WDVV. However, WDVV gives no information for Calabi–Yau 3-folds.
This issue will be resolved by studying the notion of linking data below.

5.2. Linking data. The homology and cohomology discussed in this sub-
section are over Z. As a first step, we study the topological information
about the holomorphic curves in X \ ⋃k

i=1 Si instead of in X. This can be
interpreted as the linking data between the curve C and the set of vanish-
ing spheres

⋃k
i=1 Si. We will see that the linking data add extra information

to the curve class in X and enable us to recover the missing topological
information in the process of transition.

Remark 5.1. As mentioned in Remark 1.3 that the vanishing sphere Si can
be chosen to be Lagrangian with respect to the prescribed Kähler form ω on
X. When ω is Ricci flat, it is expected to have special Lagrangian (SL) rep-
resentatives. Assuming this, then we have T[Si ]Def(Si/X) ∼= H1(Si, R) = 0
by McLean’s theorem [23]. That is, Si is rigid in the SL category. Thus, given
a curve C in X we expect that C ∩ Si = ∅, ∀i. Furthermore, by a simple vir-
tual dimensional count, this is known to hold for a generic almost complex
structure J on TX (cf. [9]). But we shall proceed without these heuristics.

The plan is to assign a linking data L between C and Si’s so that L repre-
sents a refinement of β = [C] in X and that L uniquely determines a curve
class γ in Y, such that nX

β,L = nY
γ . With the choices of lifting β in Y being

fixed (as above), this is equivalent to saying that L will uniquely determine
a curve class d` ∈ N1(Y/X̄). Let Bi = Dε(NSi/X) be the ε open tubular
neighborhood of Si in X with ε small enough such that C ∩ Bi = ∅ for
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all i. Then ∂Bi = Sε(NSi/X) ∼= Si × S2
ε
∼= S3 × S2. Let M := X \ ∪k

i=1Bi.
Then the pair (M, ∂M) is the common part for both X and Y. Indeed let
B+

i = Dδ(NCi/Y), then ∂B+
i = Sδ(NCi/Y) ∼= S3

δ × Ci
∼= S3 × S2. This leads

to two deformation retracts (Y,
⋃

Ci) ∼ (M, ∂M) ∼ (X,
⋃

Si). Consider the
sequence induced by the Poincaré–Lefschetz duality and excision theorem
for i : ∂M ↪→ M:

(5.1) H2(M, ∂M)
∼ // H4(M)

H2(C)
f∗ // H2(M)

j∗

OOOO

∼ // H4(M, ∂M)

j∗
OOOO

⊕
i H2(S3

i × S2
i )

∼ //

i∗

OO

H3(∂M)

∆∗

OO

H3(M, ∂M)

∆∗

OO

∼ // H3(M).

i∗

OO

From the retract (M, ∂M) ∼ (Y,
⋃

Ci) and the excision sequence for
(Y,

⋃
Ci) we find H3(M, ∂M) → ⊕

H2(Ci) → H2(Y) → H2(M, ∂M) → 0.
By comparing this with the LHS vertical sequence we conclude by the five
lemma that H2(M) ∼= H2(Y). In particular, the curve class in Y

γ := f∗[C] ∈ H2(M) ∼= H2(Y)

is well defined.

Definition 5.2. The linking data (β, L) is defined to be f∗([C]) = γ above.

From the excision sequence (X,
⋃

Si), we have

0→ H3(M, ∂M)→ H3(X)→
⊕

H3(Si)→ H4(M, ∂M)→ H4(X)→ 0,

where the retract (M, ∂M) ∼ (X,
⋃

Si) is used. Comparing with the right
vertical sequence in (5.1), we find H4(M) ∼= H4(X) and h3(X) = h3(M) +
k− ρ = h3(M) + µ. Since h3(X) = h3(Y) + 2µ, this is equivalent to

(5.2) h3(M) = h3(Y) + µ.

5.3. Linked GW invariants on X = non-extremal GW invariants on Y.

5.3.1. Analysis of the moduli of stable maps to the degenerating families. Here we
recall some results in J. Li’s study of degeneration formula [19, 20]. Given a
projective flat family over a curve π : W → A1 such that π is smooth away
from 0 ∈ B and the central fiber W0 = Y1 ∪Y2 has only double point singu-
larity with D := Y1 ∩ Y2 a smooth (but not necessarily connected) divisor,
Li in [19] constructed a moduli stack M(W, Γ) → A1 which has a per-
fect obstruction theory and hence a virtual fundamental class [M(W, Γ)]virt

in [20]. The following properties will be useful to us. (The notations are
slightly changed.)
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(1) For every 0 6= t ∈ A1, one has

M(W, Γ)t = M(X, β), [M(W, Γ)]virt
t = [M(X, β)]virt

where M(X, β) is the corresponding moduli of (absolute) stable maps.
(2) For the central fiber, the perfect obstruction theory on M(W, Γ) in-

duces a perfect obstruction theory on M(W0, Γ) and

[M(W0, Γ)]virt = [M(W, Γ)]virt ∩ π−1(0)

is a virtual divisor of [M(W, Γ)]virt.
(3) M(W0, Γ) and its virtual class are related to the relative moduli and

their virtual classes. For each admissible triple (consisting of gluing
data) ε, there is a ”gluing map”

Φε : M(Y1, D; Γ1)×Dρ M(Y2, D; Γ2)→M(W0, Γ),

inducing the relation between the virtual cycles

[M(W0, Γ)]virt = ∑
ε

mεΦε∗∆! ([M(Y1, D; Γ1)]
virt × [M(Y2, D; Γ2)]

virt) ,

where ∆ : Dρ → Dρ × Dρ is the diagonal morphism and mε is a
rational number (multiplicity divided by the degree of Φε).

5.3.2. Decomposition of M(W0, Γ). We will study the properties of M(W0, Γ)
and their virtual fundamental classes in the setting of §2.1. A comprehen-
sive comparison of the curve classes in X, Y and Ỹ is collected in the fol-
lowing diagram.

H3(M, ∂M) //

=

��

H2(
⋃

i Ei) //

φ̄∗
��

H2(Ỹ) //

φ∗
��

H2(M, ∂M) //

=

��

0

=

��
H3(M, ∂M) //

=

��

H2(
⋃

i Ci) //

χ̄∗
��

H2(Y) //

χ∗
��

H2(M, ∂M) //

=

��

0

=

��
H3(M, ∂M) // 0 // H2(X) // H2(M, ∂M) // 0

It is easy to see that there is a unique lifting γ̃ of γ satisfying (2.4). From
this and the degeneration analysis we have the following lemma.

Lemma 5.3. [M(Y, γ)]virt ∼ [M(Ỹ, D; γ̃)]virt, where ∼ stands for ”homotopy
equivalence”. 2 They define the same GW invariants.

Because of this lemma, we will sometimes abuse the notation and identify
[M(Ỹ, D; γ̃)]virt with [M(Y, γ)]virt.

Lemma 5.4. In the case of complex degeneration in §2.1, images of Φγ̃ for different
γ̃ are disjoint from each other.

2If π can be extended to a family over P1, then the two cycles are rationally equivalent.
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Proof. This follows from Li’s study of the corresponding moduli stacks. In
this special case of ρ = 0, for any element in M(W0, Γ) there is only one
way to split it into two ”relative maps” (with one of them being empty).
We note that this is not true in general, when there are more than one way
of splitting of the maps to the central fiber. �

Given β 6= 0, if γ̃ and γ̃′ both appear in (2.3) (in particular they are non-
exceptional for ψ̃ : Ỹ → X̄), we have γ̃− γ̃′ = ∑i ai(`i − `′i), where `i and `′i
are the ψ̃ exceptional curve classes (two rulings) in Ei. By Proposition 2.1,
there are only finitely many nonzero ai. For each γ̃ above, there is a unique
γ = ψ∗γ̃ in Y, which is non-extremal for ψ : Y → X̄, and satisfies (2.5).

Corollary 5.5. Given β 6= 0 a curve class in X, we can associate to it sets of
non-ψ̃-exceptional curve classes γ̃ and γ discussed above. Then

[M(X, β)]virt ∼∑γ̃
[M(Ỹ, D; γ̃)]virt ∼∑γ

[M(Y, γ)]virt,

where ∼ stands for the homotopy equivalence and the summations are over the
above sets. The conclusion holds for any projective small resolution Y of X̄.

Proof. This follows from (2.3), (2.5) and the above discussions. �

Recall in §5.2 we have the identification of the linking data in

(5.3) H2(Y◦) = H2(Y) = H2(X◦) = H2(X \
⋃

i
Bi) = H2(X̄ \ X̄sing)

where X \⋃k
i=1 Si =: X◦ ∼ M ∼ Y◦ := Y \⋃k

i=1 Ci and Bi is a tubular neigh-
borhood of the vanishing sphere Si. Therefore, a curve class γ ∈ H2(Y) can
be identified as a ”curve class” in X◦ ∼ X̄ \ X̄sing, with the latter a quasi-
projective variety, and we can think of γ as a curve class in X◦.

Proposition 5.6. For Xt with t ∈ A1 very small in the degenerating family
π : X → A1, we have a decomposition of the virtual class [M(Xt, β)]virt into a
finite disjoint union of cycles

[M(Xt, β)]virt = äγ∈H2(X◦)[M(Xt, γ)]virt,

where [M(Y, γ)]virt ∼ [M(Xt, γ)]virt ∈ Avdim
(

M(Xt, β)
)

is a cycle class corre-
sponding to the linking data γ of Xt.

Proof. By the construction of the virtual class of the family π, we know that
the virtual classes for Xt and for X0 are restrictions of that for X . Lemma
5.4 tells us that at t = 0, the virtual class decomposes into a disjoint union.
By semicontinuity of connected components, we conclude that the virtual
classes for Xt remain disconnected with (at least) the same number of con-
nected components labeled by γ ∈ H2(X◦). �

We call the numbers defined by [M(Xt, γ)]virt the refined GW numbers of
X◦ with linking data γ, or simply linked GW invariants.
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Corollary 5.7. The refined GW numbers of X◦ with linking data γ are the same
as the GW invariants of Y with curve class γ, where γ is interpreted in two ways
via (5.3). This shows that A(X) + B(X)classical ⇒ A(Y).

6. FROM A(Y) + B(Y) TO A(X) + B(X)

The purpose of this section is to establish part (4) of Theorem 0.3. The
main idea is to refine the B model on Y by studying deformations and VHS
”linked” with the exceptional curves, i.e., on the non-compact Y \ ∪iCi.
From this, the full VHS of X is then reconstructed via Theorem 3.13.

6.1. Overview.

6.1.1. A(Y) ⇒ A(X). As is explained in §2, A(X) is a sub-theory of A(Y).
Indeed, A(X) is obtained from A(Y) by setting all extremal ray invariants
to be zero, in addition to “reducing the linking data” γ ∈ NE(Y) to β ∈
NE(X).

6.1.2. A(Y)classical + B(Y)⇒ B(X). We have seen that B(Y) can be consid-
ered as a sub-theory of B(X). In this section, we will show that B(Y), to-
gether with the knowledge of extremal curves

⋃
i CI ⊂ Y determines B(X).

More precisely, we will show that the “Hodge filtration” underlying the
variation of MHS of the quasi-projective Y◦ = Y \⋃i Ci on the first jet space
ofMY ⊂MX̄ can be lifted uniquely to the Hodge filtration underlying the
degenerating VHS of X. Furthermore, the information of the Gauss–Manin
up to the first jet is sufficient to single out the VHS of X.

In the next subsection, we start with a statement of compatibility of MHS
which is needed in our discussion. After that we will give a proof showing
the unique determination. As in our implication of B(X) + A(X) ⇒ A(Y)
in §5, our A(Y) + B(Y)⇒ B(X) implication is not constructive.

6.2. Compatibility of the mixed Hodge structures. Recall from §3.1 that
MX̄ is smooth and containsMX as an open subscheme with “boundary”
MX̄ \MX ∼= MY. Set U := Y◦ = Y \ ⋃k

i=1 Ci
∼= X̄◦ = X̄ \ X̄sing where

X̄sing =
⋃k

i=1{pi}. To construct the VHS with logarithmic degeneration on
MX̄ nearMY, we start with the following lifting property.

Proposition 6.1. There is a short exact sequence of mixed Hodge structures

(6.1) 0→ V → H3(X)→ H3(U)→ 0,

where H3(X) is equipped with the limiting MHS of Schmid, V ∼= H1,1
∞ H3(X),

and H3(U) is equipped with the canonical mixed Hodge structure of Deligne.
In particular, F3H3(X) ∼= F3H3(U) and F2H3(X) ∼= F2H3(U).

Proof. In the topological level, the short exact sequence (6.1) is equivalent
to the defining sequence of the vanishing cycle space (1.11). Indeed, since
X is nonsingular, H3(X) ∼= H3(X) by Poincaré duality. Also,

(6.2) H3(X̄) = H3(X̄, p) ∼= H3(Ỹ, E) ∼= H3(Ỹ\E) = H3(U)
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by the excision theorem and Lefschetz duality.
Now we consider the mixed Hodge structures. Since U is smooth quasi-

projective, it is well know that the canonical mixed Hodge structure on
H3(U) has its Hodge diamond supported on the upper triangular part, i.e.,
with weights ≥ 3. Or equivalently, the MHS on H3(X̄) has weights ≤ 3
by duality in (6.2). The crucial point is that Lefschetz duality is compatible
with mixed Hodge structures, as stated in Lemma 6.2 below. Hence the
short exact sequence (6.1) follows from Lemma 1.12 which is essentially
the invariant cycle theorem.

Notice that V ∼= H1,1
∞ H3(X) by Lemma 1.12 (ii). In particular, the isomor-

phisms on Fi for i = 3, 2 follows immediately by applying Fi to (6.1). �

Lemma 6.2. Let Y be an n dimensional complex projective variety, i : Z ↪→ Y a
closed subvariety with smooth complement j : U ↪→ Y where U := Y\Z. Then the
Lefschetz duality Hi(Y, Z) ∼= H2n−i(U) is compatible with the canonical mixed
Hodge structures.

This is well known in mixed Hodge theory, though we are not able to
locate an exact reference in the literature. For the readers’ convenience we
include a proof which is communicated to us by M. de Caltaldo.

Proof. We will make use of the structural theorem of Saito on mixed Hodge
modules (MHM) [30, Theorem 0.1] which says that there is a correspon-
dence between the derived categories of MHM and that of perverse sheaves
(cf. Axiom A in 14.1.1 of Peters and Steenbrink’s book [26]).

There is a triangle in the derived category of constructible sheaves

j! j!QY → QY → i∗i∗QY.

This gives maps of MHS Hi(Y, Z) → Hi(Y) → Hi(Z) with Hi(Y, Z) =
Hi(Y, j! j!QY). In fact, the MHS of Hi(Y, Z) can be defined by the RHS from
Saito’s theory, since j! j!QY is a complex of MHM.

Dualizing the above setup, we have

(6.3) Hi(Y, Z) = Hi(Y, j! j!QY)
∗,

where the LHS of (6.3) having MHS for the same reason as above and
compatibly with taking dual as MHS. Furthermore, the RHS of (6.3) is
H−i

c (Y, j∗ j∗ωY) by Verdier duality, where ωY is the Verdier dualizing com-
plex. Due to the compactness of Y we have

H−i
c (Y, j∗ j∗ωY) = H−i(Y, j∗ j∗ωY) = H−i(U, ωU)

= HBM
i (U) = H2n−i(U),

where HBM is the Borel–Moore homology. Since all steps are compatible
with MHM, the Lefschetz duality is compatible with the MHS. �
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6.3. Conclusion of the proof. We now apply the above result to our set-
ting. We have on X̄ (cf. [25])

· · ·H1
X̄sing(ΘX̄)→ H1(ΘX̄)→ H1(U, TU)→ H2

X̄sing(ΘX̄)→ · · · .

Since each pi is a hypersurface singularity, we have depthOpi = 3. Using
this fact, Schlessinger showed that H1

p(ΘX̄) = 0 and H2
p(ΘX̄)

∼=
⊕k

i=1 Cpi .
Putting these together, we have

(6.4) 0→ H1(ΘX̄)→ H1(U, TU)→ H2
X̄sing(ΘX̄)→ · · · .

Since X̄ is a Calabi–Yau 3-fold with only ODPs, its deformation theory is
unobstructed by the T1-lifting property [14]. Comparing (6.4) with (3.1) we
see that Def(X̄) ∼= H1(U, TU).

Similarly, on Y we have

· · ·H1
Z(TY)→ H1(TY)→ H1(U, TU)→ H2

Z(TY)→ H2(TY)→ · · · .

Recall that Y is smooth Calabi–Yau and H1
Z(TY) = 0. Thus Def(Y) =

H1(TY) ⊂ H1(U, TU) ∼= Def(X̄). MY is naturally a submanifold of MX̄.
Write I := IMY as the ideal sheaf ofMY ⊂ MX̄. Since H2(U, TU) 6= 0, the
deformation of U could be obstructed. Nevertheless, the first-order defor-
mation of U exists and is parameterized by H1(U, TU) ⊃ Def(Y). There-
fore, we have the following smooth family

π : U→ Z1 := ZMX̄
(I2) ⊃MY,

whereZ1 = ZMX̄
(I2) stands for the nonreduced subscheme ofMX̄ defined

by the ideal sheaf I2. Namely Z1 is the first jet extension ofMY inMX̄.
Now we may complete the construction of VHS overMX̄ near the bound-

ary loci MY ↪→ MX̄. The Gauss–Manin connection for a smooth family
over non-reduced base was constructed in [13]. For our smooth family
π : U → Z1, it is defined by the integral lattice H3(U, Z) ⊂ H3(U, C).
Since U is only quasi-projective, the Gauss–Manin connection underlies
VMHS instead of VHS. By Proposition 6.1, we have Wi H3(U) = 0 for i ≤ 2,
W3 ⊂W4 with GrW

3 H3(U) ∼= H3(Y), and GrW
4 H3(U) ∼= V∗.

The Hodge filtration of the locally system F0 = H3(U, C) has the fol-
lowing structure: F• = {F3 ⊂ F2 ⊂ F1 ⊂ F0} which satisfies the Griffiths
transversality. Since KU ∼= OU and H0(U, KU) ∼= H0(Y, KY) ∼= C, F3 is a
line bundle over Z1 spanned by a nowhere vanishing relative holomorphic
3-form Ω ∈ Ω3

U/Z1
. Near the moduli point [Y] ∈ Z1, F2 is then spanned

by Ω and v(Ω) where v runs through a basis of H1(U, TU). Notice that
v(Ω) ∈W3 precisely when v ∈ H1(Y, TY).

By Proposition 6.1, the partial filtration F3 ⊂ F2 on H3(U) over Z1 lifts
uniquely to a filtration F̃3 ⊂ F̃2 on H3(X) over Z1 with F̃3 ∼= F3 and F̃2 ∼=
F2. The complete lifting F̃• is then uniquely determined since F̃1 = (F̃3)⊥

by the first Hodge–Riemann bilinear relation on H3(X). Alternatively, F̃1

is spanned by F̃2 and v(F̃2) for v runs through a basis of H1(U, TU).
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Now F̃• over Z1 uniquely determines a horizontal map Z1 → Ď. Since
it has maximal tangent dimension h1(U, TU) = h1(X, TX), it determines
uniquely the maximal horizontal slice ψ : M→ Ď withM ∼=MX̄ locally
near MY. According to Theorem 3.13, namely an extension of Schmid’s
nilpotent orbit theorem, under the coordinates t = (r, s), the period map
φ : Z× ∼=MX =MX̄\

⋃k
i=1 Di → D/Γ is then given by

φ(r, s) = exp

(
k

∑
i=1

log wi

2π
√
−1

N(i)

)
ψ(r, s)

where Γ is the monodromy group generated by the local monodromy T(i) =

exp N(i) (with mi = 1) around the divisor Di defined by wi = ∑
µ
j=1 aijrj = 0

(cf. (3.6)). Since N(i) is determined by the Picard–Lefschetz formula (Lemma
3.12), we see that the period map φ is completely determined by the rela-
tion matrix A of the extremal curves Ci’s. (The period map gives the desired
VHS, with degenerations, over Z×.) This completes the proof that refined
B model on Y\Z = U determines the B model on X.
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