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Abstract

In this paper, we study the shape of the min-max minimal hypersurface produced by

Almgren-Pitts-Schoen-Simon [AF62, AF65, P81, SS81] in a Riemannian manifold (Mn+1, g)

of positive Ricci curvature for all dimensions. The min-max hypersurface has a singular set

of Hausdorff codimension 7. We characterize the Morse index, area and multiplicity of this

singular min-max hypersurface. In particular, we show that the min-max hypersurface is

either orientable and has Morse index one, or is a double cover of a non-orientable stable

minimal hypersurface.

As an essential technical tool, we prove a stronger version of the discretization theo-

rem. The discretization theorem, first developed by Marques-Neves in their proof of the

Willmore conjecture [MN12], is a bridge to connect sweepouts appearing naturally in ge-

ometry to sweepouts used in the min-max theory. Our result removes a critical assumption

of [MN12], called the no mass concentration condition, and hence confirms a conjecture

by Marques-Neves in [MN12].

1 Introduction

Given an (n + 1) dimensional closed Riemannian manifold Mn+1, minimal hypersurfaces

are critical points of the area functional. When M has certain topology, a natural way to

produce minimal hypersurface is to minimize area among its homology class. This idea leads

to the famous existence and regularity theory for area minimizing hypersurfaces by De Giorgi,

Federer, Fleming, Almgren and Simons etc. (c.f. [FH, Gi, Si83]). In general cases, when every

hypersurface is homologically trivial, e.g. if the Ricci curvature of the ambient manifold is

positive, the minimization method fails. This motivates F. Almgren [AF62, AF65], followed

up by J. Pitts [P81], to develop a Morse theoretical method for the area functional in the space

of hypersurfaces, namely the min-max theory. The heuristic idea of developing a Morse theory

is to associate a nontrivial 1-cycle in the space of hypersurfaces with a critical point of the

area functional, i.e. a minimal hypersurface. In particular, denote Zn(M) by the space of all

∗The author is partially supported by NSF grant DMS-1406337.
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1 INTRODUCTION 2

hypersurfaces with a natural topology in geometric measure theory, called the flat topology.

Now consider a one-parameter family Φ : [0, 1] → Zn(M). Let [Φ] be the set of all maps

Ψ : [0, 1] → Zn(M) which are homotopic to Φ in Zn(M). A min-max value can be associated

with [Φ] as

L([Φ]) = inf
{

max
x∈[0,1]

Area(Ψ(x)) : Ψ ∈ [Φ]
}

. (1.1)

Almgren [AF62] showed that there is a nontrivial Φ with L([Φ]) > 0 in any closed manifold

M ; together with Pitts [AF65, P81], they showed that when 2 ≤ n ≤ 5, there is a smooth,

embedded, min-max minimal hypersurface Σ such that Area(Σ) = L([Φ]). Schoen and Simon

[SS81] extended the regularity results to n ≥ 6. Note that for n ≥ 7, the min-max hypersurface

Σ has a singular set of codimension 7. Later on, there are other variations of the Almgren-Pitts

min-max theory, c.f. [Sm82, CD03, DT09].

In this Morse theoretical approach, one key open problem, raised by Almgren [AF65] and

emphasized by F. Marques [M14, §4.1] and A. Neves [N14, §8], is to bound the Morse index of

the min-max minimal hypersurface by the number of parameters. Moreover, it is conjectured

that generically the Morse index is equal to the number of parameters. The importance of

this problem lies in several aspects. First, finding minimal hypersurfaces with bounded (or

prescribed) Morse index is a central motivation for Almgren [AF65] to develop the min-max

theory. Also the bound of Morse index plays an important role in application to geometric

problems. In his famous open problems section [Y, Problem 29 and 30], S. T. Yau stressed the

importance of the estimates of Morse index in several conjectures. In the recent celebrated

proof of the Willmore conjecture by Marques and Neves [MN12], a key part is to prove that

the Morse index of certain min-max minimal surface in standard three-sphere is bounded by

5. The major challenge of this problem comes from the fact that the min-max hypersurface

is constructed as a very weak limit (i.e. varifold limit) from the variational theory, therefore

classical methods in nonlinear analysis (c.f. [St00]) do not extend to this situation.

The current progress on this problem mainly focused on the case of one-parameter families.

Marques and Neves [MN11] have confirmed this conjecture in three dimension when the Ricci

curvature of the ambient manifold is positive, where they proved the existence of minimal

Heegaard surface of Morse index 1 in certain 3-manifolds. This was extended to manifold

Mn+1 with positive Ricci curvature in dimensions 2 ≤ n ≤ 6, when the min-max hypersurfaces

are smooth, by the author [Z12]. In [Z12], we also gave a general characterization of the

multiplicity, area and Morse index of the min-max hypersurface. In particular, the min-max

hypesurface is either orientable of Morse index 1, or is a double cover of a non-orientable least

area minimal hypersurface. Recently, the methods in [MN11, Z12] were used by Mazet and

Rosenberg [MR15] to study the minimal hypersurfaces of least area in an arbitrary closed

Riemannian manifold Mn+1 with 2 ≤ n ≤ 6. They gave several characterizations of the

least area minimal hypersurfaces similar to [Z12]. The work in this paper will generalize the

characterization of the min-max hypersurface to all dimensions, even allowing singularities.

Several new ingredients are developed to deal with the presence of singularities.
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Let (Mn+1, g) be an (n + 1)-dimensional, connected, closed and orientable Riemannian

manifold. According to Almgren-Pitts-Schoen-Simon [AF62, AF65, P81, SS81], there exists a

closed min-max minimal hypersurface Σn, with a singular set sing(Σ) of Hausdorff dimension

no larger than n− 7. Here the regular part of Σ is defined as:

reg(Σ) = {x ∈ Σ : Σ is a smooth, embedded, hypersurface near x};

and the singular part of Σ is sing(Σ) = Σ\reg(Σ) (see [SS81, I96]). Clearly the regular

part reg(Σ) is an open set. Later on we will denote Σ = reg(Σ), and the closure Σ =

reg(Σ) ∪ sing(Σ). We use Ind(Σ) to denote the Morse index of Σ (see §2.4).

Denote

S = {Σn : Σ is a connected, closed, minimal, hypersurface with a singular set

sing(Σ) of Hausdorff co-dimension no less than 7}.
(1.2)

Let

WM = inf
Σ∈S

{ Hn(Σ), if Σ is orientable

2Hn(Σ), if Σ is non-orientable

}

, (1.3)

where Hn denotes the n-dimensional Hausdorff measure.

Our main result is as follows.

Theorem 1.1. Assume that the Ricci curvature of M is positive; then the min-max hyper-

surface Σ

(i) either is orientable of multiplicity one, which has Morse index Ind(Σ) = 1, and Hn(Σ) =

WM ;

(ii) or is non-orientable with multiplicity two, which is stable, i.e. Ind(Σ) = 0, and 2Hn(Σ) =

WM .

The main idea is consisted by two parts. First, given a minimal hypersurface Σ, we will

embed Σ into a one parameter family {Σt}t∈[−1,1] with Σ0 = Σ, such that the area of Σ

achieves a strict maximum, i.e. Area(Σt) < Area(Σ) if t 6= 0. Second, we will show that all

of such one parameter families obtained in this way (from a minimal hypersurface) belong to

the same homotopy class. Then from the definition of the min-max value (1.1), the family

{Σt} corresponding to the min-max hypersurface Σ must be optimal, i.e. maxtArea(Σt) ≤
maxtArea(Σ

′
t), where {Σ′

t} is generated by any other minimal hypersurface Σ′ in the first

step. The characterization of Morse index, multiplicity and area of Σ will then follow from this

optimality condition. Specifically, in the first part, we will choose the one parameter family as

the level sets of the distance function to Σ. Note that the minimal hypersurface Σ has a singular

set of Hausdorff codimension 7. To deal with the presence of singularities, we will use an idea

explored by Gromov [Gr] in his study of isoperimetric inequalities. To show the homotopic

equivalence of these one parameter families, we need to use an isomorphism constructed by

Almgren in [AF62], under which the homotopy groups of the space of hypersurfaces in M are

mapped isometrically to the homology groups of M .
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One main difficulty is caused by the fact that two different topology are used on the

space of hypersurfaces Zn(M). The geometric method in the first part produces families

of hypersurfaces which are continuous under the flat topology. However, the Almgren-Pitts

min-max theory works under another topology, called the mass norm topology, which is much

stronger than the flat topology. A bridge is desired to connect the two topology. In fact, this

is a very common problem in the study of min-max theory (c.f. [MN12, Z12, MN13, Mo14]).

Pitts already developed some tools in his book [P81]. Marques-Neves, in their proof of the

Willmore conjecture [MN12], first gave a complete theory to connect families continuous under

flat topology to families satisfying the requirement of the Almgren-Pitts setting (see also

[Z12, MN13, Mo14]). Marques-Neves need a critical technical assumption for the starting

family, called no mass concentration condition, which means that there is no point mass in

the measure-theoretical closure of the family. However, in our situation the one parameter

family does not a priori satisfy the no mass concentration condition due to the presence of

singular set. In fact, in the same paper [MN12, §13.2], Marques-Neves also conjectured that

this assumption might not be necessary. Here we vertify this conjecture under a very general

condition. As this improvement will be useful in other situation, we present it here (in a

simplified form).

Theorem 1.2. (see Theorem 5.1 for a detailed version) Given a continuous (under the flat

topology) one parameter family of hypersurfaces Φ : [0, 1] → Zn(M), such that for each x ∈
[0, 1], Φ(x) is represented by the boundary of some set Ωx ⊂ M of finite perimeter, and

such that maxxArea
(

Φ(x)
)

< ∞, then there exists a (1,M)-homotopy sequence {φi} (one

parameter family in the sense of Almgren-Pitts, c.f. §4.1), satisfying

max
x

Area
(

Φ(x)
)

= lim sup
i→∞

max
x

Area(φi(x)).

Remark 1.3. Under the same condition that the hypersurfaces are represented by boundary

of sets of finite perimeter, the above result is also true for multi-parameter families of hyper-

surfaces.

The paper is organized as follows. In Section 2, we give several preliminary results concern-

ing the topology, second variation and Morse index for singular hypersurfaces in a manifold

of positive Ricci curvature. In Section 3, we show that the level sets of distance function to a

singular minimal hypersurface is a good one parameter family. In Section 4, we introduce the

Almgren-Pitts theory. In Section 5, we prove Theorem 1.2. Finally, we prove Theorem 1.1 in

Section 6.

Acknowledgement: The author would like to thank Bill Minicozzi to bring [Gr] into his

attention. The author also wish to thank Rick Schoen for many helpful discussions. Finally

the author wants to thank Toby Colding for his interests.



2 PRELIMINARY RESULTS 5

2 Preliminary results

In this section, we give several preliminary results about minimal hypersurfaces with a

singular set of Hausdorff dimension less to or equal than n− 7.

2.1 Notions of geometric measure theory. For notions in geometric measure theory,

we refer to [Si83] and [P81, §2.1].

Fix a connected, closed, oriented Riemannian manifold (Mn+1, g) of dimension n + 1.

Assume that (Mn+1, g) is embedded in some R
N for N large. We denote by

• Ik(M) the space of k-dimensional integral currents in R
N with support in M ;

• Zk(A,B) the space of integral currents T ∈ Ik(M), with spt(T ) ⊂ A1 and spt(∂T ) ⊂
B2, where A,B are compact subset of M , and B ⊂ A;

• Zk(M) the space of integral currents T ∈ Ik(M) with ∂T = 0;

• Vk(M) the closure, in the weak topology, of the space of k-dimensional rectifiable

varifolds in R
N with support in M ;

• F and M respectively the flat norm [Si83, §31] and mass norm [Si83, 26.4] on Ik(M);

• C(M) the space of sets Ω ⊂M with finite perimeter [Si83, §14][Gi, §1.6].

Given T ∈ Ik(M), |T | and ‖T‖ denote respectively the integral varifold and Radon measure in

M associated with T . Ik(M) and Zk(M) are in general assumed to have the flat norm topology.

Ik(M,M) and Zk(M,M) are the same space endowed with the mass norm topology. Given

T ∈ Zk(M), BF
s (T ) and BM

s (T ) denote respectively balls in Zk(M) centered at T , of radius

s, under the flat norm F and the mass norm M. Given a closed, orientable hypersurface Σ

in M with a singular set of Hausdorff dimension no larger than (n − 7), or a set Ω ∈ C(M)

with finite perimeter, we use [[Σ]], [[Ω]] to denote the corresponding integral currents with the

natural orientation, and [Σ], [Ω] to denote the corresponding integer-multiplicity varifolds.

2.2 Nearest point projection to Σ. Here we recall the fact that the nearest point pro-

jection of any point in M to Σ (away from the singular set of Σ) is a regular point of Σ when

Σ is minimal. Similar result for isoperimetric hypersurfaces appeared in [Gr].

Lemma 2.1. Let Σ ∈ S be a singular minimal hypersurface in M . Take a point p ∈ M\Σ,
and a minimizing geodesic γ connecting p to Σ in M , i.e. γ(0) = p, γ(1) = q ∈ Σ, and

length(γ) = dist(p,Σ). Then q is a regular point of Σ.

Proof. Take the geodesic sphere of M center at γ(12) with radius 1
2dist(p,Σ). The sphere is

a smooth hypersurface near q, and Σ lies in one side of the sphere. So the tangent cone of Σ

(viewed as a rectifiable varifold with multiplicity 1) at q is contained in a half-space of Rn+1

(separated by the tangent plane of the sphere). As Σ is stationary, by [Si83, 36.5, 36.6], the

1spt(T ) denotes the support of T [Si83, 26.11].
2∂T ∈ In−1(M) denotes the boundary of T [Si83, 26.3].
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tangent cone of Σ at q is equal to the tangent plane of the sphere (with multiplicity 1), and

hence Σ is smooth at q by the Allard Regularity Theorem (c.f. [Al72][Si83, 24.2]).

Remark 2.2. In fact, we only need the singular set of Σ to be small enough (e.g. dim(sing(Σ)) ≤
n− 2) such that we can show the varifold [Σ] is stationary (c.f. [Si83, §39]) using the fact that

Σ is minimal.

2.3 Connectedness. For stationary hypersurface with a small singular set, the connected-

ness of the closure is the same as the connectedness of the regular part. In fact, this follows

from the strong maximum principle for stationary singular hypersurfaces.

Theorem 2.3. [I96, Theorem A]

1. If V1 and V2 are stationary integer rectifiable n-varifods in an open subset Ω ⊂ Mn+1,

satisfying

Hn−2(spt(V1) ∩ spt(V2) ∩ Ω) = 0,

then spt(V1) ∩ spt(V2) ∩ Ω = ∅.
2. Assume that Σ is a stationary hypersurface in Ω with a singular set of Hausdorff dimen-

sion less than n− 2. If Σ ∩ Ω is connected, then reg(Σ) ∩Ω is connected.

Remark 2.4. A minimal hypersurface Σn with a singular set of Hausdorff dimension less than

n−2 is stationary. By part 2, the closure of a singular hypersurface in our setting is connected

if and only if the regular part is.

Definition 2.5. A minimal hypersurface Σ (with dim
(

sing(Σ)
)

≤ n − 7) is connected if its

regular part is connected.

2.4 Orientation, second variation and Morse index.

Definition 2.6. A singular hypersurface Σ is orientable (or non-orientable) if the regular part

is orientable (or non-orientable).

A singular hypersurface Σ is said to be two-sided if the normal bundle ν(Σ) of the regular

part Σ inside M is trivial.

Lemma 2.7. Let Mn+1 be an (n + 1)-dimensional, connected, closed, orientable manifold,

and Σ ⊂M a connected, singular hypersurface with dim
(

sing(Σ)
)

≤ n− 2, and with compact

closure Σ. Then Σ is orientable if and only if Σ is two-sided.

Proof. The tangent bundle ofM , when restricted to Σ, has a splitting into the tangent bundle

TΣ and normal bundle ν(Σ) of Σ, i.e. TM |Σ = TΣ ⊕ ν(Σ). By [H, Lemma 4.1], TΣ is

orientable if and only if ν(Σ) is orientable. By [H, Theorem 4.3]3, ν(Σ) is orientable if and

only if ν(Σ) is trivial.

3It is not hard to see that Σ is paracompact, so [H, Theorem 4.3] is applicable.
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When Σ is two-sided, there exists a unit normal vector field ν. The Jacobi operator is

LΣφ = △Σφ+
(

Ric(ν, ν) + |A|2
)

φ, (2.1)

where φ ∈ C1
c (Σ), △Σ is the Laplacian operator of the induced metric on Σ, and A is the

second fundamental form of Σ along ν. Given an open subset Ω of Σ with smooth boundary

∂Ω, we say that λ ∈ R is an Dirichlet eigenvalue of LΣ on Ω if there exists a non-zero function

φ ∈ C∞
0 (Ω) vanishing on ∂Ω, i.e. φ|∂Ω ≡ 0, such that LΣφ = −λφ. The (Dirichlet) Morse

index of Ω, denoted by IndD(Ω), is the number of negative Dirichlet eigenvalues of LΣ on Ω

counted with multiplicity.

When Σ is non-orientable, we need to pass to the orientable double cover Σ̃ of Σ. Then

there exists a unit normal vector field ν̃ along Σ̃, satisfying ν̃ ◦ τ = −ν̃, where τ : Σ̃ → Σ̃

is the orientation-reversing involution, such that Σ = Σ̃/{id, τ}. The Jacobi operator LΣ̃ is

well-defined using ν̃. Given an open subset Ω ⊂ Σ, and its lift-up Ω̃ to Σ̃, we can define

the Dirichlet eigenvalue and (Dirichlet) Morse index by restricting the Jacobi operator LΣ̃ to

functions φ̃ ∈ C1
0 (Ω̃) which are anti-symmetric under τ , i.e. φ̃ ◦ τ = −φ̃. (In this case, φ̃ν̃

descends to a vector field on Σ). We refer to [Ro] for more discussions on Morse index in the

non-orientable case.

Definition 2.8. The Morse index of Σ is defined as,

Ind(Σ) = sup{IndD(Ω) : Ω is any open subset of Σ with smooth boundary.}

Σ is called stable if IndΣ ≥ 0, or equivalently, Σ is stable in the classical sense on any compactly

supported open subsets.

2.5 Positive Ricci curvature. We need two properties for singular minimal hypersurfaces

in manifolds of positive Ricci curvature. The first one says that there is no stable, two-sided,

singular hypersurface with a small singular set. This generalizes an easy classical result for

smooth hypersurfaces [CM11, Chap 1.8]. When Σ is two-sided, the fact that Σ is stable is

equivalent to the following stability inequality,
∫

Σ

(

Ricg(ν, ν) + |AΣ|2
)

ϕ2dHn ≤
∫

Σ
|∇ϕ|2dHn, (2.2)

for any ϕ ∈ C∞
c (Σ).

Lemma 2.9. [S10] Assume that (Mn+1, g) has positive Ricci curvature, i.e. Ricg > 0, and Σ

is a singular minimal hypersurface, with Hn−2(sing(Σ)) = 0. If Σ is two-sided, then Σ is not

stable.

Proof. Suppose that Σ is stable. Since Hn−2(sing(Σ)) = 0, for any ǫ > 0, we can take a

countable covering ∪iBri(pi) of sing(Σ) using geodesics balls {Bri(pi)}i∈N of M , such that
∑

i∈N

rn−2
i < ǫ.
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For each i, we can choose a smooth cutoff function fi, such that fi = 1 outside B2ri(pi), fi = 0

inside Bri(pi), and |∇fi| ≤ 2
ri

inside the annulus B2ri(pi)\Bri(pi). Let fǫ be the minumum of

all fi’s (which is Lipschitz), and plug it into the stability inequality (2.2),

∫

Σ

(

Ric(ν, ν) + |AΣ|2
)

f2ǫ dHn ≤
∫

Σ
|∇fǫ|2dHn

≤ 4
∑

i∈N

∫

Σ∩B2ri
(pi)

1

r2i
dHn ≤ 4

∑

i∈N

1

r2i
· Crni ≤ 4Cǫ.

Here we used the monotonicity formula [Si83, 17.6] to get the volume boundHn(Σ∩B2ri(pi)) ≤
Crni in the third “ ≤ ”. Now let ǫ tend to zero, we get a contradiction to the fact that

Ric(ν, ν) > 0.

Remark 2.10. If we only require Ricg ≥ 0, the above proof will show that the stable hyper-

surface must be smooth and totally geodesic, and the restriction of Ricg to Σ is zero.

The second property says that any two such singular minimal hypersurfaces in manifold

with positive Ricci curvature must intersect, which generalizes the classical Frankel’s theorem

[Fr66] for smooth minimal hypersurfaces.

Theorem 2.11. (Generalized Frankel Theorem) Assume that (Mn+1, g) has positive Ricci

curvature. Given any two connected, singular minimal hypersurfaces Σ and Σ′ with compact

closure, then Σ and Σ′ must intersect on a set of Hausdorff dimension no less than n− 2.

If the Hausdorff dimension of the singular sets of Σ and Σ′ is less than n−2, then Σ∩Σ′ 6= ∅.

Proof. First if Σ ∩ Σ′ = ∅, then we can find two points p ∈ Σ, p′ ∈ Σ′, such that d(p, p′) =

dist(Σ,Σ′). By the argument as in Lemma 2.1, both p, p′ are regular points of Σ,Σ′. Then as

in [Fr66, §2], we can get a contradiction by looking at the second variational formula of the

length functional along the minimizing geodesic connecting p to p′ when (M,g) has positive

Ricci curvature.

Then Σ ∩ Σ′ 6= ∅, so Theorem 2.3 implies that Σ ∩ Σ′ must have Hausdorff dimension no

less than n− 2.

2.6 Orientation and singular hypersurfaces. Now we list a few properties related to

the orientation of singular hypersurfaces. Similar properties for smooth hypersurfaces were

discussed in [Z12, §3].

Proposition 2.12. Given a connected, minimal, singular hypersurface Σn with a singular set

of Hausdorff dimension less than n− 2, then

1. Σ is orientable if and only if Σ represents an integral n-cycle.

2. If Σ separates M , i.e. M\Σ contains two connected components, then Σ is orientable.

3. When M has positive Ricci curvature, if Σ is orientable, then Σ separates M.
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Proof. Part 1. Σ is a rectifiable set, and when Σ is orientable, it can represent an integer-

multiplicity rectifiable current [Σ] as follows:

[Σ](ω) =

∫

Σ
〈ξ(x), ω(x)〉dHn =

∫

Σ
ω,

where ξ(x) is the orientation form of Σ, and ω is any smooth n-form on M . Now we will show

that [Σ] is a cycle, i.e. ∂[Σ] = 0. Given any smooth (n − 1)-form ω on M , take the sequence

of cutoff functions fǫ, ǫ→ 0, as in the proof of Lemma 2.9,

∂[Σ](ω) = [Σ](dω) =

∫

Σ
dω = lim

ǫ→0

∫

Σ
fǫdω

= lim
ǫ→0

∫

Σ
d(fǫω)− dfǫ ∧ ω.

The first term is zero by the Stokes Theorem, and the second term can be estimated as:

|
∫

Σ
dfǫ ∧ ω| ≤

∫

Σ
|dfǫ ∧ ω|dHn ≤ C

∑

i∈N

∫

Σ∩Bri
(pi)

1

ri
dHn ≤ C

∑

i∈N

rn−1
i → 0.

Now assume that Σ represents an integral cycle, and we will show that Σ is orientable.

In fact, assume that [Σ] = 〈Σ, ξ(x), θ(x) = 1〉 is an integral cycle, where ξ(x) is locally an

orientation form. Given any open subset U ⊂ M\sing(Σ), then ∂
(

[Σ]xU
)

= 0 in U by

definition. By the same argument in [Z12, Proposition 6, Claim 4], [Σ]xU represents an

integral n-cycle in Σ ∩ U , hence by the Constancy Theorem [Si83, 26.27], [Σ]xU = [Σ ∩ U ].

Let U exhausts the whole regular part Σ, then [Σ]x(M\sing(Σ)) = [Σ]; hence the orientation

of [Σ] gives a global orientation of Σ.

Part 2. The case for smooth Σ is given in [H, §4 Theorem 4.5]. Now we modify the proof

to our case. Take a connected component U of M\Σ, the (topological) boundary ∂U of U

is then a closed subset of Σ. By using local coordinate charts of (M,Σ) around any smooth

point of Σ, it is easy to see that ∂U ∩Σ is a open subset of Σ. Hence as a subset of Σ, ∂U ∩Σ

is both open and closed, so ∂U ∩ Σ = Σ since Σ is connected, and then ∂U = Σ. Using the

same argument as in [H, Theorem 4.2], the orientation of U induces an orientation for the

normal bundle N of the regular part of ∂U , i.e. Σ. Note the splitting of the tangent bundle

TM restricted on Σ: TM |Σ = TΣ
⊕

N ; hence TΣ is orientable by [H, Lemma 4.1].

Part 3. By Part 1, Σ represents an integral cycle [Σ], hence it represents an integral

homology class
[

[Σ]
]

inHn(M,Z) [FH, 4.4.1]. If Σ does not separateM , i.e. M\Σ is connected,

we claim that
[

[Σ]
]

is non-trivial in Hn(M,Z). In fact, if
[

[Σ]
]

= 0, then there exists an

integral (n + 1)-current C ∈ In+1(M,Z), such that ∂C = [Σ]. Given any connected open

subset U ⊂M\Σ, then ∂(CxU) = 0 in U by definition. The Constancy Theorem [Si83, 26.27]

implies that CxU = m[U ], for some m ∈ Z, where [U ] denotes the integral (n + 1)-current

represented by U . As M\Σ is connected (Σ does not separate M), we can take U = M\Σ,
and hence Cx(M\Σ) = m[M\Σ]. As Σ has zero (n+1)-dimensional Hausdorff measure, then

C = m[M ], hence ∂C = m∂[M ] = 0, which is a contradiction to the fact that ∂C = [Σ].
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Now we can take the mass minimizer T0 ∈
[

[Σ]
]

inside the homology class [FH, 4.4.4][Si83,

34.3]. The codimension one regularity theory ([Si83, Theorem 37.7]) says that T0 is represented

by a minimal hypersurface Σ0 (possibly with multiplicity) with a singular set of Hausdorff

dimension no larger than n− 7, i.e. T0 = m[Σ0], where m ∈ Z, m 6= 0. Since m[Σ0] represents

a nontrivial integral homology class, Σ0 is orientable by Part 1. Hence Σ0 is two-sided by

Lemma 2.7. By the nature of mass minimizing property of T , Σ0 must be locally volume

minimizing, and hence Σ0 is stable, contradicting the positive Ricci curvature condition via

Lemma 2.9.

3 Min-max family

In this section, by using the volume comparison result in [HK], we show that every singular

minimal hypersurface in a manifold with positive Ricci curvature lies in a nice “mountain-

pass” type family. In particular, the family sweeps out the whole manifold, and the area of

the minimal hypersurface (when it is orientable), or the area of its double cover (when the

hypersurface is non-orientable) achieves a strict maximum among the family. Actually, in

manifold with positive Ricci curvature, the level sets of distance function towards the singular

minimal hypersurface will play the role.

3.1 A volume comparison result in [HK]. Let (Mn+1, g) be a closed, oriented manifold.

Given a singular minimal hypersurface Σ ∈ S, denote ν(Σ) by the normal bundle of the regular

part Σ in M . Let expν : ν(Σ) → M be the normal exponential map. Given ξ ∈ ν(Σ), the

focal distance in the direction of ξ means the first time t > 0 such that the derivative of the

normal exponential map at tξ, i.e. dexpν(tξ), becomes degenerate. Denote Ω by the sets of

all vectors ξ in ν(Σ), which is no longer than the diameter of M or the focal distance in the

direction of ξ,

Lemma 3.1. expν : Ω →M\sing(Σ) is surjective.

Proof. Any point x ∈M\Σ can be connected to Σ by a minimizing geodesic. Also by Lemma

2.1, the nearest point of x in Σ is a regular point of Σ; then the minimizing geodesic meets Σ

orthogonally, and hence expν is surjective to M\sing(Σ). Moreover, if ξ is the tangent vector

of the minimizing geodesic (parametrized on [0, 1]) connecting x to Σ, then the length of ξ is

no more than the focal distance in the direction of ξ.

Now we will introduce a Riemannian metric on ν(Σ) (see also [HK, §3]), such that ν(Σ)

is locally isomorphic to the product of Σ with the fiber. Let π : ν(Σ) → Σ be the projection

map. Denote D by the Riemannian connection of M , and D⊥ the normal connection of ν(Σ).

The tangent bundle of ν(Σ) can be split as a sum of “vertical” and “horizontal” sub-bundles

Tν(Σ) = V +H as follows. Given ξ ∈ ν(Σ), the vertical tangent space Vξ contains tangent

vectors of ν(Σ) which are tangent to the fibers and hence killed by π∗, so Vξ is canonically

isometric to the fiber space νπ(ξ)(Σ). The horizontal tangent spaceHξ contains tangent vectors
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of ν(Σ) which are tangent toD⊥-parallel curves—viewed as vector fields along their base curves

(projected to Σ by π), so Hξ is canonically isometric to Tπ(ξ)Σ under π∗. The metric on ν(Σ)

can be defined as:

‖v‖2 = ‖π∗v‖2 + ‖vver‖2, v ∈ Tξν(Σ),

where vver denotes the vertical component of v. It is easily seen that under this metric, ν(Σ)

is locally isometric to the product of Σ with the fibers.

We need the following estimate of the volume form along normal geodesics by [HK, §3].

Fix p ∈ Σ and a normal vector ξ ∈ νp(Σ). Given an orthonormal basis e1, · · · , en of TpΣ,

they can be lifted up to Tν(Σ) as horizontal vector fields u1(s), · · · , un(s) along the normal

vectors sξ. By our construction above, u1(s), · · · , un(s) form an orthonormal basis of Tsξν(Σ),

as π∗(ui(s)) = ei. The distortion of the n-dimensional volume element under the normal

exponential map expν : Tν(Σ) → M is given by ‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖. Assume

that the Ricci curvature of (M,g) satisfies Ricg ≥ nΛ for some Λ > 0. Consider an (n + 1)-

dimensional manifold M̃ of constant curvature Λ, and a minimal hypersurface Σ̃. Fix an

arbitrary point p̃ ∈ Σ̃, with a unit normal ν(p̃). Choose an orthonormal basis ẽ1, · · · , ẽn of

Tp̃(Σ̃), and a frame ũ1(s), · · · , ũn(s) along sν(p̃) constructed as above. We have the following

comparison estimates:

Lemma 3.2. [HK, §3.2.1, Case (d)]. Let s0 be no larger than the first focal distance of Σ in

the direction of ξ, then for 0 ≤ s ≤ s0,

‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖ ≤ ‖dexpν ũ1(s) ∧ · · · ∧ dexpν ũn(s)‖.

It is easy to calculate that the n-dimensional volume distortion of the constant curvature

manifold M̃ is given by ‖dexpν ũ1(s) ∧ · · · ∧ dexpν ũn(s)‖ = cosn(
√
Λs)‖dexpν ũ1(0) ∧ · · · ∧

dexpν ũn(0)‖ = cosn(
√
Λs).

Corollary 3.3. Under the above setting,

‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖ ≤ cosn(
√
Λs).

3.2 Orientable case. Let Σ ∈ S be orientable, then Σ is two-sided. Denote ν by the

unit normal vector field along Σ. When Ricg > 0, Σ separates M by Proposition 2.12, i.e.

M\Σ =M1 ∪M2. Now the signed distance function dΣ± is well-defined by

dΣ±(x) =

{ dist(x,Σ), if x ∈M1

−dist(x,Σ), if x ∈M2

0, if x ∈ Σ

. (3.1)

Consider the levels sets of the signed distance function: Σt = {x ∈ M : dΣ±(x) = t} for

−d(M) ≤ t ≤ d(M). Denote

S+ = {Σn ∈ S : Σn is orientable}. (3.2)

We collect several properties of the distance family as follows:
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Proposition 3.4. Assume that Ricg > 0. For any Σ ∈ S+, the distance family {Σt}t∈[−d(M),d(M)]

satisfy that:

(a) Σ0 = Σ;

(b) Hn(Σt) ≤ Hn(Σ), with equality only if t = 0;

(c) For any open set U ⊂ M\sing(Σ) with compact closure U , {ΣtxU}t∈[−ǫ,ǫ] forms a

smooth foliation of a neighborhood of Σ in U , i.e.

ΣtxU = {expν
(

tν(x)
)

: x ∈ Σ ∩ U}, t ∈ [−ǫ, ǫ].

Proof. (a) is trivial by construction.

To prove (b), consider the height-t section St(Σ) = {ξ ∈ ν(Σ) : ξ = tν} of ν(Σ) for

−d(M) ≤ t ≤ d(M).

Lemma 3.5. Under the canonical metric of ν(Σ), St(Σ) is isometric to Σ.

Proof. First, it is easy to see that the projection map π : ν(Σ) → Σ restricts to be a one to one

map π : St(Σ) → Σ. Also the tangent plane TξSt(Σ) of St(Σ) at ξ = tν consists all horizontal

vectors of Tξν(Σ). Then π∗ : TξSt(Σ) → Tπ(ξ)Σ gives the isometry by the construction of the

metric on ν(Σ).

Recall that expν : Ω ⊂ ν(Σ) →M\sing(Σ) is surjective, so the pre-image exp−1
ν (Σt) is totally

contained in St(Σ) ∩ Ω, and hence by Corollary 3.3,

Hn(Σt) ≤
∫

St(Σ)∩Ω
‖(dexpν)∗dvolSt(Σ)‖ =

∫

St(Σ)∩Ω
‖dexpνu1(s) ∧ · · · ∧ dexpνun(s)‖

≤
∫

Σ
cosn(

√
Λt)dHn ≤ cosn(

√
Λt)Hn(Σ).

(3.3)

To prove (c), we first realize that ν(Σ) is globally isometric to Σ×R when Σ is orientable,

so that ν(Σ) has a global smooth foliation structure. When restricted to the zero section, the

normal exponential map expν : ν(Σ) →M is the identity map, and has non-degenerate tangent

map. As the closure U is a compact subset of M\sing(Σ), we can use the Inverse Function

Theorem to infer that expν is a diffeomorphism in a small neighborhood of exp−1
ν (Σ ∩ U).

Hence (c) follows.

3.3 Non-orientable case. Given Σ ∈ S non-orientable, Σ does not separate M by Propo-

sition 2.12. Denote dΣ(x) = dist(x,Σ) by the distance function (without sign). Consider the

level sets of dΣ: Σt = {x ∈M : dΣ(x) = t} for 0 ≤ t ≤ d(M). Denote

S− = {Σn ∈ S : Σn is non-orientable}. (3.4)

We have:

Proposition 3.6. Assume that Ricg > 0. For any Σ ∈ S−, the distance family {Σt}0≤0≤d(M)

satisfy that:
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(a) Σ0 = Σ;

(b) Hn(Σt) < 2Hn(Σ), for all 0 ≤ t ≤ d(M);

(c) When t→ 0, Hn(Σt) → 2Hn(Σ), and Σt converge smoothly to a double cover of Σ in

any open set U ⊂M\sing(Σ) with compact closure U .

Proof. (a) is by construction.

For (b), let the height-t section of ν(Σ) be S̃t(Σ) = {ξ ∈ ν(Σ) : |ξ| = t} for 0 ≤ t ≤ d(M).

Similar as the proof of Lemma 3.5, the projection map π : S̃t(Σ) → Σ is locally isometric.

Also as the fiber of ν(Σ) is one dimensional, π is a 2-to-1 map. Hence π : S̃t(Σ) → Σ is an

isometric double cover. The pre-image of the exponential map exp−1
ν (Σt) is then contained in

S̃t ∩ Ω, with Ω as above. By the volume comparison estimates in (3.3),

Hn(Σt) ≤
∫

S̃t(Σ)∩Ω
‖(dexpν)∗dvolS̃t(Σ)‖ ≤ 2

∫

Σ
cosn(

√
Λt)dHn ≤ 2 cosn(

√
Λt)Hn(Σ). (3.5)

For (c), to prove that Hn(Σt) → 2Hn(Σ), as t → 0, by (3.5), we only need to prove that

limt→0Hn(Σt) ≥ 2Hn(Σ), and this follows from the smooth convergence Σt → 2Σ on any

open set U ⊂⊂ M\sing(Σ). By similar argument as Proposition 3.4(c), when restricted to a

small neighborhood of exp−1
ν (Σ ∩ U), expν : ν(Σ) → M is a diffeomorphism. Therefore, the

convergence Σt → 2Σ on U follows from the fact that S̃t(Σ) converge smoothly to a double

cover of the zero section, as t→ 0.

4 Almgren-Pitts min-max theory

In this section, we will introduce the min-max theory developed by Almgren and Pitts

[AF62, AF65, P81]. We will mainly follow [Z12, §4] [P81, 4.1] and [MN12, §7 and §8]. We

refer to §2.1 for the notions of Geometric Measure Theory. At the end of this section, we will

recall the characterization of the orientation structure of the min-max hypersurfaces proved

by the author in [Z12].

4.1 Homotopy sequences.

Definition 4.1. (cell complex.)

1. For m ∈ N, Im = [0, 1]m, Im0 = ∂Im = In\(0, 1)m;

2. For j ∈ N, I(1, j) is the cell complex of I, whose 1-cells are all intervals of form [ i
3j
, i+1

3j
],

and 0-cells are all points [ i
3j
]; I(m, j) = I(1, j)⊗ · · · ⊗ I(1, j) (m times) is a cell complex

on Im;

3. For p ∈ N, p ≤ m, α = α1 ⊗ · · · ⊗ αm is a p-cell if for each i, αi is a cell of I(1, j), and
∑m

i=1 dim(αi) = p. 0-cell is called a vertex;

4. I(m, j)p denotes the set of all p-cells in I(m, j), and I0(m, j)p denotes the set of p-cells

of I(m, j) supported on Im0 ;
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5. Given a p-cell α ∈ I(m, j)p, and k ∈ N, α(k) denotes the p-dimensional sub-complex of

I(m, j+k) formed by all cells contained in α. For q ∈ N, q ≤ p, α(k)q and α0(k)q denote

respectively the set of all q-cells of I(m, j + k) contained in α, or in the boundary of α;

6. T (m, j) = I(m−1, j)⊗{[1]}, B(m, j) = I(m−1, j)⊗{[0]} and S(m, j) = I0(m−1, j)⊗
I(1, j) denote the top, bottom and side sub-complexes of I(m, j) respectively;

7. The boundary homeomorphism ∂ : I(m, j) → I(m, j) is given by

∂(α1 ⊗ · · · ⊗ αm) =
m
∑

i=1

(−1)σ(i)α1 ⊗ · · · ⊗ ∂αi ⊗ · · · ⊗ αm,

where σ(i) =
∑

l<i dim(αl), ∂[a, b] = [b] − [a] if [a, b] ∈ I(1, j)1, and ∂[a] = 0 if [a] ∈
I(1, j)0;

8. The distance function d : I(m, j)0×I(m, j)0 → N is defined as d(x, y) = 3j
∑m

i=1 |xi−yi|;
9. The map n(i, j) : I(m, i)0 → I(m, j)0 is defined as: n(i, j)(x) ∈ I(m, j)0 is the unique

element of I(m, j)0, such that d
(

x,n(i, j)(x)
)

= inf
{

d(x, y) : y ∈ I(m, j)0
}

.

As we are mainly interested in applying the Almgren-Pitts theory to the 1-parameter

families, in the following of this section, our notions will be restricted to the case m = 1.

Consider a map to the space of integral cycles: φ : I(1, j)0 → Zn(M
n+1). The fineness of

φ is defined as:

f(φ) = sup
{M

(

φ(x) − φ(y)
)

d(x, y)
: x, y ∈ I(1, j)0, x 6= y

}

. (4.1)

φ : I(1, j)0 →
(

Zn(M
n+1), {0}

)

denotes a map such that φ
(

I(1, j)0
)

⊂ Zn(M
n+1) and

φ|I0(1,j)0 = 0, i.e. φ([0]) = φ([1]) = 0.

Definition 4.2. Given δ > 0 and φi : I(1, ki)0 →
(

Zn(M
n+1), {0}

)

, i = 1, 2, we say φ1 is

1-homotopic to φ2 in
(

Zn(M
n+1), {0}

)

with fineness δ, if ∃ k3 ∈ N, k3 ≥ max{k1, k2}, and

ψ : I(1, k3)0 × I(1, k3)0 → Zn(M
n+1),

such that

• f(ψ) ≤ δ;

• ψ([i− 1], x) = φi
(

n(k3, ki)(x)
)

, i = 1, 2;

• ψ
(

I(1, k3)0 × I0(1, k3)0
)

= 0.

Definition 4.3. A (1,M)-homotopy sequence of mappings into
(

Zn(M
n+1), {0}

)

is a sequence

of mappings {φi}i∈N,
φi : I(1, ki)0 →

(

Zn(M
n+1), {0}

)

,

such that φi is 1-homotopic to φi+1 in
(

Zn(M
n+1), {0}

)

with fineness δi, and

• limi→∞ δi = 0;
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• supi
{

M(φi(x)) : x ∈ I(1, ki)0
}

< +∞.

Definition 4.4. Given two (1,M)-homotopy sequences of mappings S1 = {φ1i }i∈N and S2 =

{φ2i }i∈N into
(

Zn(M
n+1), {0}

)

, S1 is homotopic with S2 if ∃ {δi}i∈N, such that

• φ1i is 1-homotopic to φ2i in
(

Zn(M
n+1), {0}

)

with fineness δi;

• limi→∞ δi = 0.

The relation “is homotopic with” is an equivalent relation on the space of (1,M)-homotopy

sequences of mapping into
(

Zn(M
n+1), {0}

)

(see [P81, §4.1.2]). An equivalent class is a (1,M)

homotopy class of mappings into
(

Zn(M
n+1), {0}

)

. Denote the set of all equivalent classes by

π#1
(

Zn(M
n+1,M), {0}

)

. Similarly we can define the (1,F)-homotopy class, and denote the

set of all equivalent classes by π#1
(

Zn(M
n+1,F), {0}

)

.

4.2 Almgren’s isomorphism. Almgren [AF62] showed that the homotopy groups of Zn(M)

(under M and F topology) are all isomorphic to the top homology group ofM by constructing

an isomorphism as follows.

By [AF62, Corollary 1.14], there exists a small number νM > 0 (depending only on M),

such that for any two n-cycles T1, T2 ∈ Zn(M
n+1), if F(T2 − T1) ≤ νM , then there exists an

(n+1)-dimensional integral currentQ ∈ In+1(M), with ∂Q = T2−T1, andM(Q) = F(T2−T1).
Q is called the isoperimetric choice for T2 − T1.

Given φ : I(1, k)0 → Zn(M
n+1), with f(φ) ≤ δ ≤ νM , then for any 1-cell α ∈ I(1, k)1,

with α = [t1α, t
2
α], F

(

φ(t1α) − φ(t2α)
)

≤ M
(

φ(t1α) − φ(t2α)
)

≤ f(φ) ≤ νM . So there exists an

isoperimetric choice Qα ∈ In+1(M
n+1), with

M(Qα) = F
(

φ(t1α)− φ(t2α)
)

, and ∂Qα = φ(t2α)− φ(t1α).

Now the sum of the isoperimetric choices for all 1-cells is an (n + 1)-dimensional integral

current, i.e.
∑

α∈I(1,k)1
Qα ∈ In+1(M

n+1). We call the map:

FA : φ→
∑

α∈I(1,k)1

Qα (4.2)

Almgren’s isomorphism (the name comes from Theorem 4.5).

Given a (1,M)-homotopy sequence of mappings S = {φi}i∈N into
(

Zn(M
n+1), {0}

)

, take

i large enough, and φi : I(1, ki)0 →
(

Zn(M
n+1), {0}

)

, such that f(φi) ≤ δi ≤ νM . Then

FA(φi) =
∑

α∈I(1,ki)1

Qα

is an (n + 1)-dimensional integral cycle as φi([0]) = φi([1]) = 0, and represents an (n + 1)-

dimensional integral homology class

[

∑

α∈I(1,ki)1

Qα

]

∈ Hn+1(M
n+1).
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Moreover, Almgren [AF62, §3.2] showed that this homology class depends only on the homo-

topy class of {φi}. Hence it reduces to a map

FA : π#1
(

Zn(M
n+1,M), {0}

)

→ Hn+1(M
n+1),

defined in [AF62, §3.2] as:

FA : [{φi}i∈N] →
[

∑

α∈I(1,ki)1

Qα

]

. (4.3)

Almgren also proved that this mapping is an isomorphism.

Theorem 4.5. ([AF62, Theorem 13.4] and [P81, Theorem 4.6]) The followings are all iso-

morphic under FA:

Hn+1(M
n+1), π#1

(

Zn(M
n+1,M), {0}

)

, π#1
(

Zn(M
n+1,F), {0}

)

.

We also call this map Almgren’s isomorphism.

4.3 Existence of min-max hypersurface.

Definition 4.6. (Min-max definition) Given Π ∈ π#1
(

Zn(M
n+1,M), {0}

)

, define:

L : Π → R
+

as a function given by:

L(S) = L({φi}i∈N) = lim sup
i→∞

max
{

M
(

φi(x)
)

: x lies in the domain of φi
}

.

The width of Π is defined as

L(Π) = inf{L(S) : S ∈ Π}. (4.4)

S ∈ Π is call a critical sequence, if L(S) = L(Π). LetK : Π → {compact subsets of Vn(M
n+1)}

be defined by

K(S) = {V : V = lim
j→∞

|φij (xj)| : xj lies in the domain of φij}.

A critical set of S is C(S) = K(S) ∩ {V : M(V ) = L(S)}.
The celebrated min-max theorem of Almgren-Pitts (Theorem 4.3, 4.10, 7.12, Corollary 4.7

in [P81]) and Schoen-Simon (for n ≥ 6 [SS81, Theorem 4]) is as follows.

Theorem 4.7. Given a nontrivial Π ∈ π#1
(

Zn(M
n+1,M), {0}

)

, then L(Π) > 0, and there

exists a stationary integral varifold V , whose support is a disjoint collection of connected,

closed, singular, minimal hypersurfaces {Σi}li=1, with singular sets of Hausdorff dimension no

larger than n− 7, (which may have multiplicity, say mi), such that V =
∑l

i=1mi[Σi], and

l
∑

i=1

miHn(Σi) = L(Π).

In particular, V lies in the critical set C(S) of some critical sequence S ∈ Π.
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4.4 Orientation and multiplicity. As V lies in the critical set C(S), V is a varifold limit

of a sequence of integral cycles {φij (xj)}j∈N. It has been conjectured that V should inherit

some orientation structures from {φij (xj)}j∈N. In fact, we verified this conjecture and gave a

characterization of the orientation structure of V in low dimensions (where the support of V

is the smooth) in [Z12, Proposition 6.1]. Some straightforward modifications of the proof will

give similar characterization for singular min-max hypersurfaces (in all dimensions) as follows.

Proposition 4.8. Let V be the stationary varifold in Theorem 4.7, with V =
∑l

i=1mi[Σi]. If

Σi is non-orientable, then the multiplicity mi must be an even number.

Remark 4.9. When a connected component Σi is orientable, it represents an integral cycle

by Proposition 2.12. While a connected component Σi is non-orientable, an even multiple

of it also represents an integral cycle—a zero cycle. This result will play a key role in the

characterization of the multiplicity in Theorem 1.1. (This result was also used in [Z12, MR15]

to characterize the multiplicity of min-max hypersurfaces).

5 Discretization and construction of sweepouts

The purpose of this section is to adapt the families of currents constructed by geometric

method (in §3) to the Almgren-Pitts setting (in §4). Usually families constructed by geometric

method are continuous under the flat norm topology, but the Almgren-Pitts theory applies only

to discrete family continuous under the mass norm topology. Therefore we need to discretize

our families and to make them continuous under the mass norm topology. Similar issue was

also an essential technical difficulty in the celebrated proof of the Willmore conjecture [MN12],

and also in a previous paper by the author [Z12] which deals with the same problem in low

dimensions. A key technical condition in these discretization type theorems in [MN12, MN13,

Z12] is the no local mass concentration assumption. Roughly speaking, it means that the

weak measure-theoretical closure of the family of currents does not contain any point mass.

However, the families used here do not necessarily satisfy this technical assumption, so we

will build up a stronger version of the discretization theorem without assuming the no mass

concentration condition. Actually, this issue was originally considered by Pitts [P81, §3.5,

§3.7] in another setting. Our strategy is motivated by Pitts’ method, and is simpler than

Pitts’ discretization procedure. In this paper, we only deal with families of currents which are

boundaries of sets of finite perimeter. This is already enough for the purpose of many geometric

applications, as all the known interesting geometric families (c.f. [MN12, MN13, Z12]) belong

to this class. In fact, it is conjectured by Marque and Neves [MN12, §13.2] that the no mass

concentration assumption is not necessary, and our result partially confirms this technical

conjecture. For the purpose of simplicity, we only present the discretization theorem for one-

parameter families. The case for multi-parameter families is still true by similar arguments

as in [MN12, Theorem 13.1] using our technical results Proposition 5.3 and Proposition 5.8 in

place of [MN12, Proposition 13.3, 13.5], and will be addressed elsewhere.
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Another key ingredient which utilizes the big machinery by Almgren-Pitts is an identi-

fication type result. We will show that all the discretized families corresponding to those

families constructed in §3 belong to the same homotopy class in the sense of Almgren-Pitts.

This type of result was already proved in [Z12] under the no mass concentration assumption,

and we will extend this identification type result to the case without no mass concentration

assumption. We prove this by showing that the image of the discretized families under the

Almgren’s isomorphism represent the top homology class of M . Then these families must be

homotopic to each other by Theorem 4.5.

The main result can be summarized as the following theorem. Recall that C(M) is consisted

by all subsets of M of finite perimeter.

Theorem 5.1. Given a continuous mapping

Φ : [0, 1] →
(

Zn(M
n+1,F), {0}

)

,

satisfying

(a) Φ(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ [0, 1];

(b) supx∈[0,1]M(Φ(x)) <∞;

then there exists a (1,M)-homotopy sequence

φi : I(1, ki)0 →
(

Zn(M
n+1,M), {0}

)

,

and a sequence of homotopy maps

ψi : I(1, ki)0 × I(1, ki)0 → Zn(M
n+1,M),

with ki < ki+1, and {δi}i∈N with δi > 0, δi → 0, and {li}i∈N, li ∈ N with li → ∞, such that

ψi([0], ·) = φi, ψi([1], ·) = φi+1|I(1,ki)0 , and

(i)

M
(

φi(x)
)

≤ sup
{

M
(

Φ(y)
)

: x, y ∈ α, for some 1-cell α ∈ I(1, li)
}

+ δi,

and hence

L({φi}i∈N) ≤ sup
x∈[0,1]

M
(

Φ(x)
)

; (5.1)

(ii) f(ψi) < δi;

(iii) sup
{

F
(

φi(x)− Φ(x)
)

: x ∈ I(1, ki)0
}

< δi,

(iv) If Ω0 = ∅, Ω1 =M , then

FA({φi}) = [[M ]],

where FA is the Almgren’s isomorphism, and [[M ]] is the fundamental class of M .
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Remark 5.2. The proof of properties (i)(ii)(iii) is based on the proof of [MN12, Theorem

13.1] and [P81, §3.5, 3.7]. The idea to deal with the possible existence of mass concentration

is motivated by [P81, §3.5, 3.7]. We actually simplify the discretization procedure in [P81,

§3.5] for currents which can be represented by boundary of sets of finite perimeter using some

new observations. The proof of property (iv) is based on the ideas in [Z12, Theorem 5.8].

Upon first perusal of this section, the reader might skip the following technical proof and

move to §6.

5.1 Technical preliminaries. The following two technical results are parallel to [MN12,

Proposition 13.3, 13.5], while without assuming the no mass concentration condition.

The first result is parallel to [MN12, 13.3], and it says that given T ∈ Zn(M
n+1), and

l,m ∈ N , there exists k ∈ N, k > l, such that any φ which maps I0(m, l)0 into a small

neighborhood of T (with respect to the flat topology) can be extended to a map φ̃ which maps

I(m,k)0 into a slightly larger neighborhood of T (with respect to the flat topology), such

that the fineness and maximal mass of φ̃ are not much bigger than those of φ. Compared to

[MN12, 13.3], we do not require the no mass concentration condition, but we need to assume

that the image of φ are represented by boundary of sets of finite perimeter. Also, the extension

φ̃ will be mapped to a slightly large neighborhood. The idea to deal with the possible mass

concentration traces back to [P81, 3.5]. We will first deform φ to certain local cones around

the mass concentration points, and then apply similar extension process as [MN12, 13.3].

Fix an integer n0 ∈ N.

Proposition 5.3. Given δ, L > 0, l,m ∈ N, m ≤ n0 + 1, and

T ∈ Zn(M) ∩ {S : M(S) ≤ 2L},with T = ∂[[ΩT ]],

ΩT ∈ C(M), then there exist 0 < ǫ = ǫ(l,m, T, δ, L) < δ, and k = k(l,m, T, δ, L) ∈ N, and a

function ρ = ρ(l,m,T,δ,L) : R
1
+ → R

1
+, with ρ(s) → 0, as s → 0, such that: for any 0 < s < ǫ,

and

φ : I0(m, l)0 → BF
s (T ) ∩ {S : M(S) ≤ 2L}, with φ(x) = ∂[[Ωx]], (5.2)

Ωx ∈ C(M), x ∈ I0(m, l)0, there exists

φ̃ : I(m,k)0 → BF
ρ(s)(T ), with φ̃(y) = ∂[[Ωy]],

Ωy ∈ C(M), y ∈ I(m, l)0, and satisfying

(i) f(φ̃) ≤ δ if m = 1, and f(φ̃) ≤ m(f(φ) + δ) if m > 1;

(ii) φ̃ = φ ◦ n(k, l) on I0(m,k)0;

(iii)

sup
x∈I(m,k)0

M
(

φ̃(x)
)

≤ sup
x∈I0(m,l)0

M
(

φ(x)
)

+
δ

n0 + 1
;



5 DISCRETIZATION AND CONSTRUCTION OF SWEEPOUTS 20

(iv) If m = 1, δ < νM
4, φ([0]) = ∂[[Ω0]], φ([1]) = ∂[[Ω1]], then

FA(φ̃) = [[Ω1 − Ω0]]

where FA is the Almgren’s isomorphism (4.2).

Proof. We use the contradiction argument. If the statement is not true, by Section 7.1, there

exists k0 ∈ N large enough, ρ0 > 0, and a sequence of ǫk < 1/k, and

φk : I0(m, l)0 → BF
ǫk
(T ) ∩ {S : M(S) ≤ 2L},

φk(x) = ∂[[Ωk
x]], Ω

k
x ∈ C(M), such that there is no extension φ̃k of φk from I(m,k0) to BF

ρ0(T ),

i.e. φ̃k : I(m,k0)0 → BF
ρ0(T ), satisfying all the above properties (i)(ii)(iii)(iv).

The next lemma is an analog to [MN12, Lemma 13.4] without assuming the no mass

concentration condition, and uses some new ideas motivated from [P81, §3.5].

Lemma 5.4. With φk, ǫk as above, there exist N = N(l,m, T, δ, L) ∈ N, N > l, and a

subsequence {φj}, and a sequence of positive numbers ρj → 0, as j → ∞, such that we can

construct

ψj : I(1, N)0 × I0(m, l)0 → BF
ρj (T ),

satisfying

(0) ψj(y, x) = ∂[[Ωj
y,x]], Ω

j
y,x ∈ C(M), (y, x) ∈ I(1, N)0 × I0(m, l)0;

(i) f(ψj) ≤ δ if m = 1, and f(ψj) ≤ f(φj) + δ if m > 1;

(ii) ψj([0], ·) = φj , ψj([1], ·) = T ;

(iii)

sup{M
(

ψj(y, x)
)

, (y, x) ∈ I(1, N)0 × I0(m, l)0} ≤ sup
x∈I0(m,l)0

M
(

φj(x)
)

+
δ

n0 + 1
;

(iv) If m = 1, δ < νM , φj([0]) = ∂[[Ωj,0]], φj([1]) = ∂[[Ωj,1]], then

FA(ψj |I(1,N)0×{[0]}) = [[ΩT − Ωj,0]], FA(ψj |I(1,N)0×{[1]}) = [[ΩT − Ωj,1]]
5,

where FA is the Almgren’s isomorphism (4.2).

Proof. As a subset in Vn(M) with uniformly bounded mass is weakly compact, we can find a

subsequence {φj} of {φk}, and a map

V : I0(m, l)0 → Vn(M),

such that limj→∞ |φj(x)| = V (x) as varifolds, ‖V (x)‖(M) ≤ 2L, for all x ∈ I0(m, l)0. Also as

ǫj → 0, limj→∞ φj(x) = T as currents.

Now we need to separate our discussion into two cases:

4νM is defined in Section 4.2.
5Here we identify I(1, N)0 × {[0]} and (I(1, N))0 × {[1]} with I(1, N)0
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φj(x)

T

Brji
(pji )

Qj(x)

Figure 1: This figure illustrates the geometric objects using in Lemma 5.5.

Case 1: ‖V (x)‖(p) ≤ δ/5, for all p ∈M , x ∈ I0(m, l)0;

Case 2: The set Scon
6 = {q ∈M : ‖V (x)‖(q) > δ/5 for some x ∈ I0(m, l)0} 6= ∅.

Lemma 5.5. In Case 1, there exist N1 = N1(l,m, T, δ, L) ∈ N, and

ψj : I(1, N1)0 × I0(m, l)0 → BF
ǫj(T ),

satisfying properties (0)(i)(ii)(iii)(iv) in Lemma 5.4.

Remark 5.6. The proof is a straightforward adaption of [P81, 3.7][MN12, Lemma 13.4][Z12,

Theorem 5.8], so we omit some identical details.

Proof. By the lower semi-continuity of weak convergence limj→∞ φj(x) → T ,

‖T‖
(

Br(p)
)

≤ ‖V (x)‖
(

Br(p)
)

, ∀p ∈M, r > 0.

As ‖V (x)‖({p}) ≤ δ/5 for all x ∈ I0(m, l)0, p ∈ M , we can find a finite collection of pairwise

disjoint open balls {Bri(pi) : 1 ≤ i ≤ v}, pi ∈M , ri > 0, v ∈ N, such that for all x ∈ I0(m, l)0,

Fact 1. 1. ‖T‖
(

Bri(pi)
)

≤ ‖V (x)‖
(

Bri(pi)
)

< δ/3;

2. ‖T‖
(

M\ ∪v
i=1 Bri(pi)

)

≤ ‖V (x)‖
(

M\ ∪v
i=1 Bri(pi)

)

< δ/3;

3. ‖T‖
(

∂Bri(pi)
)

= ‖V (x)‖
(

∂Bri(pi)
)

= 0;

4. v depends only on l,m, T, δ, L by compactness of varifolds with bounded mass.
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By [AF62, Corollary 1.14], for j ≫ 1, x ∈ I0(m, l)0, there exists isoperimetric choices

Qj(x) ∈ In+1(M
n+1), such that

∂Qj(x) = φj(x)− T, M
(

Qj(x)
)

= F
(

φj(x)− T
)

≤ ǫj < 1/j. (5.3)

For each i = 1, · · · , v, let di(x) = dist(pi, x) be the distance function to pi on (M,g). Using the

Slicing Theorem [Si83, 28.5], for each i = 1, · · · , v, we can find a sequence of positive numbers

{rji }, such that rji ց ri, such that for all x ∈ I0(m, l)0, the slices 〈Qj(x), di, r
j
i 〉 ∈ In(M), and

〈Qj(x), di, r
j
i 〉 = ∂

(

Qj(x)xBrji
(pi)

)

−
(

φj(x)− T
)

xB
rji
(pi). (5.4)

Also as limj→∞M
(

Qj(x)
)

= 0, by [Si83, 28.5(1)], we can choose {rji } so that for j large

enough,
∑

x∈I0(m,l)0

v
∑

i=1

M
(

〈Qj(x), di, r
j
i 〉
)

≤ δ

2(n0 + 1)
. (5.5)

Using Fact 1 and the lower semi-continuity of mass functional, for j large enough,

‖φj(x)‖
(

B
rji
(pi)

)

< δ/3, ‖T‖
(

B
rji
(pi)

)

< δ/3; (5.6)

‖φj(x)‖
(

M\ ∪v
i=1 Brji

(pi)
)

< δ/3, ‖T‖
(

M\ ∪v
i=1 Brji

(pi)
)

< δ/3; (5.7)

(

‖T‖ − ‖φji (x)‖
)(

B
rji
(pi)

)

≤ δ

2(n0 + 1)v
, (5.8)

for all i = 1, · · · , v, and x ∈ I0(m, l)0.

Let v + 1 = 3N1 , N1 ∈ N, then N1 depends only on l,m, T, δ, L. Define ψj : I(1, N1)0 ×
I0(m, l)0 → Zn(M

n+1) by,

ψj([
i

3N1
], x) =φj(x)−

i
∑

a=1

∂
(

Qj(x)xBrja
(pa)

)

, for 0 ≤ i ≤ 3N1 − 1,

ψj([1], x) = T.

(5.9)

Similar arguments as in the proof of [MN12, Lemma 13.4] using (5.4)(5.5)(5.6)(5.7)(5.8) in

place of [MN12, (67)(68)(69)(70)(71)] show that ψj([
i

3N1
], x) ∈ BF

ǫj(T ) for all 1 ≤ i ≤ 3N1 ,

x ∈ I0(m, l)0, and that {ψj} satisfy properties (i)(ii)(iii) in Lemma 5.4.

Noe let us check property (0) in Lemma 5.4. We assume that T 6= 0 (the case T = 0 is

easier). Denote φj(x) = ∂[[Ωj(x)]], Ωj(x) ∈ C(M), then by Lemma 7.3, for j large enough,

the isoperimetric choices Qj(x) in (5.3) satisfy that:

Qj(x) = [[Ωj(x)− ΩT ]], for all x ∈ I0(m, l)0.

6The notion Scon means “set of mass concentration points”.
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Hence by (5.9), for 0 ≤ i ≤ 3N1 − 1,

ψj([
i

3N1
], x) = ∂[[Ωj(x)]]−

i
∑

a=1

∂
(

[[Ωj(x)− ΩT ]]xBrja
(pa)

)

= ∂
{

[[Ωj(x)x
(

M\ ∪i
a=1 Brja

(pa)
)

]] + [[ΩT x
(

∪i
a=1 Brja

(pa)
)

]]
}

.

This proves Lemma 5.4(0) as Ωj(x)x
(

M\ ∪i
a=1 Brja

(pa)
)

+ΩTx
(

∪i
a=1 Brja

(pa)
)

∈ C(M).

Finally let us check property (iv) in Lemma 5.4. Assume that m = 1, and ǫj < νM . Let us

calculate FA(ψj |I(1,N1)0×{[0]}) and FA(ψj |I(1,N1)0×{[1]}). First we do FA(ψj |I(1,N1)0×{[0]}). By

the definition of Almgren’s isomorphism (4.2),

FA(ψj |I(1,N1)0×{[0]}) =

v+1
∑

i=1

Qj,i(0),

where Qj,i(0) is the isoperimetric choice of ψj([
i

3N1
], [0]) − ψj([

i−1
3N1

], [0]), i = 1, · · · , v, and

Qj,v+1(0) is the isoperimetric choice of T − ψj([
v

3N1
], [0]). By (5.9),

ψj([
i

3N1
], [0]) − ψj([

i− 1

3N1
], [0]) = −∂

(

Qj(x)xBrji
(pi)

)

,

and hence by Lemma 7.2, Qj,i(0) = −Qj(x)xBrji
(pi) = [[ΩT −Ωj(0)]]xBrji

(pi). Similarly,

T − ψj([
v

3N1
], [0]) = −∂

(

Qj(x)x[M\ ∪v
i=1 Brji

(pi)]
)

,

and hence by Lemma 7.2, Qj,v+1(0) = −Qj(x)x[M\ ∪v
i=1 Brji

(pi)] = [[ΩT − Ωj(0)]]x[M\ ∪v
i=1

B
rji
(pi)]. Summing them together,

FA(ψj |I(1,N1)0×{[0]}) =

v
∑

i=1

[[ΩT − Ωj(0)]]xBrji
(pi) + [[ΩT −Ωj(0)]]x[M\ ∪v

i=1 Brji
(pi)]

= [[ΩT −Ωj(0)]].

Similar arguments show that FA(ψj |I(1,N1)0×{[1]}) = [[ΩT − Ωj(1)]], and hence property (iv)

(in Lemma 5.4) is proved.

Lemma 5.7. In Case 2, there exist N2 = N2(l,m, δ, L) ∈ N, and a sequence of positive

numbers ρj → 0, as j → ∞, and

ψj : I(1, N2)0 × I0(m, l)0 → BF
ρj (T ),

satisfying:

(0) ψj(y, x) = ∂[[Ωj
y,x]], Ω

j
y,x ∈ C(M), (y, x) ∈ I(1, N2)0 × I0(m, l)0;

(i) f(ψj) ≤ δ if m = 1, and f(ψj) ≤ f(φj) + δ if m > 1;
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(ii) ψj([0], ·) = φj ,

lim
j→∞

|ψj([1], x)| = V (x)xGn

(

M\Scon
)

7 as varifolds for all x ∈ I0(m, l)0;

(iii)

sup{M
(

ψj(y, x)
)

, (y, x) ∈ I(1, N2)0 × I0(m, l)0} ≤ sup
x∈I0(m,l)0

M
(

φj(x)
)

+
δ

n0 + 1
;

(iv) If m = 1, δ < νM , φj([0]) = ∂[[Ωj,0]], φj([1]) = ∂[[Ωj,1]], ψj([1] ⊗ [0]) = ∂[[Ω′
j,0]],

ψj([1] ⊗ [1]) = ∂[[Ω′
j,1]], then

FA(ψj |I(1,N2)0×{[0]}) = [[Ω′
j,0 − Ωj,0]], FA(ψj |I(1,N2)0×{[1]}) = [[Ω′

j,1 − Ωj,1]]
8,

where FA is the Almgren’s isomorphism (4.2).

Proof. For all basics facts about the local exponential map, we refer to §7.2.

C(m, l) denotes the number of vertices in I0(m, l)0.

Denote α = δ/5, then the set Scon has at most C(m, l)2Lα points. Given q ∈ Scon, then

‖V (x)‖(q) > α, for some x ∈ I0(m, l)0. Choose a neighborhood Z = Zq of q satisfying the

requirement of §7.2, with respect to some fixed ǫ ≤ n/2. We can make sure that the sets

{Zq : q ∈ Scon} are pairwise disjoint by possibly shrinking Zq.

Part I: First assume that Scon has a single point, i.e. Scon = {q}, and write Z = Zq. We will

discuss the general cases using induction method later.

We need the following facts.

(A) By basic measure theory,

lim
r→0

‖V (x)‖
(

B(q, r)\{q}
)

= 0, ∀x ∈ I0(m, l)0.

(B) Given a set of integral currents {T (x) ∈ Zn(M
n+1) : x ∈ I0(m, l)0}, by [P81, 3.6], the

set

{p ∈ Z : ‖T (x)‖
(

∂B(p, t)
)

= 0,∀t > 0, B(p, t) ⊂ Z}

has a full measure in Z;

(C) Fix p ∈ Z, and s > 0, with B(p, 2s) ⊂ Z. Then by the slicing theorem [Si83, 28.5] and

§7.2(d), ∂(T (x)xB(p, t)) ∈ Zn−1(M) for (L1 almost all) t ∈ [s/2, 2s], and

2‖T (x)‖
(

A(p, s/2, 2s)
)

≥ Lip(rp)‖T (x)‖
(

A(p, s/2, 2s)
)

≥
∫ 2s

s/2
M

[

∂(T (x)xB(p, t))
]

dt.

Hence by the Pigeonhole Principle, there exists r ∈ [s/2, 2s], such that for all x ∈
I0(m, l)0,

7Gn(U), U ⊂ M denotes the n-Grassmannian bundle over U [Si83, §38].
8Here we identify I(1, N2)0 × {[0]} and (I(1,N2))0 × {[1]} with I(1, N2)0
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– ∂
(

T (x)xB(p, r)
)

= 〈T (x), rp, r〉 ∈ Zn−1(M
n+1)9;

– 2C(m, l)‖T (x)‖
(

A(p, s/2, 2s)
)

≥ 3
2sM

[

∂(T (x)xB(p, r))
]

≥ 3
4rM

[

∂(T (x)xB(p, r))
]

.

Now denote Tj(x) = φj(x), x ∈ I0(m, l)0,

Claim 1. We can find (possibly up to a further subsequence of {φj}),
• a sequence of points pj ∈ Z, pj → q as j → ∞;

• sequences of numbers sj, rj ∈ R, with 0 < sj/2 < rj < 2sj, limj→∞ sj = 0;

satisfying

(i) B(q, sj/8) ⊂ B(pj , sj/4) ⊂ B(pj, 2sj) ⊂ B(q, 4sj);

(ii) ‖Tj(x)‖
(

∂B(pj, t)
)

= 0, for all x ∈ I0(m, l)0, 0 < t < 2sj ;

(iii) limj→∞maxx∈I0(m,l)0 ‖Tj(x)‖
[

A(pj, sj/2, 2sj)
]

= 0;

(iv) ∂
(

Tj(x)xB(pj , rj)
)

= 〈Tj(x), rpj , rj〉 ∈ Zn−1(M);

(v) rjM
[

∂
(

Tj(x)xB(pj , rj)
)]

≤ 8/3C(m, l)‖Tj(x)‖
(

A(pj , sj/2, 2sj)
)

;

(vi) limj→∞ |Tj(x)|xGn

(

Bc(pj , rj)
)

= V (x)xGn(M\{q}) as varifolds10.

Now let us check the claim. By fact (A), we can find sj > 0, sj → 0, as j → ∞, such that

lim
j→∞

max
x∈I0(m,l)0

‖V (x)‖
(

B(q, 4sj)\{q}
)

= 0.

As |Tj(x)| = |φj(x)| converge to V (x) as varifolds, (possibly up to a subsequence of {φj}, still
denoted by {φj}),

lim
j→∞

max
x∈I0(m,l)0

‖Tj(x)‖
(

A(q, sj/8, 4sj)
)

= 0,

and

lim
j→∞

|Tj(x)|xGn(B
c(q, sj/8)) = V (x)xGn(M\{q}), as varifolds, for all x ∈ I0(m, l)0.

By fact (B), we can find a sequence pj ∈ Z, pj → q, such that B(q, sj/8) ⊂ B(pj, sj/4) ⊂
B(pj , 2sj) ⊂ B(q, 4sj), and ‖Tj(x)‖

(

∂B(pj, s)
)

= 0, for all x ∈ I0(m, l)0 and s > 0 with

B(pj , s) ⊂ Z. Hence (i)(ii) are true. (iii) is true as A(pj , sj/2, 2sj) ⊂ A(q, sj/8, 4sj). Now

for each j, by fact (C), we can find rj ∈ [sj/2, 2sj ], such that (iv)(v) are true. (vi) is true as

Bc(pj, rj) ⊂ Bc(q, sj/8) and B(pj, rj)\B(q, sj/8) ⊂ A(q, sj/8, 4sj).

Then we have the following facts.

Fact 2. Given δ1 > 0 (to be determined later), δ1 < δ, by Claim 1(iii)(v), there exists J large

enough, such that if j ≥ J ,

2rj
n

M
[

∂
(

Tj(x)xB(pj , rj)
)]

≤ δ1/5; (5.10)

vol
(

B(pj , rj)
)

≤ δ1/5; (5.11)

vol
(

∂B(pj , r)
)

≤ δ1/5, for all r ≤ rj. (5.12)

9〈T, rp, r〉 denotes the slicing of T by the function rp (see §7.2) at r [Si83, 28.4].
10Bc(p, r) denotes the complement of B(p, r) in M .
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b

T

S1

rr1

S1

(E ◦ h(r1) ◦ E−1)#TxB(p, r)\B(p, r1) (E ◦ h(r1) ◦ E−1)#TxB(p, r)\B(p, r1)

Figure 2: This figure illustrates Step 1 in the discretization process with point mass. We omit the

variable x ∈ I(m, l)0.

Now we are going to connect Tj(x)xB(pj , rj) to the cones E#

[

δ0XE
−1
# ∂

(

Tj(x)xB(pj , rj)
)]

using discrete sequences with controlled fineness simultaneously for all x ∈ I0(m, l)0.

We separate the whole procedure into several steps. For notions E,µ(λ), h(r), we refer to

§7.2.

Step 0: Now fix j ≥ J , and forget the subscript “j” now. So T (x) and B(p, r) satisfy

(5.10)(5.11)(5.12). Recall that T (x) = ∂[[Ω(x)]], Ω(x) ∈ C(M). For simplicity, we will identify

Ω(x) with [[Ω(x)]] in the following of the proof. By the Pigeonhole Principle and the Slicing

Theorem [Si83, 28.5], we have that

Fact 3. we can find finitely many numbers ri > 0, i = 1, · · · , ν, for some ν ∈ N, with

r > r1 > r2 > · · · > rν > 0, such that for all x ∈ I0(m, l)0, 1 ≤ i ≤ ν − 1,

1. ‖T (x)‖A(p, ri+1, ri) ≤ δ/5, ‖T (x)‖B(p, rν) ≤ δ/5;

2. ∂
(

T (x)xB(p, ri)
)

∈ Zn−1(M
n+1);

3. 〈Ω(x), rp, ri〉 = ∂
(

Ω(x)xB(p, ri)
)

− T (x)xB(p, ri) ∈ In(M
n+1);

4. ν can be any integer no less than C(m, l)(δ/6)−1 maxx∈I0(m,l)0 M(T (x)xZ), and hence

depends only on m, l, δ, L.

Step 1: (See Figure 2) For each x ∈ I0(m, l)0, let

S1(x) = E#

{

δ0X
[

E−1
# ∂(T (x)xB(p, r)) − µ(

r1
r
)#E

−1
# ∂(T (x)xB(p, r))

]

}

;
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then by (5.10) and §7.2(k), spt(S1(x)) ⊂ A(p, r1, r), and

M(S1(x)) ≤ 2rn−1(1− (
r1
r
)n)M

(

∂(T (x)xB(p, r))
)

≤ 2rn−1M
(

∂(T (x)xB(p, r))
)

≤ δ1/5.

(5.13)

For each x ∈ I0(m, l)0, define

R1(x) =

{ S1(x), in A(p, r1, r)

(E ◦ h(r1) ◦ E−1)#T (x)xB(p, r), in B(p, r1)

T (x), outside B(p, r)

. (5.14)

Claim 2. For each x ∈ I0(m, l)0, R1(x) = ∂Ω1(x) for some Ω1(x) ∈ C(M).

Proof. For each x ∈ I0(m, l)0, by the definition of slices [Si83, 28.4], the slices 〈Ω(x), rp, ri〉
is represented by the set Ω(x) ∩ ∂B(p, ri), which has finite perimeter as ∂〈Ω(x), rp, ri〉 =

−∂
(

T (x)xB(p, ri)
)

. Denote Oi(x) = Ω(x)∩∂B(p, ri) = 〈Ω(x), rp, ri〉, O(x) = Ω(x)∩∂B(p, r) =

〈Ω(x), rp, r〉. Define a subset of M as11

Ω1(x) =
{ E

{

0X
[

E−1O(x)− r1
r E

−1O(x)
]}

, in A(p, r1, r)

Ω(x), in B0(p, r1) and outside B(p, r)
. (5.15)

Clearly Ω1(x) is a set of finite perimeter, i.e. Ω(x) ∈ C(M), as each part supported in B(p, r1),

Bc(p, r), A(p, r1, r) is. We will show that R1(x) = ∂Ω1(x). By [Si83, 28.5(2)],

∂Ω1(x) = ∂
[

Ω(x)xBc(p, r)
]

+ ∂E
{

0X
[

E−1O(x)− r1
r
E−1O(x)

]}

+ ∂
[

Ω(x)xB0(p, r1)
]

= T (x)xBc(p, r)− 〈Ω(x), rp, r〉+O(x)− (E ◦ µ(r1
r
) ◦E−1)#O(x)

− E#

{

δ0X
[

E−1
# ∂O(x)− µ(

r1
r
)#E

−1
# ∂O(x)

]

}+ T (x)xB(p, r1) + 〈Ω(x), rp, r1〉

= T (x)xBc(p, r) + T (x)xB(p, r1)− (E ◦ µ(r1
r
) ◦E−1)#O(x) +O1(x)

+ E#

{

δ0X
[

E−1
# ∂(T (x)xB(p, r)) − µ(

r1
r
)#E

−1
# ∂(T (x)xB(p, r))

]

}.

So together with Claim 1(ii),

R1(x)− ∂Ω1(x) = (E ◦ h(r1) ◦ E−1)#
[

T (x)xA(p, r1, r)
]

+ (E ◦ µ(r1
r
) ◦ E−1)#O(x)−O1(x)

= (E ◦ h(r1) ◦ E−1)#
(

T (x)xA(p, r1, r) +O(x)−O1(x)
)

= (E ◦ h(r1) ◦ E−1)#∂
(

Ω(x)xA(p, r1, r)
)

= ∂(E ◦ h(r1) ◦ E−1)#
(

Ω(x)xA(p, r1, r)
)

= 0,

where we used the fact that h(r1) = µ( r1r ) on ∂B(p, r) in the second “ = ”, and the fact that

any integral (n+ 1)-current on an n-dimensional manifold ∂B(p, r1) is zero in the last “ = ”.

Hence we finish the proof of the claim.

110XS denotes the cone in R
n+1 over S ⊂ R

n+1.
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As R1(x) = ∂Ω1(x), using (5.12) it is easily seen that

M
(

R1(x)x∂B(p, r1)
)

≤ vol
(

∂B(p, r1)
)

≤ δ1/5. (5.16)

The set {R1(x) : x ∈ I0(m, l)0} satisfies the following properties. First using Claim 1(ii),

Fact 3.1, (5.13)(5.16), we have the continuity estimate,

M
(

R1(x)− T (x)
)

≤ M
(

T (x)xA(p, r1, r)
)

+M
(

R1(x)x∂B(p, r1)
)

+M
(

S1(x)
)

≤ δ/5 + 2δ1/5.
(5.17)

Using Claim 1(ii), (5.13)(5.16), we have the mass estimate,

M
(

R1(x)
)

≤ M
(

T (x)xBc(p, r)
)

+M
(

S1(x)
)

+M
(

R1(x)x∂B(p, r1)
)

+M
(

T (x)xB(p, r1)
)

≤ M
(

T (x)
)

+ 2δ1/5.

(5.18)

If m > 1, given x, y ∈ I0(m, l)0, such that d(x, y) = 1, then

R1(x)−R1(y) =
(

S1(x)− S1(y)
)

+
(

R1(x)−R1(y)
)

x∂B(p, r1)

+
(

T (x)− T (y)
)

xB(p, r1) ∪Bc(p, r);

hence using (5.13)(5.16), we have the fineness estimate,

M
(

R1(x)−R1(y)
)

≤ M
(

R1(x)x∂B(p, r1)
)

+M
(

R1(y)x∂B(p, r1)
)

+M
(

S1(x)
)

+M
(

S1(y)
)

+M
(

T (x)− T (y)
)

≤ 4δ1/5 + f(φ),

(5.19)

where f(φ) is the fineness (4.1) of φ.

Step 2: Now for 2 ≤ i ≤ ν, x ∈ I0(m, l)0, we can similarly define

Si(x) = E#

{

δ0X
[

E−1
# ∂(T (x)xB(p, r)) − µ(

ri
r
)#E

−1
# ∂(T (x)xB(p, r))

]

}

;

then by (5.10) and §7.2(k), spt(Si(x)) ⊂ A(p, ri, r), and

M(Si(x)) ≤ 2rn−1(1− (
ri
r
)n)M(∂(T (x)xB(p, r))) ≤ 2rn−1M(∂(T (x)xB(p, r))) ≤ δ1/5.

(5.20)

Similarly define

Ri(x) =

{ Si(x), in A(p, ri, r)

(E ◦ h(ri) ◦E−1)#T (x)xB(p, r), in B(p, ri)

T (x), outside B(p, r)

. (5.21)

The same argument as in Claim 2 with r1 changed to ri shows that Ri(x) = ∂Ωi(x), Ωi(x) ∈
C(M) for all 2 ≤ i ≤ ν, x ∈ I0(m, l)0, with

Ωi(x) =
{ E

{

0X
[

E−1O(x)− ri
r E

−1O(x)
]}

, in A(p, ri, r)

Ω(x), in B0(p, ri) and outside B(p, r)
, (5.22)
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and hence by (5.12),

M
(

Ri(x)x∂B(p, ri)
)

≤ vol
(

∂B(p, ri)
)

≤ δ1/5. (5.23)

Using (5.20)(5.23) in place of (5.13)(5.16) and similar estimates as in Step 1, the currents

{Ri(x) : 2 ≤ i ≤ ν, x ∈ I0(m, l)0} satisfy the following properties:

M
(

Ri(x)−Ri−1(x)
)

≤ M
(

T (x)xA(p, ri, ri−1)
)

+M
(

Ri(x)x∂B(p, ri)
)

+M
(

Ri−1(x)x∂B(p, ri−1)
)

+M
(

Si(x)− Si−1(x)
)

≤ δ/5 + 3δ1/5.

(5.24)

M
(

Ri(x)
)

≤ M
(

T (x)xBc(p, r)
)

+M
(

Si(x)
)

+M
(

Ri(x)x∂B(p, ri)
)

+M
(

T (x)xB(p, ri)
)

≤ M
(

T (x)
)

+ 2δ1/5.

(5.25)

If m > 1, given x, y ∈ I0(m, l)0, such that d(x, y) = 1, then

M
(

Ri(x)−Ri(y)
)

≤ M
(

Ri(x)x∂B(p, ri)
)

+M
(

Ri(y)x∂B(p, ri)
)

+M
(

Si(x)
)

+M
(

Si(y)
)

+M
(

T (x)− T (y)
)

≤ 4δ1/5 + f(φ).

(5.26)

Step 3: Define the cones

Sν+1(x) = E#

{

δ0XE
−1
# ∂(T (x)xB(p, r))

}

;

then by (5.10) and §7.2(k), spt(Sν+1(x)) ⊂ B(p, r), and

M(Sν+1(x)) ≤ 2rn−1M(∂(T (x)xB(p, r))) ≤ δ1/5. (5.27)

Define

Rν+1(x) =
{ Sν+1(x), in B(p, r)

T (x), outside B(p, r)
. (5.28)

Similar argument as in Claim 2 with r1 changed to 0 shows that Rν+1(x) = ∂Ων+1(x),

Ων+1(x) ∈ C(M) for all x ∈ I0(m, l)0, with

Ων+1(x) =
{ E

{

0X
[

E−1O(x)
]}

, in B(p, r)

Ω(x), outside B(p, r)
. (5.29)

Using Claim 1(ii), Fact 3.1, (5.23)(5.27), we have that

M
(

Rν+1(x)−Rν(x)
)

≤ M
(

T (x)xB(p, rν)
)

+M
(

Rν(x)x∂B(p, rν)
)

+M
(

Sν+1(x)− Sν(x)
)

≤ δ/5 + 2δ1/5.

(5.30)
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M
(

Rν+1(x)
)

≤ M
(

T (x)xBc(p, r)
)

+M
(

Sν+1(x)
)

≤ M
(

T (x)
)

+ δ1/5.
(5.31)

If m > 1, given x, y ∈ I0(m, l)0, such that d(x, y) = 1, then

M
(

Rν+1(x)−Rν+1(y)
)

≤ M
(

Si(x)
)

+M
(

Si(y)
)

+M
(

T (x)− T (y)
)

≤ 2δ1/5 + f(φ).
(5.32)

Step 4: Take ν + 1 = 3Ñ for Ñ ∈ N, then Ñ depends only on l,m, δ, L by Fact 3.4. We can

define a map

ψ : I(1, Ñ )0 × I0(m, l)0 → Zn(M
n+1),

by ψ(0, x) = T (x) = φ(x), ψ([ i

3Ñ
], x) = Ri(x) for 1 ≤ i ≤ ν + 1. Now we check that ψ satisfy

Lemma 5.7(0)(i)(iii)(iv). By combining (5.17)(5.18)(5.19)(5.24)(5.25)(5.26)(5.30)(5.31)(5.32)

and our construction, we have

(0) ψ([ i

3Ñ
], x) = ∂[[Ωi(x)]], Ωi(x) ∈ C(M);

(i) f(ψ) ≤ δ/5 + 3δ1/5 if m = 1, and f(ψ) ≤ max{δ/5 + 3δ1/5, f(φ) + 4δ1/5} if m > 1;

(iii) max{M(ψ([ i
3Ñ

], x))} ≤ max{M(φ(x))} + 2δ1/5.

Ifm = 1, δ < νM , let us calculate FA(ψ|I(1,Ñ)0×{[0]}) and FA(ψ|I(1,Ñ)0×{[1]}). First focus on

FA(ψ|I(1,Ñ)0×{[0]}). We will use notions as above. By the definition of Almgren’s isomorphism

(4.2),

FA(ψ|I(1,Ñ )0×{[0]}) =
ν+1
∑

i=1

Qi(0),

where Q1(0) is the isoperimetric choice for R1(0)−T (0), and Qi(0) is the isoperimetric choice

of Ri(0) −Ri−1(0), 2 ≤ i ≤ ν + 1, with Ri(0) given by (5.14)(5.21)(5.28). Recall that T (0) =

∂Ω(0), Ri(0) = ∂Ωi(0), with Ω(0),Ωi(0) ∈ C(M), and that Ωi(0) − Ωi−1(0) are all supported

in B(p, r) by the construction (5.15)(5.22)(5.29), so M
(

Ωi(0) − Ωi−1(0)
)

≤ vol(B(p, r)) ≤
1/2vol(M), as r is very small. By Lemma 7.2, Q1(0) = Ω1(0)−Ω(0), Qi(0) = Ωi(0)−Ωi−1(0)

for 2 ≤ i ≤ ν + 1, hence

FA(ψ|I(1,Ñ)0×{[0]}) = Ω1(0)− Ω(0) +

ν+1
∑

i=2

(Ωi(0)− Ωi−1(0)) = Ων+1(0)− Ω(0).

Similarly we can prove that FA(ψ|I(1,Ñ )0×{[1]}) = Ων+1(1) − Ω(1). By changing the notions,

we showed that

(iv) If m = 1, δ < νM , φ([0]) = ∂[[Ω0]], φ([1]) = ∂[[Ω1]], ψ([1]⊗ [0]) = ∂[[Ω′
0]], ψ([1]⊗ [1]) =

∂[[Ω′
1]], then

FA(ψ|I(1,Ñ)0×{[0]}) = [[Ω′
0 − Ω0]], FA(ψ|I(1,Ñ)0×{[1]}) = [[Ω′

1 − Ω1]].
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Step 5: We now pick up the subscript “j”. For each φj , j ≥ J , we can construct ψj : I(1, Ñ )0×
I0(m, l)0 → Zn(M

n+1) as above. Denote φj(x) = ∂[[Ωj(x)]], and ψj(y, x) = Rj,i(x) =

∂[[Ωj,i(x)]] for y = [ i

3Ñ
], with Ωj(x),Ωj,i(x) ∈ C(M). By the construction (5.15)(5.22)(5.29),

Ωj,i(x)− Ωj(x) are all supported in B(pj, rj). Recall that rj → 0 by Claim 1, so

F
(

ψj(y, x), φj(x)
)

≤ M
(

Ωj,i(x)− Ωj(x)
)

≤ vol
(

B(pj, rj)
)

→ 0,

uniformly for all (y, x) ∈ I(1, Ñ )0 × I0(m, l)0 as j → ∞.

Define

ρj = ǫj +max{F
(

ψj(y, x), φj(x)
)

: (y, x) ∈ I(1, Ñ )0 × I0(m, l)0},

where ǫj is given in Lemma 5.4; then ρj → 0, as j → ∞, andF(ψj(y, x), T ) ≤ F(ψj(y, x), φj(x))+

F(φj(x), T ) ≤ ρj , so

ψj : I(1, Ñ )0 × I0(m, l)0 → BF
ρj (T ).

Finally, we claim that

(ii)

lim
j→∞

|ψj([1], x)| = V (x)xGn

(

M\{q}
)

, as varifolds. (5.33)

In fact, by (5.28), ψj([1], x) = φj(x) outside B(pj , rj), and inside B(pj, rj), by (5.27) and

Claim 1(iii)(v),

M
(

ψj([1], x)xB(pj , rj)
)

≤ 2rjn
−1M

(

∂(Tj(x)xB(pj , rj))
)

→ 0, as j → ∞.

Therefore (5.33) is a directly corollary of Claim 1(vi).

All the above properties show that {ψj} satisfy Lemma 5.7 when Scon = {q}.

Part II: If Scon contains more than one point, we can construct ψj successively on the pairwise

disjoint neighborhoods {Zq : q ∈ Scon} as above, as the construction is purely local. The only

things to be taken care of are the increase of mass and fineness.

Write Scon = {qa}κa=1, Za = Zqa , κ ∈ N. As mentioned above, κ ≤ C(m, l)2Lα depends

only on m, l, δ, L. We start by following the above process inside Z1 to extend φj (possibly up

to a subsequence) to ψ1
j : I(1, Ñ )0 × I0(m, l)0 → BF

ρ1j
(T ), where {ρ1j} is a sequence of positive

numbers converging to zero. Denote φ1j (·) = ψ1
j ([1], ·). Then {ψ1

j } satisfy (by Step 4 and Step

5 in Part 1): for all x ∈ I0(m, l)0

• ψ1
j ([

i
3Ñ

]) = ∂[[Ω1
j,i(x)]], Ω

1
j,i(x) ∈ C(M);

• f(ψ1
j ) ≤ δ/5 + 3δ1/5 if m = 1, and f(ψ1

j ) ≤ max{δ/5 + 3δ1/5, f(φj) + 4δ1/5} if m > 1;

• ψ1
j ([0], x) = φj(x), limj→∞ |ψ1

j ([1], x)| = V (x)xGn(M\{q1}) as varifolds;
• max{M

(

ψ1
j ([

i
3Ñ

], x)
)

} ≤ max{M
(

φj(x)
)

}+ 2δ1/5;
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• If m = 1, and denote φj([0]) = ∂[[Ωj,0]], φj([1]) = ∂[[Ωj,1]], φ
1
j ([0]) = ∂[[Ω1

j,0]],

φ1j([1]) = ∂[[Ω1
j,1]]; then

FA(ψ
1
j |I(1,Ñ)0×{[0]}) = [[Ω1

j,0 − Ωj,0]], FA(ψ
1
j |I(1,Ñ)0×{[1]}) = [[Ω1

j,1 − Ωj,1]].

Also {φ1j} satisfy: for all x ∈ I0(m, l)0,

• φ1j(x) = φj(x) outside Z1, by (5.28);

• φ1j(x) = ∂[[Ω1
j (x)]], Ω

1
j(x) ∈ C(M);

• limj→∞ |φ1j (x)| = V (x)xGn(M\{q1}), as varifolds;
• M

(

φ1j(x)
)

≤ M
(

φj(x)
)

+ δ1/5, by (5.31);

• If m > 1, f(φ1j) ≤ f(φj) + 2δ1/5, by (5.32).

As φ1j (x) = φj(x) outside Z1, for all x ∈ I0(m, l)0, we can repeat the construction in Part

I inductively on Z2, · · · , Zκ, to get (possibly up to subsequences) {ψa
j } and {φaj}, 2 ≤ a ≤ κ,

such that ψa
j : I(1, Ñ )0 × I0(m, l)0 → BF

ρaj
(T ), φaj : I0(m, l)0 → BF

ρaj
(T ), with {ρaj} a sequence

of positive numbers converging to zero as j → ∞ for each 2 ≤ a ≤ κ, and φaj (x) = ψa
j ([1], x),

and the following statements are true. For each 2 ≤ a ≤ κ,

{ψa
j } satisfy that: for all x ∈ I0(m, l)0,

1. ψa
j ([

i
3Ñ

]) = ∂[[Ωa
j,i(x)]], Ω

a
j,i(x) ∈ C(M);

2. f(ψa
j ) ≤ δ/5+3δ1/5 ifm = 1, and ifm > 1, f(ψa

j ) ≤ max{δ/5+3δ1/5, f(φ
a−1
j )+4δ1/5},

so by property 5 of φaj (see below),

f(ψa
j ) ≤ max{δ/5 + 3δ1/5, f(φj) + 2(a+ 1)δ1/5};

3. ψa
j ([0], x) = φa−1

j (x), limj→∞ |ψa
j ([1], x)| = V (x)xGn(M\{q1, · · · , qa}) as varifolds;

4. max{M
(

ψa
j ([

i

3Ñ
], x)

)

} ≤ max{M
(

φa−1
j (x)

)

} + 2δ1/5, hence by property 4 of φaj (see

below),

max{M
(

ψa
j ([

i

3Ñ
], x)

)

} ≤ max{M
(

φj(x)
)

}+ (a+ 1)δ1/5;

5. If m = 1, and denote φa−1
j ([0]) = ∂[[Ωa−1

j,0 ]], φa−1
j ([1]) = ∂[[Ωa−1

j,1 ]], φaj ([0]) = ∂[[Ωa
j,0]],

φaj ([1]) = ∂[[Ωa
j,1]]; then

FA(ψ
a
j |I(1,Ñ)0×{[0]}) = [[Ωa

j,0 −Ωa−1
j,0 ]], FA(ψ

a
j |I(1,Ñ)0×{[1]}) = [[Ωa

j,1 − Ωa−1
j,1 ]].

{φaj} satisfy: for all x ∈ I0(m, l)0,

1. φaj (x) = φj(x) outside Z1 ∪ · · · ∪ Za, by (5.28);

2. φaj (x) = ∂[[Ωa
j (x)]], Ω

a
j (x) ∈ C(M);

3. limj→∞ |φaj (x)| = V (x)xGn(M\{q1, · · · , qa}), as varifolds;
4. M

(

φaj (x)
)

≤ M
(

φa−1
j (x)

)

+ δ1/5 by (5.31), so

M
(

φaj (x)
)

≤ M
(

φj(x)
)

+ aδ1/5;
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5. If m > 1, f(φaj ) ≤ f(φa−1
j ) + 2δ1/5 by (5.32), so

f(φaj ) ≤ f(φj) + 2aδ1/5.

Finally, let κ(ν + 1) = 3N2 , for some N2 ∈ N, with ν given in Fact 3; then N2 depends

only on m, l, δ, L. Recall that ν + 1 = 3Ñ (see Step 4 in Part I); then we can define ψj :

I(1, N2)0 × I0(m, l)0 → BF
ρκj
(T ) as:

ψj([
i

3N2
], x) = ψa

j ([
i− (a− 1)(ν + 1)

3Ñ
], x), if (a− 1)(ν + 1) ≤ i ≤ a(ν + 1). (5.34)

Choose δ1 < δ, such that

2(κ + 1)δ1/5 ≤ δ, (κ + 1)δ1/5 ≤ δ

n0 + 1
,

and let ρj = ρκj ; then ψj satisfy (0)(i)(ii)(iii) in Lemma 5.7. To check Lemma 5.7(iv), if m = 1,

by the definition of Almgren’s isomorphism (4.2),

FA(ψj |I(1,N2)0×{[0]}) =

κ
∑

a=1

FA(ψ
a
j |I(1,Ñ)0×{[0]}) =

κ
∑

a=1

[[Ωa
j,0 − Ωa−1

j,0 ]] = [[Ωκ
j,0 − Ωj,0]].

Similarly, FA(ψj |I(1,N2)0×{[1]}) = [[Ωκ
j,1 − Ωj,1]]. So Lemma 5.7(iv) is true by noticing that

ψj([1], [0]) = ∂[[Ωκ
j,0]] and ψj([1], [1]) = ∂[[Ωκ

j,1]]. The proof of Lemma 5.7 is now finished.

Now let us go back to the proof of Lemma 5.4. If Scon = ∅, then ψj can be constructed

by Lemma 5.5 with ρj = ǫj , N = N1. If Scon 6= ∅, let δ′ = δ/2, and construct (possibly up

to a subsequence) ψ2
j : I(1, N2)0 × I0(m, l)0 → BF

ρj (T ) by Lemma 5.7 for the set of numbers

l,m, δ′, L. Then denote φ′j(·) = ψ2
j ([1], ·) : I0(m, l)0 → BF

ρj (T ). By Lemma 5.7(ii), {φ′j} satisfy

the requirement of Lemma 5.5 for the set of numbers l,m, δ′, L + δ′

n0+1 . Now we can apply

Lemma 5.5 to {φ′j}, and construct (possibly up to a subsequence) ψ1
j : I(1, N1)0× I0(m, l)0 →

BF
ρj (T ).

Assume 3N = 3N1 + 3N2 , N ∈ N; then N depends only on (l,m, T, δ, L), as N2 depends

only on (l,m, δ/2, L) and N1 depends only on (l,m, T, δ/2, L+ δ
2(n0+1)). Define ψj : I(1, N)0×

I0(m, l)0 → BF
ρj(T ) by

ψj([
i

3N
], x) = ψ2

j ([
i

3N2
], x), if 0 ≤ i ≤ 3N2 ;

ψj([
i

3N
], x) = ψ1

j ([
i− 3N2

3N1
], x), if 3N2 ≤ i ≤ 3N .

Then {ψj} satisfy Lemma 5.4(0)(ii)(iv) by combining Lemma 5.5(0)(ii)(iv) with Lemma 5.7

(0)(ii)(iv). For Lemma 5.4(i), if m = 1,

f(ψj) ≤ max{f(ψ1
j ), f(ψ

2
j )} ≤ δ/2;
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if m > 1, then by Lemma 5.5(i) and Lemma 5.7(i),

f(ψj) ≤ max{f(ψ1
j ), f(ψ

2
j )} ≤ f(ψ2

j ) + δ/2 ≤ f(φj) + δ.

For Lemma 5.4(iii), by Lemma 5.5(iii) and Lemma 5.7(iii),

max
{

M(ψj(·, ·))
}

≤ max
{

max{M(ψ1
j (·, ·))},max{M(ψ2

j (·, ·))}
}

≤ max{M(ψ2
j (·, ·))} +

δ

2(n0 + 1)
≤ max{M(φj(·))} +

δ

n0 + 1
.

So we finished checking that {ψj} satisfy Lemma 5.4(0)(i)(ii)(iii)(iv).

Now let us go back to the proof of Proposition 5.3. This part is similar to the final part

of [MN12, 13.3]. We will use notions in Lemma 5.4. We are going to construct the extensions

φ̃j of φj from I(m,k0)0 to BF
ρj(T ) for every j large enough, therefore get a contradiction.

First let us discuss the case when m > 1. Let

φ̂j : I(1, N)0 × I0(m,N)0 → BF
ρj(T ),

be defined by φ̂j(y, x) = ψj(y,n(N, l)(x)), where ψj are constructed in Lemma 5.4. Recall

that S(m+ 1, N)0 = I(1, N)0 × I0(m,N)0. We can extend φ̂j to

S(m+ 1, N)0 ∪ T (m+ 1, N)0,

by assigning it to T on T (m+ 1, N)0.

Now recall the map r(N) : I(m,N + q)0 → S(m+1, N)0 ∪T (m+1, N)0 defined in [MN12,

Appendix C], which satisfies: q depends onm but not on N ; if x, y ∈ I(m,N+q)0, d(x, y) = 1,

then d
(

r(N)(x), r(N)(y)
)

≤ m; if x ∈ I0(m,N + q)0, then r(N)(x) ∈ [0] × I0(m,N)0 and

r(N)(x) = n(N + q,N)(x).

With out loss of generality, we can assume k0 > N+q; then the extension φ̃j : I(m,k0)0 →
BF
ρj (T ) is defined by

φ̃j = φ̂j ◦ rm(N) ◦ n(k0, N + q),

for which Proposition 5.3(i)(ii)(iii) are easily seen true by Lemma 5.4(i)(ii)(iii).

Finally when m = 1, define φ̂j : I(1, N + 1)0 → BF
ρj (T ) by:

φ̂j([
i

3N+1
]) = ψj([

i

3N
], [0]), if 0 ≤ i ≤ 3N ;

φ̂j([
i

3N+1
]) = T, if 3N + 1 ≤ i ≤ 2 · 3N ;

φ̂j([
i

3N+1
]) = ψj([

3N+1 − i

3N
], [1]), if 2 · 3N + 1 ≤ i ≤ 3N+1,

for which Proposition 5.3(i)(ii)(iii) are automatically true by Lemma 5.4(i)(ii)(iii). To check

Proposition 5.3(iv), by the definition of Almgren’s isomorphism (4.2) and Lemma 5.4(iv),

FA(φ̂j) = FA

(

ψj |I(1,N)0×{[0]}

)

− FA

(

ψj|I(1,N)0×{[1]}

)

= [[ΩT −Ωj,0]]− [[ΩT − Ωj,1]] = [[Ωj,1 − Ωj,0]].
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For k0 > N + 1, the extension φ̃j : I(1, k0)0 → BF
ρj(T ) is given by φ̂j ◦ n(k0, N + 1).

The next result removes the dependence of ǫ and k on the parameters l,m in Proposition

5.3, which is analogous to [MN12, 13.5]. The idea is to apply Proposition 5.3 inductively along

the p-skeletons of I(m, l), 1 ≤ p ≤ m. In the induction process, compared to [MN12, 13.5]

where they need to pay attention to the increase of the parameter “m(φ, r)”12, we need to

take care of the increase of the size of the neighborhoods around T .

Fix n0 ∈ N. b(n0) is a constant depending only on n0.

Proposition 5.8. Given δ, L > 0, and

T ∈ Zn(M) ∩ {S : M(S) ≤ 2L− δ},with T = ∂[[ΩT ]],

ΩT ∈ C(M), then there exist 0 < ǫ = ǫ(T, δ, L) < δ, and k = k(T, δ, L) ∈ N, and a function

ρ = ρ(T,δ,L) : R
1
+ → R

1
+, with ρ(s) → 0, as s → 0, such that: given l,m ∈ N, m ≤ n0 + 1,

0 < s < ǫ, and

φ : I0(m, l)0 → BF
s (T ) ∩ {S : M(S) ≤ 2L− δ}, with φ(x) = ∂[[Ωx]], (5.35)

Ωx ∈ C(M), x ∈ I0(m, l)0, there exists

φ̃ : I(m, l + k)0 → BF
ρ(s)(T ), with φ̃(y) = ∂[[Ωy]],

Ωy ∈ C(M), y ∈ I(m, l + k)0, and satisfying

(i) f(φ̃) ≤ δ if m = 1, and f(φ̃) ≤ b(n0)(f(φ) + δ) if m > 1;

(ii) φ̃ = φ ◦ n(l + k, l) on I0(m, l + k)0;

(iii)

sup
x∈I(m,l+k)0

M
(

φ̃(x)
)

≤ sup
x∈I0(m,l)0

M
(

φ(x)
)

+ δ;

(iv) If m = 1, δ < νM , φ([0]) = ∂[[Ω0]], φ([1]) = ∂[[Ω1]], then

FA(φ̃) = [[Ω1 − Ω0]]

where FA is the Almgren’s isomorphism (4.2).

Proof. The case m = 1 follows directly from Proposition 5.3. In fact, take ǫ = ǫ(0, 1, T, δ, L),

k = k(0, 1, T, δ, L) and ρ(s) = ρ(0,1,T,δ,L)(s) by Proposition 5.3, and denote the extension by

φ̃1 : I(1, k)0 → BF
ρ(s)(T ). Then φ̃ : I(1, l+ k)0 → BF

ρ(s)(T ) is given by φ̃ = φ̃1 ◦n(l+ k, k). The

fact that φ̃ satisfies properties (i)(ii)(iii)(iv) follows from the fact that φ̃1 satisfies Proposition

5.3(i)(ii)(iii)(iv).

12This parameter measures the local mass density. See [MN12, 4.2].
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Now let us assume that m > 1. Using notations in Proposition 5.3, we can inductively

define integers,

k0 = 0, k1 = k(0, 1, T, δ, L), · · · , ki = k(ki−1, i, T, δ, L), · · · , km = k(km−1,m, T, δ, L);

and positive numbers,

ǫ1 = ǫ(0, 1, T, δ, L), · · · , ǫi = ǫ(ki−1, i, T, δ, L), · · · , ǫm = ǫ(km−1,m, T, δ, L);

and functions from R1
+ to R1

+,

ρ1 = ρ(0,1,T,δ,L), · · · , ρi = ρ(ki−1,i,T,δ,L) ◦ ρi−1, · · · , ρm = ρ(km−1,m,T,δ,L) ◦ ρm−1.

As lims→0 ρ(ki−1,i,T,δ,L)(s) = 0, for 1 ≤ i ≤ m, we know that lims→0 ρi(s) = 0, for all

1 ≤ i ≤ m. Hence we can choose ǫ > 0, such that ǫ ≤ min{ǫ1, · · · , ǫm}, and

ǫ̃i := max
0≤s≤ǫ

ρi(s) ≤ ǫi+1, for all 1 ≤ i ≤ m− 1.

Let k = km, and ρ = ρm; then ǫ, k, ρ depend only on T, δ, L. In the following, we will show

that ǫ, k, ρ satisfy the requirement.

Fix a map φ : I0(m, l)0 → BF
s (T )∩{S : M(S) ≤ 2L− δ}, with φ(x) = ∂[[Ωx]], Ωx ∈ C(M),

for all x ∈ I0(m, l)0. Assume that s ≤ ǫ. Given p ≤ m, let Vp be the set of vertices of

I(m, l + kp) that belong to the p-skeleton of I(m, l), i.e. Vp = ∪α∈I(m,l)pα(kp)0. Clearly

Vm = I(m, l+ k)0. Say a map φp : Vp → BF
ρp(s)

(T )∩{S : M(S) ≤ 2L} is a p-extension of φ, if:

1. φp(y) = ∂[[Ωy]], Ωy ∈ C(M), for all y ∈ Vp;

2. φp = φ ◦ n(l + kp, l) on Vp ∩ I0(m, l + kp)0;

3. If p = 1, then f(φp) ≤ f(φ) + δ; if p > 1, there exists a (p − 1)-extension φp−1 of φ,

such that

f(φp) ≤ p
(

f(φp−1) + δ
)

;

4. supy∈Vp
M

(

φp(y)
)

≤ supx∈I0(m,l)0 M
(

φ(x)
)

+ pδ
n0+1 .

We start with the construction of 1-extension φ1 of φ. First construct a trivial extension

of φ to I(m, l)0, i.e. φ0 : I(m, l)0 → BF
s (T ) ∩ {S : M(S) ≤ 2L− δ} by

φ0(x) = φ(x), x ∈ I0(m, l)0;
φ0(x) = T, x /∈ I0(m, l)0.

Then we can construct φ̃0 : V1 → BF
ρ1(s)

(T ) as follows: given α ∈ I(m, l)1, φ̃0|α(k1)0 is gotten

by extending φ0|α0 on α0 to α(k1)0 using Proposition 5.3 for l = 0,m = 1, T, δ, L as s ≤ ǫ ≤ ǫ1.

Finally, we can define φ1 : V1 → BF
ρ1(s)

(T ) by

φ1 = φ0 ◦ n(l + k1, l), on α(k1)0, if α is a 1-cell of I0(m, l);

φ1 = φ̃0, on α(k1)0, if α is not a 1-cell of I0(m, l).

It is easy to check that φ1 is a 1-extension of φ.

To get p-extension inductively, we need the following lemma.
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Lemma 5.9. Given a p-extension φp of φ, p ≤ m− 1, there exists a (p + 1)-extension φp+1

of φ.

Proof. By assumption φp maps Vp into BF
ρp(s)

(T ) ∩ {S : M(S) ≤ 2L}, so the image of φp also

lie in BF
ǫp+1

(T ) ∩ {S : M(S) ≤ 2L} as ρp(s) ≤ ǫ̃p ≤ ǫp+1. Using the fact that φp(x) = ∂[[Ωx]],

Ωx ∈ C(M) for all x ∈ Vp, we can apply Proposition 5.3 for each (p+1)-cell α ∈ I(m, l)p+1 to

extend φp|α0(kp)0 to φ̃p,α : α(kp+1)0 → BF
ρp+1(s)

(T ) for l = kp,m = p+1, T, δ, L. Given any two

adjacent (p + 1)-cells α, ᾱ ∈ I(m, l)p+1, by Proposition 5.3(ii), φ̃p,α = φ̃p,ᾱ = φp ◦ n(kp+1, kp)

on α(kp+1)0 ∩ ᾱ(kp+1)0, so we can construct a map

φ̃p : Vp+1 → BF
ρp+1(s)

(T ),

by letting φ̃p = φ̃p,α on each α(kp+1), α ∈ I(m, l)p+1. By Proposition 5.3(i)(iii) and the

inductive hypothesis 4,

f(φ̃p) ≤ (p+ 1)
(

f(φp) + δ
)

;

sup
x∈Vp+1

M
(

φ̃p(x)
)

≤ sup
x∈Vp

M
(

φp(x)
)

+
δ

n0 + 1
≤ sup

x∈I0(m,l)0

M
(

φ(x)
)

+
(p+ 1)δ

n0 + 1
.

Finally we define φp+1 : Vp+1 → BF
ρp+1(s)

(T ) by

φp+1 = φp ◦ n(l + kp+1, l + kp), on α(kp+1)0, if α is a (p+ 1)-cell of I0(m, l);

φp+1 = φ̃p, on α(kp+1)0, if α is not a (p+ 1)-cell of I0(m, l).

Now we check that φp+1 satisfies all the requirements for a (p + 1)-extension of φ. First, by

construction φp+1(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ Vp+1; second, given a (p + 1)-cell

α in I0(m, l), by inductive hypothesis 2, φp+1 = φp ◦ n(l + kp+1, l + kp) = φ ◦ n(l + kp, l) ◦
n(l+ kp+1, l+ kp) = φ ◦n(l+ kp+1, l) on α(kp+1)0; lastly, as φp+1 is gotten by replacing φ̃p by

φp ◦n(l+ kp+1, l+ kp) on Vp+1 ∩ I0(m, l+ kp+1)0, hence f(φp+1) ≤ f(φ̃p) ≤ (p+1)
(

f(φp) + δ
)

,

and supx∈Vp+1
M

(

φp+1(x)
)

≤ supx∈Vp+1
M

(

φ̃p(x)
)

≤ supx∈I0(m,l)0 M
(

φ(x)
)

+ (p+1)δ
n0+1 .

We can then inductively construct an m-extension φm : I(m, l + km)0 → BF
ρm(s)(T ). Let

φ̃ = φm; then it is easy to see that φ̃, ǫ, k = km, ρ = ρm satisfy all the requirements of

Proposition 5.8.

5.2 Proof of Theorem 5.1. The idea is briefly as follows. Denote

L(Φ) = max
x∈[0,1]

M
(

Φ(x)
)

.

Given a δ > 0, we can cover the set Zn(M
n+1) ∩ {S : M(S) ≤ 2L(Φ)} ∩ {S : S = ∂[[Ω]] :

Ω ∈ C(M)} by finitely many balls {BF
ǫi (Ti)}Ni=1, such that Proposition 5.8 can be applied

on each ball for n0 = 1, Ti, δ, L = L(Φ)13. Take j large enough, such that for each 1-cell

13Note that n0 = 1 is the dimension of parameter space.
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α ∈ I(1, j)1, the image Φ(α) lie in some BF
ǫi (Ti); then we can apply Proposition 5.8 to each

Φ|α0 , and construct a discrete map φδ which has fineness controlled by δ, and total mass

bounded by L(Φ)+ δ. Finally, taking a sequence δi → 0, i→ ∞, we can construct the desired

(1,M)-homotopy sequence {φi}i∈N by letting φi = φδi . Detailed argument is given as below.

Proof. (of Theorem 5.1) In this part, we will repeatedly use notations and conclusions in

Proposition 5.8 for n0 = 114.

Step I: Fix δ > 0, such that L = L(Φ) < 2L − 2δ. By the weak compactness of the set

Zn(M
n+1) ∩ {S : M(S) ≤ 2L} ∩ {S : S = ∂[[Ω]] : Ω ∈ C(M)} (see [Si83, §37.2][Gi, §1.20]), we

can find a finite covering by balls
{

BF
ǫi (Ti) : i = 1, · · · , N

}

, such that Ti = ∂[[Ωi]], Ωi ∈ C(M),

M(Ti) ≤ 2L, and

3ǫi + sup
0≤s≤3ǫi

ρi(s) < ǫ(Ti, δ, L). (5.36)

where ǫ(Ti, δ, L), ki = k(Ti, δ, L) and ρi(s) = ρ(Ti,δ,L)(s) are given by Proposition 5.8. Assume

that ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫN ≤ δ, and denote k = max{ki : 1 ≤ i ≤ N}.
By the continuity of Φ under the flat topology, we can take j ∈ N large enough, such that

for any α ∈ I(1, j)1,

sup
x,y∈α

F
(

Φ(x)− Φ(y)
)

< ǫ1 < δ. (5.37)

Define c : I(1, j)0 → {1, · · · , N} by c(x) = sup{i : Φ(x) ∈ BF
ǫi (Ti)}. Then define

c : I(1, j)1 → {1, · · · , N},

by c(α) = sup{c(x) : x ∈ α0}.
Claim 3. Φ(α) ⊂ BF

2ǫc(α)
(Tc(α)).

Proof. By definition, there exists x ∈ α0, such that c(α) = c(x), then Φ(x) ∈ BF
ǫc(α)

(Tc(α)). By

(5.37), for any y ∈ α, Φ(y) ∈ BF
ǫ1

(

Φ(x)
)

⊂ BF
2ǫc(α)

(Tc(α)), as ǫ1 ≤ ǫc(α).

Let φ0 : I(1, j)0 → Zn(M) be the restriction of Φ to I(1, j)0, then φ0(α0) ⊂ BF
2ǫc(α)

(Tc(α))

for all α ∈ I(1, j)1. By (5.36) and Theorem 5.1(a), we can apply Proposition 5.8 to each φ0|α0 ,

α ∈ I(1, j)1, and get

φ̃0,α : α(kc(α))0 → BF
ρc(α)(2ǫc(α))

(Tc(α)).

Define φδ : I(1, j + k)0 → Zn(M) by

φδ = φ̃0,α ◦ n(j + k, j + kc(α)), on α(k)0.

Now we collect a few properties of φδ.

1. φδ = Φ on I(1, j)0;

2. φδ(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ I(1, j + k)0;

14Again, n0 = 1 is the dimension of parameter space.
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3. f(φδ) ≤ δ;

4. For any α ∈ I(1, j)1,

sup
x∈α(k)0

M
(

φδ(x)
)

≤ sup
x∈α0

M
(

Φ(x)
)

+ δ < 2L− δ;

5. sup
{

F
(

φδ(x)− Φ(x)
)

: x ∈ I(1, j + k)0
}

≤ δ;

6. If δ < νM , then FA(φδ) = [[Ω1 − Ω0]], where Φ(0) = ∂[[Ω0]], Φ(1) = ∂[[Ω1]].

1 is by construction. 2,3,4,6 directly come from Proposition 5.8. 5 comes from (5.36), and the

fact that φδ(α(k)0) ⊂ BF
ρc(α)(2ǫc(α))

(Tc(α)), Φ(α) ⊂ BF
2ǫc(α)

(Tc(α)).

Step II: We say φ̄ : I(1, k̄)0 → Zn(M) is a (δ, k̄)-extension of Φ, k̄ ≥ j + k, if

1. φ̄ = Φ on I(1, j)0;

2. φ̄(x) = ∂[[Ωx]], Ωx ∈ C(M), for all x ∈ I(1, k̄)0;

3. f(φ̄) ≤ δ;

4. For any α ∈ I(1, j)1,

sup
x∈α(k̄−j)0

M
(

φ̄(x)
)

≤ sup
x∈α

M
(

Φ(x)
)

+ δ < 2L− δ;

5. sup
{

F
(

φδ(x)− Φ(x)
)

: x ∈ I(1, k̄)0
}

≤ ǫ1.

The following lemma says that a (δ, k̄)-extension φ̄ is 1-homotopic to φδ with fineness δ.

Lemma 5.10. Given a (δ, k̄)-extension φ̄ of Φ, with k̄ ≥ j + k, then there exists

ψ : I(1, k̂)0 × I(1, k̂)0 → Zn(M),

with k̂ = k̄ + k, such that

(a) ψ(y, x) = ∂[[Ωy,x]], Ωy,x ∈ C(M), for any (y, x) ∈ I(1, k̂)0 × I(1, k̂)0;

(b) ψ([0], ·) = φδ ◦ n(k̂, j + k), and ψ([1], ·) = φ̄ ◦ n(k̂, k̄);
(c) f(ψ) ≤ c0δ, for a fixed constant c0;

(d) M
(

ψ(y, x)
)

≤ sup
{

M
(

Φ(x′)
)

, x, x′ lie in some common 1-cell α ∈ I(1, j)1
}

+ 2δ, for

any (y, x) ∈ I(1, k̂)0 × I(1, k̂)0.

Proof. Given α ∈ I(1, j)1, using property 5 for (δ, k̄)-extension and the fact that Φ(α) ⊂
BF
2ǫc(α)

(Tc(α)), we have φ̄
(

α ∩ I(1, k̄)0
)

⊂ BF
3ǫc(α)

(Tc(α)).

We will first construct ψ on [0, 1
3j
](k̂ − j)0 × I(1, k̂)0

15, such that ψ satisfies:

ψ([0], ·) = φδ ◦ n(k̂, j + k); ψ([
1

3j
], ·) = φ̄ ◦ n(k̂, k̄),

15Notice that [0, 1
3j
](k̂ − j)0 = [0, 1

3j
] ∩ I(1, k̂)0.
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and Lemma 5.10(a)(c)(d), where in (d) (y, x) ∈ [0, 1
3j
](k̂ − j)0 × I(1, k̂)0. Then we can extend

ψ to
(

[ 1
3j
, 1] ∩ I(1, k̂)0

)

× I(1, k̂)0 trivially by letting ψ(y, x) = φ̄ ◦ n(k̂, k̄)(x) for (y, x) ∈
(

[ 1
3j
, 1] ∩ I(1, k̂)0

)

× I(1, k̂)0.

Let W1 be the set of vertices of [0, 1
3j
](k̄ − j)0 × I(1, k̄)0 which belong to the 1-skeleton of

[0, 1
3j
]× I(1, j) (think [0, 1

3j
] ∼= I(1, 0)), and define ψ0 : W1 → Zn(M) by:

ψ0([0], ·) = φδ ◦ n(k̄, j + k); ψ0([
1

3j
], ·) = φ̄;

ψ0(·, x) ≡ Φ(x), for all x ∈ I(1, j)0.

Then ψ0 satisfies:

1. f(ψ0) ≤ max{f(φδ), f(φ̄)} ≤ δ, as φδ|I(1,j)0 = φ̄|I(1,j)0 = Φ;

2. Given any 2-cell β in [0, 1
3j
]×I(1, j), with β = [0, 1

3j
]⊗α, for some α ∈ I(1, j)1, then ψ0

maps β0(k̄ − j)0
16 into BF

ρc(α)(2ǫc(α))+3ǫc(α)
(Tc(α)), so ψ0

(

β0(k̄ − j)0
)

⊂ BF
ǫ(Tc(α),δ,L)

(Tc(α))

by (5.36);

−−This is because Φ(α) ⊂ BF
2ǫc(α)

(Tc(α)), φδ
(

α(k)0
)

⊂ BF
ρc(α)(2ǫc(α))

(Tc(α)), and φ̄
(

α(k̄ −
j)0

)

⊂ BF
3ǫc(α)

(Tc(α))
17.

3. ψ0(y, x) = ∂[[Ωy,x]], Ωy,x ∈ C(M), for all (y, x) ∈W1;

−−This comes from property 2 of φδ and φ̄.

4. sup(y,x)∈W1
M

(

ψ0(y, x)
)

≤ max
{

supI(1,j+k)0 M(φδ), supI(1,k̄)0 M(φ̄)
}

≤ 2L− δ;

−−The last “ ≤ ” comes from property 4 of φδ and φ̄.

Therefore we can apply Proposition 5.8 for each 2-cell β = [0, 1
3j
]⊗ α in [0, 1

3j
]× I(1, j) to

extend ψ0|β0(k̄−j)0
to

ψ̃0,β : β(k̄ − j + kc(α))0 → Zn(M),

which satisfies:

(a) f(ψ̃0,β) ≤ b(1)
(

f(ψ0) + δ
)

≤ 2b(1)δ;

(b) ψ̃0,β([0], ·) = ψ0([0], ·)◦n(k̄−j+kc(α), k̄−j) = φδ◦n(k̄−j+kc(α), k) on α(k̄−j+kc(α))0,
and ψ̃0,β([

1
3j
], ·) = ψ0([

1
3j
], ·) ◦ n(k̄ − j + kc(α), k̄ − j) = φ̄ ◦ n(k̄ − j + kc(α), k̄ − j) on

α(k̄ − j + kc(α))0;

(c)

sup
β(k̄−j+kc(α))0

M(ψ̃0,β) ≤ sup
β0(k̄−j)0

M(ψ0) + δ ≤ max
{

sup
I(1,j+k)0

M(φδ), sup
I(1,k̄)0

M(φ̄)
}

+ δ

≤ sup
x∈α

M
(

Φ(x)
)

+ 2δ.

16Here β0(k̄ − j)0 = β0 ∩ I(1, k̄)0 × I(1, k̄)0.
17Here α(k̄ − j)0 = α ∩ I(1, k̄)0.



6 PROOF OF THE MAIN THEOREM 41

Also given any two adjacent 2-cells β = [0, 1
3j
] ⊗ α and β̄ = [0, 1

3j
] ⊗ ᾱ in [0, 1

3j
] × I(1, j), by

Proposition 5.8(ii), we know that ψ̃0,β ◦n(k̂− j, k̄− j+ kc(α)) = ψ̃0,β̄ ◦n(k̂− j, k̄− j+ kc(ᾱ)) =

ψ0 ◦ n(k̂ − j, k̄ − j) on β(k̂ − j)0 ∩ β̄(k̂ − j)0, so we can put all {ψ̃0,β} together and construct

the desired map

ψ : [0,
1

3j
](k̂ − j)0 × I(1, k̂)0 → Zn(M)

by letting ψ = ψ̃0,β ◦ n(k̂ − j, k̄ − j + kc(α)) on β(k̂ − j)0 for each 2-cell β = [0, 1
3j
] ⊗ α. It is

straightforward to check that ψ satisfies the requirement.

Now let us go back to finish the proof of Theorem 5.1. Take a sequence of positive numbers

{δi}, δi → 0, as i → ∞; then by Step I, we can construct a sequence of mappings {φi}, with
φi = φδi/c0 : I(1, ji + ki)0 → Zn(M)18. After extracting a subsequence, we can assume that

φi+1 is a (δi, ji+1 + ki+1)-extension of Φ. Then we can apply Lemma 5.10 to φi and φi+1, so

as to construct ψi satisfying Theorem 5.1(ii). The fact that φi satisfy Theorem 5.1(i)(iii)(iv)

come from properties 4,5,6 of φδ in Part I.

6 Proof of the main theorem

The main idea for proving Theorem 1.1 is to apply the Almgren-Pitts min-max theory to

the good families constructed in §3, so that we can obtain an optimal minimal hypersurface

satisfying the requirement. The idea is similar to the proof of [Z12, Theorem 1.1].

Given Σ ∈ S (1.2), we can define a mapping into
(

Zn(M
n+1), {0}

)

ΦΣ : [0, 1] →
(

Zn(M
n+1), {0}

)

(6.1)

as follows:

(i) When Σ ∈ S+ (3.2), let ΦΣ(x) = ∂[[Ωx]], where Ωx = {p ∈M : dΣ±(p) ≤ (2x−1)d(M)}.
Here dΣ± is the signed distance function (3.1), and d(M) is the diameter of M .

(ii) When Σ ∈ S− (3.4), let ΦΣ(x) = ∂[[Ωx]], where Ωx = {p ∈ M : dΣ(p) ≤ xd(M)}.
Here dΣ is the distance function to Σ.

By Proposition 3.4 and Proposition 3.6, ΦΣ satisfies:

Proposition 6.1. ΦΣ : [0, 1] →
(

Zn(M
n+1), {0}

)

is continuous under the flat topology, and

(a) ΦΣ(x) = ∂[[Ωx]], Ωx ∈ C(M) for all x ∈ [0, 1], and Ω0 = ∅, Ω1 =M ;

(b) supx∈[0,1]M
(

ΦΣ(x)
)

= Hn(Σ), if Σ ∈ S+;

(c) supx∈[0,1]M
(

ΦΣ(x)
)

= 2Hn(Σ), if Σ ∈ S−.

Remark 6.2. Notice that ΦΣ satisfies the requirement to apply Theorem 5.1.

18c0 is given in Lemma 5.10(c).
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Proof. (of Theorem 1.1) Given Σ ∈ S and ΦΣ (6.1), we can apply Theorem 5.1 to ΦΣ and get a

(1,M)-homotopy sequence SΣ = {φΣi }i∈N into
(

Zn(M
n+1,M), {0}

)

. By (5.1) and Proposition

6.1,

L({φΣi }i∈N) ≤
{ Hn(Σ), if Σ ∈ S+;

2Hn(Σ), if Σ ∈ S−.
(6.2)

Also by Theorem 5.1(iv), SΣ ∈ F−1
A

(

[[M ]]
)

∈ π#1
(

Zn(M
n+1,M), {0}

)

. Denote F−1
A

(

[[M ]]
)

by

ΠM . By Theorem 4.7, L(ΠM ) > 0. Using (6.2), we have that

L(ΠM ) ≤WM ,

where WM is defined in (1.3).

The Min-max Theorem 4.7 applied to ΠM gives a stationary varifold V =
∑l

i=1mi[Σi],

with mi ∈ N and {Σi} a disjoint collection of minimal hypersurfaces in S, such that L(ΠM ) =

‖V ‖(M) =
∑l

i=1miHn(Σi). Notice that there is only one connected component, denoted by

ΣA, by Theorem 2.11 as M has positive Ricci curvature, i.e. V = m[ΣA] for some m ∈ N,

m 6= 0. Therefore

mHn(ΣA) = L(ΠM ) ≤WM ≤
{ Hn(ΣA), if ΣA ∈ S+;

2Hn(ΣA), if ΣA ∈ S−,
(6.3)

where the last “ ≤ ” follows from the definition (1.3) of WM . Thus we have the following two

cases:

Case 1: If ΣA ∈ S+, orientable, then m ≤ 1, so m = 1, and Hn(ΣA) =WM ;

Case 2: If ΣA ∈ S−, non-orientable, then m ≤ 2, so m = 1 or m = 2.

In Case 1 when ΣA ∈ S+, to prove Theorem 1.1(i), we only need to show

Claim 4. In this case, ΣA has Morse index one.

Assume that the claim is false, i.e. the index of ΣA is no less than 2. By Definition 2.8,

there exists an open set Ω ⊂ ΣA with smooth boundary, such that Ind(Ω) ≥ 2. Then we can

find two nonzero L2-orthonormal eigenfunctions {v1, v2} ⊂ C∞
0 (Ω) of the Jacobi operator LΣA

with negative eigenvalues. A linear combination will give a v3 ∈ C∞
0 (Ω), such that

∫

Ω
v3 · LΣA

1dµ =

∫

Ω
1 · LΣA

v3 = 0, v3 6= 0. (6.4)

We can assume that Ω = U ∩ ΣA for some open set U ⊂ M\sing(ΣA). Let X̃ = v3ν with

ν the unit normal of ΣA, and extend it to a tubular neighborhood of ΣA, such that X̃ has

compact support in Ū . Let {F̃s}s∈[−ǫ,ǫ] be the flow of X̃, and denote Σt,s = F̃s(Σt), where

{Σt} is the family associated to ΣA as in Proposition 3.4. Notice that Σt,s = Σt outside U , and

{Σt,sxU}(s,t)∈[−ǫ,ǫ]×[−ǫ,ǫ] is a smooth family for small ǫ by Proposition 3.4(c). Denote f̃(t, s) =

Hn(Σt,s∩U). Then ∇f̃(0, 0) = 0 (by minimality of ΣA),
∂2

∂t∂s f̃(0, 0) = −
∫

Ω v3LΣA
1dµ = 0 (by
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(6.4)), ∂2

∂t2 f̃(0, 0) = −
∫

Ω 1 · LΣA
1dµ < 0 (by Ricg > 0), and ∂2

∂s2 f̃(0, 0) = −
∫

Ω v3LΣA
v3dµ < 0

(as v3 is a linear combination of eigenfunctions of LΣ0 with negative eigenvalues).

Now consider Hn(Σt,s) = Hn(Σt,s ∩ U) +Hn(Σt,s\U) = f̃(t, s) +Hn(Σt\U ). For (t, s) ∈
[−ǫ, ǫ]× [−ǫ, ǫ], s 6= 0, with ǫ small enough, by Taylor expansion,

Hn(Σt,s) = f̃(t, 0) +
∂

∂s
f̃(t, 0)s +

∂2

∂s2
f̃(t, 0)s2 + o(s2) +Hn(Σt\U)

= f̃(t, 0) +
{ ∂

∂s
f̃(0, 0) +

∂2

∂t∂s
f̃(0, 0)t + o(t)

}

s+
∂2

∂s2
f̃(t, 0)s2 + o(s2) +Hn(Σt\U )

= f̃(t, 0) +
∂2

∂s2
f̃(t, 0)s2 + o(ts+ s2) +Hn(Σt\U)

< f̃(t, 0) +Hn(Σt\U )

= Hn(Σt) ≤ Hn(ΣA),

where the fourth “ < ” follows from the fact that ∂2

∂s2
f̃(t, 0) < 0 for t small enough (as

∂2

∂s2
f̃(0, 0) < 0). For |t| ≥ ǫ, as Hn(Σt) < Hn(ΣA), we can find δ > 0, δ ≤ ǫ small enough,

such that Hn(Σt,δ) < Hn(ΣA). In summary,

max{Hn(Σt,δ) : −d(M) ≤ t ≤ d(M)} < Hn(ΣA).

As {Σt,δ} are deformed from {Σt} by the ambient isotopy F̃δ : M → M , we can associate it

with a mapping Φδ : [0, 1] →
(

Zn(M
n+1,F), {0}

)

as in (6.1)(i), such that

• maxx∈[0,1]M
(

Φδ(x)
)

= maxtHn(Σt,δ) < Hn(ΣA) = L(ΠM );

• Φδ(x) = ∂[[Ω̃x]], Ω̃x = F̃δ(Ωx) ∈ C(M), for all x ∈ [0, 1].

Applying Theorem 5.1 to Φδ gives a (1,M)-homotopy sequence Sδ = {φδi }i∈N, such that

Sδ ∈ ΠM , and

L(Sδ) ≤ max
x∈[0,1]

M
(

Φδ(x)
)

< L(ΠM ),

which is a contradiction to the definition of L(ΠM ) (4.4). So we finish the prove of Claim 4

and hence Theorem 1.1(i).

In Case 2 when ΣA ∈ S−. By Proposition 4.8, m must be an even number. Hence m = 2,

and 2Hn(ΣA) =WM . To prove Theorem 1.1(ii), we only need to show

Claim 5. In this case, ΣA is stable, i.e. Ind(ΣA) = 0.

The proof is similar to Claim 4. If the claim is false, then there exists an open set Ω ⊂ ΣA

with smooth boundary, such that IndD(Ω) ≥ 1. Denote Σ̃A by the orientable double cover

of ΣA, and Ω̃ the lift-up of Ω; then there exists an anti-symmetric eigenfunction φ̃ ∈ C∞
0 (Ω̃)

of the Jacobi operator LΣ̃A
of Σ̃A with negative eigenvalue (c.f. §2.4). The anti-symmetric

condition directly implies that:

∫

Ω̃
φ̃ · LΣ̃A

1dµ =

∫

Ω̃
1 · LΣ̃A

φ̃dµ = 0. (6.5)
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Let ν̃ be the unit normal of Σ̃A, and π : Σ̃A → ΣA the covering map. The anti-symmetric

condition of φ̃ implies that φ̃ν̃ is symmetric on Σ̃A (c.f. §2.4). Hence denote X̃ = π∗(φ̃ν̃) by

the push-forward of φ̃ν̃ to ΣA under π. Similarly as above, extend X̃ to a neighborhood of

ΣA, and denote {F̃s}s∈[−ǫ,ǫ] by the flow associated to X̃ . Let {Σt} be the family associated to

ΣA by Proposition 3.6, where we assume that Σ0 is a double cover of ΣA; then {Σt}t∈[0,ǫ] is a
smooth family away from sing(ΣA) for small ǫ by Proposition 3.6(c). Let Σt,s = F̃s(Σt); then

Σt,s are deformations of Σt away from sing(ΣA) by ambient isotopies. By similar argument

as in Claim 4 using (6.5) instead of (6.4), we can find δ > 0 small enough, such that

max{Hn(Σt,δ) : 0 ≤ t ≤ d(M)} < 2Hn(ΣA).

Then we can get a contradiction by discretizing the family {Σt,δ} in the same way. Now we

finish the proof.

7 Appendix

7.1 Reverse statement of Proposition 5.3. Now we list the detailed argument to get

the reverse statement of Proposition 5.3 used in the proof. In fact, Proposition 5.3 has another

equivalent formulation as follows:

Proposition 7.1. Given δ, L, l,m, T as in Proposition 5.3, there exists k = k(l,m, T, δ, L) ∈
N, such that for any ρ > 0, there exists a ǫ = ǫ(ρ, l,m, T, δ, L) > 0, such that for any 0 < s < ǫ,

and φ as in (5.2), there exists

φ̃ : I(m,k)0 → BF
ρ (T ), with φ̃(y) = ∂[[Ωy]],

Ωy ∈ C(M), y ∈ I(m, l)0, and satisfying (i)(ii)(iii)(iv) in Proposition 5.3.

Now we show that this formulation implies Proposition 5.3. In fact, under the assumption

in the above proposition, we can fix an ρ0 = 1 > 0, and take ǫ = ǫ(ρ0, l,m, T, δ, L). Given

0 < s < ǫ, and φ as in (5.2), we can define

ρφ,s = inf{ρ : ∃ ρ > 0, and φ̃ : I(m,k)0 → BF
ρ (T ), with φ̃(y) = ∂[[Ωy]],Ωy ∈ C(M),

satisfying (i)(ii)(iii)(iv) in Proposition 5.3}.
(7.1)

ρφ,s is well-defined since ρ0 belongs to the above set, and 0 ≤ ρφ,s ≤ ρ0. Now define the

function ρ : [0, ǫ) → R
1
+,

ρ(s) = 2 sup{ρφ,s : φ is any map as in (5.2)}.

ρ(s) is well-defined, as ρ(s) ≤ 2ρ0. Also from the definition, the function ρ depends only on

l,m, T, δ, L.

Claim 6. ρ(s) → 0, as s→ 0.
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Proof. For any σ > 0 small enough, by Proposition 7.1 we can find ǫσ = ǫ(σ, l,m, T, δ, L) > 0,

so that if 0 < s < ǫσ, then every φ as in (5.2) can be extended to φ̃ : I(m,k)0 → BF
σ (T )

satisfying the requirement as in (7.1); hence ρφ,s ≤ σ, and ρ(s) ≤ 2σ by definition.

By taking k, ǫ, ρ(s) as above, Proposition 7.1 implies Proposition 5.3. The reverse is trivial.

To get the reverse statement of Proposition 5.3, we can use the reverse statement of

Proposition 7.1.

7.2 Some basic facts of exponential map. Here we collect a few basic facts about ex-

ponential maps summarized in [P81, §3.4] that we need to use for the discretization procedure

in Lemma 5.7. We will use the following notions:

• rp(·) denotes the distance function of Mn+1 to p ∈ M , and B(p, r) denotes the closed

ball centered at p of radius r in M ;

• Given λ ≥ 0, µ(λ) : Rn+1 → R
n+1 denotes the scaling map by: µ(λ) : x→ λx;

• Given a map f : (W, g1) → (Z, g2), Lip(f) denotes the Lipschitz constant with respect

the metrics g1, g2.

Given p ∈ M , let expp : TpM ∼= R
n+1 → M be the exponential map. First, let us list

several basic facts in [P81, §3.4(4)]. Given q ∈M , and 0 < ǫ < 1, there exists a neighborhood

Z ⊂ M of q, such that, if p ∈ Z, W = exp−1
p (Z) ⊂ TpM ∼= R

n+1, and E = expp|W , then the

following properties hold:

(a) E is a C2 diffeomorphism onto Z;

(b) Z is strictly geodesic convex;

(c) (LipE)n(LipE−1)n ≤ 2;

(d) Lip(rp|Z) ≤ 2;

(e) If x ∈ Z and 0 ≤ λ ≤ 1, then E ◦ µ(λ) ◦E−1(x) ∈ Z;

(f) if x ∈ Z, 0 ≤ λ ≤ 1, and v ∈ ΛnTxM (n-th wedge product of TxM [Si83, §25]), then

‖D
(

E ◦ µ(λ) ◦E−1
)

∗
v‖ ≤ λn

(

1 + ǫ(1− λ)
)

‖v‖.

Also λn
(

1 + ǫ(1− λ)
)

≤ 1 for all 0 ≤ λ ≤ 1, ǫ < n/2.

Now we list a few facts about scaling of currents in Euclidean spaces as in [P81, §3.4(5)(6)(7)].

Given r > 0, 0 ≤ λ ≤ 1, denote B(0, r) by the closed ball of radius r in R
n+1, and T ∈

Zn−1(∂B(0, r)), then we can define the cone of T over the annulusA(0, λr, r) = B(0, r)\B(0, λr)

as [Si83, 26.26]

S = δ0X(T − µ(λ)#T ) ∈ Zn(R
n+1),

then

(g) ∂S = T − µ(λ)#T ;
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(h) M(S) = rn−1(1− λn)M(T );

(i) spt(S) ⊂ A(0, λr, r), where spt(S) is the support of S [Si83, 26.11].

Given λ ≥ 0, and T ∈ In(R
n+1), then it is easily seen that

M(µ(λ)#T ) = λnM(T ).

Using notions as above,

(j) Given r > 0, 0 ≤ λ ≤ 1, B(p, r) ⊂ Z, and T ∈ Zn

(

B(p, r), ∂B(p, r)
)

, then by (f),

M
(

(E ◦ µ(λ) ◦E−1)#T
)

≤ λn(1 + ǫ(1− λ))M(T ) ≤ M(T ); (7.2)

(k) Denote Sλ = E#

(

δ0X
[

E−1
# (∂T )− (µ(λ) ◦ E−1)#(∂T )

])

, then by (g)(h)(i),

∂Sλ = ∂T − ∂
[

(E ◦ µ(λ) ◦ E−1)#T
]

, spt(Sλ) ⊂ A(p, λr, r) = B(p, r)\B(p, λr),

M(Sλ) ≤ (LipE)n(LipE)−nrn−1(1− λn)M(∂T ) ≤ 2rn−1(1− λn)M(∂T ). (7.3)

Finally let us recall the contraction map in [P81, §3.4(8)]. For r > 0, define

h(r) : Rn+1 → R
n+1,

by h(r)(x) = x if |x| ≤ r, and h(r)(x) = r|x|−1x if |x| > r. If V ∈ Vn(R
n+1), then

(l) spt(h(r)#V ) ⊂ B(0, r);

(m) (h(r)#V )xGn

(

B0(0, r)
)

= V xGn

(

B0(0, r)
)

19;

(n) M(h(r)#V ) ≤ M(V ).

7.3 Isoperimetric choice. We refer the notions to §4.2.

Lemma 7.2. Given T1, T2 = Zn(M
n+1), with F(T1, T2) ≤ νM , assume that T1 = ∂[[Ω1]],

T2 = ∂[[Ω2]], Ω1,Ω2 ∈ C(M), and M
(

[[Ω2]] − [[Ω2]]
)

< vol(M)/2, then the isoperimetric

choice of T2 − T1 is [[Ω2 − Ω1]].

Proof. Let Q ∈ In+1(M) be the isoperimetric choice of T2 − T1, then M(Q) = F(T1, T2) ≤
M

(

[[Ω2 − Ω1]]
)

, and ∂Q = T2 − T1. As T2 − T1 = ∂[[Ω2 − Ω1]], ∂
(

Q − [[Ω2 − Ω1]]
)

= 0 in

In+1(M
n+1). The Constancy Theorem [Si83, 26.27] implies that Q− [[Ω2 −Ω1]] = n[[M ]] for

some n ∈ Z. But M
(

Q− [[Ω2 −Ω1]]
)

≤ M(Q)+M([[Ω2 −Ω1]]) ≤ 2M([[Ω2 −Ω1]]) < vol(M),

hence n = 0, and Q = [[Ω2 − Ω1]].

We will also need a more subtle technical lemma concerning the isoperimetric choice.

Lemma 7.3. Given T1, T2 as above, with T1 6= 0, there exists δ > 0 (depending on T1), such

that if F(T1, T2) ≤ δ, then the isoperimetric choice of T2 − T1 is [[Ω2 − Ω1]].

19B0(0, r) denotes the open ball of radius r in R
n+1.
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Proof. We use the same notions as in the proof of the above Lemma.

T1 6= 0 implies that Ω1 6= ∅ and Ω1 6=M . Take

δ =
1

2
min{Hn+1(Ω1),Hn+1(M\Ω1)}.

Then 0 < δ < vol(M)/2. As we always assume that Ω1, Ω2 have the same orientation as

M , hence M
(

[[Ω2]]− [[Ω2]]
)

= Hn+1(Ω1△Ω2), where Ω1△Ω2 is the symmetric difference, i.e.

Ω1△Ω2 = (Ω1\Ω2) ∪ (Ω2\Ω1). Let Q be the isoperimetric choice of T2 − T1, by the above

proof Q − [[Ω2 − Ω1]] = n[[M ]]. If n = 0, the proof is done. If n 6= 0, then |n|vol(M) =

M(Q − [[Ω2 − Ω1]]) ≤ M(Q) +M([[Ω2 − Ω1]]) ≤ F(T1, T2) +Hn+1(Ω1△Ω2) ≤ δ + vol(M) <

2vol(M), hence n = ±1. If n = 1, then Q = [[M ]] + [[Ω2 − Ω1]] = [[M − Ω1]] + [[Ω2]]; hence

M(Q) ≥ Hn+1(M\Ω1) > δ (as M − Ω1 has the same orientation as Ω2), a contradiction. If

n = −1, then −Q = [[M ]] − [[Ω2 − Ω1]] = [[M − Ω2]] + [[Ω1]]; hence M(Q) ≥ Hn+1(Ω1) > δ

(as M − Ω2 has the same orientation as Ω1), a contradiction.
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