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On the free boundary min-max geodesics

Xin Zhou∗

April 7, 2015

Abstract: Given a Riemannian manifold and a closed submanifold, we find a geodesic

segment with free boundary on the given submanifold. This is a corollary of the min-max

theory which we develop in this article for the free boundary variational problem. In

particular, we develop a modified Birkhoff curve shortening process to achieve a strong

“Colding-Minicozzi” type min-max approximation result.

1 Introduction

Let (Mn, g) be a complete and homogeneously regular Riemannian manifold, and Nm a

closed submanifold. We consider the problem of finding a geodesic in M with end points on

N , which meets N orthogonally. This is a variational problem with free boundary conditions.

We are interested in the case π1(M,N) = 0, where every curve with end points on N can be

shrunk to a point. Hence direct variational method fails in this situation, and we explore the

min-max methods. Similar idea was first given by Birkhoff in the 1910s to find closed geodesics

on the 2-sphere [B, V.7] (See [CM11, §5][Cr88, §2] for more details). In brief, given a sweep-

out, i.e. 1-parameter family of closed curves which cover the 2-sphere, Birkhoff developed a

curve shortening process to make each slice of the sweep-out as tight as possible, and then

obtained a closed geodesic as the limit of slices with maximal length. Since then, more results,

such as the existence of multiple geodesics or even infinitely many geodesics, have been studied

extensively (c.f. [Kl82, Gr]). Recently, a strong version was given by Colding and Minicozzi

[CMM08], where they found good approximating sweep-outs, such that “every curve in the

sweepouts with length close to the longest must be close to a closed geodesic” (see [LW] for a

proof using harmonic map flow).

In this paper, we develop a version of min-max methods for free boundary geodesics with

a strong approximation result in the sense of Colding-Minicozzi, i.e. “every curve in the

tightened sweepouts with length close to the longest must be close to a free boundary geodesic”.

The existence of a nontrivial free boundary geodesic is then a direct corollary. Such strong

property is shared by many min-max constructions of critical points for variational problems,

c.f. [AF65, §12.5][P81, §4.3][CD03, Proposition 3.1][CMM08, Theorem 1.9][CMR08, Theorem
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1.14], and is very useful in other geometric problems, e.g. the proof of finite time extinction

of 3-dimensional Ricci flow [CMR08].

The existence of geodesic with free boundary was discussed in various special cases before.

Weinstein produced free boundary geodesic in a standard ball with Finsler metrics [W, §4], by

embedding the ball to a sphere. Nabutovsky and Rotman [NR] studied the multiple solutions

of geodesic loops where the constrained submanifold N is a point. Compared to them, we

extend the existence result to the full generality—the total space M and the constraint N can

be any manifold and submanifold.

Besides the case of geodesics, min-max methods have been studied widely in high dimen-

sions [P81, Jo89, F00, CD03, CMR08, MN12, L14]. Among them, the free boundary conditions

were studied by Fraser [F00] in the case of harmonic disks, and by Jost [Jo89] and Li [L14] in

the case of embedded minimal disks.

Let us introduce the notations and state the main results here. By the Nash embedding

theorem, we can assume that (M,g) is isometrically embedded in some Euclidean space R
N .

Denote ds20 by the Euclidean metric. By scaling, we can assume that

(M1) supM ‖AM‖ ≤ 1
16 , supN ‖AN‖ ≤ 1

16 , where AM and AN are the second fundamental

forms of the embedding M ⊂ R
N and N ⊂ R

N respectively;

(M2) The injective radius of M is at least 8, and the curvature of M is at most 1
64 ;

(M2)′ The injective radius of N is at least 4, and the focal radius of N is at least 4;

(M3) For any x, y ∈ M , with |x− y|ds20 ≤ 8, distM (x, y) ≤ 2|x− y|;

(M3)′ For any x, y ∈ N , with |x− y|ds20 ≤ 8, distN (x, y) ≤ 2|x− y|.

Remark 1.1. If M is compact, then the above constraints can be easily achieved by scaling.

When M is noncompact, we can assume that the conditions hold in a large convex domain

containing N .

Let I = [0, 1] be the unit interval, and we will work in the Sobolev space W 1,2(I,M),

where the W 1,2-norm of a map f : I → M ⊂ R
N is given by

‖f‖2W 1,2 =

∫

[0,1]
|f(x)|2 + |f ′(x)|2dx.

The energy of f is defined by

E(f) =

∫

[0,1]
|f ′(x)|2dx.

Now we can define the total variational space as follows:

Definition 1.2. Let Ω be the space of continuous mappings σ : [0, 1] × I → M , such that

using coordinates (t, x) ∈ [0, 1] × I,

• σ(t, ·) ∈ W 1,2(I,M), and σ(t, 0), σ(t, 1) ∈ N , for all t ∈ [0, 1];

• t → σ(t, ·) is continuous as a map from [0, 1] to W 1,2(I,M);
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• σ(0, ·), σ(1, ·) are constant maps.

Each σ is called a sweep-out.

Remark 1.3. The notion of sweep-out comes from the special case when (M,∂M) is diffeo-

morphic to the unit disk (D, ∂D), then we can choose σ(t) to sweep out the whole disk.

Given σ0 ∈ Ω, we let [σ0] to be the set of all σ ∈ Ω which is homotopic to σ0 in Ω. Then

we can define the width associated to σ0 as:

W = W
(
[σ0]

)
= inf

σ∈[σ0]
max
t∈[0,1]

E
(
σ(t)

)
. (1.1)

The next result says that the width is always achieved by a geodesic of M with free boundary

on N .

Theorem 1.4. Given σ0 ∈ Ω, with W ([σ0]) > 0, there exists a nontrivial geodesic γ : I → M

with free boundary on N , i.e. γ(0), γ(1) ∈ N , γ′(0), γ′(1) ⊥ N , and E(γ) = W[σ0].

Remark 1.5. When N bounds a non-contractable disk in M , we can find σ0 with W ([σ0]) > 0

(see the discussion in the beginning of §4).

Theorem 1.4 is a direct corollary of the following stronger theorem, which says that “almost

maximal implies almost critical”.

Theorem 1.6. Given σ0 ∈ Ω, with W ([σ0]) = W0 > 0, then there exists a sequence of

sweep-outs {γj}j∈N ⊂ [σ0], with

lim
j→∞

max
t∈[0,1]

E
(
γj(t)

)
= W0,

such that, for any ǫ > 0, there exists a δ > 0, and if j > 1
δ , and if for some t0 ∈ [0, 1]

E
(
γj(t0)

)
> W0 − δ, (1.2)

then dist(γj(t0), G) < ǫ, where G is the space of immersed geodesics with free boundary on N .

Remark 1.7. γj(t) will be piecewise geodesic by our construction, soE
(
γj(t0)

)
= Length2

(
γj(t0)

)
,

hence (1.2) says that the length of γj(t0) is almost maximal among the sweep-out γj(t).

The idea is to adapt the Birkhoff’s curve shortening process (BCSP) to manifold with a

constraint submanifold. Briefly, given a closed curve γ with 2L evenly spaced break points

{x0, x1, · · · , x2L = x0} ⊂ S1, the BCSP first replaces each piece γ|[x2i,x2i+2] on even inter-

vals by a geodesic segment connecting γ(x2i) with γ(x2i+2), and then repeats the geodesic

replacement process on odd intervals [x2i−1, x2i+1]. In our case, given a curve γ : [0, 1] → M ,

γ(0), γ(1) ∈ N , with 2L+ 1 evenly spaced break points {x0 = 0, x1, · · · , x2L = 1} ⊂ [0, 1], we

will first replace the boundary piece γ|[0,x2] (and γ|[x2L−2,1]) by geodesic segment γ̃ connecting

γ(x2) (and γ(x2L−2)) to N, and then do replacements on inner pieces γ|[x2i,x2i+2], i 6= 0, L− 1

and γ|[x2i−1,x2i+1] as BCSP. Our modified BCSP satisfies properties analogous to BSCP (§3).
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Among them, one key ingredient is to show that the W 1,2-norm difference ‖γ|[0,x2] − γ̃‖1,2 is

controlled by the length difference Length(γ|[0,x2])−Length(γ̃) (Lemma 3.2). This is achieved

by certain convexity estimates, which will be useful in other free boundary variational prob-

lems.

The paper is organized as follows. In §2, we collect several preliminary results. In §3, we

introduce the modified curve shortening process and several key properties. In §4, we apply

the curve shortening process to sweep-outs and finish the proof.

Acknowledgement: This paper is based upon work supported by the National Science Foundation

under Grant No. 0932078 000, while the author was visiting the Mathematical Science Research

Institute in Berkeley, California, during the Fall semester of 2013. The author would like to than Rick

Schoen, Toby Colding and Bill Minicozzi for discussions.

2 Preliminary results

Now we summarize several preliminary results in this section. The first fact is that the

W 1,2-norm bounds imply the Hölder continuity, i.e. given x, y ∈ I, using the Cauchy-Schwartz

inequality,

|f(x)− f(y)|2 ≤
(
∫ y

x
|f ′|

)2
≤ |x− y|

∫

I
|f ′|2. (2.1)

Thus f is in C
1
2 if f is in W 1,2, and the C

1
2 -norm is bounded by the W 1,2-norm.

The second important result is the Wirtinger inequality and the modified Wirtinger in-

equality. Let us first state the Wirtinger inequality, which was used a lot in studying the

existence of closed geodesics by Colding and Minicozzi [CM11, page 165]. Given L > 0, let

f ∈ W 1,2([0, L],R), with f(0) = f(L) = 0, then
∫ L

0

(
f(x)

)2
dx ≤

L2

π2

∫ L

0
|f ′(x)|2dx.

For the modified Wirtinger inequality, we want similar estimates, while only assuming that

the function is zero at one of the boundary points of [0, L]. Precisely, we have

Lemma 2.1. Let f ∈ W 1,2([0, L],R), with f(0) = 0, then
∫ L

0

(
f(x)

)2
dx ≤

L2

2

∫ L

0
|f ′(x)|2dx.

Proof. Using the fundamental theorem of calculus, f(x) =
∫ x
0 f ′(s)ds. By the Cauchy-

Schwartz inequality,

|f(x)|2 ≤
(
∫ x

0
|f ′(s)|ds

)2
≤ x

∫ L

0
|f ′(s)|2ds.

So ∫ L

0
|f(x)|2dx ≤

∫ L

0
x
(
∫ L

0
|f ′(s)|2ds

)
dx =

L2

2

∫ L

0
|f ′(s)|2ds.
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The last fact is as follows. It appears in [CM11, Lemma 5.2], and we need a version with

better constants. It just comes out as a careful reproof of [CM11, Lemma 5.2], and we give

the details here for completeness.

Lemma 2.2. If x, y ∈ M , then |(x−y)⊥| ≤ 1
8 |x−y|2, where (x−y)⊥ is the normal component

of (x − y) to M at y in R
N . Similar inequality also holds when x, y ∈ N , and when we take

(x− y)⊥ to be the normal component of (x− y) to N at y in R
N .

Proof. If |x− y| ≥ 8, then it is trivially true. Assume now that |x− y| ≤ 8. Choose α : [0, l] →

M as the minimizing unit speed geodesic from y to x in M (which exists by (M2)), hence

l = distM (x, y) ≤ 2|x− y| by (M3). Let V be the unit normal vector

V =
(x− y)⊥

|(x− y)⊥|
,

so 〈α′(0), V 〉 = 0. Hence

|(x− y)⊥| = 〈(x− y), V 〉 =

∫ l

0
〈α′(s), V 〉ds =

∫ l

0
〈α′(0) +

∫ s

0
α′′(t)dt, V 〉ds,

≤

∫ l

0

∫ s

0
|α′′(t)|dtds ≤

∫ l

0

∫ s

0
|AM (α(t))||α′(t)|2dtds,

≤
1

2
l2 sup

M
|AM | ≤

1

8
|x− y|2.

(2.2)

The same proof works forN , as it satisfies the same properties asM as embedded submanifolds

of RN .

3 Curve shortening process

Take L ∈ N to be a large integer. Let Λ be the space of piecewise linear maps1 γ : I → M

parametrized proportional to the arc-length with no more than L− 1 break points, such that

γ(0), γ(1) ∈ N , and each geodesic segment has length at most 1, with Lipschitz bound L.

Denote G ⊂ Λ to be the set of immersed geodesics with free boundary lying on N . We will

use the distance and topology on Λ given by the W 1,2-norms on W 1,2(I,M).

In this section, we will construct the modified Birkhoff curve shortening map Ψ : Λ → Λ,

so that the following properties are satisfied2:

(1) Ψ(γ) depends on γ continuously;

(2) Ψ(γ) is homotopic to γ, and Length
(
Ψ(γ)

)
≤Length(γ);

(3) There is a continuous function φ : [0,∞) → [0,∞), with φ(0) = 0, such that,

dist2
(
γ,Ψ(γ)

)
≤ φ

(Length2(γ)− Length2
(
Ψ(γ)

)

Length2
(
Ψ(γ)

)
)
;

1By linear map, we mean a (constant speed) geodesic.
2Similar map and properties appear in [CM11, page 165] in the case of closed curves.
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(4) If Ψ(γ) = γ, then γ ∈ G, i.e. fixed points of Ψ are immersed geodesics with free

boundary lying on N ;

(5) Given ǫ > 0, there exists δ > 0, such that if γ ∈ Λ, and dist(γ,G) ≥ ǫ, then

Length
(
Ψ(γ)

)
≤ Length(γ)− δ.

3.1 Defining Ψ. Fix a partition of I = [0, 1] by choosing 2L − 1 successive evenly spaced

break points:

x0 = 0, x1, x2, · · · , x2L = 1 ∈ [0, 1],

such that |xj+1 − xj| =
1
2L . Similarly to that in [CM11], Ψ is defined by four steps:

Step 1. Replace γ on the boundary even intervals [0, x2] and [x2L−2, 0] by the minimizing

geodesics from γ(x2) and γ(x2L−2) to N respectively3, and then replace γ on each inner

even interval [x2j , x2j+2] by the linear map with the same endpoints to get a piecewise

linear map γe : [0, 1] → M .

Step 2. Reparametrize γe to get a constant speed curve γ̃e, i.e. γ̃e is parametrized propor-

tional to the arc length.

Step 3. Denote x̃j to be the image of xj under this reparametrization, i.e. γe(xj) = γ̃e(x̃j).

Replace γ̃e on each odd interval [x̃2j−1, x̃2j+1] by the linear map with the same endpoints

to get a piecewise linear map γo : [0, 1] → M .

Step 4. Reparametrize γo to get a constant speed curve γ̃o, which is then Ψ(γ).

In fact, each of the steps is energy non-increasing. The linear replacements obviously

reduce the energy, as the linear maps (with both fixed endpoints, or with one endpoint fixed

and the other free on N) minimize energy. The reparametrizations reduce the energy because

of the Cauchy-Schwartz inequality, since for a map γ : [0, 1] → M ,

Length2(γ) ≤ E(γ),

where equality holds if and only if γ has constant speed almost everywhere. Now we will prove

these properties of Ψ in the following.

3.2 Property (3) of Ψ. Using the triangle inequality, we only need to bound dist(γ, γe)

and dist(γe, γ̃e) by the the difference of their length square (as well as those in Step 3 and Step

4). In [CMM08, CM11], Colding and Minicozzi showed that the W 1,2-distance of two curves

σ, σ̃ can be bounded by the difference of their length square when σ̃ is a linear map with the

same endpoints as σ, and they also showed analogous bound for the reparametrization as Step

2 and Step 4. Hence the bounds of dist(γ̃e, γo) and dist(γo, γ̃o) are almost the same as those

in [CM11, §3.2], except that the parameter space is [0, 1] instead of S1. The only estimate left

in our case is to find similar bound of dist(σ, σ̃) when σ has one endpoint on N and σ̃ is the

minimizing geodesic from the other endpoint of σ to N . Particularly,

3Such geodesics exist as γ(x2) and γ(x2L−2) lie within the boundary cut locus by (M2)′.
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Lemma 3.1. ([CM11, Lemma 5.1]) There exists C so that if I is an interval of length at

most 1
L , σ1 : I → M is a Lipschitz curve with |σ′

1| ≤ L, and σ2 : I → M is the minimizing

geodesic with the same endpoints, then

dist2(σ1, σ2) ≤ C
(
E(σ1)− E(σ2)

)
. (3.1)

We have the analog for the free boundary case.

Lemma 3.2. There exists C ′ so that if I is an interval of length at most 1
L , say I = [0, l],

l ≤ 1
L , σ1 : I → (M,N) is a Lipschitz curve with |σ′

1| ≤ L, with one endpoint lying on

N , i.e. σ1(l) ∈ N , and σ2 : I → (M,N) is the minimizing geodesic from σ2(0) to N , i.e.

σ2(0) = σ1(0), σ2(l) ∈ N and σ′
2(l) ⊥ N , then

dist2(σ1, σ2) ≤ C ′
(
E(σ1)− E(σ2)

)
. (3.2)

Proof. Integration by part and using that σ1 and σ2 are equal at 0,

∫

I
|σ′

1|
2 −

∫

I
|σ′

2|
2 −

∫

I
|σ′

1 − σ′
2|
2 = 2

∫

I
〈σ′

2, (σ1 − σ2)
′〉ds

= 2〈σ′
2, (σ1 − σ2)〉|s=l − 2

∫

I
〈(σ1 − σ2), σ

′′
2 〉ds.

(3.3)

For the first term in the last line, as σ2 is a minimizing geodesic, with length less or equal

than that of σ1, |σ
′
2| ≤ L. Also by the fundamental theorem of calculus, the Cauchy-Schwartz

inequality, and the fact that σ1(0) = σ2(0),

|(σ1 − σ2)(l)| = |

∫ l

0
(σ1 − σ2)

′ds| ≤

∫ l

0
|(σ1 − σ2)

′|ds

≤ l
1
2
(
∫ l

0
|(σ1 − σ2)

′|2ds
) 1

2 .

(3.4)

Since σ′
2(l) is normal to N , we can use Lemma 2.2 for x = σ1(l) ∈ N and y = σ2(l) ∈ N ,

hence

|〈σ′
2, (σ1 − σ2)〉|s=l| ≤

1

8
|σ′

2(l)| · |(σ1 − σ2)(l)|
2 ≤

1

8
L · l

(
∫ l

0
|(σ1 − σ2)

′|2ds
)

≤
1

8

(
∫

I
|σ′

1 − σ′
2|
2ds

)
.

(3.5)

For the second term in the last line of (3.3), we can use similar argument as in [CMM08,

CM11]. Using the geodesic equation of σ2 in M , i.e. σ′′
2 = AM (σ′

2, σ
′
2), where AM is the second

fundamental form of the embedding of M in R
N , and by (M1) in the Section 1,

|σ′′
2 | ≤ (sup

M
|AM |)|σ′

2|
2 ≤

1

16
|σ′

2|
2 ≤

1

16
L2.
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Since σ′′
2 is normal to M , we can use Lemma 2.2 for x = σ1(s) ∈ M and y = σ2(s) ∈ M , s ∈ I,

hence

|

∫

I
〈(σ1 − σ2), σ

′′
2 〉ds| ≤

∫

I

1

8
|σ′′

2 | · |σ1 − σ2|
2ds ≤

1

8
·
L2

16

∫

I
|σ1 − σ2|

2ds

≤
1

128
L2 ·

l2

2

∫

I
|σ′

1 − σ′
2|
2ds ≤

1

8

∫

I
|σ′

1 − σ′
2|
2ds,

(3.6)

where we used the modified Wirtinger inequality (c.f. Lemma 2.1) in the third “ ≤ ”.

Now plug (3.5)(3.6) into (3.3),
∫

I
|σ′

1 − σ′
2|
2ds ≤ 2

(
∫

I
|σ′

1|
2ds−

∫

I
|σ′

2|
2ds

)
.

Applying the modified Wirtinger inequality (c.f. Lemma 2.1) with the above inequality, we

can get (3.2).

Now we can finish the proof of Property (3).

Proof. (of Property (3) of Ψ) For Step 1 of Ψ, apply Lemma 3.2 on the boundary intervals

[0, x2] and [x2L−2, 1], and use Lemma 3.1 on the inner intervals [x2j , x2j+2], j = 1, · · · , L− 2,

and sum them together, we have

dist2(γ, γe) ≤ C
(
E(γ)− E(γe)

)
≤ C ′

(Length2(γ)− Length2(γe)

Length2(γe)

)
, (3.7)

where in the last “ ≤ ” we used the fact that E(γ) = Length2(γ) as γ has constant speed,

and Length2(γe) ≤ E(γe), and Length(γe) ≤ Length(γ) ≤ L.

The bound of dist(γe, γ̃e) is similar to that in [CMM08, CM11], but as different parametriza-

tion is used here, we will give the details for completeness. In fact, γe can be viewed as a

reparametrization of γ̃e, i.e. γe = γ̃e ◦P , where P : I → I is a monotone piecewise linear map.

Since γ̃e has constant speed, |γ̃′e| = Length(γ̃e)/1 = Length(γ̃e). Also
∫

I P
′ds = 1, hence

∫

I
(P ′ − 1)2ds =

∫

I
|P ′|2ds− 1 =

∫

I

( |γ′e|

|γ̃′e ◦ P |

)2
ds− 1

=
1

Length2(γ̃e)

∫

I
|γ′e|

2ds− 1 =
E(γe)− Length2(γ̃e)

Length2(γ̃e)
,

≤
Length2(γ)− Length2(γ̃e)

Length2(γ̃e)
,

(3.8)

where in the last “ ≤ ” we used the fact that E(γe) ≤ E(γ) = Length2(γ) as γ has constant

speed.

To bound dist(γe, γ̃e), as γe(0) = γ̃e(0) and γe(1) = γ̃e(1), we can combine the Wirtinger

inequality with the following estimate,
∫

I
|γ′e − γ̃′e|

2ds =

∫

I
|(γ̃′e ◦ P )P ′ − γ̃′e|

2ds

≤ 2

∫

I
|(γ̃e

′ ◦ P )P ′ − γ̃′e ◦ P |2ds+ 2

∫

I
|γ̃′e ◦ P − γ̃′e|

2ds

(3.9)
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For the first term, using the fact that γ̃e has constant speed, we have |γ̃′e| ≤ L, hence
∫

I
|(γ̃′e ◦ P )P ′ − γ̃′e ◦ P |2ds ≤ sup

I
|γ̃′e|

2 ·

∫

I
|P ′ − 1|2ds ≤ L2

∫

I
|P ′ − 1|2ds. (3.10)

For the second term, using the fact that γ̃e is a piecewise linear map, |γ̃′′e | = |AM (γ̃′e, γ̃
′
e)| ≤

L2

16

(using property (M1) in Section 1) away from break points. So if x, y ∈ I are not separated

by a break point of γ̃e, then by the fundamental theorem of calculus,

|γ̃′e(x)− γ̃′e(y)| ≤
L2

16
|x− y|. (3.11)

Now divide [0, 1] into two sets I1 and I2, where I1 is the set of points within distance (
∫

I |P
′−

1|2)1/2 of a break point for γ̃e, so Length(I2) = L · (2(
∫

I |P
′ − 1|2)1/2) = 2L(

∫

I |P
′ − 1|2)1/2.

As P (0) = 0, we have

|P (x)− x| ≤ |

∫ x

0
(P ′(s)− 1)ds| ≤ x1/2

(
∫

I
|P ′ − 1|2

)1/2
≤

(
∫

I
|P ′ − 1|2

)1/2
.

So if x ∈ I2, then P (x) lies in the same geodesic segment as x. Hence using (3.11) and the

Wirtinger inequality,
∫

I2

|γ̃′e ◦ P − γ̃′e|
2ds ≤

L4

256

∫

I2

|P (s)− s|2ds ≤
L4

256

∫

I
|P ′ − 1|2ds.

Also as |γ̃′e| ≤ L, so on I1,
∫

I1

|γ̃′e ◦ P − γ̃′e|
2ds ≤ 4L2Length(I2) ≤ 8L3(

∫

I
|P ′ − 1|2)1/2.

Combining the above two inequalities with (3.10)(3.9) and (3.8), together with (3.7), we

can prove property (3) for Step 1 and Step 2 by realizing that Length(γe), Length(γ̃e) ≥

Length(Ψ(γ)). Estimates for dist(γ̃e, γo) and dist(γo, γ̃o) in Step 3 and Step 4 are the same

and even easier as we only need Lemma 3.1, so we omit the proof here.

3.3 Property (4) of Ψ. The fact that fixed points of Ψ are geodesics in the case of closed

curve was discussed in [CM11, page 169][Cr88, §2].

Lemma 3.3. Given γ ∈ Λ, if Ψ(γ) = γ, then γ ∈ G, i.e. γ is a geodesic with free boundary

on N .

Proof. We can assume that γ is not a point curve, or the statement is trivial. By the discussion

at the end of §3.1, the energy is non-increasing under the four steps, i.e. E(γ) ≥ E(γe) ≥

E(γ̃e) ≥ E(γo) ≥ E(Ψ(γ)). As E(Ψ(γ)) = E(γ), the energy must be the same. For γe → γ̃e
and γo → γ̃o = Ψ(γ), by (3.8) where E(γe) = E(γ̃e) = Length2(γ̃e) (similar estimates also

hold for γo and γ̃o), we know that γe = γ̃e and γo = Ψ(γ) = γ, i.e. the reparametrization

P ≡ id. As E(γ) = E(γe) = E(γo), by Lemma 3.1 and Lemma 3.2, we know that γ = γe = γo.

The fact γ = γe implies that the break points of γ can only appear at γ(x2j), j = 1, · · · , L−1,

and γ is perpendicular to N at boundary points, i.e. γ has free boundary on N . Also as the

points x2j, j = 1, · · · , L− 1 are smooth points of γo, hence γ has no break points.



3 CURVE SHORTENING PROCESS 10

3.4 Property (5) of Ψ. This is a direct corollary of other properties of Ψ by a contradiction

argument. Similar argument in the case of closed curves appeared in [CM11, page 169].

Suppose in contradiction, say there exists an ǫ > 0, and a sequence of γj ∈ Λ, such that

Length(Ψ(γj)) ≥ Length(γj)−
1

j
, dist(γj , G) ≥ ǫ.

As the second condition implies that Length(γj) is bounded away from zero, the first condition

and property (3) implies that

dist(γj ,Ψ(γj)) → 0.

Note that the space Λ is compact, as every σ ∈ Λ depends continuously on the boundary

points on N and the L− 1 break points in the compact manifold M (or in a compact convex

region when M is non-compact). Hence a subsequence of {γj} will converge to some γ ∈ Λ.

As Ψ is continuous on Λ, i.e. property (1), Ψ(γ) = γ, which implies that γ ∈ G by Lemma

3.3, contradiction to that dist(γ,G) = limj→∞ dist(γj , G) ≥ ǫ.

3.5 Property (1) of Ψ. Now we prove the continuity of Ψ. Similar argument in the case

of closed curves appeared in [CM11]. Here we need to carefully deal with the case of free

boundary linear replacement. The continuity of the first two steps for Ψ follows from the

following lemma, and the continuity of the last two steps follows from the closed case (c.f.

[CM11, Lemma 5.3]).

Lemma 3.4. Given a large integer L. Let γ : [0, 1] → M be a W 1,2-map, with γ(0), γ(1) ∈ N ,

E(γ) ≤ L. If γe, γ̃e are given by the first two steps for Ψ in §3.1, then the map γ → γ̃e is

continuous from W 1,2(I,M) to Λ.

Recall that {x0, x2 · · · , x2L−2, x2L = 1} are the evenly spaced points where we do linear

replacement. By (2.1), |γ(x2j)− γ(x2j+2)| ≤
(
1
LE(γ)

)1/2
≤ 1, hence dM (γ(x2j), γ(x2j+2)) ≤ 2

by (M3) in §1, and we can apply Step 1 of §3.1 by (M2) and (M2)′ in §1. Now recall two

observations used in [CM11] ((C1)(C2) already appeared in [CM11, page 170]),

(C1) Curves which are W 1,2 close are also C0 close , hence the points γe(x2j) = γ(x2j) are

continuous with respect to W 1,2-norm of γ.

(C2) Let Γ = {(x, y) ∈ M ×M : distM (x, y) ≤ 4}, and define

H : Γ → C1([0,
1

L
],M) (3.12)

such that H(x, y) is the linear map from x to y, then H is continuous on Γ.

(C2)′ Let Γ′ = {x ∈ M : distM (x,N) ≤ 2}, and define

H ′ : Γ′ → C1([0,
1

L
],M) (3.13)

such that H ′(x) is the minimizing geodesic from x to N , then H ′ is continuous on Γ′.
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To make (C2)′ precise, we have the following lemma.

Lemma 3.5. Given L ≥ 2, and x1, x2 ∈ Γ′, and let σ1, σ2 : [0, 1
L ] → M be two minimizing

geodesic from σ1(0) = x1 and σ2(0) = x2 to N respectively, with σ1(
1
L), σ2(

1
L) ∈ N , and

meet N orthogonally there, then there exists a continuous function φ : [0,∞) → [0,∞), with

φ(0) = 0, such that

dist(σ1, σ2) ≤ φ
(
dM (x1, x2)

)
.

Proof. Using integration by parts as in Lemma 3.2
∫

|σ′
1|
2 −

∫

|σ′
2|
2 −

∫

|σ′
1 − σ′

2|
2 = 2

∫

〈σ′
2, (σ1 − σ2)

′〉dt

= 2 〈σ′
2(

1

L
), σ1(

1

L
)− σ2(

1

L
)〉

︸ ︷︷ ︸

I1

−2 〈σ′
2(0), σ1(0) − σ2(0)〉

︸ ︷︷ ︸

I2

−2

∫

〈(σ1 − σ2), σ
′′
2 〉

︸ ︷︷ ︸

I3

.
(3.14)

First using the fact that |σ′
2| = Length(σ2) = dM (x2, N) ≤ 2,

|I2| ≤ |σ′
2(0)| · |(σ1 − σ2)(0)| ≤ 2dM (x1, x2).

Also using Lemma 2.2 and the fundamental theorem of calculus,

|I1| ≤
1

8
|σ′

2(
1

L
)| · |σ1(

1

L
)− σ2(

1

L
)|2

≤
1

8
dM (x2, N) ·

∣
∣σ1(0)− σ2(0) +

∫ 1/L

0

(
σ′
1 − σ′

2

)
ds
∣
∣2

≤
1

8
dM (x2, N) · 2

[
|x1 − x2|

2 + |

∫ 1/L

0
(σ′

1 − σ′
2)ds|

2
]

≤
1

8
dM (x2, N) · 2

[
|x1 − x2|

2 +
1

L

∫ 1/L

0
|σ′

1 − σ′
2|
2ds

]

≤
1

2
d2M (x1, x2) +

1

4

∫ 1/L

0
|σ′

1 − σ′
2|
2ds,

where we used the Cauchy-Schwartz inequality in the fourth “ ≤ ”, and the fact that dM (x2, N) ≤

2 and L ≥ 2 in the last “ ≤ ”.

Similarly to (3.6),

|I3| ≤

∫ 1/L

0
|〈σ1 − σ2, σ

′′
2 〉|dt ≤

∫ 1/L

0

1

8
|σ′′

2 | · |σ1 − σ2|
2dt

≤
1

8
(sup
M

|AM |) · |σ′
2|
2

∫ 1/L

0
|σ1 − σ2|

2dt

≤
1

32

∫ 1/L

0

∣
∣(σ1 − σ2)(0) +

∫ t

0
(σ′

1 − σ′
2)(s)ds

∣
∣2dt

≤
1

16

∫ 1/L

0

[
|σ1(0)− σ2(0)|

2 + t

∫ t

0
|σ′

1 − σ′
2|
2(s)ds

]
dt

≤
1

16L
d2M (x1, x2) +

1

32L

∫ 1/L

0
|σ′

1 − σ′
2|
2(t)dt.
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By plugging the above to (3.14), we get

E(σ1)− E(σ2) + (1 +
1

8L
)d2M (x1, x2) + 4dM (x1, x2) ≥ c

∫

|σ′
1 − σ′

2|
2ds,

for some c > 0. Reverse the role of σ1 and σ2, and sum the above inequality together, we get

ϕ
(
dM (x1, x2)

)
≥ c

∫

|σ′
1 − σ′

2|
2ds,

for ϕ(x) = (1 + 1
8L)x

2 + 4x.

Similarly by the fundamental theorem of calculus,

∫

|σ1 − σ2|
2 ≤

∫ ∣
∣
∣

[
σ1(0) − σ2(0) +

∫ s

0
(σ′

1 − σ′
2)dt

]
∣
∣
∣

2
ds

≤
2

L
d2M (x1, x2) +

1

L

∫

|σ′
1 − σ′

2|
2.

Remark 3.6. The lemma is still true if the defining intervals of σ has length less than 1
L ≤ 1

2 .

To get (C2)′, we can use the above lemma and the fundamental theorem of calculus to show

that dM (σ1(
1
L ), σ2(

1
L)) depends continuously on dM (σ1(0), σ2(0)), and then use (C2).

Proof. (of Lemma 3.4) Given two W 1,2-maps γ1, γ2 as in the lemma which are W 1,2 close, we

can assume that γ1 is not a constant curve, or the proof is trivial. Let ai0 = dM (γi(x2), N),

aiL−1 = dM (γi(x2L−2), N), and aij = dM
(
γi(x2j), γ

i(x2j+2)
)
, j = 1, · · · , L − 2, and Si =

∑L−1
j=0 aij, i = 1, 2, then Si > 0. By (C1), the points γi(x2j) = γie(x2j), j = 1, · · · , L − 1 and

hence the numbers aij , S
i are all continuous with respect to γi for i = 1, 2. Therefore, the

geodesic segments γ1e |[x2j ,x2j+2] and γ2e |[x2j ,x2j+2] are C
1 close on [x2j , x2j+2] for j = 0, 1, · · · , L−

1 by (C2) and (C2)′, so γ → γe is continuous.

Since the reparametrization from γe → γ̃e fixes the boundary point, γ̃1e (0) and γ̃2e (0) are

close by Remark 3.6. To show that γ̃1e and γ̃2e are W 1,2 close, we only need to show that
∫
|(γ̃1e − γ̃2e )

′|2 is small, and then apply the modified Wirtinger inequality to
(
γ̃1e (t)− γ̃2e (t)−

[γ̃1e (0) − γ̃2e (0)]
)
.

After the reparametrization, the constant speed curves γ̃ie are geodesic segments on the

intervals Iij = [ 1
Si

∑

l<j a
i
l,

1
Si

∑

l≤j a
i
l], and γ̃ie = γe ◦ P

i
j on each interval Iij with aij 6= 0, where

the reparametrization P i
j : Iij → [x2j , x2j+2] are just linear maps. Clearly I1j , I

2
j and P 1

j , P
2
j

are close respectively. Let Ij = I1j ∩ I2j , then I \ {∪L−1
j=0 Ij} is very small. Using the fact that

γ̃ie have constant speed with energy less than L, we have |(γ̃ie)
′| ≤ L, so

∫

I\∪Ij

|(γ̃1e − γ̃2e )
′|2 ≤ 4L2 · Length(I \ ∪jIj),

which is hence small.
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Given ǫ > 0 small enough, we can divide Ij into two sub-classes. If a1j < ǫ, we can assume

that a2j < 2ǫ by continuity, then

∫

Ij

|(γ̃1e − γ̃2e )
′|2 ≤ 2

∫

I1j

|(γ̃e)
′|2 + 2

∫

I2j

|(γ̃e)
′|2 ≤ 2L2(a1j + a2j) < 6L2ǫ.

If a1j ≥ ǫ, we can assume that a2j ≥
ǫ
2 by continuity, then |(P i

j )
′| = Si

aij
, and

∫

Ij

|(γ̃1e − γ̃2e )
′|2 =

∫

Ij

∣
∣((γ1e )

′ ◦ P 1
j )(P

1
j )

′ − ((γ2e )
′ ◦ P 2

j )(P
2
j )

′
∣
∣2,

which can be made small as γie are close in C1-norm and bounded in C2-norm4, and P i
j , |(P

i
j )

′|

are close as linear maps and numbers respectively.

3.6 Property (2) of Ψ. We only need to prove that Ψ preserves the homotopy class, as

the length decreasing property is trivially true. In fact, this is just a corollary of Lemma 4.1

and Remark 4.2 in the next section.

4 Good sweepouts and free boundary min-max geodesics

In this section, we will discuss apply the curve shortening process Ψ to sweepouts in

Definition 1.2 and prove Theorem 1.6. The foremost interesting question is when the width

W , defined by (1.1) corresponding to a sweepout σ0, is positive. In fact, W is positive when σ0
represents a nontrivial homotopy class in Ω. A special case is when the constraint submanifold

N bounds a non-contractable disk (among all disks with boundary lying on N). Suppose in

contradiction that the width is small enough, then there exists a sweepout σ homotopic to

σ0, and the energy of each σ(t, ·) is very small, hence σ(t, ·) all lie in a convex geodesic

neighborhood of N . Property (M2)′ implies that we can continuously shrink σ(t, ·) to a point

through curves with boundary lying on N . In fact, we can shrink σ(·, t) in a continuous way

with respect to “t” (e.g. using local coordinate charts), and homotopically deform σ to a

family of point curves, which contradicts the fact that σ0 is homotopically nontrivial.

4.1 Sweepouts and Ψ. Given a sweepout σ̂ ∈ Ω, we need to define a precise way to apply

the curve shortening process Ψ to deform σ̂ to a sweep-out in Λ. Assume that the maximal

energy of slices σ̂(t)(·) = σ̂(t, ·) is bounded by a number W0, i.e. maxt∈[0,1]E(σ̂(t)) ≤ W0,

then the Cauchy-Schwartz inequality implies a uniform bound for the length and C1/2-Hölder

continuity for each σ̂(t), i.e.

dM (σ̂(t, x), σ̂(t, y)) ≤ Length(σ̂(t)|[x,y]) =

∫ y

x
|∂xσ̂(t, x)|dx

4This is because |γ′′
e | ≤ sup |AM | · |γ′

e|
2 ≤ 1

16
L2 by the geodesic equation and (M1) in §1.
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≤ |y − x|
1
2
(
∫

I
|∂xσ̂(t, x)|

2dx
) 1

2 ≤ |x− y|
1
2W

1
2
0 .

We will deform σ̂(t) to σ(t) by Step 1 and Step 2 in §3.1. By the uniform C1/2-Hölder bound,

there exists an evenly spaced partition of I = [0, 1] by N points, i.e. x0 = 0, x1, x2, · · · , xN = 1,

such that the length of σ̂(t)|[xj ,xj+1] is bounded by 2 for all t ∈ [0, 1], j = 0, 1, · · · , N−1. Hence

we can apply Step 1 to σ̂(t) by (M2) and (M2)′ to get σe, and then reparametrize σe(t) to

get a constant speed mapping σ̃e(t), which we denote by σ(t). By Lemma 3.4, we know that

t → σ(t) is a continuous mapping from [0, 1] to W 1,2(I,M), and it is easy to see that σ ∈ Ω.

Also the length bound of σ̂(t) implies a uniform Lipschitz bound of σ(t) by W
1/2
0 , as σ(t) has

constant speed and shorter than σ̂(t). Hence σ(t) ∈ Λ for some L ∈ N, with L larger than N

and W
1/2
0 , so σ(t) is a continuous path in Λ. In the next lemma, we show that σ̂ and σ are

homotopic.

Lemma 4.1. Given σ̂ ∈ Ω, and σe, σ̃e as above, then σ̂, σe and σ̃e are all homotopic in Ω.

Proof. First we show that σ̂ is homotopic to σe in Ω. Corresponding the L break points5:

x0 = 0, x1, · · · , xL = 1, we deform σ̂ to σe in L steps. For s ∈ [0, x1], define F : [0, 1] × I ×

[0, x1] → M , such that

F (t, x, s) =
{ H ′

(
σ̂(t, s)

)
(x), if 0 ≤ x ≤ s,

σ̂(t, x), if s ≤ x ≤ 1,

where H ′ is given by (3.13)6. (C2)′ and Lemma 3.5 imply that F is continuous, hence F (·, ·, s)

lies in Ω by the definition of H ′. So F defines homotopy between σ̂(t, x) = F (t, x, 0) with

σ1(t, x) = F (t, x, x1) in Ω. Now we inductively define F (t, x, s) as homotopy between σj(t, x)

and σj+1(t, x) when s ∈ [xj , xj+1], 1 ≤ j ≤ L − 2. Assume that σ1, · · · , σj , and F (·, ·, s) are

well-defined for s ∈ [0, xj ], where F (·, ·, s) : [xl, xl+1] → Ω is a homotopy between σl and σl+1,

1 ≤ l ≤ j − 1. For s ∈ [xj , xj+1], define F : [0, 1] × I × [xj , xj+1] → M by

F (t, x, s) =
{ H

(
σj(t, xj), σj(t, s)

)
(x), if xj ≤ x ≤ s,

σj(t, x), if 0 ≤ x ≤ xj, or s ≤ x ≤ 1,

where H is defined by (3.12)7. (C2) implies that F is continuous, so F (·, ·, s) ∈ Ω, and F

defines a homotopy between σj(t, x) = F (t, x, xj) and σj+1(t, x) = F (t, x, xj+1). Finally,

using similar argument, we can use H ′ to define a homotopy between σL−1 with σe by F :

[0, 1] × I × [xL−1, 1] → M , with

F (t, x, s) =
{ H ′

(
σL−1(t, s)

)
(x), if xL−1 + 1− s ≤ x ≤ 1,

σL−1(t, x), if 0 ≤ x ≤ xL−1 + 1− s.

5L = N in the above case.
6Here the defining interval for H ′(·) is [0, s], with 0 ≤ s ≤ x1.
7Here the defining interval for H(·, ·) is [xj , s], with xj ≤ s ≤ xj+1.
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Next we show that σe is homotopic to σ̃e in Ω. As σ̃e(t, ·) is a reparametrization of σe(t, ·),

we can write σe(t, ·) = σ̃e(t, ·) ◦ Pt, where Pt : [0, 1] → [0, 1] is a monotone piecewise linear

map. By the proof of Lemma 3.4, Pt depends continuously on “t”8. Then

G(t, x, s) = σ̃e
(
t, (1− s)Pt(x) + sx

)
,

is a homotopy between G(·, ·, 0) = σe and G(·, ·, 1) = σ̃e. When Length(γe(t, ·)) = 0, we can

let Pt = id, and G is well-defined.

Remark 4.2. Applying Step 3 and Step 4 of Ψ in §3.1 to σ̃e(t) gives σo(t) and σ̃o(t), with

σ̃o(t) ∈ Λ for each t. σo(t) an σ̃o(t) are both continuous mapping from [0, 1] to W 1,2(I,M)

by Property (1) of Ψ, and it is easily seen that σ̃o(t) ∈ Ω. The homotopy equivalence of σ̃e,

σo and σ̃o in Ω follows from an easy modification of the above proof, as there is no boundary

replacement here.

4.2 Almost maximal implies almost critical. We prove Theorem 1.6 in this section.

Proof. (Theorem 1.6) Take a sequence {σ̂j} ⊂ [σ0], such that

max
t∈[0,1]

E
(
σ̂j(t)

)
≤ W0 +

1

j
.

By the discussion in §4.1, we can deform σ̂j to σj , such that E(σj(t)) ≤ E(σ̂j(t)), σj(t) is a

continuous path in Λ, and σj(t) is homotopic to σ̂j(t) in Ω by Lemma 4.1, hence σj(t) ∈ [σ0].

So maxt∈[0,1]E
(
σj(t)

)
≤ maxt∈[0,1]E

(
σ̂j(t)

)
≤ W0 +

1
j .

Now apply the modified Birkhoff curve shortening map to each σj(t) to get γj(t) =

Ψ(σj(t)) ∈ Λ, hence γj(t) is homotopic to σj(t) in Ω by Lemma 4.1 and Remark 4.2, so

γj ∈ [σ0]. As E(γj(t)) = Length2(γj(t)) ≤ Length2(σj(t)) = E(σj(t)),

max
t∈[0,1]

E
(
γj(t)

)
≤ W0 +

1

j
.

So limj→∞maxt∈[0,1]E(γj(t)) = W0 = W ([σ0]).

We will show that {γj} satisfies the requirement of Theorem 1.6. If not, then there exist an

ǫ > 0, a sequence δi > 0, with limi→∞ δi = 0, a subsequence γji , with ji >
1
δi
, and a sequence

of ti ∈ [0, 1], with E(γji(ti)) = Length2(γji(ti)) > W0 − δi, but dist(γji(ti), G) ≥ ǫ. Also, as

E(γj(ti)) ≤ E(σj(ti)) ≤ W0 +
1
ji
≤ W0 + δi, we have

W0 − δi ≤ Length2
(
γji(ti)

)
≤ Length2

(
σji(ti)

)
≤ W0 + δi.

Now denote γi = γji(ti) and σi = σji(ti). Since W0 > 0, then Length(γi) ≥ ǫ
2 for i large

enough. Then Property (3) of Ψ implies that dist(γi, σi) ≤
ǫ
2 for i large enough, as γi = Ψ(σi),

hence

dist(σi, G) ≥ dist(γi, G)− dist(γi, σi) ≥
ǫ

2
.

8Pt|[x2j ,x2j+2] = (Pj(t))
−1 is a linear map from [x2j , x2j+2] to Ij(t) = [ 1

S(t)

∑
l<j

al(t),
1

S(t)

∑
l≤j

al(t)] using

notations in the proof of Lemma 3.4.
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But this is a contradiction to Property (5) of Ψ, as Length(σi) − Length(γi) → 0 when

i → ∞.
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