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MIN-MAX THEORY FOR CONSTANT MEAN CURVATURE HYPERSURFACES

XIN ZHOU AND JONATHAN J. ZHU

ABSTRACT. In this paper, we develop a min-max theory for the construction of constant mean curvature

(CMC) hypersurfaces of prescribed mean curvature in an arbitrary closed manifold. As a corollary, we

prove the existence of a nontrivial, smooth, closed, almost embedded, CMC hypersurface of any given

mean curvature c. Moreover, if c is nonzero then our min-max solution always has multiplicity one.

0. INTRODUCTION

A hypersurface Σn in a Riemannian manifold Mn+1 has constant mean curvature if it is a critical

point of the area functional amongst variations preserving the enclosed volume. Equivalently, hyper-

surfaces of constant mean curvature c are critical points of the Lagrange-multiplier functional

(0.1) Ac = Area−cVol .

Constant mean curvature (CMC) hypersurfaces constitute a classical and extensively-studied topic in

differential geometry, and play an essential role in many areas, from isoperimetric problems [45] to the

modeling of interface phenomena [30, 31] and to general relativity [23, 44, 10]. Despite the classical

nature of the problem, relatively few examples of closed CMC hypersurfaces were known, even for

n = 2, until the breakthrough work of Wente [56]. Many attempts have been made to construct more

CMC hypersurfaces, especially with prescribed constant mean curvature, c.f. [20, 21, 54, 24, 59, 15,

42, 32, 47]. However, these works left wide open the question of which values may be prescribed -

that is, for which constants c does there exist a closed hypersurface of constant mean curvature c?
In this article we construct, via a min-max approach, nontrivial closed CMC hypersurfaces of any

prescribed mean curvature, in any smooth closed Riemannian manifold Mn+1 of dimension at most

seven. (The dimensional restriction arises from, and matches with, the well-known regularity theory

for minimal hypersurfaces [50, 49]; see also [58].)

Theorem 0.1. Let Mn+1 be a smooth, closed Riemannian manifold of dimension 3 ≤ n + 1 ≤ 7.

Given any c ∈ R, there exists a nontrivial, smooth, closed, almost embedded hypersurface Σn of

constant mean curvature c.

Here we say that an immersed hypersurface Σ is almost embedded if Σ locally decomposes into

smoothly embedded components that (pairwise) lie to one side of each other. That is, the sheets may

touch but not cross; the example of touching spheres shows that this regularity is optimal. In particular,

almost embedded hypersurfaces are automatically Alexandrov embedded.

We want to compare our result with a classical problem by Arnold [5, page 395] and Novikov [41,

Section 5] on the periodic orbits of a charged particle in a magnetic field on a topological two sphere. It

is conjectured that there exist closed embedded curves of any prescribed constant geodesic curvature.

This conjecture remains open, and we refer to [16, 46, 48] for more backgrounds and some partial

results of this conjecture. Our result can be viewed as a complete resolution of the higher dimensional

analog of Arnold-Novikov conjecture.
1
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Remark 0.2. For c 6= 0, we can prove that our min-max procedure converges to the constructed

hypersurface Σ with multiplicity 1. This is a stark and surprising contrast to the minimal (c = 0) case,

for which the min-max multiplicity 1 conjecture is a fundamental open problem [34].

The existence problem for CMC hypersurfaces has been studied from a number of perspectives.

The boundary value problems were substantially developed by Heinz [20], Hildebrandt [21], Struwe

[54, 55], etc. using the mapping method, and by Duzaar-Steffen [15] using geometric measure theory,

while both methods can only produce CMC hypersurfaces whose mean curvatures satisfy certain upper

bound. For the case of closed CMC hypersurfaces, the more classical approach is to minimize the area

functional amongst volume-preserving variations, that is, to solve the isoperimetric problem for a

given volume. Indeed, for each fixed volume there exists a smooth minimizer (up to a singular set of

codimension 7; see for instance [2, 39, 45]). However, this approach does not yield any control on the

value of the mean curvature.

Another class of approaches relies on perturbative methods. Given a closed minimal hypersurface,

one may deform it to a CMC hypersurface, but only for very small values of the mean curvature.

On the other end, one attempts to construct foliations by closed CMC hypersurfaces near minimal

submanifolds of strictly lower dimension. This program was carefully implemented in various cases

by Ye [59], Mahmoudi-Mazzeo-Pacard [32], and others (see the survey article [42]). The hypersur-

faces produced by this approach necessarily have large mean curvatures, which in fact diverge as the

hypersurfaces condense onto the minimal submanifold.

We also mention the delicate gluing procedures pioneered by Kapouleas [24] as well as the degree

theory developed by Rosenberg-Smith [47]. These provide important examples of CMC hypersurfaces,

but the former is typically restricted by the availability of known solutions, whilst the latter can only

produce CMC hypersurfaces of fairly large mean curvature greater than some threshold depending on

ambient manifolds. Finally, we remark that Meeks-Mira-Perez-Ros [36, 37] were able to determine,

in the special case of homogeneous ambient 3-manifolds, precisely the values for which there exists a

CMC 2-sphere with the specified mean curvature.

In order to prove Theorem 0.1, we instead study CMC hypersurfaces from the perspective of the

Ac-functional. It is easy to see that the simplest method, minimization, does not succeed in detecting

a nontrivial critical point for the Ac-functional. In fact, the minimizer of Ac among domains Ω in M
with smooth boundary is always the total manifold M , as Ac(M) = −cVol(M) ≤ Ac(Ω). Therefore,

the min-max method becomes the natural way to find nontrivial critical points of Ac. (Note that

minimization method does succeed for the Plateau problem with fixed boundary [15].)

For finding critical points of the area functional - that is, minimal hypersurfaces - the min-max

method has been greatly successful. In [3], Almgren initiated a celebrated program to develop a varia-

tional theory for minimal submanifolds in Riemannian manifolds of any dimension and co-dimension

using geometric measure theory, namely the min-max theory for minimal submanifolds. He was able

to prove the existence of a nontrivial weak solution as stationary integral varifolds [4]. Higher regu-

larity was established in the co-dimension-one case by the seminal work of Pitts [43] (for 2 ≤ n ≤ 5)

and later extended by Schoen-Simon [37] (for n ≥ 6). Colding-De Lellis [11] established the corre-

sponding theory using smooth sweepouts based on ideas of Simon-Smith [52]. Indeed, the preceeding

body of work completely resolved the c = 0 case of Theorem 0.1.

Very recently, in a series of works, Marques-Neves [33, 1, 35] found surprising applications of

the Almgren-Pitts min-max theory to solve a number of longstanding open problems in geometry,

including their celebrated proof of the Willmore conjecture. Due to these tremendous successes, there

have been a vast number of developments of this program in various contexts, including [14, 38, 18,
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26, 34, 29, 9, 13, 28, 25, 53]. In this regard, our work represents a natural extension of the min-max

method to the CMC setting.

0.1. Min-max procedure. We now give a heuristic overview of our min-max method. In the main

proofs, for technical reasons we will work with discrete families as in Almgren-Pitts, but here we will

describe the key ideas using continuous families to elucidate those ideas.

Let M , c be as in Theorem 0.1. We only need to consider c > 0. The Ac functional (0.1) is defined

on open sets Ω with smooth boundary by Ac(Ω) = Area(∂Ω)−cVol(Ω). Denote I = [0, 1]. Consider

a continuous 1-parameter family of sets with smooth boundary

{Ωx : x ∈ I}, with Ω0 = ∅ and Ω1 =M.

Fix such a family {Ω0
x}, and consider its homotopy class [{Ω0

x}] =
{
{Ωx} ∼ {Ω0

x}
}

. The c-min-

max value is defined as

L
c = inf

{Ωx}∼{Ω0
x}
max{Ac(Ωx) : x ∈ I}.

A sequence {{Ωi
x} : i ∈ N} with maxx∈I A

c(Ωi
x) → L

c is typically called a minimizing sequence,

and any sequence {Ωi
xi

: xi ∈ (0, 1), i ∈ N} with Ac(Ωi
xi
) → L

c is called a min-max sequence.

Our main result (for the precise statement see Theorem 3.8) then says that there is a nice minimizing

sequence {{Ωi
x} : i ∈ N}, and some min-max sequence {Ωi

xi
: xi ∈ (0, 1), i ∈ N}, such that:

Theorem 0.3. The sequence ∂Ωi
xi

converges as varifolds with multiplicity one to a nontrivial, smooth,

closed, almost embedded hypersurface Σ of constant mean curvature c.

Our proof broadly follows the Almgren-Pitts scheme, but with several important difficulties. This

scheme proceeds generally as follows:

• Construct a sweepout with positive width, and extract a minimizing sequence;

• Apply a ‘tightening’ map to construct a new sequence whose varifold limit satisfies a varia-

tional property and an ‘almost-minimizing’ property;

• Use these properties to construct ‘replacements’ on annuli which must be regular;

• Apply successive concentric annular replacements to the min-max limit and show that they

coincide with each other, and hence extend to the center;

• Show that the min-max limit coincides with the replacement near the center.

We in fact show that Lc is positive on any sweepout, as a consequence of the isoperimetric inequality

for small volumes (see Theorems 2.15 and 3.9).

For the tightening, in the minimal (c = 0) case one shows that for the tightened sequence, any

min-max (varifold) limit must be stationary, that is, a weak solution in the sense of first variations. In

the CMC setting it is an important, yet subtle, issue to determine the correct variational property to

replace stationarity. For instance, the Ac functional is not well-defined on varifolds, so it is difficult

to formulate a notion of weak solution for its critical points. To overcome this issue, we utilize the

property of c-bounded first variation. This notion is a generalisation of bounded mean curvature, and is

loose enough to be satisfied by our min-max limit V (after tightening) whilst providing enough control

to develop the regularity theory. In particular, varifolds with c-bounded first variation satisfy a uniform

monotonicity formula, and any blowups are stationary. Furthermore, we formulate the property of

being c-almost minimizing, which is inspired by the almost-minimizing property of Almgren-Pitts,

with the area functional replaced by the Ac functional (see Definition 5.1).

To construct our so-called c-replacements, we solve a series of constrained minimization problems

for the Ac-functional in a subset U ⊂ M . Each Ac-minimizer is an open set Ω∗
i with stable, regular

CMC boundary in U , and the c-replacement V ∗ is obtained as the varifold limit lim |∂Ω∗
i |. At this
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point, V ∗ gains regularity by classical curvature estimates, but in contrast to the minimal case, V ∗ is

merely almost embedded since we only have a one-sided maximum principle for CMC hypersurfaces

(see Lemma 2.7). Nevertheless, the one-sided maximum principle implies that V ∗ has multiplicity one

in U , and this is the key ingredient to obtain the multiplicity-one-property for V .

Another new difficulty in the CMC setting is that the total mass of the replacement V ∗ may differ

from the total mass of the original varifold V . A key observation is that the mass defect is controlled

by cVol(U), which is of higher order than the mass and hence converges to zero under any blowup

process. Using this insight, we are able to prove that any blowup of the min-max limit V has the

good replacement property of Colding-De Lellis, and is therefore regular (see Lemma 5.10). The same

observation allows us to show that the tangent cones of V are always planes.

For the regularity of V , the proof structure is inspired by Pitts. Namely, we first apply successive

replacements V ∗ and V ∗∗ on two overlapping concentric annuli A1 and A2, with the goal of showing

that they match smoothly on the overlapping region and may thus be extended all the way to the center

by taking further replacements. However, in the CMC case two main issues arise: the presence of a

nontrivial touching set, and the need to show that the orientations match to give the same sign for the

mean curvatures. These difficulties are overcome by keeping track of the approximate replacements

{Ω∗
i } and careful analysis of their convergence behaviors (see Section 2.1). In particular, a key step is

to show that the second replacement V ∗∗ may be represented by a boundary in A1 ∪ A2, so that the

orientations of V ∗, V ∗∗ match as desired. Near the touching set, we use the graphical decomposition

into embedded sheets together with the gluing along regular part to properly match the sheets together.

Finally, to prove that the min-max limit V coincides with the extended replacement V ∗ near the

center, we face one more obstacle since in the minimal case one typically appeals to the Constancy

Theorem, which does not have an analog in the CMC setting. Instead, we first directly prove the

removability of the center singularity for V ∗, and then use a moving sphere argument to show that the

densities of V and V ∗ are the same in the annular region.

0.2. Outline of the paper. We describe our notation and basic background material in Section 1.

Then in Section 2 we gather some requisite results including compactness theorems and maximum

principles, in particular for almost embedded CMC hypersurfaces.

In Section 3 we formulate the technical setup for our min-max procedure, and prove the existence of

nontrivial (positive width) sweepouts (Theorem 3.9). Then for any minimizing sequence we can extract

a min-max sequence {∂Ωi
xi
} that converges in the measure-theoretic sense to a nontrivial varifold V .

We then present the tightening process in Section 4. In particular, we show that there exists a nice

minimizing sequence {Ωi
x}, such that every min-max sequence converges to a varifold with c-bounded

first variation (Proposition 4.4). To do this, using the set of varifolds with c-bounded first variation as

the central set, we construct a discrete gradient flow for Ac, namely the tightening map (see section

4.3). Applying this map to any given minimizing sequence will result in a nice minimizing sequence

by a standard contradiction argument. To deal with the issue that Ac is not defined for varifolds, we

derive a quantitative tightening inequality (4.5) inspired by Colding-De Lellis.

In Section 5, we first show that V may further be taken to be c-almost minimizing in the sense

of Definition 5.1 (see Theorem 5.6); that is, V is the limit of boundaries of so-called (ǫ, δ)-c-almost

minimizing sets Ω. The remainder of Section 5 records important properties of c-almost minimizing

varifolds, including the existence and regularity of c-replacements (see Proposition 5.8 and Lemma

5.9). Namely, for each (ǫ, δ)-c-a.m. Ω, one can construct a Ac-minimizer Ω∗ among certain admissible

deformations, whose boundary is a stable embedded CMC hypersurface in U by classical regularity

theory. We then construct the c-replacement V ∗ of V as the varifold limit lim |∂Ω∗|.
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Finally, in Section 6 we prove the regularity of the min-max varifold V (Theorem 6.1). Namely,

given two c-replacements V ∗ and V ∗∗ of V in two overlapping concentric annuli, we prove that they

match in C1 along the boundary sphere of the smaller annulus, in order to apply the unique continua-

tion. Using the key observation that blowups are regular and the classical maximum principle, we first

show that the blowups of V ∗, V ∗∗ are identical along this sphere. The C1 gluing follows readily on the

regular part, after which we require a much more careful analysis to extend the gluing across the touch-

ing set. We then continue the c-replacement V ∗ smoothly as an almost embedded CMC hypersurface

all the way to the center of the annuli and complete the proof after removing the center singularity.
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Wickramasekera for valuable comments. J. Zhu would also like to thank Prof. William Minicozzi
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1. NOTATION

In this section, we collect some notions. We refer to [51] and [43, §2.1] for further materials in

geometric measure theory.

Let (Mn+1, g) denote a closed, oriented, smooth Riemannian manifold of dimension 3 ≤ (n+1) ≤

7. Assume that (M,g) is embedded in some R
L, L ∈ N. Br(p), B̃r(p) denote respectively the

Euclidean ball of RL or the geodesic ball of (M,g). We denote by Hk the k-dimensional Hausdorff

measure; Ik(M) the space of k-dimensional integral currents in R
L with support in M ; Zk(M) the

space of integral currents T ∈ Ik(M) with ∂T = 0; Vk(M) the closure, in the weak topology, of

the space of k-dimensional rectifiable varifolds in R
L with support in M ; Gk(M) the Grassmannian

bundle of un-oriented k-planes over M ; F and M respectively the flat norm [51, §31] and mass

norm [51, 26.4] on Ik(M); F the varifold F-metric on Vk(M) and currents F-metric on Ik(M),
[43, 2.1(19)(20)]; C(M) or C(U) the space of sets Ω ⊂ M or Ω ⊂ U ⊂ M with finite perimeter

(Caccioppoli sets), [51, §14][17, §1.6]; and X(M) or X(U) the space of smooth vector fields in M or

supported in U .

We also utilize the following definitions:

a) Given T ∈ Ik(M), |T | and ‖T‖ denote respectively the integral varifold and Radon measure in

M associated with T ;

b) Given c > 0, a varifold V ∈ Vk(M) is said to have c-bounded first variation in an open subset

U ⊂M , if

|δV (X)| ≤ c

∫

M
|X|dµV , for any X ∈ X(U);

here the first variation of V along X is δV (X) =
∫
Gk(M) divSX(x)dV (x, S), [51, §39];

c) Ur(V ) denotes the ball in Vk(M) under F-metric with center V ∈ Vk(M) and radius r > 0;

d) Given p ∈ spt ‖V ‖, VarTan(V, p) denotes the space of tangent varifolds of V at p, [51, 42.3];

e) Given a smooth, immersed, closed, orientable hypersurface Σ in M , or a set Ω ∈ C(M) with

finite perimeter, [[Σ]], [[Ω]] denote the corresponding integral currents with the natural orienta-

tion, and [Σ], [Ω] denote the corresponding integer-multiplicity varifolds;

f) ∂Ω denotes the (reduced)-boundary of [[Ω]] as an integral current, and ν∂Ω denotes the outward

pointing unit normal of ∂Ω, [51, 14.2].
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In this paper, we are interested in the following weighted area functional defined on C(M). Given

c > 0, define the Ac-functional on C(M) as

(1.1) Ac(Ω) = Hn(∂Ω)− cHn+1(Ω).

The first variation formula for Ac along X ∈ X(M) is (see [51, 16.2])

(1.2) δAc|Ω(X) =

∫

∂Ω
div∂ΩXdµ∂Ω − c

∫

∂Ω
X · ν dµ∂Ω,

where ν = ν∂Ω is the outward unit normal on ∂Ω.

When the boundary ∂Ω = Σ is a smooth immersed hypersurface, we have

divΣX = HX · ν,

where H is the mean curvature of Σ with respect to ν; if Ω is a critical point of Ac, then (1.2) directly

implies that Σ = ∂Ω has constant mean curvature c with respect to the outward unit normal ν. In this

case, we can calculate the second variation formula for Ac along normal vector fields X ∈ X(M)
such that X = ϕν along ∂Ω = Σ where ϕ ∈ C∞(Σ), [6, Proposition 2.5],

(1.3) δ2Ac|Ω(X,X) = IIΣ(ϕ,ϕ) =

∫

Σ

(
|∇ϕ|2 −

(
RicM (ν, ν) + |AΣ|2

)
ϕ2

)
dµΣ.

In the above formula, ∇ϕ is the gradient of ϕ on Σ; RicM is the Ricci curvature of M ; AΣ is the

second fundamental form of Σ.

2. PRELIMINARIES

In this section, we collect some preliminary results. First, we study the compactness properties

of stable CMC hypersurfaces. In particular, we describe the structure of the touching sets which

appear naturally when one takes the limit of embedded stable CMC hypersurfaces. We also present

a maximum principle for varifolds with bounded first variation, a regularity result for boundaries that

minimize the Ac-functional, and a result on isoperimetric profile for small volumes.

2.1. Compactness of stable CMC hypersurfaces.

Definition 2.1. Let Σ be a smooth, immersed, two-sided hypersurface with unit normal vector ν, and

U ⊂M an open subset. We say that Σ is a stable c-hypersurface in U if

• the mean curvature H of Σ ∩ U with respect to ν equals to c; and

• IIΣ(ϕ,ϕ) ≥ 0 for all ϕ ∈ C∞(Σ) with sptϕ ⊂ Σ ∩ U , where IIΣ is as in (1.3).

Definition 2.2. Let Σi, i = 1, 2, be connected embedded hypersurfaces in a connected open subset

U ⊂ M , with ∂Σi ∩ U = ∅ and unit normals νi. We say that Σ2 lies on one side of Σ1 if Σ1 divides

U into two connected components U1 ∪ U2 = U \ Σ1, where ν1 points into U1, and either:

• Σ2 ⊂ Clos(U1), which we write as Σ1 ≤ Σ2 or that Σ2 lies on the positive side of Σ1; or

• Σ2 ⊂ Clos(U2), which we write as Σ1 ≥ Σ2 or that Σ2 lies on the negative side of Σ1.

Definition 2.3 (Almost embedding). Let U ⊂ Mn+1 be an open subset, and Σn be a smooth n-

dimensional manifold. A smooth immersion φ : Σ → U is said to be an almost embedding if at any

point p ∈ φ(Σ) where Σ fails to be embedded, there is a small neighborhood W ⊂ U of p, such that

• Σ ∩ φ−1(W ) is a disjoint union of connected components ∪l
i=1Σi;

• φ(Σi) is an embedding for each i = 1, · · · , l;
• for each i, any other component φ(Σj), j 6= i, lies on one side of φ(Σi) in W .
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We will simply denote φ(Σ) by Σ and denote φ(Σi) by Σi. The subset of points in Σ where Σ fails to

be embedded will be called the touching set, and denoted by S(Σ). We will call Σ\S(Σ) the regular

set, and denote it by R(Σ).

Remark 2.4. From the definition, the collection of components {Σi} meet tangentially along S(Σ).

Definition 2.5 (Almost embedded c-boundary). (1) An almost embedded hypersurface Σ ⊂ U is

said to be a boundary if there is an open subset Ω ∈ C(U), such that Σ is equal to the boundary

∂Ω (in U ) in the sense of currents;

(2) The outer unit normal νΣ of Σ is the choice of the unit normal of Σ which points outside of Ω
along the regular part R(Σ);

(3) Σ is called a stable c-boundary if Σ is a boundary as well as a stable immersed c-hypersurface.

We have the following variant of the famous Schoen-Simon-Yau (for 2 ≤ n ≤ 5) [50] and Schoen-

Simon (n = 6) [49] curvature estimates.

Theorem 2.6 (Curvature estimates for stable c-hypersurfaces). Let 2 ≤ n ≤ 6, and U ⊂ M be an

open subset. If Σ ⊂ U is a smooth, immersed (almost embedded when n = 6), two-sided, stable

c-hypersurface in U with ∂Σ ∩ U = ∅, and Area(Σ) ≤ C , then there exists C1 depending only on

n,M, c, C , such that

|AΣ|2(x) ≤
C1

dist2M (x, ∂U)
for all x ∈ Σ.

Moreover if Σk ⊂ U is a sequence of smooth, immersed (almost embedded when n = 6), two-sided,

stable c-hypersurfaces in U with ∂Σk ∩ U = ∅ and supk Area(Σk) < ∞, then up to a subsequence,

Σk converges locally smoothly (possibly with multiplicity) to some stable c-hypersurface Σ∞ in U .

Proof. The compactness statement follows in the standard way from the curvature estimates. The

curvature estimates follow from standard blowup arguments together with the Bernstein Theorem [50,

Theorem 2] and [49, Theorem 3], the key being that the blowup will be a stable minimal hypersurface,

and when n = 6, the blowup of a sequence of almost embedded c-hypersurfaces will be embedded by

the classical maximum principle for embedded minimal hypersurfaces (c.f. [12]). �

We need the following maximum principle.

Lemma 2.7 (Maximum principle for embedded c-hypersurfaces). Given a connected open subset U ⊂
M , let Σi ⊂ U be two connected embedded hypersurfaces with ∂Σi ∩ U = ∅ for i = 1, 2. Suppose

that the mean curvature of each Σi is a given constant c > 0 with respect to the respective unit normal

νi. Assume that Σ2 lies on one side of Σ1. Then we have the following:

(i) If there exists p ∈ Σ1 ∩Σ2 such that ν1(p) = ν2(p), then Σ1 = Σ2;

(ii) Suppose Σ2 lies on the negative side of Σ1. Then if Σ1 ∩Σ2 6= ∅, we must have ν1(p) = ν2(p)
for any p ∈ Σ1 ∩ Σ2, and hence Σ1 = Σ2. In particular, either Σ1 ∩ Σ2 = ∅ or Σ1 = Σ2.

Proof. This follows directly from the classical maximum principle as follows.

Consider p ∈ Σ1∩Σ2. Since Σ2 lies on one side of Σ1, the tangent planes must coincide at any point

of their intersection. So without loss of generality we may assume that U is a small ball around p for

which Σ1,Σ2 may be written as graphs u1, u2 in the ν1-direction over the tangent plane TpΣ1 = TpΣ2.

Let u = u1 − u2, then a standard computation shows that u satisfies a linear elliptic equation of the

form: Lu = 0, if ν2(p) = ν1(p); or Lu = 2c if ν2(p) = −ν1(p). Here L is a positive elliptic operator

with smooth coefficients. Moreover, if Σ2 ⊂ Clos(U1) then u ≤ 0; if Σ2 ⊂ Clos(U2) then u ≥ 0.

Both items then follow from the maximum principle for nonpositive (or nonnegative) functions.

�
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Lemma 2.8. Let Ω be a domain in R
m and suppose that u is a classical solution on Ω of a linear

inhomogenous elliptic PDE with smooth coefficients:

(2.1) Lu = aijDiju+ bjDju+ qu = f,

where f has no zeroes on Ω. Then the zero set {u = 0} is contained in a countable union of connected,

embedded (m− 1)-dimensional submanifolds.

Proof. Let K be a compact subset of Ω.

First, the implicit function theorem implies that the zero set is smooth away from the critical set. In

particular, for any ǫ > 0 the compact set {u = 0, |Du| ≥ ǫ} ∩K is contained in the union of finitely

many connected, smoothly embedded (m− 1)-dimensional submanifolds.

Now consider x ∈ {u = 0,Du = 0}. Then we have aij(x)Diju(x) = f(x) 6= 0, so by ellipticity,

the Hessian D2u must have rank at least 1. Thus for some j, the gradient D(Dju) 6= 0, so again

by the implicit function theorem there is an r > 0 such that Br(x) ∩ {Dju = 0} is an embedded

(m − 1)-dimensional submanifold, which clearly contains Br(x) ∩ {u = 0} ∩ {Du = 0}. It follows

that the compact set {u = 0,Du = 0} ∩K is also contained in a finite union of connected, embedded

(m− 1)-dimensional submanifolds.

Taking ǫ = 1/j → 0 and K = Kj , where Kj is an exhaustion of Ω, then completes the proof. �

Proposition 2.9 (Touching sets for almost embedded c-hypersurface). If the metric onUn+1 is smooth,

then for any almost embedded hypersurface Σn ⊂ U of constant mean curvature c, the touching set

S(Σ) is contained in a countable union of connected, embedded (n− 1)-dimensional submanifolds.

In particular, the regular set R(Σ) is open and dense in Σ.

Proof. Let p ∈ S(Σ). As in the proof of Lemma 2.7, there is a small neighborhood W of p so that the

image Σ∩W decomposes as graphs {ui}
k
i=1, ordered by height, over the common tangent plane TpΣ.

In fact by the conclusions of that lemma, after possibly shrinking W there will be exactly two distinct

graphs u1 ≤ u2, for which the difference u = u1−u2 satisfies Lu = 2c. The zero set of u corresponds

to the touching set S(Σ) ∩W . The proposition then follows from the previous lemma. �

Remark 2.10. In the case that the metric on M is real analytic, we have the stronger statement that

the touching set is a finite union of real analytic subvarieties
⋃n−1

k=0 S
k of respective dimension k. This

follows from [27, Theorem 5.2.3], since in this setting the operator L will have analytic coefficients,

and hence the solution u is also real analytic.

Theorem 2.11 (Compactness theorem for almost embedded stable c-hypersurfaces). Let 2 ≤ n ≤ 6.

Suppose Σk ⊂ U is a sequence of smooth, almost embedded, two-sided, stable ck-hypersurfaces in U ,

with supk Area(Σk) <∞ and supk ck <∞. Then the following hold:

(i) if inf ck > 0, then up to a subsequence, {Σk} converges locally smoothly (with multiplicity) to

some almost embedded stable c-hypersurface Σ∞ in U ;

(ii) if additionally {Σk} are all boundaries, then Σ∞ is also a boundary, and the density of Σ∞ is

1 along R(Σ∞) and 2 along S(Σ∞);
(iii) if ck → 0, then up to a subsequence, {Σk} converges locally smoothly (with multiplicity) to

some smooth embedded stable minimal hypersurface Σ∞ in U .

Remark 2.12. We learned that Bellettini-Wickramasekera [7] also have similar compactness results for

stable CMC varifolds.

Proof of Theorem 2.11. Case (i) follows straightforwardly from Theorem 2.6, the almost embedded

assumption, together with the maximum principle Lemma 2.7.
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Now we prove Case (ii). Denote Σk = ∂Ωk for some Ωk ∈ C(U). By standard compactness [51,

Theorem 6.3], a subsequence of ∂Ωk converges weakly as currents to some ∂Ω∞ with Ω∞ ∈ C(U).
We claim that ∂Ω∞ = Σ∞ as varifold. To show this, we only need to check that the density of

Σ∞ along R(Σ∞) is one, and then by Lemma 2.7 and Proposition 2.9, the density of Σ∞ along the

touching set S(Σ∞) is automatically two.

To show that the density along R(Σ∞) is 1, take an arbitrary point p ∈ R(Σ∞). If the density at p

is larger than 1, then by the locally smooth convergence of Σk to Σ∞, there is a neighborhood B̃p ⊂ U

of p, such that for k large enough Σk ∩ B̃p has a graphical decomposition as ∪lk
i=1Σ

i
k with lk ≥ 2.

Moreover, by Lemma 2.7 we have Σ1
k < Σ2

k < · · · < Σlk
k , and the outward unit normals νik of Σi

k
all point to the same direction. With out loss of generality, we may assume lk = 2 and omit the sub-

index k. Then B̃p\(Σ
1 ∪ Σ2) has three connected components U0, U1, U2 with, counting orientation,

(∂U0)xB̃p = Σ1, (∂U1)xB̃p = Σ2 − Σ1, and (∂U2)xB̃p = −Σ2.

On the other hand, for each i the Constancy Theorem [51, Theorem 26.27] applied to ΩkxUi

implies that ΩkxUi is identical to either ∅ or Ui. That is, ΩkxB̃p =
∑2

i=0 aiUi, where each ai =
0, 1. It is then easy to see that any choice of the ai will contradict the fact that, counting orientation,

∂(ΩkxB̃p)xB̃p = Σk ∩ B̃p = Σ1 +Σ2.

Case (iii) follows directly from Theorem 2.6, the almost embedded assumption, and the classical

maximum principle for embedded minimal hypersurfaces (c.f. [12]). �

2.2. Maximum principle for varifolds with c-bounded first variation. We will need the following

maximum principle which is essentially due to White [57, Theorem 5].

Proposition 2.13 (Maximum principle for varifolds with c-bounded first variation). Suppose V ∈
Vn(M) has c-bounded first variation in a open subset U ⊂ M . Let K ⊂ U be an open subset with

compact closure in U , such that spt(‖V ‖) ⊂ K , and

(i) ∂K is smoothly embedded in M ,

(ii) the mean curvature of ∂K with respect to the outward pointing normal is greater than c.

Then spt(‖V ‖) ∩ ∂K = ∅.

2.3. Regularity for boundaries which minimize the Ac functional. The following result about reg-

ularity of boundaries which minimize the Ac functional can be found in [39].

Theorem 2.14. Given Ω ∈ C(M), p ∈ spt ‖∂Ω‖, and some small r > 0, suppose that ΩxB̃r(p)

minimizes the Ac-functional: that is, for any other Λ ∈ C(M) with spt ‖Λ − Ω‖ ⊂ B̃r(p), we have

Ac(Λ) ≥ Ac(Ω). Then except for a set of Hausdorff dimension at most n− 7, ∂ΩxB̃r(p) is a smooth

and embedded hypersurface, and is real analytic if the ambient metric on M is real analytic.

Proof. Since ΩxB̃r(p) minimizes the Ac-functional, for all Λ ∈ C(M) as in the supposition, we have

Hn(∂Λ) −Hn(∂Ω) ≥ −c|Hn+1(Λ)−Hn+1(Ω)|.

This is precisely condition [39, 3.1(1)]. The regularity then follows from [39, Corollary 3.7, 3.8]. �

2.4. Isoperimetric profiles for small volume. We have the following lower bound for the isoperi-

metric profiles for small volumes, which is a consequence of the fact that the isoperimetric profile is

asymptotically Euclidean for small volumes [8] (see also [40, Theorem 3]). Note that although it was

only stated for domains with smooth boundary, the result indeed holds for any Ω ∈ C(M) by using the

regularity theory for isoperimetric domains (c.f. Theorem 2.14).
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Theorem 2.15. There exists constants C0 > 0 and V0 > 0 depending only on M such that

Area(∂Ω) ≥ C0 Vol(Ω)
n

n+1 , whenever Ω ∈ C(M) and Vol(Ω) ≤ V0.

3. THE c-MIN-MAX CONSTRUCTION

In this section, we present the setups of the min-max construction mainly followed Pitts [43]. We

also prove the existence of a non-trivial sweepout with positive Ac-min-max value.

3.1. Homotopy sequences. We will introduce the min-max construction using the scheme developed

by Almgren and Pitts [3, 4, 43].

Definition 3.1. (cell complex.)

(1) Denote I = [0, 1], I0 = ∂I = I\(0, 1);
(2) For j ∈ N, I(1, j) is the cell complex of I , whose 1-cells are all intervals of form [ i

3j
, i+1

3j
],

and 0-cells are all points [ i
3j
];

(3) For p = 0, 1, α ∈ I(1, j) is a p-cell if dim(α) = p. 0-cell is also called a vertex;

(4) I(1, j)p denotes the set of all p-cells in I(1, j), and I0(1, j)0 denotes the set {[0], [1]};

(5) Given a 1-cell α ∈ I(1, j)1, and k ∈ N, α(k) denotes the 1-dimensional sub-complex of

I(1, j + k) formed by all cells contained in α. For q = 0, 1, α(k)q and α0(k)q denote respec-

tively the set of all q-cells of I(1, j + k) contained in α, or in the boundary of α;

(6) The boundary homeomorphism ∂ : I(1, j) → I(1, j) is given by ∂[a, b] = [b]− [a] if [a, b] ∈
I(1, j)1, and ∂[a] = 0 if [a] ∈ I(1, j)0;

(7) The distance function d : I(1, j)0 × I(1, j)0 → N is defined as d(x, y) = 3j |x− y|;
(8) The map n(i, j) : I(1, i)0 → I(1, j)0 is defined as: n(i, j)(x) ∈ I(1, j)0 is the unique element

of I(1, j)0, such that d
(
x,n(i, j)(x)

)
= inf

{
d(x, y) : y ∈ I(1, j)0

}
.

Consider a map to the space of Caccioppoli sets: φ : I(1, j)0 → C(M). The fineness of φ is defined

as:

(3.1) f(φ) = sup
{
M

(
∂φ(x)− ∂φ(y)

)

d(x, y)
: x, y ∈ I(1, j)0, x 6= y

}
.

Similarly we can define the fineness of φ with respect to the F-norm and F-metric. We use φ :
I(1, j)0 →

(
C(M), {0}

)
to denote a map such that φ

(
I(1, j)0

)
⊂ C(M) and ∂φ|I0(1,j)0 = 0, i.e.

φ([0]), φ([1]) = ∅ or M .

Definition 3.2. Given δ > 0 and φi : I(1, ki)0 →
(
C(M), {0}

)
, i = 0, 1, we say φ1 is 1-homotopic to

φ2 in
(
C(M), {0}

)
with fineness δ, if ∃ k3 ∈ N, k3 ≥ max{k1, k2}, and

ψ : I(1, k3)0 × I(1, k3)0 → C(M),

such that

• f(ψ) ≤ δ;
• ψ([i], x) = φi

(
n(k3, ki)(x)

)
, i = 0, 1;

• ∂ψ
(
I(1, k3)0 × I0(1, k3)0

)
= 0.

Definition 3.3. A (1,M)-homotopy sequence of mappings into
(
C(M), {0}

)
is a sequence of map-

pings {φi}i∈N,

φi : I(1, ki)0 →
(
C(M), {0}

)
,

such that φi is 1-homotopic to φi+1 in
(
C(M), {0}

)
with fineness δi, and

• limi→∞ δi = 0;
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• supi
{
M(∂φi(x)) : x ∈ I(1, ki)0

}
< +∞.

Remark 3.4. Note that the second condition implies that supi
{
Ac(φi(x)) : x ∈ I(1, ki)0

}
< +∞.

Definition 3.5. Given two (1,M)-homotopy sequences of mappings S1 = {φ1i }i∈N and S2 = {φ2i }i∈N
into

(
C(M), {0}

)
, S1 is homotopic to S2 if ∃ {δi}i∈N, such that

• φ1i is 1-homotopic to φ2i in
(
C(M), {0}

)
with fineness δi;

• limi→∞ δi = 0.

It is easy to see that the relation “is homotopic to” is an equivalence relation on the space of (1,M)-
homotopy sequences of mappings into

(
C(M), {0}

)
. An equivalence class is a (1,M)-homotopy class

of mappings into
(
C(M), {0}

)
. Denote the set of all equivalence classes by π#1

(
C(M,M), {0}

)
.

3.2. Min-max construction.

Definition 3.6. (Min-max definition) Given Π ∈ π#1
(
C(M,M), {0}

)
, define: L

c : Π → R
+ as a

function given by:

L
c(S) = L

c({φi}i∈N) = lim sup
i→∞

max
{
Ac

(
φi(x)

)
: x lies in the domain of φi

}
.

The Ac-min-max value of Π is defined as

(3.2) L
c(Π) = inf{Lc(S) : S ∈ Π}.

A sequence S = {φi} ∈ Π is called a critical sequence if Lc(S) = L
c(Π).

Given a critical sequence S, thenK(S) = {V = limj→∞ |∂φij (xj)| : xj lies in the domain of φij}

is a compact subsets of Vn(M
n+1). The critical set of S is the subset C(S) ⊂ K(S) defined by

C(S) = {V = lim
j→∞

|∂φij (xj)| : with lim
j→∞

Ac(φij (xj)) = L
c(S)}.

Note that by [43, 4.1(4)], we immediately have:

Lemma 3.7. Given any Π ∈ π#1
(
C(M,M), {0}

)
, there exists a critical sequence S ∈ Π.

The main theorem of this paper is as follows:

Theorem 3.8. Let 2 ≤ n ≤ 6. Given a smooth closed Riemannian manifold Mn+1 and c > 0, there

exists Π ∈ π#1
(
C(M,M), {0}

)
and a critical sequence S ∈ Π such that:

• L
c(Π) = L

c(S) > 0;

• There exists an element of C(S) induced by a nontrivial, smooth, almost embedded, closed

hypersurface Σn ⊂M of constant mean curvature c with multiplicity one.

Proof of Theorem 3.8. This follows from combining Theorem 3.9, Theorem 5.6 and Theorem 6.1. �

3.3. Existence of nontrivial sweepouts.

Theorem 3.9. There exists Π ∈ π♯1
(
C(M,M), {0}

)
, such that for any c > 0, we have L

c(Π) > 0.

Remark 3.10. Let us first describe a heuristic argument using smooth sweepouts which will help to

reveal the key idea. Let C0 > 0 and V0 > 0 to be the constants in Theorem 2.15, and fix 0 < V ≤ V0

such that V
−1
n+1 > 2c/C0. Note that V only depends on c, C0, V0.

Then for any Ω with Vol(Ω) = V , we have

(3.3) Ac(Ω) ≥ C0V
n

n+1 − cV > cV > 0.
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Now consider any smooth 1-parameter family {Ωx : x ∈ [0, 1]} satisfying Ω0 = ∅ and Ω1 = M .

Since {Ωx} sweeps out M , there must exist some x0 ∈ (0, 1) such that Vol(Ωx0) = V , whence

maxx∈[0,1]A
c(Ωx) ≥ cV > 0. Since this holds for any sweepout we then have L

c(Π) ≥ cV > 0.

Proof of Theorem 3.9. Take a Morse function φ : M → [0, 1], and consider the sub-level sets Φ :
[0, 1] → C(M), given by Φ(t) = {x ∈ M : φ(x) < t}. By the interpolation theorem of the first

author [60, Theorem 5.1], Φ can be discretized to a (1,M)-homotopy sequence S = {φi} where

φi : I(1, ki)0 → (C(M), {0}). Moreover, under Almgren’s isomorphism FA [3, §3.2] (see also [60,

§4.2]), φi is mapped to the fundamental class in Hn+1(M) for i large, i.e. FA(φi) = [[M ]]. Consider

Π = [S], then by [3, Theorem 7.1] for any S = {φi} ∈ Π, we have FA(φi) = [[M ]] for i large. In

particular, this means that
∑

j∈I(1,ki)0
Qj = M as currents; here for given j and αj = [ j−1

3ki
, j
3ki

] =

[xj−1, xj ], Qj ∈ In+1(M) is the isoperimetric choice (c.f. [3, 1.14]) of ∂φi(xj)− ∂φi(xj−1), i.e.

M(Qj) = F(∂φi(xj)− ∂φi(xj−1)), and ∂Qα = ∂φi(xj)− ∂φi(xj−1).

Denote Ωl =
∑l

j=1Qj . Then we have

∂Ωl = ∂φi(xl)− ∂φi(0) = ∂φi(xl),

and this implies, by the Constancy Theorem [51, 26.27], that Ωl is a Caccioppoli set (possibly with a

negative orientation) when M(Ωl) < Vol(M). Note that M(Qj) < f(φi) = δi, hence by continuity

there exists some lc ∈ N, lc < 3ki , such that M(Ωlc) ∈ [V − δi, V + δi], where V is as in Remark

3.10, and φi(xlc) = Ωlc . Then the same argument as in the remark above gives a uniform positive

lower bound for Ac(φi(xlc)), and this finishes the proof. �

4. TIGHTENING

In this section, we construct the tightening map adapted to the Ac functional and prove that after

applying the tightening map to a critical sequence, every element in the critical set has uniformly

bounded first variation. Our approach is adapted from those in [11, §4] and [43, §4.3].

4.1. Annular decomposition. Given L > 0, consider the set of varifolds in Vn(M) with 2L-bounded

mass: AL = {V ∈ Vn(M) : ‖V ‖(M) ≤ 2L}. Denote

Ac
∞ =

{
V ∈ AL : |δV (X)| ≤ c

∫
|X|dµV , for any X ∈ X(M)

}
.

Consider the concentric annuli around A∞ under the F-metric, i.e.

Aj =
{
V ∈ AL :

1

2j
≤ F(V,Ac

∞) ≤
1

2j−1

}
, j ∈ N.

Since c-bounded first variation is a closed condition, we have

Lemma 4.1. Ac
∞ is a compact subset of AL under the F-metric.

It is easy to show (by contradiction, for instance) that for any varifold in Aj , we can find a vector

field satisfying the following condition.

Lemma 4.2. For any V ∈ Aj , there exists XV ∈ X(M), such that

(4.1) ‖XV ‖C1(M) ≤ 1, δV (XV )− c

∫

M
|XV |dµV ≤ −cj < 0,

where cj depends only on j.
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4.2. A map from AL to the space of vector fields. In this part, we will construct a map X : AL →
X(M), which is continuous with respect to the C1 topology on X(M).

Given V ∈ Aj , let XV be given in Lemma 4.2. Since divSXV is Lipschitz on Gn(M) for fixed

XV , the map

W → δW (XV )− c

∫

M
|XV |dµW =

∫

Gn(M)
divS(XV )dW (x, S)− c

∫

M
|XV |dµW

is continuous with respect to the F-metric. Therefore for any V ∈ Aj , there exists 0 < rV < 1
2j+1 ,

such that for any W ∈ UrV (V ), i.e. F(W,V ) < rV ,

(4.2) δW (XV )− c

∫
|XV |dµW ≤

1

2

(
δV (XV )− c

∫
|XV |dµV

)
≤ −

1

2
cj < 0.

Now
{
UrV /2(V ) : V ∈ Aj

}
is an open covering of Aj . By the compactness of Aj , we can find finitely

many balls
{
Urj,i(Vj,i) : Vj,i ∈ Aj , 1 ≤ i ≤ qj

}
, where rj,i = rVj,i

, such that

(i) The balls Urj,i/2(Vj,i) with half radii cover Aj ;

(ii) The balls Urj,i(Vj,i) are disjoint from Ak if |j − k| ≥ 2.

In the following, we denote Urj,i(Vj,i), Urj,i/2(Vj,i) and XVj,i
by Uj,i, Ũj,i and Xj,i respectively.

Now we can construct a partition of unity {ϕj,i : j ∈ N, 1 ≤ i ≤ qj} sub-coordinate to the covering{
Ũj,i, 1 ≤ i ≤ qj , j ∈ N

}
by

ϕj,i(V ) =
ψj,i(V )∑

{ψp,q(V ), p ∈ N, 1 ≤ q ≤ qp}
,

where ψj,i(V ) = F(V,AL\Ũj,i).

The map X : AL → X(M) is defined by

(4.3) X(V ) = F(V,Ac
∞)

∑

j∈N,1≤i≤qj

ϕj,i(V )Xj,i.

The following lemma is a straightforward consequence of the construction.

Lemma 4.3. The map X : V → X(V ) is continuous with respect to the C1 topology on X(M).

4.3. A map from AL to the space of isotopies. In this part, we will associate each V ∈ A with

an isotopy of M in a continuous manner. The isotopy will be generated by the vector field X(V ).
In particular, given V ∈ AL, we use ΦV : R+ × M → M to denote the one parameter group of

diffeomorphisms generated by X(V ).
Given Ω ∈ C(M) with ∂Ω ∈ AL, we will deform Ω by Φ|∂Ω|(t) to get a 1-parameter family of sets

of finite perimeter Ωt = Φ|∂Ω|(t)(Ω), and we will show that the Ac functional of Ωt for some t > 0
can be deformed down by a fixed amount depending only on F(|∂Ω|, Ac

∞).

In fact, given V ∈ Aj , let ρ(V ) be the smallest radii of the balls Ũk,i which contain V . As there

are only finitely many balls Ũk,i which intersect Aj nontrivially, we know that ρ(V ) ≥ rj > 0, where

rj depends only on j; moreover, by construction the sub-index k of these Ũk,i can only be j − 1, j, or

j + 1. Then by (4.2) and (4.3), we have for any W ∈ Uρ(V )(V ) that

δW (X(V ))− c

∫
|X(V )|dµW ≤ −

1

2j+1
min{cj−1, cj , cj+1}.
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Therefore we can find two continuous functions g : R+ → R
+ and ρ : R+ → R

+, such that ρ(0) = 0
and

δW (X(V ))− c

∫
|X(V )|dµW ≤ −g

(
F(V,Ac

∞)
)
, if F(W,V ) ≤ ρ

(
F(V,Ac

∞)
)
.

In particular, by (1.2),

(4.4) δAc|Ω(X(V )) ≤ −g
(
F(V,Ac

∞)
)
, if Ω ∈ C(M),F(|∂Ω|, V ) ≤ ρ

(
F(V,Ac

∞)
)
.

Next, we will construct a continuous time function T : [0,∞) → [0,∞), such that

(i) limt→0 T (t) = 0, and T (t) > 0 if t 6= 0;

(ii) For any V ∈ AL, denote γ = F(V,Ac
∞); then Vt =

(
ΦV (t)

)
#
V ∈ Uρ(γ)(V ) for all 0 ≤ t ≤

T (γ).

In fact, given V ∈ Aj , and ρ = ρ
(
F(V,Ac

∞)
)
> 0, there exists TV > 0, such that Vt ∈ Uρ(V ) for all

0 ≤ t ≤ TV . Moreover, by the compactness of Aj and the continuity of ΦV (t)#V in V and t, we may

choose TV such that TV ≥ Tj > 0 for all V ∈ Aj , where Tj depends only on j. Interpolating between

the Tj yields the desired continuous function T depending only on F(V,Ac
∞).

In summary, given V ∈ AL\Ac
∞, denote γ = F(V,Ac

∞) > 0,

ΨV (t, ·) = ΦV

(
T (γ)t, ·

)
, for t ∈ [0, 1],

and L : R+ → R
+, with L(γ) = T (γ)g(γ); then L(0) = 0 and L(γ) > 0 if γ > 0. We can deform V

through a continuous family
{
Vt =

(
ΨV (t)

)
#
V : t ∈ [0, 1]

}
⊂ Uρ(γ)(V ), such that

(i) The map (t, V ) → Vt is continuous under the F-metric;

(ii) Using (4.4), when V = ∂Ω, Ω ∈ C(M), γ = F(|∂Ω|, Ac
∞) > 0, we have

Ac(Ω1)−Ac(Ω) ≤

∫ T (γ)

0
[δAc|Ωt ](X(|∂Ω)|)dt ≤ −T (γ)g(γ)

= −L(γ) < 0.

(4.5)

Finally note that the flow ΨV (t, ·) is generated by the vector field

(4.6) X̃(V ) = T (γ)X(V ).

4.4. Deforming sweepouts by the tightening map. Applying our tightening map constructed above

in place of [43, §4.3] to a critical sequence provided by Lemma 3.7, we can deduce the following

result.

Proposition 4.4 (Tightening). Let Π ∈ π♯1
(
C(M,M), {0}

)
, and assume L

c(Π) > 0. For any critical

sequence S∗ for Π, there exists another critical sequence S for Π such that C(S) ⊂ C(S∗) and each

V ∈ C(S) has c-bounded first variation.

Proof. Take S∗ = {φ∗i }, where φ∗i : I(1, ki)0 →
(
C(M), {0}

)
, and φ∗i is 1-homotopic to φ∗i+1 in(

C(M), {0}
)

with fineness δi ց 0. Let Ξi : I(1, ki)0 × [0, 1] → C(M) be defined as

Ξi(x, t) = Ψ|∂φ∗

i (x)|
(t)

(
φ∗i (x)

)
.

Denote φti(·) = Ξi(·, t). Heuristically, one would like to set φi = φ1i as the desired sequence, but

since the isotopies Ψ|∂φ∗

i (x)|
depend on x, the fineness of {φ1i } could be large even if f(φ∗i ) is small.

Thus we need to interpolate φ1i to get the desired φi, but we need to make sure the values of φi after

interpolation are F-close to those of φ1i . Similar difficulties appeared in the same way in [33, §15]. The



MIN-MAX THEORY FOR CMC HYPERSURFACES 15

authors in [33] used a discrete-to-continuous interpolation argument. Unfortunately we cannot adapt

their argument, since their constructions involve currents which may not be boundaries of Caccioppoli

sets. Instead, we develop another interpolation method in Claim 2. Before that, we pause to prove:

Claim 1: if limi→∞Ac(φ1i (xi)) = L
c(Π), then (up to relabeling) there is a subsequence {φ1i (xi)}

converging (as varifolds) to a varifold in C(S∗) of c-bounded first variation.

Proof of Claim 1: By (4.5),

(4.7) Ac(φ1i (xi))−Ac(φ∗i (xi)) = −L(γi),

where γi = F(|∂φ∗i (xi)|, A
c
∞). Therefore,

L
c(Π) = limAc(φ1i (xi)) = limAc(φ∗i (xi))− L(lim γi) ≤ L

c(Π)− L(lim γi),

so actually we must have lim γi = 0 and this implies that lim |∂φ∗i (xi)| ∈ Ac
∞. Moreover, by our

construction of the tightening map, each |∂φ1i (xi)| had to be ρ(γi)-close to |∂φ∗i (xi)| under the F-

metric, therefore

lim |∂φ1i (xi)| = lim |∂φ∗i (xi)| ∈ Ac
∞ ∩ C(S∗),

and this finishes the proof of the claim.

Claim 2: there exist integers li > ki and maps φi : I(1, li)0 → (C(M), {0}) for each i, such that

S = {φi} is homotopic to S∗, and

(a) φ1i = φi ◦ n(li, ki) on I(1, ki)0;

(b) f(φi) → 0, as i→ ∞;

(c) Ac(φi(x)) −max{Ac(φ1i (y)) : α ∈ I(1, ki)1, x, y ∈ α} → 0, uniformly in x ∈ I(1, li)0 as

i→ ∞.

(d) max{F(∂φi(x), ∂φ
1
i (y)) : α ∈ I(1, ki)1, x, y ∈ α} → 0, as i→ ∞.

Proof of Claim 2: The idea is to extend φ1i to a piecewise continuous (with respect to the F-metric)

map on I and then apply the discretization result in [60, Theorem 5.1]. However, since this procedure

is somewhat technical, the proof is deferred to Appendix B. �

In particular, S is a valid sequence in Π, and we now check that it satisfies the requirements of

the proposition. First, property (c) and the fact that S∗ is a critical sequence directly imply that S
is also a critical sequence. It remains to show that every element in C(S) must lie in C(S∗) and

have c-bounded first variation. Given V ∈ C(S), one can find a subsequence (without relabeling)

{φi(xi) : xi ∈ I(1, li)0} ⊂ C(M), such that V = lim |∂φi(xi)| as varifolds, and

limAc(φi(xi)) = L
c(Π).

We will need to first consider φi(xi) = φ1i (xi), where xi is the nearest point to xi in I(1, ki)0. By (c)

and (d), we have limAc(φ1i (xi)) = L
c(Π) and also lim |∂φi(xi)| = lim |∂φ1i (xi)| as varifolds. Then

by Claim 1, we conclude that V ∈ Ac
∞ ∩ C(S∗). This completes the proof. �

5. c-ALMOST MINIMIZING

In this section, we introduce the notion of c-almost minimizing varifolds, and prove the existence

of such a varifold from min-max construction. We prove the existence of a c-replacement for any c-
almost minimizing varifold. Using this property, we show that every blowup of such varifold is regular.

As an easy consequence, the tangent cones of such varifolds are always integer multiples of planes.
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Definition 5.1 (c-almost minimizing varifolds). Let ν be the F , M-norms or the F-metric. For any

given ǫ, δ > 0 and an open subset U ⊂ M , we define A
c
n (U ; ǫ, δ; ν) to be the set of all Ω ∈ C(M)

such that if Ω = Ω0,Ω1,Ω2, · · · ,Ωm ∈ C(M) is a sequence with:

(i) spt(Ωi − Ω) ⊂ U ;

(ii) ν(∂Ωi+1, ∂Ωi) ≤ δ;
(iii) Ac(Ωi) ≤ Ac(Ω) + δ, for i = 1, · · · ,m,

then Ac(Ωm) ≥ Ac(Ω)− ǫ.
We say that a varifold V ∈ Vn(M) is c-almost minimizing in U if there exist sequences ǫi → 0,

δi → 0, and Ωi ∈ A
c
n (U ; ǫi, δi;F), such that F(|∂Ωi|, V ) ≤ ǫi.

The following simple fact says that c-almost minimizing implies c-bounded first variation.

Lemma 5.2. Let V ∈ Vn(M) be c-almost minimizing in U , then V has c-bounded first variation in U .

Proof. Suppose by contradiction that V does not have c-bounded first variation, then there exist ǫ0 > 0
and a smooth vector field X ∈ X(U) compactly supported in U , such that

∣∣∣∣∣

∫

Gn(M)
divSX(x)dV (x, S)

∣∣∣∣∣ ≥ (c+ ǫ0)

∫

M
|X|dµV > 0.

By changing the sign of X if necessary, we have
∫

Gn(M)
divSX(x)dV (x, S) ≤ −(c+ ǫ0)

∫

M
|X|dµV .

By continuity, we can find ǫ1 > 0 small enough depending only on ǫ0, V,X, such that if Ω ∈ C(M)
with F(|∂Ω|, V ) < 2ǫ1, then

δAc|Ω(X) ≤

∫

∂Ω
div∂ΩXdµ∂Ω + c

∫

∂Ω
|X|dµ∂Ω ≤ −

ǫ0
2

∫

M
|X|dµV < 0.

If F(|∂Ω|, V ) < ǫ1, then by deforming Ω along the 1-parameter flow {ΦX(t) : t ∈ [0, τ)} of X
for a uniform short time τ > 0, we can obtain a 1-parameter family {Ωt ∈ C(M) : t ∈ [0, τ)}, such

that t → ∂Ωt is continuous under the F-topology, with spt(Ωt − Ω) ⊂ U , F(|∂Ωt|, V ) < 2ǫ1 and

Ac(Ωt) ≤ Ac(Ω0) = Ac(Ω) for all t ∈ [0, τ), but with Ac(Ωτ ) ≤ Ac(Ω) − ǫ2 for some ǫ2 > 0
depending only on ǫ0, ǫ1, V,X.

Summarizing the above, given any ǫ < min{ǫ1, ǫ2} and δ > 0, if Ω ∈ C(M) and F(|∂Ω|, V ) < ǫ,
then Ω /∈ A

c
n (U ; ǫ, δ;F); this contradicts the c-almost minimizing property of V . �

We will need the following equivalence result among several almost minimizing concepts using

the three different topology. In particular, we can actually use the M-norm instead at the expense of

shrinking the open subset U ⊂M .

Proposition 5.3. Given V ∈ Vn(M), then the following statements satisfy (a) =⇒ (b) =⇒ (c) =⇒
(d):

(a) V is c-almost minimizing in U ;

(b) For any ǫ > 0, there exists δ > 0 and Ω ∈ A
c
n (U ; ǫ, δ;F) such that F(V, |∂Ω|) < ǫ;

(c) For any ǫ > 0, there exists δ > 0 and Ω ∈ A
c
n (U ; ǫ, δ;M) such that F(V, |∂Ω|) < ǫ;

(d) V is c-almost minimizing in W for any relatively open subset W ⊂⊂ U .

Remark 5.4. The proof was originally due to Pitts [43, Theorem 3.9]. In our context, we work with

boundaries instead of general integral currents. Furthermore, in Definition 5.1(iii), we use the Ac

functional instead of the mass M.
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Proof. It is easy to see (a) =⇒ (b) =⇒ (c). The last implication (c) =⇒ (d) is an interpolation

process which was originally established in Pitts [43, Proposition 3.8] using integral cycles. The

corresponding interpolation process using boundaries of Caccioppoli sets was obtained by the first

author in [60, Proposition 5.3]. The detailed description of this process is given in Lemma A.1 in

Appendix A. �

Definition 5.5. A varifold V ∈ Vn(M) is said to be c-almost minimizing in small annuli if for each

p ∈ M , there exists ram(p) > 0 such that V is c-almost minimizing in As,r(p) ∩M for all 0 < s <
r ≤ ram(p), where As,r(p) = Br(p)\Bs(p).

Theorem 5.6 (Existence of c-almost minimizing varifold). Let Π ∈ π♯1
(
C(M,M), {0}

)
, and assume

that Lc(Π) > 0. There exists a nontrivial V ∈ Vn(M), such that

(i) V ∈ C(S) for some critical sequence S of Π;

(ii) V has c-bounded first variation;

(iii) V is c-almost minimizing in small annuli.

Proof. First we can pick a critical sequence S of Π which has been pulled-tight by Proposition 4.4, so

that every V ∈ C(S) has c-bounded first variation. Suppose for the sake of contradiction that for each

V ∈ C(S), there exists a p ∈M , such that there are arbitrarily small annuli centered at p on which V
is not c-almost minimizing. Then by Proposition 5.3, V is also not c-almost minimizing with respect

to the mass norm on these annuli (i.e. ν = M).

Specifically, for any r̃ > 0, there exists r, s > 0 with r̃ > r+2s > r− 2s > 0, and ǫ > 0, such that

for any δ > 0, and Ω ∈ C(M) with F(|∂Ω|, V ) < ǫ, then Ω /∈ A
c
n (Ar−2s,r+2s(p)∩M ; ǫ, δ;M). Now

using the same argument as in [43, 4.10] by changing the mass functional M to the Ac-functional, one

can construct a new 1-homotopic sequence S̃ which is homotopic to S, and L
c(S̃) < L

c(S); but this

contradicts the criticality of S. �

Now we formulate and solve a natural constrained minimization problem which will be used in the

construction of c-replacements.

Lemma 5.7 (A constrained minimization problem). Given ǫ, δ > 0, U ⊂M and any Ω ∈ A
c
n (U ; ǫ, δ;F),

fix a compact subset K ⊂ U . Let CΩ be the set of all Λ ∈ C(M) such that there exists a sequence

Ω = Ω0,Ω1, · · · ,Ωm = Λ in C(M) satisfying:

(a) spt(Ωi − Ω) ⊂ K;

(b) F(∂Ωi − ∂Ωi+1) ≤ δ;
(c) Ac(Ωi) ≤ Ac(Ω) + δ, for i = 1, · · · ,m.

Then there exists Ω∗ ∈ C(M) such that:

(i) Ω∗ ∈ CΩ, and

Ac(Ω∗) = inf{Ac(Λ) : Λ ∈ CΩ},

(ii) Ω∗ is locally Ac-minimizing in int(K),
(iii) Ω∗ ∈ A

c
n (U ; ǫ, δ;F).

Proof. Proof of (i): Take any minimizing sequence {Λj} ⊂ CΩ, i.e.

lim
j→∞

Ac(Λj) = inf{Ac(Λ) : Λ ∈ CΩ}.

Notice that spt(Λj − Ω) ⊂ K and Ac(Λj) ≤ Ac(Ω) + δ for all j. By standard compactness [51,

Theorem 6.3], after passing to a subsequence, ∂Λj converges weakly to some ∂Ω∗ with Ω∗ ∈ C(M)
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and spt(Ω∗−Ω) ⊂ K . We will show that Ω∗ is our desired minimizer. Since ∂Λj converges weakly to

∂Ω∗, we have that Hn(∂Ω∗) ≤ limj→∞Hn(∂Λj) and Hn+1(Ω∗) = limj→∞Hn+1(Λj). Therefore,

(5.1) Ac(Ω∗) ≤ inf{Ac(Λ) : Λ ∈ CΩ}.

It remains to show that Ω∗ ∈ CΩ. For j sufficiently large, we have F(∂Λj − ∂Ω∗) < δ. Since

Λj ∈ CΩ, there exists a sequence Ω = Ω0,Ω1, · · · ,Ωm = Λj in C(M) satisfying conditions (a-c)

above. Consider now the sequence Ω = Ω0,Ω1, · · · ,Ωm = Λj,Ωm+1 = Ω∗ in C(M); it trivially

satisfies conditions (a) and (b). Moreover, using (5.1), we also have

Ac(Ω∗) ≤ Ac(Λj) ≤ Ac(Ω) + δ.

Therefore, Ω∗ ∈ CΩ and hence (i) has been proved.

Proof of (ii): For p ∈ int(K), we claim that there exists a small B̃r(p) ⊂ int(K) such that

(5.2) Ac(Ω∗) ≤ Ac(Λ),

for any Λ ∈ C(M) with spt(Λ − Ω∗) ⊂ B̃r(p). To establish (5.2), first choose r > 0 small so that

c · Vol(B̃r(p)) < δ/4 and M(∂Ω∗xB̃r(p)) < δ/4 (this is possible since ∂Ω∗ is rectifiable). Suppose

(5.2) were false, then there exists Ω′ ∈ C(M) with spt(Ω′−Ω∗) ⊂ B̃r(p) such that Ac(Ω′) < Ac(Ω∗).
We will show that Ω′ ∈ CΩ, which contradicts that Ω∗ is a minimizer from part (i).

To see that Ω′ ∈ CΩ, take a sequence Ω = Ω0,Ω1, · · · ,Ωm = Ω∗ in C(M) satisfying (a-c) above,

and append Ωm+1 = Ω′ to the sequence. Since spt(Ω∗ − Ω) ⊂ K and spt(Ω′ − Ω∗) ⊂ K , we have

spt(Ω′ − Ω) ⊂ K . By the facts that spt(Ω′ − Ω∗) ⊂ B̃r(p) and Ac(Ω′) < Ac(Ω∗), we have

M(∂Ω′xB̃r(p)) ≤ M(∂Ω∗xB̃r(p)) + c
[
Hn+1(Ω∗ ∩ B̃r(p)) +Hn+1(Ω′ ∩ B̃r(p))

]

≤ M(∂Ω∗xB̃r(p)) + 2cVol(B̃r(p));

hence

M(∂Ω′ − ∂Ω∗) ≤ M(∂Ω′xB̃r(p)) +M(∂Ω∗xB̃r(p)) < δ.

So F(∂Ω′ − ∂Ω∗) ≤ M(∂Ω′ − ∂Ω∗) < δ. Finally note Ac(Ω′) < Ac(Ω∗) ≤ Ac(Ω) + δ. Therefore

Ω′ ∈ CΩ, and this proves part (ii).

Proof of (iii): Suppose that the claim is false. Then by Definition 5.1 there exists a sequence

Ω∗ = Ω∗
0,Ω

∗
1, · · · ,Ω

∗
ℓ in C(M) satisfying

• spt(Ω∗
i − Ω∗) ⊂ U ;

• F(∂Ω∗
i − ∂Ω∗

i+1) ≤ δ;
• Ac(Ω∗

i ) ≤ Ac(Ω∗) + δ, for i = 1, · · · , ℓ,

but Ac(Ω∗
ℓ) < Ac(Ω∗)− ǫ. Since Ω∗ ∈ CΩ by part (i), there exists a sequence Ω = Ω0,Ω1, · · · ,Ωm =

Ω∗ satisfying conditions (a-c) above. Then the sequence Ω = Ω0,Ω1, · · · ,Ωm,Ω
∗
1, · · · ,Ω

∗
ℓ in C(M)

still satisfies those conditions (a-c), since Ac(Ω∗) ≤ Ac(Ω) implies that Ac(Ω∗
i ) ≤ Ac(Ω)+ δ. There-

fore Ω ∈ A
c
n (U ; ǫ, δ;F) implies that Ac(Ω∗

ℓ ) ≥ Ac(Ω) − ǫ ≥ Ac(Ω∗) − ǫ, which is a contradiction.

This proves part (iii). �

Proposition 5.8 (Existence and properties of replacements). Let V ∈ Vn(M) be c-almost minimizing

in an open set U ⊂ M and K ⊂ U be a compact subset, then there exists V ∗ ∈ Vn(M), called a

c-replacement of V in K such that

(i) Vx(M\K) = V ∗x(M\K);
(ii) −cVol(K) ≤ ‖V ‖(M)− ‖V ∗‖(M) ≤ cVol(K);

(iii) V ∗ is c-almost minimizing in U ;
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(iv) moreover, V ∗ = limi→∞ |∂Ω∗
i | as varifolds for some Ω∗

i ∈ C(M) such that Ω∗
i ∈ A

c
n (U ; ǫi, δi;F)

with ǫi, δi → 0; furthermore Ω∗
i locally minimizes Ac in int(K);

(v) if V has c-bounded first variation in M , then so does V ∗.

Proof. Let V ∈ Vn(M) be c-almost minimizing in U . By definition there exists a sequence Ωi ∈
A

c
n (U ; ǫi, δi;F) with ǫi, δi → 0 such that V is the varifold limit of |∂Ωi|. By Lemma 5.7 we can

construct a c-minimizer Ω∗
i ∈ CΩi

for each i. Since M(∂Ω∗
i ) is uniformly bounded, by compactness

there exists a subsequence |∂Ω∗
i | converging as varifolds to some V ∗ ∈ Vn(M). We claim that V ∗

satisfies items (i)-(v) in Proposition 5.8 and thus is our desired c-replacement.

• First, by part (i) of Lemma 5.7, we have Ω∗
i ∈ CΩi

and thus spt(Ω∗
i − Ωi) ⊂ K . Hence the

varifold limits satisfy V ∗x(M\K) = Vx(M\K).
• Second, as Ωi ∈ A

c
n (U, ǫi, δi;F) and Ω∗

i ∈ CΩi
, we have

Ac(Ωi)− ǫi ≤ Ac(Ω∗
i ) ≤ Ac(Ωi);

thus by (1.1),

M(∂Ωi)− cHn+1(Ωi)− ǫi ≤ M(∂Ω∗
i )− cHn+1(Ω∗

i ) ≤ M(∂Ωi)− cHn+1(Ωi).

Note that |Hn+1(Ωi)−Hn+1(Ω∗
i )| ≤ Vol(K); taking i→ ∞, we have −cVol(K) ≤ ‖V ‖(M)−

‖V ∗‖(M) ≤ cvol(K).
• Since each Ω∗

i ∈ A
c
n (U ; ǫi, δi;F) by Lemma 5.7(iii), by definition V ∗ is c-almost minimizing in

U .

• (iv) follows from Lemma 5.7(ii).

• Finally by (iii) and Lemma 5.2, V ∗ has c-bounded first variation in U . By (i) and a standard

cutoff trick it is easy to show that V ∗ has c-bounded first variation in M whenever V does.

�

Lemma 5.9 (Regularity of c-replacement). Let 2 ≤ n ≤ 6. Under the same hypotheses as Proposition

5.8, if Σ = spt ‖V ∗‖ ∩ int(K), then

(1) Σ is a smooth, almost embedded, stable c-boundary;

(2) the density of V ∗ is 1 along R(Σ) and 2 along S(Σ);
(3) the restriction of the c-replacement V ∗x int(K) = Σ.

Proof. By the regularity for local minimizers of the Ac functional (Theorem 2.14), we know that each

∂Ω∗
i is a smooth, embedded, stable c-boundary in int(K) by Proposition 5.8(iv). The lemma then

follows from the compactness Theorem 2.11. �

Using Proposition 5.8, we can obtain the following preliminary lemma. It will be essential for

proving that various blowups of the c-min-max varifold are planar, particularly in the proposition to

follow, and in Section 6. Given p ∈ M, r > 0, let ηp,r : R
L → R

L be the dilation defined by

ηp,r(x) =
x−p
r .

Lemma 5.10. Let 2 ≤ n ≤ 6, and V ∈ Vn(M) be a c-almost minimizing varifold in U . Given a

sequence pi ∈ U with pi → p ∈ U and, a sequence ri > 0 with ri → 0, let V = lim(ηpi,ri)#V be the

varifold limit. Then V is an integer multiple of some complete embedded minimal hypersurface Σ in

TpM , and moreover, Σ is proper.

Proof. By Lemma 5.2, V has c-bounded first variation in U , so the blowup V is stationary in TpM .

We will show that V satisfies the good replacement property (Definition C.2) in any open subset
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W ⊂ TpM , which will imply that V is regular by Proposition C.3. The properness follows from the

Euclidean volume growth of V , which is a direct corollary of the monotonicity formula.

Now fix a bounded open subset W ⊂ TpM and an arbitrary x ∈ W . Consider an arbitrary annulus

An = As,t(x) ⊂ W of outer radius t ≤ 1. We will show that V has a replacement in An in the sense

of Definition C.1. Since ηpi,ri(M) → TpM locally uniformly, we can identify ηpi,ri(M) with TpM

on compact subsets for i large. Denote Ani = η
−1
pi,ri(An), then Ani ⊂ U for i large. For each i large,

we may apply Proposition 5.8 to obtain a c-replacement V ∗
i of V in Ani. Denote V

∗
i = (ηpi,ri)#V

∗
i ,

V i = (ηpi,ri)#V , then up to taking subsequences we have

V
′
= lim

i→∞
V

∗
i , for some varifold V

′
in TpM .

Moreover, we can deduce the following for V
′
:

• Proposition 5.8(i) =⇒ V
∗
ix(W\An) = V ix(W\An), hence

V
′x(W\An) = Vx(W\An);

• Proposition 5.8(ii) =⇒−cVol(Ani) · r
−n
i ≤ ‖V

∗
i ‖(W )− ‖V i‖(W ) ≤ cVol(Ani) · r

−n
i .

Since the outer radius of Ani is at most ri, for large i there exists some C0 > 0 depending

only on M such that Vol(Ani) ≤ C0r
n+1
i . This implies that

‖V
′
‖(W ) = ‖V ‖(W );

• Proposition 5.8(iii) =⇒ V ∗
i has c-bounded first variation in U , hence V

′
is stationary in W ;

• By Lemma 5.9, the restriction V ∗
i xAni is a smooth, almost embedded, stable c-boundary Σ∗

i .

Consider the rescalings: Σi = ηpi,ri(Σ
∗
i ) ⊂ An. By Proposition 5.8(ii) and the monotonicity for-

mula [51, 40.2], Σi have uniformly bounded mass. This together with the compactness Theorem

2.11(iii) implies that V
′xAn is an embedded stable minimal hypersurface.

Therefore, V
′

is a good replacement of V in An. By Proposition 5.8(iii), each V ∗
i is still c-almost

minimizing in U . Hence for any other annulus An′ ⊂W of outer radius ≤ 1, we can repeat the above

process and produce a good replacement V
′′

of V
′

in An′. In fact, we may repeat this process any

finite number of times. In particular, V satisfies the good replacement property (Definition C.2) in W ,

and this completes the proof. �

Proposition 5.11 (Tangent cones are planes). Let 2 ≤ n ≤ 6. Suppose V ∈ Vn(M) has c-bounded

first variation inM and is c-almost minimizing in small annuli. Then V is integer rectifiable. Moreover,

for any C ∈ VarTan(V, p) with p ∈ spt ‖V ‖,

(5.3) C = Θn(‖V ‖, p)|S| for some n-plane S ⊂ TpM where Θn(‖V ‖, p) ∈ N.

Proof. Let ri → 0 be a sequence such that C is the varifold limit:

C = lim
i→∞

(ηp,ri)#V.

First we know C is stationary in TpM . Since V is c-almost minimizing in small annuli centered at p,

by the same argument as in Lemma 5.10, we can show that C satisfies the good replacement property

(Definition C.2) in TpM . (Note that Definition C.2 only requires the existence of good replacements

in small annuli.) Therefore, by Proposition C.3, C is an integer multiple of some embedded minimal

hypersurface of TpM , and moreover, it is a cone by [51, 19.3]. In particular C is smooth and hence

spt ‖C‖ must be a plane. This finishes the proof. �
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6. REGULARITY FOR c-MIN-MAX VARIFOLD

In this section, we prove the regularity of our min-max varifolds. In particular we prove that every

varifold which has c-bounded variation and is c-almost minimizing in small annuli is a smooth, closed,

almost embeded, CMC hypersurface with multiplicity one.

Theorem 6.1 (Main regularity). Let 2 ≤ n ≤ 6, and (Mn+1, g) be an (n + 1)-dimensional smooth,

closed Riemannian manifold. Suppose V ∈ Vn(M) is a varifold which

(1) has c-bounded first variation in M and

(2) is c-almost minimizing in small annuli,

then V is induced by Σ, where

(i) Σ is a closed, almost embedded c-hypersurface (possibly disconnected);

(ii) the density of V is exactly 1 at the regular set R(Σ) and 2 at the touching set S(Σ).

Proof. The conclusion is purely local, so we only need to prove the regularity of V near an arbitrary

point p ∈ spt ‖V ‖. Fix a p ∈ spt ‖V ‖, then there exists 0 < r0 < ram(p) such that for any r < r0,

the mean curvature H of ∂Br(p) ∩M in M is greater than c. Here ram(p) is as in Definition 5.5.

In particular, if r < r0 and W ∈ Vn(M) has c-bounded first variation in Br(p) ∩M and W 6= 0 in

Br(p), then by the maximum principle (Proposition 2.13)

(6.1) ∅ 6= spt ‖W‖ ∩ ∂Br(p) = Clos (spt ‖W‖ \ Clos(Br(p))) ∩ ∂Br(p).

Note that in the second equality we need a localized version of Proposition 2.13 which holds true by

the remark after [57, Theorem 2].

We will show that VxBr0(p) is an almost embedded hypersurface of constant mean curvature c
with density equal to 2 along its touching set. The argument consists of five steps:

Step 1: Constructing successive c-replacements V ∗ and V ∗∗ on two overlapping concentric annuli.

Step 2: Gluing the c-replacements smoothly (as immersed hypersurfaces) on the overlap.

Step 3: Extending the c-replacements down to the point p to get a c-‘replacement’ Ṽ on the punctured

ball.

Step 4: Showing that the singularity of Ṽ at p is removable, so that Ṽ is regular.

Step 5: V coincides with the almost embedded hypersurface Ṽ on a small neighborhood of p.

We now proceed to the proof.

Step 1. We first describe the construction of c-replacements on overlapping annuli; a key property will

be that the replacements are also boundaries in the chosen annulus (see Claim 1).

Fix 0 < s < t < r0. By the choice of r0, we can apply Proposition 5.8 to V to obtain a c-
replacement V ∗ in K = Clos(As,t(p) ∩M). By (6.1) and Lemma 5.9, the restriction

Σ1 = V ∗x(As,t(p) ∩M)

is a nontrivial, smooth, almost embedded, stable c-boundary with outer unit normal ν1.

By Proposition 2.9, the touching set S(Σ1) is contained in a countable union of (n−1)-dimensional

connected submanifolds
⋃
S
(k)
1 . Since a countable union of sets of measure zero still has measure zero,

it follows from Sard’s theorem that we may choose s2 ∈ (s, t) such that ∂(Bs2(p) ∩M) intersects Σ1

and all the S
(k)
1 transversally.

Given any s1 ∈ (0, s), by Proposition 5.8(iii), we can apply Proposition 5.8 again to get a c-
replacement V ∗∗ of V ∗ in K = Clos(As1,s2(p) ∩M). By (6.1) and Lemma 5.9 again, the restriction

Σ2 = V ∗∗x(As1,s2(p) ∩M)
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is also a nontrivial, smooth, almost embedded, stable c-boundary with outer unit normal ν2. Note that

by Proposition 5.8(v), both V ∗ and V ∗∗ have c-bounded first variation.

We can choose the second c-replacement V ∗∗ so that it satisfies:

Claim 1: there exists a set Ω∗∗ ∈ C(M), such that

a) Σ1 ∩As2,t(p) and Σ2 are the boundaries of Ω∗∗ in As2,t(p) and As1,s2(p) respectively;

b) ν1, ν2 coincide with the outer unit normal of Ω∗∗ in As2,t(p) and As1,s2(p) respectively;

c) if ‖V ∗∗‖(∂Bs2(p)) = 0, then V ∗∗ is identical to |∂Ω∗∗| in As1,t(p) ∩M .

Proof of Claim 1: Fix 0 < τ < s1, then by Proposition 5.8(iv), V ∗ = limi→∞ |∂Ω∗
i | as varifolds for

some Ω∗
i ∈ C(M), where Ω∗

i ∈ A
c
n (Aτ,r0(p)∩M ; ǫi, δi;F) with ǫi, δi → 0. The regularity of the ∂Ω∗

i
as in the proof of Lemma 5.9, together with the compactness Theorem 2.11 imply that ∂Ω∗

ixAs,t(p)
converges locally smoothly to Σ1 in As,t(p) ∩M .

Applying Lemma 5.7 for each Ω∗
i in K = Clos(As1,s2(p)∩M), we can construct new c-minimizers

Ω∗∗
i , such that

• spt(Ω∗
i − Ω∗∗

i ) ⊂ K = Clos(As1,s2(p) ∩M);
• Ω∗∗

i is locally Ac-minimizing in As1,s2(p) ∩M ;

• V ∗∗ = lim |∂Ω∗∗
i | as varifolds;

• ∂Ω∗∗
i xAs1,s2(p) converges locally smoothly to Σ2 (again as in the proof of Lemma 5.9).

By the weak compactness [51, Theorem 6.3], up to a subsequence, ∂Ω∗∗
i converges weakly as currents

to some ∂Ω∗∗ with Ω∗∗ ∈ C(M). Claims (a) and (b) follow from the locally smooth convergence.

The weak convergence implies that ‖∂Ω∗∗‖(As1,t(p)) ≤ ‖V ∗∗‖(As1,t(p)). If ‖V ∗∗‖(∂Bs2(p)) = 0,

then together with the locally smooth convergence, we have ‖∂Ω∗∗‖(As1,t(p)) = ‖V ∗∗‖(As1,t(p));
moreover, V ∗∗x(As1,t(p)∩M) = |∂Ω∗∗|x(As1,t(p)∩M) by [43, 2.1(18)(f)]. This confirms (c). �

Step 2. We now show that Σ1 and Σ2 glue smoothly (as immersed hypersurfaces) across ∂(Bs2(p) ∩
M). Indeed, define the intersection set

(6.2) Γ = Σ1 ∩ ∂(Bs2(p) ∩M), S(Γ) = Γ ∩ S(Σ1).

Then by transversality, Γ is an almost embedded hypersurface in ∂(Bs2(p) ∩ M), and S(Γ) is its

touching set. Notice that

(6.3) S(Γ) is closed, and R(Γ) = Γ\S(Γ) is open in Γ.

It follows from the maximum principle that

Clos(Σ2) ∩ ∂(Bs2(p) ∩M) ⊂ Γ.

Indeed, (6.1) implies that any y ∈ Clos(Σ2) ∩ ∂(Bs2(p) ∩M) is also a limit point of spt ‖V ∗∗‖ from

the outer side of ∂Bs2(p), on which V ∗∗ coincides with Σ1. In fact, with a little more work we have

Claim 2: Clos(Σ2) ∩ ∂(Bs2(p) ∩M) = Γ, and then Σ1 glues together continuously with Σ2.

Proof of Claim 2: By Proposition 5.8(i), we have

(6.4) V ∗ = V ∗∗ = Σ1, in As2,t(p) ∩M .

Given any x ∈ Γ, using (6.4), Proposition 5.11 and the fact that Σ1 meets ∂(Bs2(p)∩M) transversally,

we have

(6.5) VarTan(V ∗∗, x) = {Θn(‖V ∗‖, x) |TxΣ1|}.

This implies that x is a limit point of spt ‖V ∗∗‖ from inside of ∂Bs2(p), and thus completes the proof

of the claim. �
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As a direct corollary of (6.5), [51, Theorem 3.2(2)] and Claim 1(c), we have

(6.6) ‖V ∗∗‖(∂Bs2(p)) = 0, and hence V ∗∗ = |∂Ω∗∗| in As1,t(p) ∩M .

Furthermore, we will show that Σ1 glues with Σ2 in C1, i.e. the tangent spaces of Σ1 and Σ2 agree

along Γ, with matching normals. Take an arbitrary q ∈ Γ. We will need to divide to two sub-cases:

Sub-case (A): q is a regular point of Σ1, i.e. q ∈ R(Γ).

First we have the following.

Claim 3(A): Fix x ∈ R(Γ), for any sequence of xi → x with xi ∈ R(Γ) and ri → 0, we have

lim
i→∞

(ηxi,ri)#V
∗∗ = TxΣ1 as varifolds.

Proof of Claim 3(A): By the weak compactness of Radon measures, after passing to a subsequence,

(6.7) lim
i→∞

(ηxi,ri)♯V
∗∗ = C ∈ Vn(TxM).

By Lemma 5.10, C is a regular, proper, complete minimal hypersurface in TxM . By (6.4), C coincides

with TxΣ1 on a half space of TxM . The classical maximum principle implies that C ⊃ TxΣ1. It then

follows from the half space theorem for minimal hypersurfaces [22, Theorem 3] that there are no other

connected components of C . Thus C = TxΣ1 and the proof is complete. �

Since {(ηxi,ri)♯V
∗∗ : i ∈ N} have uniformly bounded first variation, a standard argument using the

monotonicity formula implies that

(6.8) spt ‖(ηxi,ri)♯V
∗∗‖ → TxΣ1 in the Hausdorff topology.

To show that Σ1 and Σ2 glue together along Γ in C1 near q. We need to show that:

Claim 4(A): For each x ∈ R(Γ), we have

lim
z→x,z∈Σ2

ν2(z) = ν1(x).

Moreover, the convergence is uniform in x on compact subsets of Γ near q.

Proof of Claim 4(A): The uniformity follows from the fact that ν1 is continuous on Γ, so we only

need to establish the convergence to ν1.

So consider a sequence zi ∈ Σ2 converging to some x ∈ R(Γ). Since x is a regular point of Σ1, by

Claim 3(A) and the upper semi-continuity of density function for varifolds with bounded first variation

[51, 17.8], we know that zi is also a regular point of Σ2 for i large enough.

Take xi ∈ Γ to be the nearest point projection (in R
L) of zi to Γ and ri = |zi − xi|. Note that

xi → x ∈ R(Γ) and ri → 0, so we are in the situation of Claim 3(A). Note that Σ2 ∩ Bri/2(zi)
is an embedded, stable c-hypersurface in M , so by Theorem 2.11 a subsequence of the blow-ups

ηxi,ri(Σ2 ∩Bri/2(zi)) converges smoothly to a smooth, embedded, stable, minimal hypersurface Σ∞

contained in a half-space of TxM .

On the other hand, Claim 3(A) and (6.8) imply that ηxi,ri(Σ2∩Bri/2(zi)) converges in the Hausdorff

topology to a domain in TxΣ1. Therefore, we have Σ∞ ⊂ TxΣ1. The smooth convergence then implies

that ν2(zi) converges to one of the unit normals ±ν1(x) of TxΣ1. By Claim 1 and (6.6), we know that

V ∗∗ = |∂Ω∗∗| in As1,t(p) ∩M and ‖∂Ω∗∗‖(∂Bs2(p)) = 0, therefore the limit of the ν2(zi) must be

ν1(x), so Claim 4(A) is proved. �
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Thus we have proven that near any regular point q ∈ R(Γ), Σ1 and Σ2 glue together along Γ as a C1

hypersurface with matching outer unit normals ν1, ν2. The higher regularity follows from a standard

elliptic PDE argument. More precisely, Σ1 and Σ2 can be written as graphs of some functions u1, u2
over TqΣ1 respectively. Since the mean curvatures of both Σ1 and Σ2 are identical to c > 0 with

respect to some unit normals pointing to the same side of TqΣ1, they satisfy the same mean curvature

type elliptic PDE with in-homogenous term equal to c. The higher regularity follows from the elliptic

regularity of this PDE. This finishes Sub-case (A).

At this point we have proven that Σ2 glues smoothly with Σ1 ∩ As2,t(p) along R(Γ). Moreover,

by the unique continuation for elliptic PDE, we know that Σ2 is identical to Σ1 in a neighborhood of

R(Γ) in As2,t(p)∩M . We will need to show that the smooth gluing extends to the touching set S(Γ).

Sub-case (B): q is a touching point of Σ1, i.e. q ∈ S(Γ) ⊂ S(Σ1).

By Lemma 5.9, in some small neighborhood U ⊂ M of q, Σ1 ∩ U is the union of two connected,

embedded c-hypersurfaces Σ1,1 ∪ Σ1,2 with unit normals ν1,1 and ν1,2, such that Σ1,2 lies on one side

of Σ1,1 and they touch tangentially at S(Σ1) ∩ U = Σ1,1 ∩ Σ1,2. By Lemma 2.7, ν1,1 = −ν1,2 along

the touching set S(Σ1)∩U . Denote Γ∩Σ1,1 = Γ1 and Γ∩Σ1,2 = Γ2, then as embedded submanifolds

of ∂(Bs2(p) ∩ U), Γ2 lies on one-side of Γ1 and they touch tangentially along S(Γ) ∩ U .

Claim 3(B): Fix x ∈ S(Γ) and denote Px = TxΣ1,1 = TxΣ1,2. For any sequence of xi → x with

xi ∈ Γ and ri → 0, up to a subsequence we have

lim
i→∞

(ηxi,ri)♯V
∗∗ =

{
Px + τ vPx for Type I convergence

2Px for Type II convergence
,

where τw denotes translation by a vector w, and v ∈ (Px)
⊥ is a vector in TxM orthogonal to Px (v

may be ∞, in which case τ vP is understood to be the empty set). The two convergence scenarios are:

• Type I: lim inf i→∞ distRL(xi,S(Γ))/ri = ∞,

• Type II: lim inf i→∞ distRL(xi,S(Γ))/ri <∞.

Proof of Claim 3(B): First we determine the blowup limit C ′ = limi→∞(ηxi,ri)(Σ1).
In Type I convergence, for any R > 0, Γ ∩ BriR(xi) ⊂ R(Γ) for i large enough. Up to a subse-

quence, we can assume that all xi belong to Γ1, then (ηxi,ri)(Σ1,1) converges locally smoothly to Px.

Let x′i be the nearest point projection of xi to Σ1,2, and let v = limi→∞
x′

i−xi

ri
(up to taking a subse-

quence), which maybe ∞. If v is finite, then (ηxi,ri)(Σ1,2) converges locally smoothly to Px + v; if v
is infinite, then (ηxi,ri)(Σ1,2) disappears in the limit. So in this case C ′ = Px + τ vPx. In the Type II

scenario, the touching set does not disappear in the limit and we have C ′ = lim(ηxi,ri)(Σ1) = 2Px.

Now let C = limi→∞(ηxi,ri)♯V
∗∗ be the varifold limit as in (6.7). By Lemma 5.10, C is a regular,

proper, complete minimal hypersurface in TxM . AgainC must coincide withC ′ = limi→∞(ηxi,ri)(Σ1)
on a halfspace of TxM . Since C ′ consists of one or two parallel planes, the classical maximum prin-

ciple implies that C contains these planes, and again the halfspace theorem [22, Theorem 3] rules out

any other components of C . Thus C is identical to C ′, which completes the proof. �

By Claim 3(B) and the same argument in Claim 4(A), we know that

(6.9) lim
z→x,z∈Σ2

[TzΣ2] = [TxΣ1],

where [TzΣ2] and [TxΣ1] denote the un-oriented tangent planes of Σ2 and Σ1 (without counting mul-

tiplicity) respectively. Moreover, the convergence is uniform in x on compact subsets of S(Γ) near q.



MIN-MAX THEORY FOR CMC HYPERSURFACES 25

Therefore using the regularity of Σ2 in Lemma 5.9, near q the hypersurface Σ2 can be written as a set

of graphs {Σ2,i : i = 1 · · · l} over the half space [Tq(Σ1 ∩Bs2(p))].
Indeed, take ρ small so that Bρ(q) ∩ M may be identified with the tangent space TqM , and for

z ∈ Σ2 ∩Bρ(q) let Cǫ(z) denote (the image of) the cylinder in TqM with axis perpendicular to TqΣ1

and radius ǫ. For small enough ρ, ǫ, by almost-embeddedness and the uniform convergence of tangent

planes, Σ2 ∩ Cǫ(z) ∩ Bρ(q) decomposes as a finite number of ordered graphs over TqΣ1 ∩ Cǫ(z),
which have uniformly bounded gradient δ ≪ 1. The uniform gradient bound, together with unique

continuation for CMC hypersurfaces imply that this graphical decomposition may be extended all the

way to the boundary Γ, preserving the ordering and the gradient bound.

Now since Σ2 glues smoothly with Σ1 along R(Γ), and since R(Γ) is an open and dense subset of

Γ, we know that the set {Σ2,i : i = 1 · · · l} consists of exactly two elements: one of them, denoted by

Σ2,1, glues smoothly with Σ1,1 along Γ1\S(Γ); the other one, denoted by Σ2,2, glues smoothly with

Σ1,2 along Γ2\S(Γ). Now (6.9) implies that the pairs (Σ1,1,Σ2,1) and (Σ1,2,Σ2,2) glue together in

C1 near q respectively. Again higher regularity follows from the elliptic PDE argument as in Sub-case

(A). This finishes Sub-case (B).

Step 3. We now wish to extend the replacements, via unique continuation, all the way to the center p.

Henceforth we denote V ∗∗ by V ∗∗
s1 and Σ2 by Σs1 to indicate the dependence on s1. By varying

s1 ∈ (0, s), we obtain a family of nontrivial, smooth, almost embedded, stable c-boundaries {Σs1 ⊂
As1,s2(p) ∩M}. Since unique continuation holds for immersed CMC hypersurfaces, by Step 2 we

have Σs1 = Σ1 in As,s2(p), and moreover, for any s′1 < s1 < s, we have Σs′1
= Σs1 in As1,s2(p).

Hence

Σ :=
⋃

0<s1<s

Σs1

is a nontrivial, smooth, almost embedded, stable c-hypersurface in (Bs2(p)\{p}) ∩M . Also

V ∗∗
s1 = Σ, in As1,s2(p), V

∗∗
s1 = V ∗ in As,s2(p),

and for any s′1 < s1 < s, V ∗∗
s′1

= V ∗∗
s1 in As1,s2(p).

By Proposition 5.8, V ∗∗
s1 has c-bounded first variation and uniformly bounded mass for all 0 < s1 < s,

so the monotonicity formula [51, 40.2] implies that ‖V ∗∗
s1 ‖(Br(p)) ≤ Crn for some uniform C > 0.

Therefore as s1 → 0, the family V ∗∗
s1 will converge to a varifold Ṽ ∈ Vn(M), i.e.

Ṽ = lim
s1→0

V ∗∗
s1 , such that

(6.10) Ṽ =

{
Σ in (Bs2(p)\{p}) ∩M
V ∗ in M\Bs(p)

, and ‖Ṽ ‖({p}) = 0.

Since p ∈ spt ‖V ∗∗
s1 ‖, by the upper semi-continuity of density function for varifolds with bounded

first variation [51, 17.8], we know that p ∈ spt ‖Ṽ ‖.

Step 4. We now determine the regularity of Ṽ at p.

First, since Ṽ is the varifold limit of a sequence V ∗∗
s1 which all have c-bounded first variation, we

know that Ṽ also has c-bounded first variation. Second, Ṽ , when restricted to any small annulus

Ar,2r(p) ∩M , already coincides with a smooth, almost embedded, stable c-boundary Σ. Using these

two ingredients, we can use a blowup argument as in the proofs of Lemma 5.10 and Proposition 5.11
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(without the need for replacements) to show that every tangent varifold of Ṽ at p is an integer multiple

of some n-plane, i.e. for any C ∈ VarTan(V, p),

C = Θn(‖Ṽ ‖, p)|S| for some n-plane S ⊂ TpM where Θn(‖Ṽ ‖, p) ∈ N.

Now the removability of the singularity of Ṽ at p (as an almost embedded hypersurface) follows

similarly to [43, Theorem 7.12]. We include the details for completeness. We can assume that

Θn(‖Ṽ ‖, p) = m

for somem ∈ N. Since Σ is stable in a punctured ball of p, by Theorem 2.11, for any sequence ri → 0,

ηp,ri(Σ) → m · S

locally smoothly in R
L \ {0} for some n-plane S ⊂ TpM . However, S may depend on the sequence

ri. By the convergence and the regularity of Σ, there exists σ0 > 0 small enough, such that for any

0 < σ ≤ σ0, Σ has an m-sheeted, ordered (in the sense of Definition 2.2), graphical decomposition in

Aσ/2,σ(p):

(6.11) ṼxAσ/2,σ(p) =

m∑

i=1

|Σi(σ)|.

Here Σi(σ) is a graph over Aσ/2,σ(p) ∩ S for some n-plane S ⊂ TpM .

Since (6.11) holds for all σ, by continuity of Σ we can continue each Σi(σ0) to (Bσ0(p)\{p})∩M ,

and we denote the continuation by Σi. Since each piece Σi has constant mean curvature c, by a standard

extension argument (c.f. the proof in [19, Theorem 4.1]), each Σi can be extended as a varifold with

c-bounded first variation in Bσ0(p) ∩M . Given Ci ∈ VarTan(Σi, p), to see that Ci has multiplicity

one, first notice that

(6.12) Θn(‖Ci‖, p) ≥ 1,

since each Σi is c-stable and thus its re-scalings converge with multiplicity to a smooth, embedded,

stable, minimal hypersurface by Theorem 2.11. If equality does not hold for some i in (6.12), this will

derive a contradiction since

ṼxBσ0(p) =

m∑

i=1

|Σi|.

Therefore, each Σi has c-bounded first variation in Bσ0(p) ∩M and Θn(‖|Σi|‖, p) = 1; by the Allard

regularity theorem [51, Theorem 24.2] and elliptic regularity, Σi extends as a smooth, embedded c-
hypersurface across p. Finally, by the maximum principle (Lemma 2.7), we have m = 1 or m = 2 and

this shows that Ṽ extends as an almost embedded c-hypersurface across p.

Step 5. Finally, to complete the proof we show that V coincides with Ṽ on a small ball about p.

We will need the following simple corollary of the first variation formula.

Lemma 6.2. For small enough r the set

TrVp =

{
y ∈ spt ‖V ‖ ∩ (Br(p)\{p}) :

VarTan(V, y) consists of an integer multiple of an

n-plane transverse to ∂(Bdist(y,p)(p) ∩M)

}

is a dense subset of spt ‖V ‖ ∩Br(p).
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Proof. Assume to the contrary that there exists y ∈ spt ‖V ‖∩ (Br(p)\{p}), and some some neighbor-

hood U of p in Br(p) ∩M such that the tangent plane Sz of V at each point z ∈ U ∩ spt ‖V ‖ is tan-

gential to ∂(Bdist(z,p)(p)∩M). Since M is embedded in R
L, the family {∂(Bρ(p)∩M) : 0 < ρ < r}

forms a smooth foliation of (Br(p) ∩M)\{p} for small enough r. Let ν be the outer unit normal of

this smooth foliation. By our choice of r0, the mean curvature on the foliation is

divTy(∂(Bdist(y,p)(p)∩M))ν > c.

Consider the vector fieldX = ϕ ·ν, where ϕ ≥ 0 is a smooth cutoff function supported in U . Plugging

X into the first variation formula, we get

δV (X) =

∫
divSz (ϕν)d‖V ‖(z) =

∫
ϕ · divSz(ν)d‖V ‖(z)

> c ·

∫
ϕd‖V ‖(z) = c

∫
|X|d‖V ‖(z).

In the second equality we have used the fact that Sz is tangential to the foliation and hence perpendic-

ular to ν. This contradicts that V has c-bounded first variation and thus finishes the proof. �

Claim 5: For small enough r, spt ‖V ‖ = Σ in the punctured ball (Br(p)\{p}) ∩M .

Proof of Claim 5: We first prove that TrVp ⊂ Σ, which combined with Lemma 6.2 will imply that

spt ‖V ‖ ∩ (Br(p)\{p}) ⊂ Σ. Fix y ∈ TrVp ∩ (Br(p)\{p}), and let ρ = dist(y, p). Consider V ∗∗
ρ . By

transversality we have y ∈ Clos(spt ‖V ‖ ∩Bρ(p)). On the other hand, V ∗∗
ρ = V ∗ = V inside Bρ(p),

so by (6.1) we have

Clos(spt ‖V ‖ ∩Bρ(p)) ∩ ∂Bρ(p) = Clos(spt ‖V ∗∗
ρ ‖ ∩Bρ(p)) ∩ ∂Bρ(p)

⊂ Clos
(
spt ‖V ∗∗

ρ ‖ \Clos(Bρ(p))
)
∩ ∂Bρ(p).

Since spt ‖V ∗∗
ρ ‖ = Σ on Aρ,s2(p), we therefore have y ∈ Σ.

Next we show the reverse inclusion Σ ⊂ spt ‖V ‖. Since Σ extends across p as an almost embedded

hypersurface, we know that TyΣ is transverse to ∂(Bdist(y,p)(p) ∩M) for all y ∈ Σ ∩Br(p) for small

enough r. Let ρ and V ∗∗
ρ be as above, then y ∈ spt ‖V ∗∗

ρ ‖. By Proposition 5.11, VarTan(V ∗∗
ρ , y) =

{Θn(‖V ∗∗
ρ ‖, y)|TyΣ|}. By the transversality, we then have y ∈ Clos(spt ‖V ∗∗

ρ ‖ ∩ Bρ(p)), so since

V ∗∗
ρ = V inside Bρ(p) we conclude that y ∈ Clos(spt ‖V ‖ ∩Bρ(p)) ⊂ spt ‖V ‖ as desired. �

Note that we do not have the Constancy Theorem (c.f. [51, 41.1]) for varifolds with bounded first

variation. In order to show that V coincides with Σ near p, our strategy is to show that V = Ṽ as

varifolds in a neighborhood of p. By the transversality argument as above, we can first show that the

densities of V and Ṽ are identical along Σ ∩ (Br(p)\{p}, where r is chosen as in Claim 5.

Claim 6: Θn(‖V ‖, ·) = Θn(‖Ṽ ‖, ·) on Σ ∩Br(p)\{p}.

Proof of Claim 6: Let y ∈ Σ and ρ = dist(y, p) < r be as above. Then since V ∗∗
ρ = V insideBρ(p),

by transversality and Proposition 5.11 we have VarTan(V, y) = VarTan(V ∗∗
ρ , y). But V ∗∗

ρ = Ṽ on

Aρ,s2(p), so we must have VarTan(V ∗∗
ρ , y) = {Θn(‖Ṽ ‖, y)|TyΣ|}. Thus Θn(‖V ‖, y) = Θn(‖Ṽ ‖, y).

�

Combining Claims 5 and 6 yields that V = Ṽ on Br(p)∩M . This finishes the proof of Step 5, and

hence also completes the proof of the main Theorem 6.1. �
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APPENDIX A. AN INTERPOLATION LEMMA

The first lemma below was essentially due to Pitts [43, Lemma 3.8], but the modification to find

the interpolation sequence using boundaries of Caccioppoli sets was completed by the first author [60,

Proposition 5.3].

Lemma A.1. Suppose L > 0, η > 0, W is a compact subset of U , and Ω ∈ C(M). Then there exists

δ = δ(L, η, U,W,Ω) > 0, such that for any Ω1,Ω2 ∈ C(M) satisfying

(a) spt(Ωi − Ω) ⊂W , i = 1, 2,

(b) M(∂Ωi) ≤ L, i = 1, 2,

(c) F(∂Ω1 − ∂Ω2) ≤ δ,

there exist a sequence Ω1 = Λ0,Λ1, · · · ,Λm = Ω2 ∈ C(M) such that for each j = 0, · · · ,m− 1,

(i) spt(Λj − Ω) ⊂ U ,

(ii) Ac(Λj) ≤ max{Ac(Ω1),A
c(Ω2)}+ η,

(iii) M(∂Λj − ∂Λj+1) ≤ η.

(iv)

M(∂Λj) ≤ max{M(∂Ω1),M(∂Ω2)}+
η

2
.

(v)

M(Λj − Ωi) ≤
η

2c
, for i = 1, 2.

Proof. Note that by a covering argument, one only needs to prove the case when ∂Ω2 is fixed, and in

this case δ = δ(L, η, U,W,Ω,Ω2).
Under our assumptions on Ω1,Ω2, there are two issues for us that differ from the conclusions of

Pitts [43, Lemma 3.8]:

(1) we require the interpolating sequence {∂Λj} to consist of boundaries of Caccioppoli sets,

while in [43] the interpolating sequence consists of integral currents {Tj ∈ Zn(M)} (using

notations therein);

(2) for point (ii), we require that Ac(Λj) does not increase much from Ac(Ω1),A
c(Ω2), while in

[43] it was only proven that M(Tj) ≤ max{M(∂Ω1),M(∂Ω2)}+ η.

These two minor points can be easily deduced from the mentioned work of Zhou [60], and now we

point out the necessary details. In fact, with regards to point (1), the proof of [60, Proposition 5.3]

already proceeds using boundaries, and we will first justify properties (i, iii, iv).
Specifically, given L, η,Ω,Ω2 satisfying the assumptions in the Lemma, [60, Proposition 5.3] (ap-

plied to the case when m = 1, l = 0 therein) gives the desired δ > 0, such that if Ω1 satisfies the

assumptions (a-c), then there exists a sequence Ω1 = Λ0,Λ1, · · · ,Λm = Ω2 ∈ C(M) such that for

each j = 0, · · · ,m− 1, properties (iii) and (iv) are satisfied.

Although in [60, Proposition 5.3] Ωi were not assumed to satisfy the additional condition spt(Ωi −
Ω) ⊂ W . It can be seen that the construction in [60, Proposition 5.3] indeed satisfies the required

property (i) under this additional condition.

Note that properties (iv, v) immediately imply (ii), so it remains only to show (v). Indeed, from the

construction in [60, Proposition 5.3], one knows that the symmetric difference Λj△Ωi is a subset of

the union of the symmetric difference Ω1△Ω2 together with finitely many (depending only on L and

η) balls of arbitrarily small radii in U . Since Vol(Ω1△Ω2) = M(Ω1 − Ω2) = F(∂Ω1, ∂Ω2) by the

isoperimetric lemma [60, Lemma 7.3], one thus obtains (v) by taking δ small enough. �
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APPENDIX B. INTERPOLATION PROCESS

Proof of Claim 2 in Proposition 4.4. Here we describe the construction of {φi} by interpolating {φ1i }.

Fix i ∈ N and consider a 1-cell α ∈ I(1, ki). We only need to show how to interpolate φ1i when

restricted to α0. For notational simplicity we write α = [0, 1]. For x ∈ α let X̃(x) be the linear

interpolation between X̃i(0) = X̃(|∂φ∗i (0)|) and X̃i(1) = X̃(|∂φ∗i (1)|). The continuity of the map

V → X̃(V ) implies that ‖X̃i(x) − X̃i(0)‖C1(M) → 0 uniformly as i → ∞. Define Q̄i(x) to be the

push-forward of φ∗i (0) by the flow of X̃i(x) up to time 1; this gives a map Q̄i : α→ C(M). Note that

∂Q̄i : α→ Zn(M) is continuous under the F-metric.

Since Q̄i(x) and φ1i (0) are the push-forwards of the same initial set φ∗i (0) under the flows of X̃i(x)

and X̃i(0) respectively, we have

(B.1)
F(∂Q̄i(x), ∂φ

1
i (0)) → 0

M(Q̄i(x)− φ1i (0)) → 0
, uniformly in x, α as i→ ∞.

As Q̄i(1) and φ1i (1) are the respective push-forwards of φ∗i (0) and φ∗i (1) under the same flow of X̃i(1),
we have

(B.2) M(∂Q̄i(1)− ∂φ1i (1)) → 0, uniformly in α as i→ ∞.

Now we can apply the interpolation result [60, Theorem 5.1] (see also [33, Theorem 13.1]) to Q̄i,

which gives that for any η > 0, there exist lη > 0 and Qi : α(lη)0 → C(M), such that

(i) given x ∈ α(lη)0,

M(∂Qi(x)) ≤ M(∂Q̄i(x)) + η/2,

so by the same argument as in the proof of point (v) of Lemma A.1,

M(Qi(x)− Q̄i(x)) ≤ η/(2c),

and hence

Ac(Qi(x)) ≤ Ac(Q̄i(x)) + η;

(ii) f(Qi) ≤ η;

(iii) sup{F(∂Qi(x)− ∂Q̄i(x)) : x ∈ α(lη)0} < η.

When η → 0, by (i, iii) and [43, 2.1(20)] (see also [33, Lemma 4.1]), we have

lim
η→0

sup{F(∂Qi(x), ∂Q̄i(x)) : x ∈ α(lη)0} = 0.

Take a sequence ηi → 0, and denote li = ki + lηi + 1, then we construct φi : I(1, ki + lηi + 1) →
C(M) by defining φi on each α(lηi + 1)0 by

φi(x) =

{
Qi(3x) for x ∈ [0, 1/3] ∩ α(lηi + 1)0
φ1i (1) otherwise.

The desired properties (a, b, c, d) of φi follow straightforwardly from (B.1)(B.2) and the properties

of Qj . Since Q̄i is obtained from a continuous deformation from φ∗i , a further interpolation argument

shows that S is homotopic to S∗, and hence we finish the proof of Claim 2. �
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APPENDIX C. GOOD REPLACEMENT PROPERTY AND REGULARITY

Here we record the notions of good replacements and the good replacement property. Recall the

following definitions by Colding-De Lellis [11]. Consider two open subsets W ⊂⊂ U ⊂Mn+1.

Definition C.1. [11, Definition 6.1]. Let V ∈ Vn(U) be stationary in U . A stationary varifold V ′ ∈
Vn(U) is said to be a replacement for V in W if

V ′x(U\W ) = Vx(U\W ), ‖V ′‖(U) = ‖V ‖(U), and

V ′xW is an embedded stable minimal hypersurface Σ with ∂Σ ⊂ ∂W.

Definition C.2. [11, Definition 6.2]. Let V ∈ Vn(U) be stationary in U . V is said to have the good

replacement property in W if

(a) there is a positive function r : W → R such that for every annulus As,t(x) ∩M ⊂ W with

0 < s < t < r(x), there is a replacement V ′ for V in As,t(x) ∩M ;

(b) the replacement V ′ has a replacement V ′′ in every annulus As,t(y) ∩M ⊂ W with 0 < s <
t < r(y);

(c) V ′′ has a replacement V ′′′ in every annulus As,t(z) ∩M ⊂W with 0 < s < t < r(z).

Note that our formulations are local compared to those in [11]. Indeed, the proofs of [11, Proposition

6.3] and [14, Theorem 2.8] are purely local, so the following proposition still holds:

Proposition C.3. [11, Proposition 6.3], [14, Proposition 2.8]. When 2 ≤ n ≤ 6, if V ∈ Vn(U) has

the good replacement property in W , then VxW is an integer multiple of some smooth embedded

minimal hypersurface Σ.
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Textbooks]. Birkhäuser Verlag, Basel, 1992.

[28] Martin Li and Xin Zhou. Min-max theory for free boundary minimal hypersurfaces i-regularity theory.

arXiv:1611.02612, 2016.

[29] Yevgeny. Liokumovich, Fernando C. Marques, and André Neves. Weyl law for the volume spectrum.
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[31] Rafael López. Wetting phenomena and constant mean curvature surfaces with boundary. Rev. Math. Phys., 17(7):769–

792, 2005.

[32] F. Mahmoudi, R. Mazzeo, and F. Pacard. Constant mean curvature hypersurfaces condensing on a submanifold. Geom.

Funct. Anal., 16(4):924–958, 2006.
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