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Abstract. In this paper, we generalize the categorifical construction of a
quantum group and its canonical basis by Lusztig ([16, 17]) to the generic

form of whole Ringel-Hall algebra. We clarify the explicit relation between the

Green formula in [7] and the restriction functor in [17]. By a geometric way to
prove Green formula, we show that the Hopf structure of a Ringel-Hall algebra

can be categorified under Lusztig’s framework.

1. Introduction

Based on the classical works of Hall ([8]) and Steineiz ([31]), the Ringel-Hall
algebra H(A) of a (small) abelian category A was introduced by Ringel in [24],
as a model to realize the quantum group. When A is the category RepFqQ of
finite dimensional representations for a simply-laced Dynkin quiver Q over a finite
field Fq, the Ringel-Hall algebra H(A) is isomorphic to the positive part of the
corresponding quantum group ([24]). For any acyclic quiverQ andA = RepFqQ, the

composition subalgebra of H(A) generated by the elements corresponding to simple
representations is isomorphic to the positive part of the quantum group of type Q.
This gives the algebraic realization of the positive/negative part of a (Kac-Moody
type) quantum group. This realization was achieved by Green ([7]), through solving
a natural question whether there is a comultiplication on H(A) compatible with
the corresponding multiplication so that the above isomorphism is an isomorphism
between bialgebras. Now it is well-known that Green’s comultiplication depends on
a remarkable homological formula in [7] (called the Green formula in the following).

In the seminal papers [16] and [17], Lusztig gave the geometric realization of
the positive/negative part of a quantum group and then constructed the canonical
basis for it. Let Q = (Q0, Q1) be a quiver and

Ed :=
⊕
α∈Q1

HomK(Kds(α) ,Kdt(α))

be the variety with the natural action of the algebraic group

Gd :=
∏
i∈Q0

GL(di,K)
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for a given dimension vector d ∈ NQ0. Lusztig ([17]) defined the flag Fi,a and the
subvariety

Ẽi,a ⊆ Ed ×Fi,a.

Fix any type (i,a), consider the canonical proper morphism πi,a : Ẽi,a → Ed. By
the decomposition theorem of Beilinson, Bernstein and Deligne ([1]), the complex

πi,a!1 is semisimple, where 1 is the constant perverse sheaf on Ẽi,a. Let Qd be
the category of complexes isomorphic to sums of shifts of simple perverse sheaves
appearing in πi,a!1, Kd the Grothendieck group of Qd and K =

⊕
dKd. Lusztig

([17]) already endowed K with the multiplication and comultiplication structures
by introducing his induction and restriction functors. He proved that the comul-
tiplication is compatible with the multiplication in K and K is isomorphic to the
positive part of the corresponding quantum group as bialgebras up to a twist.

By this isomorphism, the isomorphism classes of simple perverse sheaves in Qd
provide a basis of the corresponding quantum group, which is called the canonical
basis. The canonical basis theory of quantum algebras is crucially important in Lie
theory. This basis has many remarkable properties such as such as integrality and
positivity of structure constants, compatibility with all highest weight integrable
representations, etc. Lusztigs approach essentially motivates the categorification of
quantum groups (for example, see [12],[28] and [32]) or quantum cluster algebras
(see [9],[21],[13], etc.), i.e., a quantum group/quantum cluster algebra can be viewed
as the Grothendieck ring of a monoidal category and some simple objects provides
a basis (see also [33]).

For a long time we have been asked what the explicit relation exists between
the Green’s comultiplication and Lusztig’s restriction functor. As one of the main
result in the present paper, the following Theorem 4.8 and the definition of the
comultiplication operator ∆ provide us this strong and clear link. Thanks to an
embedding property as in [14] and [27], we can lift the Green formula from finite
fields to the level of sheaves. This is finally suitable to apply the Lusztig’s restriction
functor to the larger categories of the so-called Weil complexes, whose Grothendieck
groups realize the weight spaces of a generic Ringel-Hall algebra.

The second aim of this paper is to give the categorification of Ringel-Hall algebras
via Lusztig’s geometric method. In Section 2, we recall the theory of Ringel-Hall
algebras, focusing on the Hopf structure of Ringel-Hall algebras. In Section 3,
we recall Lusztig’s construction of Hall algebras via functions invariant under the
Frobenius map. Then we obtain an algebra CFF (Q). The comultiplication over

CFF (Q) is just a twist of Green’s comultiplication. However, the proof of the
compatibility of Lusztig’s comultiplication and multiplication for the whole Ringel-
Hall algebra essentially depends on the proof of the Green formula. In the end of
this section, we show that the twist of CFF (Q) is isomorphic to Htw(A) as a Hopf
algebra. Hence, Lusztig’s comultiplication can be applied to Ringel-Hall algebras.
In Section 4, we extend the geometric realization of a quantum group to the whole
Ringel-Hall algebra under Lusztig’s framework. We obtain the generic Ringel-Hall
algebra as the direct sum of Grothendieck groups of the derived categories of a
class of Weil complexes. The simple perverse sheaves provide the caonical basis.
We show that the compatibility of the induction and restriction functor holds for
these perverse sheaves. Therefore the generic Ringel-Hall algebra has a structure
of Hopf algebra. In Section 5, we construct the Drinfeld double of the generic
Ringel-Hall algebra.
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2. A revisit of Ringel-Hall algebras as Hopf algebras

We recall the definition of the Ringel-Hall algebra H(A) for the hereditary
abelian category A = modkQ = RepkQ, where k = Fq is a finite field with q = pe

elements for some prime number p and Q is a finite quiver without oriented cycles.
For M ∈ A, we denote by dimM the dimension vector in NQ0 and define the

Euler-Ringel form on NQ0 as follows:

〈M,N〉 = dimkHomA(M,N)− dimkExt1
A(M,N).

For M,N and L ∈ modkQ, we denote by FLMN the set {X ⊂ L | X ∈ modkQ,X ∼=
N,L/X ∼= M} and Ext1

A(M,N)L the subset of Ext1
A(M,N) with the middle term

isomorphic to L. Write FLMN = |FLMN | and hMN
L =

|Ext1A(M,N)L|
|HomA(M,N)| . For X ∈ A, set

aX = |AutAX|.
The ordinary Ringel-Hall algebra H(A) is a C-space with isomorphism classes

[X] of all kQ-modules X as a basis and the multiplication is defined by

[M ] ∗ [N ] =
∑
[L]

FLMN [L]

for M,N and L ∈ modkQ. We can endow H = H(A) a comultiplication δ : H →
H⊗C H by setting

δ([L]) =
∑

[M ],[N ]

hMN
L [M ]⊗ [N ].

The comultiplication is compatible with the multiplication via Green’s theorem.

Theorem 2.1. [7] The map δ is an algebra homomorphism with respect to the
twisted multiplication on H⊗H as follows:

([M1]⊗ [N1]) ◦ ([M2]⊗ [N2]) = q〈M1,N2〉([M1] ∗ [M2])⊗ ([N1] ∗ [N2]).

The theorem is equivalent to the following Green formula holds:

aM1
aM2

aN1
aN2

∑
[L]

FLM1N1
FLM2N2

a−1
L

=
∑

[X],[Y1],[Y2],[Z]

|Ext1
A(X,Z)|

|HomA(X,Z)|
FM1

XY1
FM2

XY2
FN1

Y2Z
FN2

Y1Z
aXaY1

aY2
aZ .

Define a symmetric bilinear form on H by setting ([M ], [N ]) =
δM,N
aM

. We call
the form Green’s Hopf pairing. It is clear that the Green Hopf pairing is a non
degenerated bilinear form over H. The following proposition shows that the comul-
tiplication is dual to the multiplication, i.e., the comultiplication can be viewed as
the multiplication over H∗ = HomC(H,C).

Proposition 2.2. The comultiplication is left adjoint to the multiplication with
respect to Green’s Hopf pairing, i.e., for a, b, c ∈ H, (a, bc) = (δ(a), b⊗ c).
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The proposition is equivalent to the Riedtmann-Peng formula

FLMNaMaN = hMN
L aL

holds.
It is easy to generalize the multiplication and comultiplication to the r-fold

versions for r ≥ 2. For M1, · · · ,Mr,M ∈ A, set FMM1,··· ,Mr
to be the set

{0 = X0 ⊆ X1 ⊆ · · · ⊆ Xr = M | Xi ∈ A, Xi+1/Xi
∼= Mr−i, i = 0, 1, · · · , r − 1}

and FMM1···Mr
= |FMM1,··· ,Mr

|. Then

[M1] ∗ [M2] ∗ · · · ∗ [Mr] =
∑
[M ]

FMM1···Mr
[M ].

The r-fold comultiplication δr can be defined inductively. For r = 1, δ1 = δ and
δr+1 = (1⊗ · · · ⊗ 1⊗ δ) ◦ δr for r ≥ 1. Set

δr−1([M ]) =
∑

[M1],··· ,[Mr]

hM1···Mr

M [M1]⊗ · · · ⊗ [Mr]

for r ≥ 2. It is clear that the Riedtmann-Peng formula can be reformulated as

hM1M2···Mr

M = FMM1···Mr
aM1 · · · aMra

−1
M

for r ≥ 2.
Let σ : H → H be a map such that

σ([M ]) = δM,0 +
∑
r≥1

(−1)r ·
∑

[N ],[M1],··· ,[Mr] 6=0

hM1···Mr

M FNM1···Mr
[N ].

for M ∈ A. We call σ the antipode of H.
One can also define the twisted version of the multiplication overH(A) by setting

[M ] · [N ] = v〈M,N〉[M ] ∗ [N ],

where v =
√
q. Similarly, the comultiplication, the antipode and Green’s Hopf

pairing can be twisted (see [34] for more details). We denote by Htw(A) the twisted
version of H(A).

Theorem 2.3. [24, 7, 34] The algebra Htw(A) is a Hopf algebra with the above
twisted multiplication, comultiplication and antipode. Let gQ be the Kac-Moody
algebra associated to the quiver Q and U+

v (gQ) be the positive part of the quantum

group Uν(gQ) specialized at ν = v with v = q
1
2 . Let Ctw(A) be the subalgebra of

the twisted Ringel-Hall algebra Htw(A) generated by isomorphism classes of simple
kQ-modules. Denoted by CtwZ[v,v−1](A) the integral form of Ctw(A). Then there is

an isomorphism of Hopf algebras

Ψ : U+
v (gQ)→ CtwZ[v,v−1](A)

⊗
Z[v,v−1]

Q(v)

sending Ei to [Si] for i ∈ Q0.
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3. Lusztig’s construction of Hall algebras via functions

In this section, we recall Lusztig’s construction of Hall algebras via functions in
[19] and compare it with Ringel-Hall algebras. Let k = Fq as above and K = Fq.
Given a dimension vector d = (di)i∈Q0 , define the variety

Ed := Ed(Q) =
⊕
α∈Q1

HomK(Kds(α) ,Kdt(α)).

Any element x = (xα)α∈Q1
in Ed(Q) defines a representation M(x) = (Kd, x) of Q

with Kd =
⊕

i∈Q0
Kdi . The algebraic group

Gd := Gd(Q) =
∏
i∈Q0

GL(di,K)

acts on Ed by (xα)gα∈Q1
= (gt(α)xαg

−1
s(α))α∈Q1

for g = (gi)i∈Q0
∈ Gd and (xα)α∈Q1

∈
Ed. The isomorphism class of a KQ-module X is just the orbit of X. The quotient
stack [Ed/Gd] parametrizes the isomorphism classes of KQ-modules of dimension
vector d.

Let F be the Frobenius automorphism of K, i.e., F (x) = xq. The F -fixed subfield
is just Fq. This induces an isomorphism Ed → Ed sending (((xα)ij)ds(α)×dt(α)

)α∈Q1

to (((xα)qij)ds(α)×dt(α)
)α∈Q1

. We will denote all induced map by F if it does not
cause any confusion.

For any KQ-module M(x) = (Kd, x), set M(x)[q] = F (M(x)). The representa-
tion M(x) ∈ Ed is F -fixed if M(x) ∼= M(x)[q]. The last condition is equivalent to
say that M(x) is defined over Fq, i.e., there exists a kQ-module M0(x) such that
M(x) ∼= M0(x) ⊗Fq K ([10]). We denoted by EFd and GFd the F -fixed subset of Ed
and Gd respectively. For a kQ-module M ∈ EFd , let OM denote the orbit of M in

Ed and OFM the F -fixed subset of OM .

Let l 6= p be a prime number and Ql be the algebraic closure of the field of

l-adic numbers. Fix a square root v = q
1
2 ∈ Ql. Define CFFd to be the Ql-space

generated by GFd -invariant functions: EFd → Ql. We will endow the vector space

CFF (Q) =
⊕

d CF
F
d with a multiplication and comultiplication.

First we recall two functors: the pushforward functors and the inverse image
functors in [19]. Given two finite sets X,Y and a map φ : X → Y . Let CF(X) be
the vector space of all functions X → Ql over X. Define the pushforward of φ to be

φ! : CF(X)→ CF(Y ), φ!(f)(y) =
∑

x∈φ−1(y)

f(x)

and the inverse image of φ

φ∗ : CF(Y )→ CF(X), φ∗(g)(x) = g(φ(x)).

Let E′′ be the variety of all pairs (x,W ) where x ∈ Eα+β and (W,x|W ) is a
KQ-submodule of (Kα+β , x) with dimension vector β. Let E′ be the variety of all

quadruples (x,W, ρ1, ρ2) where (x,W ) ∈ E′′ and ρ1 : Kα+β/W ∼= Kα, ρ2 : W ∼= Kβ
are linear isomorphisms. Consider the following diagram

Eα × Eβ E′
p2 //p1oo E′′

p3 // Eα+β

where p2, p3 are natural projections and p1(x,W, ρ1, ρ2) = (x′, x′′) such that

x′h(ρ1)s(h) = (ρ1)t(h)xh and x′′h(ρ2)s(h) = (ρ2)t(h)xh
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for any h ∈ Q1.
The groups Gα × Gβ and Gα+β naturally act on E′. The map p1 is Gα+β ×

Gα ×Gβ-equivariant under the trivial action of Gα+β on Eα × Eβ . The map p2 is
a principal Gα ×Gβ-bundle.

Applying the Frobenius map F , we can define the above diagram over Fq as
follows:

EFα × EFβ E′F
p2 //p1oo E′′F

p3 // EFα+β .

There is a linear map (called the induction)

m : CFGα×Gβ (EFα × EFβ )→ CFGα+β
(EFα+β) = CFFα+β

sending g to |GFα×GFβ |−1(p3)!(p2)!p
∗
1(g). Iteratively, one can define the r-fold version

mr of m for r ≥ 1 by setting m1 = id, m2 = m and mr+1 = m ◦ (1⊗mr) for r ≥ 2.

Now we can define the multiplication over CFF (Q). For fα ∈ CFFα , fβ ∈ CF
F
β

and (x1, x2) ∈ Eα × Eβ , set g(x1, x2) = fα(x1)fβ(x2). Then g ∈ CFFα+β and define
the multiplcation

fα ∗ fβ = m(g).

Lemma 3.1. [15] Given three kQ-modules M,N and L, let 1OM , 1ON and 1OL be
the characteristic functions over orbits, respectively. Then 1OFM ∗ 1OFN (L) = FLMN .

We now turn to define the comultiplication over CFF (Q). Fix a subspace W of
Kα+β with dimW = β and linear isomorphisms ρ1 : Kα+β/W ∼= Kα, ρ2 : W ∼= Kβ .
Let Fα,β be the closed subset of Eα+β consisting of all x ∈ Eα+β such that (W,x|W )
is a KQ-submodule of (Kα+β , x) with dimension vector β. Consider the diagram

Eα × Eβ Fα,β
κoo i // Eα+β ,

where the map i is the inclusion and κ(x) = p1(x,W, ρ1, ρ2). For (x1, x2) ∈ Eα×Eβ ,
the fibre κ−1(x1, x2) ∼=

⊕
h∈Q1

HomK(Kαs(h) ,Kβt(h)) and then κ is a vector bundle

of dimension
∑
h∈Q1

αs(h)βt(h).
Applying the Frobenius map F , we can define the above diagram over Fq as

follows:

EFα × EFβ FFα,β
κoo i // EFα+β .

There is also the restriction map

δα,β : CFGα+β
(EFα+β)→ CFGα×Gβ (EFα × EFβ )

sending f ∈ CFGα+β
(EFα+β) to κ!i

∗(f). It defines the comultiplication δ over CFF (Q),

i.e., for f ∈ CFFγ and α + β = γ, δ(f) =
∑
α,β;α+β=γ δα,β(f). Iteratively, we can

define δr for r ≥ 1 by setting δ1 = δ and δr+1 = (1⊗ · · · ⊗ δ) ◦ δr for r ≥ 1.
For M,N and L in A = RepkQ, we set

DMN
L = δ(1OFL )(M,N) = κ!i

∗(1OFL )(M,N).

In order to compare this with the comultiplication of Ringel-Hall algebras, we define

the twist δtwα,β = q−
∑
i∈Q0

αiβiδα,β and δtw in the same way.

Lemma 3.2. With the notations in Lemma 3.1 and dimM = α,dimN = β, we
have δtwα,β(1OFL )(M,N) = hMN

L .
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Proof. Suppose M = (Kα, x1) and N = (Kβ , x2). The linear isomorphisms ρ1, ρ2

induce the module structures of Kα+β/W and W , denoted by (Kα+β/W, yKα+β/W )
and (W, yW ) respectively. Consider the set

S = {x ∈ Eα+β | (W,x|W ) = (W, yW ),

(Kα+β/W, x|Kα+β/W ) = (Kα+β/W, yKα+β/W ), (Kα+β , x) ∼= L}.
Fix a decomposition of the vector space Kα+β = W ⊕Kα+β/W. Then

S = {x =

(
(yW )h d(h)

0 (yKα+β/W )h

)
h∈Q1

| d(h) ∈ HomK(Kαs(h) ,Kβt(h)), (Kα+β , x) ∼= L}.

Set D(α, β) =
⊕

h∈Q1
HomK(Kαs(h) ,Kβt(h)). Apply the Frobenius map F , we have

the following long exact sequence (see [4])

0 // HomkQ(M,N) // ⊕i∈Q0Homk(kαi , kβi) //

// DF (α, β)
π // Ext1

kQ(M,N) // 0.

We denote by DF (α, β)L the inverse image of Ext1
kQ(M,N)L under the map π.

Then DMN
L = |DF (α, β)L| = q

∑
i∈Q0

αiβihMN
L . By definition, δα,β(1OFL )(M,N) =

|DF (α, β)L| = DMN
L . This completes the proof. �

In order to compare these with Lusztig’s construction, we consider the subalgebra
of CFF (Q) generated by 1Si = 1OFSi

for all i ∈ Q0, denoted by FF (Q). Then

FF (Q) =
⊕

d FFd .

Lemma 3.3. Given a sequence i = (i1, i2, · · · , im) in Q0 such that ij 6= ik for

j 6= k ∈ {1, 2, · · · ,m} and let f = 1Si1 ∗ 1Si2 ∗ · · · ∗ 1Sim ∈ CF
F (Q). Then

δ(f) = δtw(f).

The Riedtmann-Peng formula can be reformulated to the following form, which
generalizes [19, Lemma 1.13] from FF (Q) to CFF (Q).

Proposition 3.4. Let fi ∈ CFFdi for i = 1, 2 and g ∈ CFFd for d = d1 + d2. Then

|GFd |
∑
x,y

f1(x)f2(y)δtwd1,d2(g)(x, y) = |GFd1 ×G
F
d2
|
∑
z

f1 ∗ f2(z)g(z)

where x ∈ EFd1 , y ∈ E
F
d2

and z ∈ EFd1 .

Proof. Given a dimension vector d, take f ∈ EFd , then f =
∑l
i=1 ai1OFMi

for some

ai ∈ Ql, l ∈ Z and kQ-modules M1, · · · ,Ml. With loss of generality, we may assume
that f1 = 1OFM , f2 = 1OFN and g = 1OFL for some kQ-modules M,N and L. Following

Lemma 3.1 and 3.2, the left side of the equation is equal to

|GFd | · |OFM | · |OFN | · hLMN

and the right side of the equation is equal to

|GFd1 | · |G
F
d2
| · |OFL | · FLMN

Using aL = |GFd |/|OFL | and the Riedtmann-Peng formula, we prove the proposition.
�
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By definition, dimkG
F
d =

∑
i∈Q0

d2
i and then we obtain the following lemma ([30,

Section 1.2]).

Lemma 3.5. With the above notation, we have

dimkG
F
d − dimkG

F
d1
− dimkG

F
d2

=
∑
i∈Q0

(d1)i(d2)i.

Hence, the equation in the above proposition can also be written as

|GFd |
|gFd |

·
∑
x,y

f1(x)f2(y)δd1,d2(g)(x, y) =
|GFd1 |
|gFd1 |

|GFd2 |
|gFd2 |

∑
z

f1 ∗ f2(z)g(z)

by substituting δ for δtw, where gFd , gFd1
and gFd2

are the Lie algebras of GFd , GFd1
and GFd2

, respectively.

Fix dimension vectors α, β, α′, β′ with α + β = α′ + β′ = d. Let N be the set
of quadruples λ = (α1, α2, β1, β2) of dimension vectors such that α = α1 + α2, β =
β1 + β2, α

′ = α1 + β1 and β′ = α2 + β2. Consider the following diagram

EFα × EFβ E′Fα,β
p1oo p2 // E′′Fα,β

p3 // EFd

∐
λ∈N F

F
λ

i′

OO

κ′

��

FFα′,β′

κ

��

i

OO

∐
λ∈N E

F (λ)
∐
λ∈N E′Fλ

p′1oo p′2 // ∐
λ∈N E

′′F (λ)
p′3 // EFα′ × EFβ′

where EF (λ) = EFα1
× EFα2

× EFβ1
× EFβ2

, E′F (λ) = E′Fα1,β1
× E′Fα2,β2

and E′′F (λ) =

E′′Fα1,β1
× E′′Fα2,β2

for λ = (α1, α2, β1, β2). This induces the maps between F -fixed
subsets and then the maps between vector spaces of functions as follows:

CFFα × CF
F
β

mα,β //

δtw

��

CFFd

δtw
α′,β′

��
CFF (

∏
λ∈N Eλ)

m // CFFα′ × CF
F
β′

The following theorem can be viewed as the geometric analog of Green’s theorem.

Theorem 3.6. With the above notation, the above diagram is commutative, i.e.,
δtwα′,β′mα,β = mδtw.

In order to prove the theorem, we introduce some notations. Set

C
′F
α,β,α′,β′ = {(x,W, ρ1, ρ2) ∈ E′Fα,β | x ∈ FFα′,β′}

and

C
′′F
α,β,α′,β′ = {(x,W ) ∈ E

′′F
α,β | x ∈ FFα′,β′}.
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The sets can be illustrated by the following diagram

W ′

��
W // (Kd, x) //

��

(Kd, x)/W

(Kd, x)/W ′

where (x,W ′) ∈ E′′Fα′,β′ . Consider the following diagram

EFα × EFβ C
′F
α,β,α′,β′

poo q // C
′′F
α,β,α′,β′

r // FFα′,β′
κ // EFα′ × EFβ′ .

Then by definition, we have

δtwα′,β′mα,β = |GFα ×GFβ |−1q
−

∑
i∈Q0α

′
i
β′
i (κ)!(r)!(q)!p

∗.

For M ∈ EFα , N ∈ EFβ ,M ′ ∈ EFα′ , N ′ ∈ EFβ′ , one can check

δtwα′,β′mα,β(1OFM , 1OFN )(M ′, N ′) =
∑

[L]∈EFd /G
F
d

FLMNh
M ′N ′

L .

Similarly, we can define the set

S
′F
λ = {(xα, xβ , xα′ , xβ′ ,W1,W2, ρ11, ρ12, ρ21, ρ22) | (xα′ ,W1, ρ11, ρ12) ∈ E

′F
α2,β2

,

(xβ′ ,W2, ρ21, ρ22) ∈ E
′F
α1,β1

, (xβ ,W2) ∈ E′′Fβ1,β2
, (Kβ , xβ)/W2

∼= (W1, xα′|W1
),

∃W3, (xα,W3) ∼= (Kβ
′
, xβ′)/W2, (Kα, xα)/W3

∼= (Kα
′
, xα′)/W1}

where λ = (α1, α2, β1, β2) and W1,W2 and W3 are graded vector spaces of di-
mensions β2, β1 and α1, respectively. The set can be illustrated by the following
diagram:

W2
//

��

(Kβ′ , xβ′) // W3

��
(Kβ , xβ)

��

(Kα, xα)

��
W1

// (Kα′ , xα′) // (Kα, xα)/W3
∼= (Kα′ , xα′)/W1.

Set
S
′′F
λ = {(xα, xβ , xα′ , xβ′ ,W1,W2) | ∃ρ11, ρ12, ρ21, ρ22,

(xα, xβ , xα′ , xβ′ ,W1,W2, ρ11, ρ12, ρ21, ρ22) ∈ S
′F
λ }.

Then there is a projection S
′F
λ → S

′′F
λ which is a principal Gα1

×Gα2
×Gβ1

×Gβ2
-

bundle. We also have the following diagram

EFα × EFβ
∐
λ∈N F

F
λ

i′oo ∐
λ∈N S

′F
λ

p′oo q′ // ∐
λ∈N S

′′F
λ

r′ // EFα′ × EFβ′ .

Then we have

mδtw = |GFα1
×GFα2

×GFβ1
×GFβ2|−1q−〈α2,β1〉−

∑
i∈Q0

[(β1)i(β2)i+(α1)i(α2)i](r′)!(q
′)!(p

′)∗(i′)∗.



10 JIE XIAO, FAN XU AND MINGHUI ZHAO

For M ∈ EFα , N ∈ EFβ ,M ′ ∈ EFα′ , N ′ ∈ EFβ′ , one can check

mδtw(1OFM , 1OFN )(M ′, N ′) =
∑

[X],[Y1],[Y2],[Z]

FM
′

XY2
FN

′

Y1Zh
XY1

M hY2Z
N .

where [X] ∈ EFα2
/GFα2

, [Y1] ∈ EFα1
/GFα1

, [Y2] ∈ EFβ2
/GFβ2

, [Z] ∈ EFβ1
/GFβ1

.
We obtain the following diagram

EFα × EFβ C ′F
poo

κrq

��∐
λ∈N S

′F
λ

p′i′

OO

r′q′ // EFα′ × EFβ′

and the proof of Theorem 3.6 is deduced to prove the identity∑
[L]∈EFd /G

F
d

FLMNh
M ′N ′

L =
∑

[X],[Y1],[Y2],[Z]

q−〈X,Z〉FM
′

XY2
FN

′

Y1Zh
XY1

M hY2Z
N .

Applying the Riedtmann-Peng formula, it is equivalent to the Green formula in
Section 2. The following we refer the reformulation of the proof of Green’s theorem
in [29].

The left side of the identity is the number counting the set of crossings with the
group action. More precisely, fix M,N,M ′, N ′ and consider the diagram

0

��
N ′

a′

��
0 // N

a // L
b //

b′

��

M // 0

M ′

��
0

Set

Q = {(a, b, a′, b′) | a, b, a′, b′ as in the above crossing}.

By calculation, |Q| =
∑

[L]∈EFd /G
F
d
FLMNh

M ′N ′

L |GFd ||GFα ||GFβ |. Consider the natural

action of GFd on Q, and the orbit space is denoted by Q̃. The fibre of the map

Q→ Q̃ has cardinality
|GFd |

|Hom(Cokerb′a,Kerb′a)| .
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The right side of the identity is the number counting the squares with the group
action. Consider the diagram

0

��

0

��
0 // Z

e1 //

u′

��

N ′
e2 // Y1

//

x

��

0

N

v′

��

M

y

��
0 // Y2

��

e3 // M ′
e4 // X //

��

0

0 0

Set

O = {(e1, e2, e3, e4, u
′, v′, x, y) | all morphisms occur in the above diagram}.

The group GFα1
×GFα2

×GFβ1
×GFβ2 freely acts on O with orbit space Õ. Note that

|Õ| =
∑

[X],[Y1],[Y2],[Z]

FM
′

XY2
FN

′

Y1Zh
XY1

M hY2Z
N |GFα ||GFβ |.

There is a canonical map f̃ : Q̃→ Õ, which the cardinality of fibre is |Ext1(X,Z)|.
As Ringel-Hall algebras, we can define the analogue σ : CFF (Q) → CFF (Q) of

the antipode by setting

σ(f) =
∑
r≥1∈Z

(−1)r
∑

α1,··· ,αr 6=0

mr
α1,··· ,αr ◦ δ

tw,r
α1,··· ,αr (f)

for f 6= 0 ∈ CFF (Q).
In order to compare Lusztig’s Hall algebras with twisted Ringel-Hall algebras.

We twist CFF (Q) by setting mt
α,β = v〈α,β〉mα,β , δtα,β = v〈α,β〉δtwα,β and

σt(f) =
∑
r≥1∈Z

(−1)r
∑

α1,··· ,αr 6=0

mt,r
α1,··· ,αr ◦ δ

t,r
α1,··· ,αr (f).

We denote the twist version by CFF,tw(Q). By applying Lemma 3.1, 3.2 and The-
orem 3.6, we obtain the following result.

Theorem 3.7. The algebra CFF,tw(Q) is a Hopf algebra with the multiplication
mt, comultiplication δt and antipode σt. Fix an isomorphism τ : Ql → C, there is
an isomorphism of Hopf algebra Φ : CFF,tw(Q) → Htw(A) where A = RepkQ by
setting Φ(1OFM ) = [M ] for M ∈ A.
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4. The categorification of Ringel-Hall algebras

Let Fq be a finite field with q elements. In the following, K is an algebraic closure
of Fq.

Let X be a scheme of finite type over K. We say that X has an Fq-structure
if there exists a variety X0 over Fq such that X = X0 ×spec(Fq) Spec(k). Let
FX0

: X0 → X0 be the Frobenius morphism. It can be extended to the morphism
FX : X → X. Let XF be the set of closed points of X fixed by F , i.e., the set of
Fq-rational points. For any n ∈ N, let XFn be the set of closed points of X fixed

by Fn. Note that XF 1

= XF .
Denote by Db(X) = Db(X,Ql) the bounded derived category of Ql-constructible

complexes on X.
The morphism FX : X → X naturally induces a functor F ∗X : Db(X)→ Db(X).

A Weil complex is a pair (F , j) such that F ∈ Db(X) and j : F ∗X(F) → F is
an isomorphism. Let Dbw(X) be the triangulated subcategory of Db(X) of Weil
complexes and Kw(X) be the Grothendieck group of Dbw(X).

Given a Weil complex F = (F , j)1 in Dbw(X), let x ∈ XF be a closed point. We
get automorphisms

Fi,x : Hi(F)|x → Hi(F)|x.

One can define a F -invariant function χFF : XF → Ql via defining

χFF (x) =
∑
i

(−1)itr(Fi,x,Hi(F)|x) =
∑
i

(−1)itr(Fi,x).

Similarly, one can define χF
n

F : XFn → Ql via defining

χF
n

F (x) =
∑
i

(−1)itr(Fni,x,Hi(F)|x) =
∑
i

(−1)itr(Fni,x).

In particular, χF
1

= χF .

Theorem 4.1. [14, Theorem 12.1] Let X be as above. Then we have

(1) Let K // L //M // K[1] be a distinguished triangle in Dbw(X).

Then χFK + χFM = χFL .
(2) Let g : X → Y be a morphism. Then for K ∈ Dbw(X) and L ∈ Dbw(Y ), we

have χFRg!K = g!(χ
F
K) and χFg∗L = g∗(χFL).

(3) For K ∈ Dbw(X), we have χFK[d] = (−1)dχFK and χFK(n) = q−nχFK.

By Theorem 4.1(1), the function χF
n

F only depends on the isomorphism class of

F in Dbw(X). Let CF(XFn) be the vector space of all functions XFn → Ql. Hence,
we obtain a map χF

n

: Kw(X)→ CF(XFn).
Let G be an algebraic group over K and X be a scheme of finite type over

K together with an G-action. Assume that X and G have Fq-structures and
X = X0 ×spec(Fq) Spec(k), G = G0 ×spec(Fq) Spec(k). Let FG0

: G0 → G0 be
the Frobenius morphism. It can be extended to the morphism FG : G → G.
Denote by DbG(X) = DbG(X,Ql) the G-equivariant bounded derived category of Ql-
constructible complexes on X and DbG,w(X) the subcategory of DbG(X) consisting

of Weil complexes. Let KG,w(X) be the Grothendieck group of DbG,w(X).

1All Weil complexes considered here are induced by the complexes in Db(X0,Ql).
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Assume that we have the following commutative diagram

G×X

FG×FX
��

// X

FX

��
G×X // X

Then, the morphism FX : X → X naturally induces a functor

F ∗X : DbG,w(X)→ DbG,w(X).

Let x ∈ XF be a closed point. For any (F , j) in DbG,w(X), we get automorphisms

Fi,x : HiG(F)|x → HiG(F)|x.

In the same way, one can define the G-equivariant version of χF
n

for n ∈ N as
follows:

χFF (x) =
∑
i

(−1)itr(Fi,x,HiG(F)|x)

and

χF
n

F (x) =
∑
i

(−1)itr(Fni,x,HiG(F)|x).

In particular, χF
1

= χF .

Lemma 4.2. For any (F , j) ∈ DbG,w(X), χF
n

F is a G-equivariant function.

Proof. For any x and y in the same G-orbit of X, there exists an element g ∈ G
such that g.x = y. Consider the following commutative diagram

HiG(F)|x

g∗

��

Fx // HiG(F)|x

g∗

��
HiG(g∗F)|y

Fy // HiG(g∗F)|y

Since g∗F ' F , we have

HiG(F)|x

g∗

��

Fx // HiG(F)|x

g∗

��
HiG(F)|y

Fy // HiG(F)|y

By the definition of χF
n

, χF
n

F (x) = χF
n

F (y). That is χF
n

F is aG-equivariant function.
�

In the G-equivariant case, we also have Theorem 4.1. Hence the function χF
n

F
also only depends on the isomorphism class of F in DbG,w(X). Hence, we obtain a

map χF
n

: KG,w(X)→ CFG(XFn).
Let Q be a finite quiver without loops. Given a dimension vector d = (di)i∈Q0 ,

the variety Ed and the algebraic group Gd are defined in Section 3. Both of them
have natural Fq-structures. Consider the following diagram

Eα × Eβ E′
p2 //p1oo E′′

p3 // Eα+β .
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This induces a functor m : DbGα×Gβ ,w(Eα×Eβ)→ DbGα+β ,w
(Eα+β) described as the

composition of the following functors:

DbGα×Gβ ,w(Eα × Eβ)
p∗1 // DbGα×Gβ×Gα+β ,w

(E′)(p2)b// DbGα+β ,w
(E′′)

(p3)!// DbGα+β ,w
(Eα+β) ,

where (p2)b is the inverse of the pull-back functor

p∗2 : DbGα+β ,w
(E
′′
)→ DbGα×Gβ×Gα+β ,w

(E′),

which is an equivalence of derived categories. By definition,

χF(p2)b(K) =
1

|Gα ×Gβ |
χF(p2)!(K)

for K ∈ DbGα+β ,m
(E′′) since p2 is a principal Gα ×Gβ-bundle.

Applying Theorem 4.1, we obtain the following commutative diagrams

DbGα×Gβ ,w(Eα × Eβ)

��

p∗1 // DbGα×Gβ×Gα+β ,w
(E′)

��

(p2)b // DbGα+β ,w
(E′′)

��

(p3)!// DbGα+β ,w
(Eα+β)

��
CFGα×Gβ (EFα × EFβ )

p∗1 // CFGα×Gβ×Gα+β
(E′F )

ι // CFGα+β
(E′′F )

(p3)!// CFGα+β
(EFα+β)

where ι = 1
|Gα×Gβ | (p2)!. Hence, the linear functor m : DbGα×Gβ ,w(Eα × Eβ) →

DbGα+β ,w
(Eα+β) such that the following diagram is commutative

(4.1) DbGα×Gβ ,w(Eα × Eβ)

χF

��

m // DbGα+β ,w
(Eα+β)

χF

��
CFGα×Gβ (EFα × EFβ )

m // CFGα+β
(EFα+β).

Lemma 4.3. For simple perverse sheaves P ∈ DbGα×Gβ ,w(Eα × Eβ), m(P) is still

semisimple in DbGα+β ,w
(Eα+β).

Proof. Since p1 is smooth with connect fibres, p∗1(P) is still semisimple by Sec-
tion 4.2.4 and 4.2.5 in [1]. Since (p2)b is a equivalence of categories, (p2)bp

∗
1(P) is

still semisimple. At last, p3 is proper implies that m(P) = (p3)!(p2)bp
∗
1(P) is also

semisimple. �

By Lemma 4.3, the linear functor m : DbGα×Gβ ,w(Eα × Eβ) → DbGα+β ,w
(Eα+β)

induces a linear map

m : KGα×Gβ ,w(Eα × Eβ)→ KGα+β
(Eα+β)

such that the following diagram is commutative

(4.2) KGα×Gβ ,w(Eα × Eβ)

χF

��

m // KGα+β ,w(Eα+β)

χF

��
CFGα×Gβ (EFα × EFβ )

m // CFGα+β
(EFα+β).

Set KG,w =
⊕

dKGd,w(Ed) and CFF (Q) =
⊕

d CFGd(EFd ). There is a linear map

from KG,w to CFF (Q) induced by χF . For simplicity, we also denote it by χF . For
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M ∈ DbGα,w(Eα) and N ∈ DbGβ ,w(Eβ), define [M] ∗ [N ] := m(M � N ). Then the

linear maps m and m endow KG,w and CFF (Q) with multiplication structures,
respectively. Using Diagram (4.2), we obtain the following result.

Lemma 4.4. The Z-linear map χF : KG,w → CFF (Q) is an algebra homomor-
phism.

Consider the diagram

Eα × Eβ Fα,β
κoo i // Eα+β .

This induces a functor ∆α,β : DbGα+β ,w
(Eα+β)→ DbGα×Gβ ,w(Eα × Eβ) as the com-

position of functors:

DbGα×Gβ ,w(Eα × Eβ) DbGα+β ,w
(Fα,β)

κ!oo DbGα+β ,w
(Eα+β)i∗oo .

Applying Theorem 4.1, we have the commutative diagram

DbGα+β ,w
(Eα+β)

χF

��

∆α,β // DbGα×Gβ ,w(Eα × Eβ)

χF

��
CFGα+β

(EFα+β)
δα,β // CFGα×Gβ (EFα × EFβ ).

Lemma 4.5. [3]2 For simple perverse sheaves P ∈ DbGα+β ,w
(Eα+β), ∆α,β(P) is still

semisimple in DbGα×Gβ ,w(Eα × Eβ).

Proof. Since ∆α,β is a hyperbolic localization ([3]). �

By Lemma 4.5, the linear functor ∆α,β : DbGα+β ,w
(Eα+β)→ DbGα×Gβ ,w(Eα×Eβ)

induces a linear map

∆α,β : KGα+β ,w(Eα+β)→ KGα×Gβ ,w(Eα × Eβ)

such that the following diagram is commutative

KGα+β ,w(Eα+β)

χF

��

∆tw
α,β // KGα×Gβ ,w(Eα × Eβ)

χF

��
CFGα+β

(EFα+β)
δtwα,β // CFGα×Gβ (EFα × EFβ ).

where ∆tw
α,β = κ!i

∗[
∑
i∈Q0

αiβi](
∑
i∈Q0

αiβi

2 ).

The maps ∆tw
α,β and δtwα,β induce the comultiplication structures over KG,w and

CFF (Q), respectively. In the same way as Lemma 4.4, we obtain the following
result.

Lemma 4.6. The Z-linear map χF : KG,w → CFF (Q) is a coalgebra homomor-
phism.

2The authors thank Hiraku Nakajima for pointing out Reference [3].
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In Section 3, we have shown that there exists a comultiplication structure over
CFF (Q). By Green’s theorem, the comultiplication is compatible with the multi-

plication structure and then CFF (Q) is a bialgebra. Naturally, one would like to

check whether KG,w is a bialgebra. Let CFF
n

(Q) =
⊕

d CFGd(EFnd ). Similarly to

χF : KG,w → CFF (Q), we have χF
n

: KG,w → CFF
n

(Q) for any n ∈ N.

Theorem 4.7. [27, Theorem 3.5] The ring homomorphism

χ =
∏
n∈N

χF
n

: KG,w →
∏
n∈N
CFF

n

(Q)

is injective.

The following theorem can be viewed as the categorification of the Green formula
in Section 1.

Theorem 4.8. Let P1 ∈ DbGα,w(Eα) and P2 ∈ DbGβ ,w(Eβ) be two simple perverse

sheaves. Then we have

∆(P1 ∗ P2) = ∆(P1) ∗∆(P1).

Proof. For simple perverse sheaves P1 ∈ DbGα,w(Eα) and P2 ∈ DbGβ ,w(Eβ), P1 ∗ P2

is still semisimple by Lemma 4.3 and then ∆(P1 ∗P2) is semisimple by Lemma 4.5 .
The rightside ∆(P1) ∗∆(P1) of the equation is also semisimple by Lemma 4.3 and
4.5. Hence, it is enough to prove the equation holds in KG,w. Applying Theorem
4.7, it is equivalent to show that

χF
n

(P1 ∗ P2) = χF
n

(P1) ∗ χF
n

(P2)

for n ∈ N. The last statement follows from the Green formula. �

As a corollary, we have the following theorem.

Theorem 4.9. The algebra KG,w is a bialgebra and the Z-linear map χF : KG,w →
CFF (Q) is a bialgebra homomorphism.

There is a natural Z[v, v−1]-module structure on KG,w by v±1[K] = [K[±1](± 1
2 )]

for any dimension vector α and K ∈ DbGα,w(Eα). Given any dimension vector α

and a simple perverse sheaf P ∈ DbGα,w(Eα), we set TP = {P[m](m2 ) | m ∈ Z} and

T = {TP | ∃α,P ∈ DbGα,w(Eα) is a simple perverse sheaf}.

Fix an assignment S : T → KG,w. Then KG,w is a free Z[v, v−1]-module with a
basis S(T ).

We also consider the twisted version of KG,w in order to preserve the subcate-
gories of perverse sheaves by defining

mtα,β = mα,β [{α, β}]({α, β}
2

),

where {α, β} =
∑
i∈Q0

αiβi +
∑
h∈Q1

αs(h)βt(h) and

∆t
α,β = ∆tw

α,β [−〈α, β〉](−〈α, β〉
2

).

We denote by Ktw
G,w the twist of KG,w with the multiplication and comultiplication

induced by mtα,β and ∆t
α,β , respectively.

The following lemma is the simple generalization of Lusztig’s construction over
quantum groups ([30, Theorem 3.24]).



RINGEL-HALL ALGEBRAS BEYOND THEIR QUANTUM GROUPS 17

Lemma 4.10. There is a bialgebra homomorphism χF,tw : Ktw
G,w → CF

F,tw(Q) by

sending [P] for P ∈ DbGα,w(Eα) to vdimGαχF (P).

Corollary 4.11. The ring homomorphism

χtw =
∏
n∈N

χF
n,tw : Ktw

G,w →
∏
n∈N
CFF

n,tw(Q)

is an injective homomorphism.

We will endow Ktw
G,w with the structure of the antipode map as an analogue of

the antipode over a Ringel-Hall algebra. Let mr and ∆r be the r-fold multiplication
and comultiplication for r ≥ 1. More explicitly, we have the following functors:

mrα1,··· ,αr : Db∏r
i=1Gαi ,w

(
r∏
i=1

Eαi)→ DbGα1+···+αr ,w
(Eα1+···+αr )

and

∆r
α1,··· ,αr : DbGα1+···+αr ,w

(Eα1+···+αr )→ Db∏r
i=1Gαi ,w

(

r∏
i=1

Eαi).

such that mr+1 = m ◦ (1⊗mr) and ∆r+1 = (1⊗ · · · ⊗∆) ◦∆r for r ≥ 1.
Now we define the functor S : DbGα,w(Eα)→ DbGα,w(Eα) by setting

S(P) =
⊕
r≥1

⊕
α1,··· ,αr 6=0

mt,rα1,··· ,αr ◦∆t,r
α1,··· ,αr (P)[r] and S(0) = 0.

For simplicity, we denote still by S the induced map over Ktw
Gα,w

(Eα), even Ktw
G,w.

Lemma 4.12. The map χF,tw satisfies that χF,tw(S(P)) = σt(χF,tw(P)) for P ∈
DbGα,w(Eα).

This follows from χF,twmt,r = mt,rχF,tw and χF,tw∆t,r = δt,rχF,tw.

Proposition 4.13. With the above notation, we have

mt(S ⊗ 1)∆t(P) = mt(1⊗ S)∆t(P) = 0

for P 6= 0 and [0] for P = 0.

Proof. By Theorem 4.7, we only need to prove the image of this identity under

χF
k,tw. Since we have χF

k,twmt,r = mt,rχF
k,tw and χF

k,tw∆t,r = δt,rχF
k,tw, the

equation is deduced to

mt(σ ⊗ 1)δt(f) = mt(1⊗ σ)δt(f) = 0

for f 6= 0. �

As a consequence of Theorem 4.9 and Proposition 4.13, we obtain the main
theorem in this section.

Theorem 4.14. The algebra Ktw
G,w is a Hopf algebra.
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5. Green’s Hopf pairing

Let Q = (Q0, Q1) as in Section 3. Given d ∈ NQ0 and P,Q ∈ DbGd,w(Ed), we set

the following geometric pair:

{P,Q} =
∑
i

(dimHi
Gd

(P⊗Q,Ed))vi.

One can refer to [30] for more details and the definition of Hi
G(−, X).

The geometric pair has the following basic properties:

Lemma 5.1. [16] For any P ∈ DbGd1 ,w(Ed1), Q ∈ DbGd2 ,w(Ed2) and R ∈ DbGd,w(Ed)
such that d1 + d2 = d ∈ NQ0, we have

{m(P�Q),R} = {P�Q,∆(R)}.

Applying this lemma iteratively, we have the following corollary.

Corollary 5.2. For any Pi ∈ DbGdi ,w(Edi)(i ∈ {1, 2, . . . , r}) and R ∈ DbGd,w(Ed)
such that

∑r
i=1 di = d ∈ NQ0, we have

{mt,r(P1 � · · ·� Pr),R} = {P1 � · · ·� Pr,∆t,r(R)}
for r ≥ 2.

Proposition 5.3. Let K // L //M // K[1] be a distinguished triangle

in DbGd,w(Ed). Then

{L,R}v=−1 = {K,R}v=−1 + {M,R}v=−1,

for any R ∈ DbGd,w(Ed).

Proof. By definition,

{L,R} =
∑
i

(dimHi
Gd

(L ⊗R,Ed))vi =
∑
i

(dimExtiDbGd,w(Ed)(L, DR))vi,

where D is the Verdier duality. Applying the functor Hom(−, DR) to the distin-
guished triangle, we obtain

· · · // ExtiDbGd,w(Ed)
(K, DR) // ExtiDbGd,w(Ed)

(L, DR) // ExtiDbGd,w(Ed)
(M, DR) // · · ·

Hence, we have {L,R}v=−1 = {K,R}v=−1 + {M,R}v=−1. �

The proof of the proposition also implies that [16]

{K ⊕M,R} = {K,R}+ {M,R} and {P[n](
n

2
),Q} = vn{P,Q}.

The following we consider the relation between the geometric pair and Green’s
pair. For M ∈ modkQ with dimension vector d, let OM be the orbit of M. Consider
the natural embedding j : OM → Ed. Let CM be the pushforward of the constant
sheaf over OM .

Proposition 5.4. Let M,N be kQ-modules of dimension vector d and M � N .
Then we have

{CM , CN} = 0.

Proof. Since CM is supported over OM . If M � N , then OM ∩ON = ∅. Hence, for
any x ∈ Ed, (CM ⊗ CN )x = (CM )x ⊗ (CN )x = 0. �
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Recall Green’s pair (1OM , 1ON ) = 0 for OM 6= ON and 1
|Gd| for OM = ON . The

proposition says that the geometric pair has almost orthognality as Green’s pair.

Proposition 5.5. LetQ be a Dynkin quiver andM,N be kQ-modules of dimension
vector d. Then we have

{CM , CN} = (χFCM , χ
F
CN ).

Proof. If M,N are two simple modules, then the identity in the proposition holds
by [16]. Using Lemma 5.1, the identity in the proposition holds for the isomorphism
classes of M,N belonging to the composition subalgebra of Q. Since Q is of Dynkin
type, the Ringel-Hall algebra of Q and its composition subalgebra coincides and
then the proposition follows. �

Since Ktw
G,w is the free Z[v, v−1]-module with a basis in which the base elements

are simple perverse sheaves. Now we define the bilinear form {−,−} : Ktw
G,w ×

Ktw
G,w → R = N((v)) by setting

(5.1) {P,Q} =
∑
i

(dimHi
Gd

(P⊗Q,Ed))vi.

for two simple perverse sheaves P,Q.
Fix a basis B of KG,w as a free Z[v, v−1]-module. We extend the algebra Ktw

G,w

by adding the free Z[v, v−1]-module K =
⊕

α∈Z[Q0]Akα and set K̃tw
G,w to be the free

Z[v, v−1]-module with the basis {kα[P] | α ∈ Z[Q0], [P] ∈ B}. The multiplication m̃,

comultiplication ∆̃ and antipode structures S̃ over K̃tw
G,w by adding the following

relations to Ktw
G,w:

(1) m̃(P�Q) = mt(P�Q);
(2) kα[P] = v(α,β)[P]kα for P ∈ DbGβ ,w(Eβ);

(3) kαkβ = kα+β ;

(4) ∆̃([P]) =
∑
α,β ∆t

α,β([P]) · (kβ ⊗ 1);

(5) ∆̃(kα) = kα ⊗ kα;

(6) S̃([P]) =
⊕

r≥1

⊕
α1,··· ,αr 6=0 k−α1−···−αrm

t,r
α1,··· ,αr ◦ ∆t,r

α1,··· ,αr (P)[r] for P 6=
0;

(7) S̃(kα) = k−α.

We can endow K̃tw
G,w with the different multiplication m̃∗, comultiplication ∆̃∗ and

antipode S̃∗ structures by the following relations:

(1) m̃∗(P�Q) = m̃(P�Q);
(2) kα[P] = v−(α,β)[P]kα for P ∈ DbGβ ,w(Eβ);

(3) kαkβ = kα+β ;

(4) ∆̃∗([P]) =
∑
α,β(∆op

α,β)t([P]) · (1⊗ k−β);

(5) ∆̃∗(kα) = kα ⊗ kα;

(6) S̃∗([P]) =
⊕

r≥1

⊕
α1,··· ,αr 6=0 m

r
α1,··· ,αr◦(∆

op
α1,··· ,αr )

tw,r(P)[r]kα1+···+αr for P 6=
0;

(7) S̃∗(kα) = k−α.

We denote K̃tw
G,w with the above new structures by K̃tw,∗

G,w and then the basis is

denoted by {kα[P]∗ | α ∈ Z[Q0], [P] ∈ B} in case causing ambiguity. The opposite
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of ∆̃∗ satisfies that

(∆̃∗)op([P]) =
∑
α,β

(∆t
α,β)([P]) · (k−β ⊗ 1).

The inverse of S̃∗ satisfies that

(S̃∗)−1([P]) =
⊕
r≥1

⊕
α1,··· ,αr 6=0

kα1+···+αrm
t,r
α1,··· ,αr ◦∆t,r

α1,··· ,αr (P)[r] for P 6= 0.

Definition 5.6. Given two Hopf algebras A and B, a skew-Hopf pairing of A and
B is a R-bilinear function ϕ : A×B → R such that

(1) ϕ(1, b) = εB(b) and ϕ(a, 1) = εA(a);
(2) ϕ(a, bb′) = ϕ(∆A(a), b⊗ b′);
(3) ϕ(aa′, b) = ϕ(a⊗ a′,∆op

B (b));

(4) ϕ(σA(a), b) = ϕ(a, σ−1
B (b)).

Proposition 5.7. [11] Let (A,B,ϕ) be a skew-Hopf pairing. Then A⊗B is a Hopf
algebra, called the Drinfeld double of (A,B,ϕ).

The definition in 5.1 can be extended to define a bilinear form ϕ : K̃tw
G,w×K̃

tw,∗
G,w →

R by setting

ϕ(kα[P],kβ [Q]∗) = v−(α,β)−(α′,β)+(α,β′){P,Q}
for P ∈ DbGα′ ,w(Eα′) and Q ∈ DbGβ′ ,w(Eβ′).

Theorem 5.8. The bilinear form ϕ is a skew-Hopf pairing.

The proof is a direct consequence of Lemma 5.1 and Corollary 5.2 and very
similar to [34, Proposition 5.3]. We omit it.
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