RINGEL-HALL ALGEBRAS BEYOND THEIR QUANTUM
GROUPS I: RESTRICTION FUNCTOR AND GREEN’S
FORMULA
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ABSTRACT. In this paper, we generalize the categorifical construction of a
quantum group and its canonical basis by Lusztig ([16, 17]) to the generic
form of whole Ringel-Hall algebra. We clarify the explicit relation between the
Green formula in [7] and the restriction functor in [17]. By a geometric way to
prove Green formula, we show that the Hopf structure of a Ringel-Hall algebra
can be categorified under Lusztig’s framework.

1. INTRODUCTION

Based on the classical works of Hall ([8]) and Steineiz ([31]), the Ringel-Hall
algebra H(A) of a (small) abelian category A was introduced by Ringel in [24],
as a model to realize the quantum group. When A is the category RequQ of
finite dimensional representations for a simply-laced Dynkin quiver ) over a finite
field Fy, the Ringel-Hall algebra #(.A) is isomorphic to the positive part of the
corresponding quantum group ([24]). For any acyclic quiver Q and A = Repg, @, the
composition subalgebra of H(A) generated by the elements corresponding to simple
representations is isomorphic to the positive part of the quantum group of type Q.
This gives the algebraic realization of the positive/negative part of a (Kac-Moody
type) quantum group. This realization was achieved by Green ([7]), through solving
a natural question whether there is a comultiplication on H(A) compatible with
the corresponding multiplication so that the above isomorphism is an isomorphism
between bialgebras. Now it is well-known that Green’s comultiplication depends on
a remarkable homological formula in [7] (called the Green formula in the following).

In the seminal papers [16] and [17], Lusztig gave the geometric realization of
the positive/negative part of a quantum group and then constructed the canonical
basis for it. Let @ = (Qo, Q1) be a quiver and

EQ = @ HOmK(KdS(O‘),Kdt("‘))
aEQq

be the variety with the natural action of the algebraic group

Gq:= [] GL(d:K)
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for a given dimension vector d € NQq. Lusztig ([17]) defined the flag Fj » and the
subvariety

IEi,a - EQ X -Fi,a~

Fix any type (i,a), consider the canonical proper morphism 7 5 : Ei@ — Eq. By
the decomposition theorem of Beilinson, Bernstein and Deligne ([1]), the complex
Ti,arl is semisimple, where 1 is the constant perverse sheaf on Ei,a. Let Qg be
the category of complexes isomorphic to sums of shifts of simple perverse sheaves
appearing in m o11, Kg the Grothendieck group of Q4 and K = @, Kg4. Lusztig
([17]) already endowed K with the multiplication and comultiplication structures
by introducing his induction and restriction functors. He proved that the comul-
tiplication is compatible with the multiplication in C and K is isomorphic to the
positive part of the corresponding quantum group as bialgebras up to a twist.

By this isomorphism, the isomorphism classes of simple perverse sheaves in Qg4
provide a basis of the corresponding quantum group, which is called the canonical
basis. The canonical basis theory of quantum algebras is crucially important in Lie
theory. This basis has many remarkable properties such as such as integrality and
positivity of structure constants, compatibility with all highest weight integrable
representations, etc. Lusztigs approach essentially motivates the categorification of
quantum groups (for example, see [12],[28] and [32]) or quantum cluster algebras
(see [9],[21],[13], etc.), i.e., a quantum group/quantum cluster algebra can be viewed
as the Grothendieck ring of a monoidal category and some simple objects provides
a basis (see also [33]).

For a long time we have been asked what the explicit relation exists between
the Green’s comultiplication and Lusztig’s restriction functor. As one of the main
result in the present paper, the following Theorem 4.8 and the definition of the
comultiplication operator A provide us this strong and clear link. Thanks to an
embedding property as in [14] and [27], we can lift the Green formula from finite
fields to the level of sheaves. This is finally suitable to apply the Lusztig’s restriction
functor to the larger categories of the so-called Weil complexes, whose Grothendieck
groups realize the weight spaces of a generic Ringel-Hall algebra.

The second aim of this paper is to give the categorification of Ringel-Hall algebras
via Lusztig’s geometric method. In Section 2, we recall the theory of Ringel-Hall
algebras, focusing on the Hopf structure of Ringel-Hall algebras. In Section 3,
we recall Lusztig’s construction of Hall algebras via functions invariant under the
Frobenius map. Then we obtain an algebra CF¥(Q). The comultiplication over
cFt (Q) is just a twist of Green’s comultiplication. However, the proof of the
compatibility of Lusztig’s comultiplication and multiplication for the whole Ringel-
Hall algebra essentially depends on the proof of the Green formula. In the end of
this section, we show that the twist of CF(Q) is isomorphic to H*”(A) as a Hopf
algebra. Hence, Lusztig’s comultiplication can be applied to Ringel-Hall algebras.
In Section 4, we extend the geometric realization of a quantum group to the whole
Ringel-Hall algebra under Lusztig’s framework. We obtain the generic Ringel-Hall
algebra as the direct sum of Grothendieck groups of the derived categories of a
class of Weil complexes. The simple perverse sheaves provide the caonical basis.
We show that the compatibility of the induction and restriction functor holds for
these perverse sheaves. Therefore the generic Ringel-Hall algebra has a structure
of Hopf algebra. In Section 5, we construct the Drinfeld double of the generic
Ringel-Hall algebra.
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2. A REVISIT OF RINGEL-HALL ALGEBRAS AS HOPF ALGEBRAS

We recall the definition of the Ringel-Hall algebra H(A) for the hereditary
abelian category A = modk(Q) = Rep,(Q), where k = F, is a finite field with ¢ = p°
elements for some prime number p and @ is a finite quiver without oriented cycles.

For M € A, we denote by dimM the dimension vector in NQg and define the
Euler-Ringel form on N@Q as follows:

(M, Ny = dimzHom 4 (M, N) — dim;ExtY (M, N).
For M, N and L € modkQ, we denote by FL, . the set {X C L | X € modkQ, X =
N,L/X = M} and ExtY (M, N);, the subset of Ext!(M, N) with the middle term
1
isomorphic to L. Write Ff = |FE | and bV = %. For X € A, set
ax = |Aut 4 X|.

The ordinary Ringel-Hall algebra #(.A) is a C-space with isomorphism classes
[X] of all kQ-modules X as a basis and the multiplication is defined by

[M]*[N] =) FipnlL]
(2]
for M, N and L € modkQ. We can endow H = H(A) a comultiplication § : H —
H ®c H by setting
S(IL) = Y hNM] @[N],
[M],[N]

The comultiplication is compatible with the multiplication via Green’s theorem.

Theorem 2.1. [7] The map ¢ is an algebra homomorphism with respect to the
twisted multiplication on H @ H as follows:

([M] © [N1]) o ([Me] © [Na]) = M0N0 ([M1] + [Ma]) @ ([N1]  [Na]).

The theorem is equivalent to the following Green formula holds:

L L —1
AN, O, OGN, ON, E Fin, Ean,ar
(L]

_ > |Ext (X, Z)|

M1 Ms Ny N
Fb Fyd B U RS2 axay, ay, ay.
]|Hom (X, 2)| it xve v,z v, z0X 0y, 0,07

(X1, M1],[y2],[2
Define a symmetric bilinear form on H by setting ([M],[N]) = 5241\‘4’\’ . We call
the form Green’s Hopf pairing. It is clear that the Green Hopf pairing is a non
degenerated bilinear form over H. The following proposition shows that the comul-
tiplication is dual to the multiplication, i.e., the comultiplication can be viewed as
the multiplication over H* = Homg(H, C).

Proposition 2.2. The comultiplication is left adjoint to the multiplication with
respect to Green’s Hopf pairing, i.e., for a,b,c € H, (a,bc) = (§(a),b ® c).
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The proposition is equivalent to the Riedtmann-Peng formula

L MN
FMNCLMCLN = hL ar,

holds.
It is easy to generalize the multiplication and comultiplication to the r-fold
versions for » > 2. For My,--- ,M,.,M € A, set ]:I\%w' o, to be the set

fo=XoCX1C--CX,=M|X;,c A X, /Xi=M,_;,i=0,1,--- ,r—1}

[My] # [Mp] % -+ % [My] = Y Fif o [M].
(M]

The r-fold comultiplication 6" can be defined inductively. For » = 1, §* = § and
Sl =1® - ®1®4§) od" for r > 1. Set

SHMY) = > mp M M@ - @ [M,]
[Ma],-- [ M)

for 7 > 2. It is clear that the Riedtmann-Peng formula can be reformulated as

Ry MM = B ann, - an,ayf
for r > 2.
Let 0 : H — H be a map such that
o([M]) = daro+ D _(=1)" > har M Fity o, [IN]-
r>1 [N],[My],--, [Mr]#0

for M € A. We call o the antipode of H.
One can also define the twisted version of the multiplication over H(.A) by setting

[M] - [N] = oM [M] + [N],

where v = ,/q. Similarly, the comultiplication, the antipode and Green’s Hopf
pairing can be twisted (see [34] for more details). We denote by H'(A) the twisted
version of H(A).

Theorem 2.3. [24, 7, 34] The algebra H*(A) is a Hopf algebra with the above
twisted multiplication, comultiplication and antipode. Let gg be the Kac-Moody
algebra associated to the quiver Q and U, (gq) be the positive part of the quantum

group U,(gqg) specialized at v = v with v = q%. Let C*(A) be the subalgebra of
the twisted Ringel-Hall algebra H'™ (A) generated by isomorphism classes of simple
kQ-modules. Denoted by Cg[‘;] 1),1](.,4) the integral form of C*(A). Then there is

an isomorphism of Hopf algebras

ViU (9Q) = Cofho1)(A) Q) Q)

Zv,w—1]

sending E; to [S;] for i € Qo.
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3. LUSZTIG’S CONSTRUCTION OF HALL ALGEBRAS VIA FUNCTIONS

In this section, we recall Lusztig’s construction of Hall algebras via functions in

[19] and compare it with Ringel-Hall algebras. Let k = F, as above and K = F,,.
Given a dimension vector d = (d;);eq,, define the variety

Eq:=Eq(Q) = €D Homg (K@ K@),
a€Q1
Any element z = (24)aecq, in Eq(Q) defines a representation M(z) = (K<, z) of Q
with K& = Dicq, K9 . The algebraic group

Gq:=Ga(Q) = [] GL(d:,K)
1€Qo
acts on Eq by (a)%cq, = (9i1(a)Tadsa)ac: for g = (9i)icq, € Gaand (Ta)acq, €
Eg. The isomorphism class of a KQ-module X is just the orbit of X. The quotient
stack [Eq/Gg4] parametrizes the isomorphism classes of KQ-modules of dimension
vector d.

Let F be the Frobenius automorphism of K, i.e., F'(x) = 29. The F-fixed subfield
is just Fy. This induces an isomorphism Eg — Eg sending (((2a)ij)d, () xdy ) Jac@:
t0 (((Ta)fj)d.(ay xdi(a) Jac@,- We will denote all induced map by F if it does not
cause any confusion.

For any KQ-module M (z) = (K%, z), set M(z)[4 = F(M(x)). The representa-
tion M(z) € Eq is F-fixed if M(x) = M (z)4. The last condition is equivalent to
say that M (z) is defined over F, i.e., there exists a k@Q-module My(x) such that
M (z) = My(z) ®r, K ([10]). We denoted by EJ and Gf the F-fixed subset of Eq
and Gy respectively. For a kQ-module M € EX let Oy denote the orbit of M in
E4 and (9]}\';[ the F-fixed subset of Oyy.

Let [ # p be a prime number and Q, be the algebraic closure of the field of
l[-adic numbers. Fix a square root v = q% € Q. Define C]-'g to be the Q;-space
generated by Gg -invariant functions: Efj — @Q;. We will endow the vector space
CFY(Q) = @,CF] with a multiplication and comultiplication.

First we recall two functors: the pushforward functors and the inverse image
functors in [19]. Given two finite sets X,Y and a map ¢ : X — Y. Let CF(X) be
the vector space of all functions X — @, over X. Define the pushforward of ¢ to be

01 CF(X) = CF(Y), alNw) = Y. [f(a)
z€¢~ ()
and the inverse image of ¢
9" : CF(Y) = CF(X), ¢*(9)(x) = g(¢(x)).

Let E” be the variety of all pairs (z, W) where 2 € Eqoyp and (W, z|w) is a
K@-submodule of (K**#, x) with dimension vector 8. Let E/ be the variety of all
quadruples (z, W, p1, p2) where (z, W) € E” and p; : Kot8 /W 2 K, py : W 2 KB
are linear isomorphisms. Consider the following diagram

EQXE/j P1 E’ P2 E// p3 Ea+,8

where pa, p3 are natural projections and py(x, W, p1, p2) = (2/,2”) such that

x%(ﬂl)s(h) = (Pl)t(h)lﬂh and x%(m)s(h) = (P2)t(h)1'h
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for any h € Q;.

The groups G, x Gg and G4 naturally act on E’. The map p; is Gatp X
G x Gg-equivariant under the trivial action of G445 on E, x Eg. The map ps is
a principal G, x Gg-bundle.

Applying the Frobenius map F, we can define the above diagram over F, as
follows:

EgXEg p1 E/F D2 ]E”F p3 E§+5.

There is a linear map (called the induction)
m:CFq, xa,(EL xEBf) = CFq. ., (EL 5) =CFE,,

sending g to |GE <G|~ (ps3)i(p2)ipi (9). Iteratively, one can define the r-fold version
m” of m for r > 1 by setting m! = id, m?> = m and m" ™' = mo (1@m") for r > 2.

Now we can define the multiplication over C]-'F(Q). For f, € C}"g, fs € C}"g
and (z1,x2) € Eo X Eg, set g(x1,22) = fo(r1)fs(x2). Then g € C}"g+5 and define
the multiplcation

Jax fs =m(g).

Lemma 3.1. [15] Given three kQ-modules M, N and L, let 10,,,10, and 1o, be
the characteristic functions over orbits, respectively. Then 1pr x1or (L) = FE .

We now turn to define the comultiplication over CF F(Q) Fix a subspace W of
K8 with dimW = $ and linear isomorphisms p; : K‘”‘B/W =K py: W= KB,
Let F, g be the closed subset of E 5 consisting of all z € E, such that (W, z|w)
is a KQ-submodule of (K®*# z) with dimension vector 3. Consider the diagram

Eo x Eg <"— Fap —>Fars,

where the map 7 is the inclusion and x(x) = p1(z, W, p1, p2). For (21, x2) € Eo XEg,
the fibre k=1 (z1, 20) = B, Homg (K, KA and then & is a vector bundle
of dimension Zhte Qs(h)Be(n)-

Applying the Frobenius map F, we can define the above diagram over F, as
follows:

EF x BE < FF 1. RF

There is also the restriction map
00,8 :CF G s(EL p) = CFa.xa, (BE x Ef)

sending f € CFa,,, (E§+B) to #yi* (f). It defines the comultiplication § over CF¥(Q),
ie., for f € C]-"f and o+ B =, 6(f) = 2, giat s 0a,8(f). Iteratively, we can
define 6" for r > 1 by setting 6! =6 and "' = (1®---®4J) 06" for r > 1.
For M, N and L in A = Rep,Q, we set
DN = 5(10)(M, N) = syi* (1) (M, N).

In order to compare this with the comultiplication of Ringel-Hall algebras, we define
the twist 65 = ¢~ 2ieqo iP5 4 and 6™ in the same way.

Lemma 3.2. With the notations in Lemma 3.1 and dimM = «a,dimN = 3, we
have 845 (1or ) (M, N) = hp™.
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Proof. Suppose M = (K*,z1) and N = (K%, z). The linear isomorphisms p1, po
induce the module structures of K**# /W and W, denoted by (K**# /W, yga+s /w)
and (W, yw ) respectively. Consider the set

S={z e B | W,zlw) = (W,yw),
(Ka+5/W f|Ka+ﬂ/W) = (K”B/VK yKu+ﬁ/W)a (Ka+67x) = L}~
Fix a decomposition of the vector space K®t8 = W @ K8 /W. Then

(yw )h d(h) ) a B a4+ ~
S={x= d(h) € Homg (K% KPtm) (K*TF z) = L}.
{1’ ( 0 (y vy )h heon | ( ) K( ) ( ) }

Set D(a, B) = @hte Homy (K%t KP ). Apply the Frobenius map F, we have

the following long exact sequence (see [4])

0 — Homyg (M, N) — ®;c 0, Homy (k% kP) ——

— D¥(a, B) —— Extjo (M, N) —0.

We denote by D (a,3) the inverse image of Ext,lcQ(M7 N)p, under the map 7.
Then DMN = |DF (o, B)L| = g>i€ @iBipMN By definition, ba,8(lor)(M,N) =
|D¥ (o, B) .| = DMN . This completes the proof. |
In order to compare these with Lusztig’s construction, we consider the subalgebra
of CF¥(Q) generated by 1g, = lor for all i € Qo, denoted by FE(Q). Then
FrQ) =@y 7y
Lemma 3.3. Given a sequence i = (i1,%2, -+ ,im) in Qo such that i; # iy for
j# ke {2 m}andlet f =1g, *1g, *--x1ls € CF(Q). Then
3(f) =" (f).

The Riedtmann-Peng formula can be reformulated to the following form, which
generalizes [19, Lemma 1.13] from F¥(Q) to CFX(Q).

Proposition 3.4. Let f; € C]-"i fori=1,2and g € C]-"QF for d = d; +d,. Then

GEIY - F1(@) f2(9)65 o, (9) (2, y) = |GE X GEIY " f1 % fa(2)9(2)

Where:L“EIElgl,yEIEC‘T2 andzEIEdFl.

Proof. Given a dimension vector d, take f € ]Ef;7 then f = 22:1 ailor for some

a; € Q;, 1 € Z and kQ-modules My, --- , M;. With loss of generality, we may assume
that f; = lor, fa= lor and g = lor for some k@-modules M, N and L. Following
Lemma 3.1 and 3.2, the left side of the equation is equal to

ARG AR ARG
and the right side of the equation is equal to
L
Gg |-G, - OT] - Fiyn

Using ar, = |G4|/|Of]| and the Riedtmann-Peng formula, we prove the proposition.
B O
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By definition, dim, G} = 3", d7 and then we obtain the following lemma ([30,
Section 1.2]).

Lemma 3.5. With the above notation, we have

dimi G — dim G — dimp G = >~ (dy)i(dy)s-
1€Q0

Hence, the equation in the above proposition can also be written as

GF GF GF
Gl > h(@) f29)d4, 4, (9) (@) = L}Iil"lg?“ > fix fa(2)g(2)
d, dy z

o4 <

by substituting & for §**, where gg, ggl and ggz are the Lie algebras of Gg, Ggl
and ng , respectively.

Fix dimension vectors o, 8,a/, 3 with o + 8 = o + 3 = d. Let N be the set
of quadruples A = (a1, as, 81, f2) of dimension vectors such that « = a3 + a9, 8 =
B1+ B2,/ = ai + B1 and B’ = as + B2. Consider the following diagram

pP1 p2 ’ p3 F

EL x Ef E} s E,'5 Ej
ZJT ZT
F F

H)\E./\/ F)\ Fa/:B/
K,\L Kll

p/ p 7" p
[hen EF()) -~ [Den E/AF —> [Hren E () —— Eg’ X ng

where EF(\) = B x EL Egl X IE[I;;, EF(\) = Egj,ﬂl X Eg;[h and E"F()\) =

E'F < E'F . for A = (a1, a2, B1, ). This induces the maps between F-fixed

a1,p1 a2,B2
subsets and then the maps between vector spaces of functions as follows:

CFE xerh = cFh
lé lm,
CFF ([Lyen Er) — CFE, x CFE,
The following theorem can be viewed as the geometric analog of Green’s theorem.

Theorem 3.6. With the above notation, the above diagram is commutative, i.e.,
62‘;}”3/ma}5 = m(Stw.

In order to prove the theorem, we introduce some notations. Set
'F F F
Ca,ﬁ,a’,ﬁ/ = {(%T/V,pl,pg) c ]E/Qaﬁ | x e Fa’,ﬁ/}

and

Ca%,a/7ﬁ/ ={(z,W) € IE(LFQ |z € FL 4}
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The sets can be illustrated by the following diagram
W/

|

W —— (K¢, 2) — (K<, 2) /W

|

(K<, 2) /W'
where (z, W’) € Ef"5,. Consider the following diagram

p ’ q " r K
F F 5,*>F(57ﬂ, HE&‘—‘, XEE,.

Then by definition, we have
51 sme, 5 = |GE x GE|7 g™ €202, (), (1) (q)ip"
For M e EE, N e Ef, M' e Ef, N’ € Eg,, one can check
08 sy 5(lor  lop ) (M, Ny = >~ Flyhi"™"

[L]eEL/GY

Similarly, we can define the set

S = {(TarTp, Tar, g, Wi, Wa, pi1, piz, p21, p22) | (Tar, Wi, p11, p12) € E;i,gz,
(2, Wa, po1, p22) € EF 5 (25, Wa) € BYF 5 (KP ) /W, 22 Wi, 2oy, ),
W3, (20, Wa) = (K, 25) | Wa, (K, 24) /W3 2= (K, 20/) /W1 }
where A = (a1, a9, 81,82) and Wy, Wy and W3 are graded vector spaces of di-

mensions (2, 51 and a1, respectively. The set can be illustrated by the following
diagram:

W2 —_— (Kﬁ,,xg/) W3

| |

(KBVTB) (Kaaxa)

| |

Wi ——— (K, 2o/) — (K, 24) /W5 = (K, 24/ ) /W1.
Set
S)\F = {(xon Tp, Loty Lp, Wla WQ) ‘ lela P12, P21, P22,
(x(xa Ty, Taly LR, W17 W2a P11, P12, P21, P22) S SAF}-
Then there is a projection S;\F — S;:F which is a principal G4, x G, X Gg, X Gg,-
bundle. We also have the following diagram

F F_7d r_P g q g v mF r
Ea X E,@ HAGN FA < H,\e/\/ SA > H/\e/\/ SA > Ea/ X EB’ :

Then we have
mé™ = |GE xGE xGE xGL, |71 q P " Rieqol BBt (en)ilea)il 1y, (1), (p )= (i)
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For M € Ef,N e Ef, M’' e Ef,, N’ € Ef,, one can check

mdé™ (lor , 1or)(M',N') = Z FRy, By 2l hg?.
[X],Iv1],[yz],[2]

where [X] € EE, /GE, | [v1] € BE, /GE | [Y,] € EE /GE 7] € EE /GE .

2 az? [eSR)

We obtain the following diagram

Ef x Bf <*

p/i/T lnrq

g e F F
H)\ENSA HE XEB/

o’

and the proof of Theorem 3.6 is deduced to prove the identity

Z Finhy™™ = Z g AR, Y b g
[LI€EE /GE [(X],[v1],[Y2],[2]
Applying the Riedtmann-Peng formula, it is equivalent to the Green formula in
Section 2. The following we refer the reformulation of the proof of Green’s theorem

in [29].

The left side of the identity is the number counting the set of crossings with the
group action. More precisely, fix M, N, M’, N’ and consider the diagram

0

Set

Q = {(a,b,a’,t') | a,b,a’, b’ as in the above crossing}.
By calculation, |Q| = Z[L]E]Eip/cg FJ@Nh%['Nl|G£HG§||Gg|. Consider the natural
action of Gg on @, and the orbit space is denoted by @ The fibre of the map

~ .. IGE
@ — @ has cardinality Hom (Cokorb’a,Kerb'a)|
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The right side of the identity is the number counting the squares with the group
action. Consider the diagram

0 0
0 Z ° N’ = Yy 0
N M

v’ Yy
0 Yy = M = X 0
0 0

Set
O = {(e1,e2,€3,e4,u’,v",z,y) | all morphisms occur in the above diagram}.

The group Gf x G x Gf x G, freely acts on O with orbit space O. Note that

@y 1
Ol= Y FFNzha  he?IGRIIGE).
[(X],],[Yz],[2]

There is a canonical map f: é — (5, which the cardinality of fibre is [Ext! (X, Z)|.
As Ringel-Hall algebras, we can define the analogue o : CF¥(Q) — CF¥(Q) of
the antipode by setting

o(f)= D (D" Y mi, 6, 00 0 (f)
r>1€Z g, a0 F#0
for f #0 e CFF(Q).
In order to compare Lusztig’s Hall algebras with twisted Ringel-Hall algebras.
We twist CF"(Q) by setting mf, 5 = v{*Pm, 4, 6t 5 = vl 6tv, and

ol (f)y= D (=17 Y mhr ., 00k L ()

r>1€7Z i, ,arF£0

We denote the twist version by CF*™(Q). By applying Lemma 3.1, 3.2 and The-
orem 3.6, we obtain the following result.

Theorem 3.7. The algebra CF*™(Q) is a Hopf algebra with the multiplication
mt, comultiplication §* and antipode ot. Fiz an isomorphism 1 : Q; — C, there is
an isomorphism of Hopf algebra ® : CF™'(Q) — H'"™(A) where A = Rep,Q by

setting ®(1pr ) = [M] for M € A.
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4. THE CATEGORIFICATION OF RINGEL-HALL ALGEBRAS

Let IFy be a finite field with ¢ elements. In the following, K is an algebraic closure
of F,.

Let X be a scheme of finite type over K. We say that X has an F,-structure
if there exists a variety Xo over F, such that X = Xo Xgpee(r,) Spec(k). Let
Fx, : Xo = Xo be the Frobenius morphism. It can be extended to the morphism
Fx : X — X. Let X¥ be the set of closed points of X fixed by F, i.e., the set of
[F,-rational points. For any n € N, let XF" be the set of closed points of X fixed
by F™. Note that X¥' = XF.

Denote by D?(X) = D?(X,Q;) the bounded derived category of Q;-constructible
complexes on X.

The morphism Fx : X — X naturally induces a functor F% : D°(X) — D?(X).
A Weil complex is a pair (F,j) such that F € D*(X) and j : F%(F) — F is
an isomorphism. Let DY (X) be the triangulated subcategory of DP(X) of Weil
complexes and K,,(X) be the Grothendieck group of D% (X).

Given a Weil complex F = (F,7)' in D (X), let # € X¥ be a closed point. We
get automorphisms

Fio: H(F) e = H(F))a-

One can define a F-invariant function xZ : X* — @, via defining
XF(@) =) (1)t (Fio, HI(F)p) = ) (-1)'tr(Fia).
Similarly, one can define X?—” : X" — @ via defining
X5 (@) = Y (=1)'tr(Fl H (F)a) = D _(=1)'tr(F}).
In particular, XFl =T
Theorem 4.1. [14, Theorem 12.1] Let X be as above. Then we have
(1) Let K L M K[1] be a distinguished triangle in D% (X).
Then x& + X/lf,t =xE.
(2) Let g: X =Y be a morphism. Then for K € D2 (X) and L € Db (Y), we
have X g = 91(Xk) and x}. . = 9" (xF).
(3) For K € D% (X), we have Xﬁ[d] = (-1)IxE and X/?(n) =q "xE.

By Theorem 4.1(1), the function x£" only depends on the isomorphism class of
Fin Db (X). Let CF(XF") be the vector space of all functions X*" — Q;. Hence,
we obtain a map " : K, (X) — CF(XF").

Let G be an algebraic group over K and X be a scheme of finite type over
K together with an G-action. Assume that X and G have Fg-structures and
X = X0 Xgpee(r,) Spec(k), G = Go Xgpec(r,) Spec(k). Let Fg, : Go — Go be
the Frobenius morphism. It can be extended to the morphism Fg : G — G.
Denote by D%(X) = D% (X, Q;) the G-equivariant bounded derived category of Q-
constructible complexes on X and Daw(X ) the subcategory of D% (X) consisting
of Weil complexes. Let K¢ .(X) be the Grothendieck group of DY, (X).

LAIl Weil complexes considered here are induced by the complexes in D? (XO,@).
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Assume that we have the following commutative diagram

GxX—X

FGXFX\L lFx

GxX——X
Then, the morphism Fx : X — X naturally induces a functor
Fx : D (X) = Dg o (X).
Let # € X¥ be a closed point. For any (F,j) in Dgyw(X), we get automorphisms
Fiwt HeG(F)je = He(F)s.

In the same way, one can define the G-equivariant version of x*" for n € N as
follows:

Xr(x) = Z(—l)itT(Fi,xﬂE(f)|m)
and ' '
XF (@) =Y (=Dt (F} He(F)ja)-

i
In particular, XFl =xF.

Lemma 4.2. For any (F,j) € Dgyw(X), Xffn is a G-equivariant function.

Proof. For any x and y in the same G-orbit of X, there exists an element g € G
such that g.z = y. Consider the following commutative diagram

FI

Since g*F ~ F, we have

He(F)ly — He(F)yy
By the definition of x*", Xf:: (x) = X?—‘ (y). That is xl}?-" is a G-equivariant function.
O

In the G-equivariant case, we also have Theorem 4.1. Hence the function X?L
also only depends on the isomorphism class of F in D&w(X ). Hence, we obtain a
map x¥" : Kg.w(X) = CFa(XT").

Let @ be a finite quiver without loops. Given a dimension vector d = (d;)iecq, >
the variety E4 and the algebraic group G4 are defined in Section 3. Both of them
have natural F -structures. Consider the following diagram

P2 7 p3

Eo x Eg <——E/ E Eatp .
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This induces a functor m: D, ,,(Ba XEg) = D¢, (Ea+p) described as the
composition of the following functors:

i (p2) (p3)
DgQXGB,w(EQ X Eﬁ) épgaXGBXGa+g, (]E,) bDb (]E )%3'1) a+5,w(ED¢+B) ’

G a+8,W
where (p2) is the inverse of the pull-back functor
p; : Dga+g,w(E ) — Dga XGB XGa+g,’LU(]E/)7
which is an equivalence of derived categories. By definition,
v 1 F
(p2)6(K) = |Gy x G,B| X(p2)i(K)
for K € D%, s m(I[“E”) since ps is a principal G, x Gg-bundle.

Applying Theorem 4.1, we obtain the following commutative diagrams

P* (IJ ) " (p )|
DY, xGyw(Ea X Eg) =Dy GoxGossw(E) — - D¢, ,wE ) — - D¢, wEatp)

| | | |

Py / L
EF)—>C.7-"GQW(IE"F) C]-‘Ga+5( rs)

CFGuxcy(BY X Ef) = CFa, xasxa
where ¢ = m(m);. Hence, the linear functor m : D¢ ¢, ,(Ea X Eg) —

D%a+;s,w (Eq+3) such that the following diagram is commutative

a+5(

(41) DG XG[; w(Ea X ]EB) L Dga+ﬁ,’u}(Ea+ﬁ)

[ |-

C]:G XG@(]E X]EF)*)C]:GQHS( a—i—ﬂ)'

Lemma 4.3. For simple perverse sheaves P & DbGaXGBJH(]Ea x Eg), m(P) is still

semisimple in DY, wrpw(Eatp)

Proof. Since p; is smooth with connect fibres, pj(P) is still semisimple by Sec-
tion 4.2.4 and 4.2.5 in [1]. Since (p2)p is a equivalence of categories, (p2)pp3(P) is
still semisimple. At last, ps is proper implies that m(P) = (p3)i(p2)spi(P) is also
semisimple. ([

By Lemma 4.3, the linear functor m : DgaXGg,’LU(]Ea x Eg) — Dgaw’w(EaJrﬁ)
induces a linear map

m: KGQXGﬂ,w(]Ea X ]Eg) — KGa+B (]thLg)

such that the following diagram is commutative
(4.2) Ke,xcpw(Ba x Eg) == K, 5 .0(Eass)
: :
C]:G xGg (]E X ]EF) _— CfGa+ﬁ( a+,3)'

Set Kg,w = @By Kcyw(Ea) and CFF Q) = @dC}"Gi(EQF). There is a linear map
from Kg . to CFF (Q) induced by x'. For simplicity, we also denote it by x*'. For
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M e Dy ,(E,) and N € Dgﬂ7w(E5), define [M] * [N] := m(M K N). Then the

linear maps m and m endow K¢, and CFY(Q) with multiplication structures,
respectively. Using Diagram (4.2), we obtain the following result.

Lemma 4.4. The Z-linear map x¥ : Kg., — C.FF(Q) is an algebra homomor-
phism.

Consider the diagram

Eo X Eg <" Fopp—->Eqis.

This induces a functor Aag : DG, (Eats) = D& xa,w(Ea X Eg) as the com-
position of functors:

DgaXGlg,w(EO& X Eﬁ) A ID% (Fa,ﬁ) é D%(Hrg,w (]EOH-ﬁ) .

a+p,W
Applying Theorem 4.1, we have the commutative diagram

Aq, B
D%a+5,w(Ea+5) — DbGQXGg,w(Ea X Eﬁ)

o

60:
CF G, s(BY, ) == CFa.xc,(BE x EE).

Lemma 4.5. [3]? For simple perverse sheaves P € Dga+57w(Ea+5)7 Ay g(P) is still
semisimple in D%axag,w(Ea x Eg).

Proof. Since A, g is a hyperbolic localization ([3]). O

By Lemma 4.5, the linear functor A, g : Dgaw,w (Easp) = DY, «Gw(Ba X Eg)
induces a linear map

Aa.ﬂ : KGa+ﬁ,w(Ea+ﬁ) — KGQXGﬁ,w(Ea X Eﬁ)

such that the following diagram is commutative

tw

Kc. .\ yw(Bats) —2 Ka,xGyw(Ea x Eg)

J/XF \LXF
tw

a,B

CFGays (E§+ﬁ) ——CFg,xa, (EE x Eg)

. > a;ifBi
where A%, = Fi* D0, i Bi] (F=%—).

The maps Affﬂ and 53’6 induce the comultiplication structures over K¢ ,, and

C.FF(Q), respectively. In the same way as Lemma 4.4, we obtain the following
result.

Lemma 4.6. The Z-linear map x¥' : Kg., — C}"F(Q) is a coalgebra homomor-
phism.

2The authors thank Hiraku Nakajima for pointing out Reference [3].
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In Section 3, we have shown that there exists a comultiplication structure over
cFF (Q). By Green’s theorem, the comultiplication is compatible with the multi-
plication structure and then CF¥ (Q) is a bialgebra. Naturally, one would like to
check whether K¢ ,, is a bialgebra. Let CFF Q) = @QC}"GQ(EQH). Similarly to
xF: Kgaw = CFE(Q), we have xF" : Kg. — CFF(Q) for any n € N.

Theorem 4.7. [27, Theorem 3.5] The ring homomorphism
x=[x"Kcw— [[cF7 Q)
neN neN
1s injective.
The following theorem can be viewed as the categorification of the Green formula
in Section 1.

Theorem 4.8. Let Py € DY, (Ey) and Py € Dgﬁyw(Eﬂ) be two simple perverse
sheaves. Then we have

Proof. For simple perverse sheaves Py € ngw(Ea) and Py € Dgﬁ’w(Eﬂ), Py * Py
is still semisimple by Lemma 4.3 and then A(P; xPs) is semisimple by Lemma 4.5 .
The rightside A(Py) * A(Py) of the equation is also semisimple by Lemma 4.3 and
4.5. Hence, it is enough to prove the equation holds in K¢ .. Applying Theorem
4.7, it is equivalent to show that

X (P« Py) = X7 (P1) # X ()
for n € N. The last statement follows from the Green formula. O
As a corollary, we have the following theorem.

Theorem 4.9. The algebra Kg . is a bialgebra and the Z-linear map xF Kgw—
CFF(Q) is a bialgebra homomorphism.

There is a natural Z[v, v~!]-module structure on K¢ ., by v [K] = [K[£1](+3)]
for any dimension vector a and K € D%mw(Ea). Given any dimension vector o
and a simple perverse sheaf P € ngw (Eq), we set Tp = {P[m](%) | m € Z} and

T ={Tp | Ja,P € ngw(Ea) is a simple perverse sheaf}.

Fix an assignment S : T — Kg . Then Kg ., is a free Z[v,v™!]-module with a
basis S(T).

We also consider the twisted version of K¢ ,, in order to preserve the subcate-
gories of perverse sheaves by defining

= ma oo, AT,

where {047 5} = Zier ;i + Zhte as(h)ﬁt(h) and
(o, B)
ALy = At [~ (-5,
We denote by K twa the twist of K¢, with the multiplication and comultiplication
induced by m{, ; and Al, 4, respectively.

The following lemma is the simple generalization of Lusztig’s construction over
quantum groups ([30, Theorem 3.24]).
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Lemma 4.10. There is a bialgebra homomorphism x 't : Kgh, — CFEM™(Q) by
sending [P] for P € Dg_ ,(Eq) to v meF(P).
Corollary 4.11. The ring homomorphism
th — H XF"’,tw . Kéu’)w N H CFFn’tw(Q)
neN neN

is an injective homomorphism.

We will endow K¢, with the structure of the antipode map as an analogue of
the antipode over a Ringel-Hall algebra. Let m” and A" be the r-fold multiplication
and comultiplication for r > 1. More explicitly, we have the following functors:

T
g b b
m;h___ Q. DI‘[j:l Ga, ,w(H Eai) - DGQ1+,.,+QT,w(Ea1+~-+a7-)
=1

and
s

Agl,m e : ,Dl();alJr,.,Jrar,w(EOfl-‘r“'-‘rOéT) - le_[::l Gai,w(HEai)'
1=1

such that m™"! =mo (1®@m") and A’ = (1®---® A)o A" for r > 1.
Now we define the functor S : DY, (Es) — D, (Eq) by setting
SP)= P mil. . AL ., (P)r]and S(0)=0.
r>1 oy, 0,70

For simplicity, we denote still by S the induced map over K¢* , (Eq), even K¢, .

Lemma 4.12. The map x* satisfies that X' (S(P)) = o' (xF"**(P)) for P €
Dga,w(EO&)'

Ftw F,twAt,r — 6t,TXF,tw

This follows from ™ f*mb™ = mb"y and
Proposition 4.13. With the above notation, we have

m' (S ® 1)AYP) =m’ (1 ® S)AYP) =0
for P # 0 and [0] for P = 0.

Proof. By Theorem 4.7, we only need to prove the image of this identity under
XFk,tw. Since we have XFk,twmt,'r — mt,'r'XFk,t'w and XFk,twAt,r — (;t,'rXFk,t'w7 the
equation is deduced to

m'(c ®1)8"(f) = m'(1®0)d"(f) =0
for f # 0. ]

As a consequence of Theorem 4.9 and Proposition 4.13, we obtain the main
theorem in this section.

Theorem 4.14. The algebra Kg‘fw 18 a Hopf algebra.
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5. GREEN’S HOPF PAIRING

Let Q@ = (Qo, Q1) as in Section 3. Given d € NQp and P,Q € ng,w(Ed)’ we set
the following geometric pair: N

{P,Q} =) (dimHE, (P Q,Eq)v'"

3

One can refer to [30] for more details and the definition of H}(—, X).
The geometric pair has the following basic properties:

Lemma 5.1. [16] For any P € DY, (Eq,), Q € ng2,w(Ed2) and R € DY, (Eq)
such that dy + dy = d € NQq, we have

(m(PRQ),R} = {PRQ, AR)}.

Applying this lemma iteratively, we have the following corollary.
Corollary 5.2. For any P; € DbGdi7w(Edi)(i € {1,2,...,r}) and R € DY, (Eq)
such that Y, d; = d € NQy, we have

{m"" (P X -KP,),R} ={P; X---XP,., A""(R)}
for r > 2.
Proposition 5.3. Let K L M K[1] be a distinguished triangle
in ng,w (Eq). Then
{L,R}p=—1 ={K,R}p=—1 + {M,R}y=_1,

for any R € D%d,w(EQ)-

Proof. By definition,
{L,R} = Z(dimH@i(ﬁ @ R,Ey))v' = Z(dimEmt%g‘iww(E@ (L,DR))v",

(2

where D is the Verdier duality. Applying the functor Hom(—, DR) to the distin-
guished triangle, we obtain

s Ext;)bci,w (Ei)(IC, DR) _. Emti@bgi,w(ﬂg) (L,DR) _.. Ewti@%i,w (Ea) (M,DR) _, ...
Hence, we have {£,R},=—1 = {K,R}y=—1 + {M, R}p=—1. O

The proof of the proposition also implies that [16]
(K& MR} = {K.R} +{M,R} and {P[n(5)Q} =v"{P,Q}.

The following we consider the relation between the geometric pair and Green’s
pair. For M € modk( with dimension vector d, let Oy; be the orbit of M. Consider
the natural embedding j : Oy — Eg4. Let Cps be the pushforward of the constant
sheaf over Oyy.

Proposition 5.4. Let M, N be k@-modules of dimension vector d and M % N.
Then we have

{Cm,Cn} =0.

Proof. Since Cy; is supported over Oypy. If M 2 N, then Oy N On = 0. Hence, for
any ¢ € Eq, (Car ®CN)z = (Cmr)e ® (Cn)e = 0. O
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Recall Green’s pair (1p,,, 1oy ) = 0 for Oy # On and ﬁ for Op; = Opn. The
proposition says that the geometric pair has almost orthognality as Green’s pair.

Proposition 5.5. Let @ be a Dynkin quiver and M, N be kQ-modules of dimension
vector d. Then we have

{CM’CN} = (X5A45X5N)

Proof. If M, N are two simple modules, then the identity in the proposition holds
by [16]. Using Lemma 5.1, the identity in the proposition holds for the isomorphism
classes of M, N belonging to the composition subalgebra of @. Since ) is of Dynkin
type, the Ringel-Hall algebra of @ and its composition subalgebra coincides and
then the proposition follows. (]

Since K¢",, is the free Z[v, v~ ']-module with a basis in which the base elements
are simple perverse sheaves. Now we define the bilinear form {—, -} : K&’ x
K§', — R = N((v)) by setting

(5.1) {P,Q} = Z(dimH&i(IP’ ® Q,Eq))v’.

for two simple perverse sheaves P, Q.

Fix a basis B of Kg 4 as a free Z[v,v~!]-module. We extend the algebra Ké“”w
by adding the free Z[v, v™1]-module K = D.czi0,) Aka and set I?é“’w to be the free
Z[v,v~1]-module with the basis {k.[P] | @ € Z[Qo], [P] € B}. The multiplication m,
comultiplication A and antipode structures S over Ké}f’w by adding the following
relations to K&’,,:

(1) RPRQ) = m'(PHQ);
k,[P] = v@P [Pk, for PeDy . (Ep);

( ) Gg,w

3) ]iakﬁ = kat8;

(4) A(P)) = 5 AL 5([P) - (ks 1)

(5) Alka) = ko @ ko

(6) S([P) = D,21 DBy a0 Ko —mar, M o, © AGL o, (B[] for P #

(7) S(ko) =K_q.
We can endow K, 5“’1“ with the different multiplication m*, comultiplication A* and
antipode S* structures by the following relations:

(1) A (PRQ) = R(PRQ);

(2) ko[P] = v~ @A [Pk, for PeDg, ., (Es);

(3) ]iakﬁ = Ka+tp;

(4) AY([P]) = X0 5 (A7) ([P]) - (1@ kp);

(5) A*(ka) = ko ® Ka;

(6) S™([P]) = B,51 Do, ay20 Moy, 0, 0D 2, )T (P)[1]Kay 44, fOr P

(7) §*(ka) = k_aq.
We denote I?g"w with the above new structures by I?tGwJ and then the basis is
denoted by {ko[P]* | @ € Z[Qo], [P] € B} in case causing ambiguity. The opposite
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of A* satisfies that

(A)P([P]) = Y (AL )([P]) - (k—p ® 1).

a,B

The inverse of §* satisfies that

(5%)~ =P P karoramil ., 0AL , (P)[r] for P# 0.

r>1 ay, 0,70

Definition 5.6. Given two Hopf algebras A and B, a skew-Hopf pairing of A and
B is a R-bilinear function ¢ : A x B — R such that

(1) ¢(1,b) = ep(b) and ¢(a,1) = a(a);
(2) p(a,bb’) = p(Aa(a),bDb');
(3) ¢(ad’,b) = pla®a’, AF(b));
(4) ¢(oa(a),b) = ¢(a,05" (b))
Proposition 5.7. [11] Let (A, B, ¢) be a skew-Hopf pairing. Then A® B is a Hopf
algebra, called the Drinfeld double of (A, B, ¢).

The definition in 5.1 can be extended to define a bilinear form ¢ : K w X Ko t“’ *
R by setting
PllalP K Q) = o)+ (B )
for P e ’DbGa“w( o) and Q € DGB’ wEs).

Theorem 5.8. The bilinear form ¢ is a skew-Hopf pairing.

The proof is a direct consequence of Lemma 5.1 and Corollary 5.2 and very
similar to [34, Proposition 5.3]. We omit it.
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