
Algebr Represent Theor (2016) 19:171–180
DOI 10.1007/s10468-015-9568-1

On Homomorphisms from Ringel-Hall Algebras
to Quantum Cluster Algebras

Xueqing Chen1 ·Ming Ding2 ·Fan Xu3

Received: 11 February 2015 / Accepted: 11 August 2015 / Published online: 27 August 2015
© Springer Science+Business Media Dordrecht 2015

Abstract In Berenstein and Rupel (2015), the authors defined algebra homomorphisms
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we give an alternative proof by using the cluster multiplication formulas in (Ding and Xu,
Sci. China Math. 55(10) 2045–2066, 2012). Moreover, if the underlying graph of Q asso-
ciated with A is bipartite and the matrix B associated to the quiver Q is of full rank, we
show that the image of the algebra homomorphism is in the corresponding quantum cluster
algebra.
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1 Background

The Ringel-Hall algebra H(A) of a (small) finitary abelian category A was introduced by
Ringel ([14]). When A is the category RepFq

Q of finite dimensional representations of
a simply-laced quiver Q over a finite field Fq , the Ringel-Hall algebra H(A) is isomor-
phic to the positive part Uq(n) of the corresponding quantum group Uq(g) ([14]). Lusztig
([12]) constructed the canonical basis of the quantum group Uq(n) under the context of
Ringel-Hall algebras. In order to study the canonical basis algebraically and combinatori-
ally, Berenstein and Zelevinsky ([2]) defined quantum cluster algebras as a noncommutative
analogue of cluster algebras (see [9, 10]). A quantum cluster algebra is a subalgebra of
a skew field of rational functions in q-commuting variables and generated by a set of
generators called the cluster variables.

A natural question is to study the relations between Ringel-Hall algebras and quantum
cluster algebras. Geiss, Leclerc and Schröer ([11]) showed that quantum groups of type
A, D andE have quantum cluster structures. Recently, Berenstein and Rupel [1] constructed
algebra homomorphisms from Ringel-Hall algebras to quantum cluster algebras. Let A be
a finitary hereditary abelian category and i = (i1, · · · , im) be a sequence of simple objects
in A. Berenstein and Rupel [1] showed that, under certain co-finiteness conditions, the
assignment [V ]∗ → XV,i defines a homomorphism of algebras

�i : H∗(A) → Pi

where H∗(A) is the dual Ringel-Hall algebra and XV,i is the quantum cluster i-character
of V in an appropriate q-polynomial algebra Pi. Moreover, for an appropriate i, the image
restricting to the composition algebra of H∗(A) is in the corresponding upper cluster
algebra.

The aim of this note is to give an alternative proof of the above result when A is the
representation category of an acyclic quiver. Different from [1], a key ingredient of our proof
is to apply the cluster multiplication formulas proved in [8] (see also Theorem 3.3). We show
that if the underlying graph of Q is bipartite (i.e, we can associate this graph an orientation
such that every vertex is a sink or a source) and the matrix B associated to the quiver Q is of
full rank, then the algebra AH|k|(Q) generated by all quantum cluster characters is exactly
the quantum cluster algebra A|k|(Q) (see Theorem 4.5). As a corollary, the image of the
algebra homomorphism is in the quantum cluster algebra A|k|(Q) (see Corollary 4.6). We
expect that the approach in this note can be extended to construct algebra homomorphisms
from derived Hall algebras to quantum cluster algebras.

2 Quantum Cluster Algebras and Caldero-Chapoton Maps

2.1 Quantum Cluster Algebras

We briefly recall the definition of quantum cluster algebras. Let L be a lattice of rank m

and � : L × L → Z a skew-symmetric bilinear form. We will need a formal variable q

and consider the ring of integeral Laurent polynomials Z[q±1/2]. Define the based quan-
tum torus associated to the pair (L,�) to be the Z[q±1/2]-algebra T with a distinguished
Z[q±1/2]-basis {Xe : e ∈ L} and the multiplication given by

XeXf = q�(e,f )/2Xe+f .
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It is easy to see that T is associative and the basis elements satisfy the following relations:

XeXf = q�(e,f )Xf Xe, X0 = 1 and (Xe)−1 = X−e.

It is known that T is an Ore domain, i.e., is contained in its skew-field of fractions F . The
quantum cluster algebra will be defined as a Z[q±1/2]-subalgebra of F .

A toric frame in F is a map M : Zm → F \ {0} of the form
M(c) = ϕ(Xη(c))

where ϕ is an automorphism of F and η : Z
m → L is an isomorphism of lattices. By

definition, the elements M(c) form a Z[q±1/2]-basis of the based quantum torus TM :=
ϕ(T ) and satisfy the following relations:

M(c)M(d) = q�M(c,d)/2M(c + d), M(c)M(d) = q�M(c,d)M(d)M(c),

M(0) = 1 and M(c)−1 = M(−c),

where �M is the skew-symmetric bilinear form on Z
m obtained from the lattice iso-

morphism η. Let �M also denote the skew-symmetric m × m matrix defined by λij =
�M(ei, ej ) where {e1, . . . , em} is the standard basis of Zm. Given a toric frame M , let
Xi = M(ei). Then we have

TM = Z

[
q±1/2

] 〈
X±1
1 , . . . , X±1

m : XiXj = qλij XjXi

〉
.

Let � be an m × m skew-symmetric matrix and let B̃ be an m × n matrix with m ≥ n,
whose principal part is denoted by B. We call the pair (�, B̃) compatible if B̃tr� = (D|0)
is an n × m matrix with D = diag(d1, · · · , dn) where di ∈ N for 1 ≤ i ≤ n. The pair
(M, B̃) is called a quantum seed if the pair (�M, B̃) is compatible. Define the m×m matrix
E = (eij ) by

eij =
⎧⎨
⎩

δij if j �= k;
−1 if i = j = k;
max(0, −bik) if i �= j = k.

For n, k ∈ Z, k ≥ 0, denote
[
n
k

]
q

= (qn−q−n)···(qn−r+1−q−n+r−1)

(qr−q−r )···(q−q−1)
. Let k ∈ [1, n] and c =

(c1, . . . , cm) ∈ Z
m with ck ≥ 0. Define the toric frame M ′ : Zm → F \ {0} as follows:

M ′(c) =
ck∑

p=0

[
ck

p

]

qdk/2
M(Ec + pbk) and M ′(-c) = M ′(c)−1 (1)

where the vector bk ∈ Z
m is the k-th column of B̃.

Define the m × n matrix B̃ ′ = (b
′
ij ) by

b
′
ij =

{ −bij if i = k or j = k;

bij + |bik |bkj +bik |bkj |
2 otherwise.

Then the quantum seed (M ′, B̃ ′) is defined to be the mutation of (M, B̃) in direc-
tion k. Two quantum seeds (M, B̃) and (M ′, B̃ ′) are mutation-equivalent if they can be
obtained from each other by a sequence of mutations, denoted by (M, B̃) ∼ (M ′, B̃ ′). Let
C := {M ′(ei) : (M, B̃) ∼ (M ′, B̃ ′), i ∈ [1, n]}. Let ZP be the ring of integral Laurent poly-
nomials in the (quasi-commuting) variables in {q1/2, Xn+1, · · · , Xm}. The quantum cluster
algebraAq(�M, B̃) is the ZP-subalgebra of F generated by C.

The following proposition demonstrates the mutation of quantum cluster variables which
can be viewed as a quantum analogue of cluster mutation.
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Proposition 2.1 (Mutation of cluster variables)[2] The toric frame X′ is determined by

X′
k = X

⎧⎨
⎩

∑
1≤i≤m

[bik]+ei − ek

⎫⎬
⎭ + X

⎧⎨
⎩

∑
1≤j≤m

[−bjk]+ej − ek

⎫⎬
⎭ ,

X′
i = Xi, 1 ≤ i ≤ m, i �= k.

The quantum Laurent phenomenon proved by Berenstein and Zelevinsky is an important
result concerning quantum cluster algebras.

Theorem 2.2 (Quantum Laurent phenomenon)[2] The quantum cluster algebra
Aq(�M, B̃) is a subalgebra of TM .

Set X = {X1, · · · , Xn} and Xk = X − {Xk} ∪ {X′
k} for any k ∈ [1, n]. Denote by

U(�M, B̃) the ZP-subalgebra of F given by

U(�M, B̃) = ZP[X±1] ∩ ZP

[
X±1
1

]
∩ · · · ∩ ZP

[
X±1

n

]
.

The algebra U(�M, B̃) is called the quantum upper cluster algebra. The following result
shows that the acyclicity condition closes the gap between the upper bounds and the
corresponding quantum cluster algebras.

Theorem 2.3 [2] If the principal matrix B is acyclic, then U(�M, B̃) = Aq(�M, B̃).

2.2 Quantum Caldero-Chapoton Maps

Let k be a finite field with cardinality |k| = q and m ≥ n be two positive integers. Let
Q̃ be an acyclic quiver with vertex set {1, . . . , m}. Denote C := {n + 1, . . . , m}. The full
subquiver Q on the vertices {1, . . . , n} is called the principal part of Q̃. For 1 ≤ i ≤ m, let
Si be the ith simple module of the path algebra kQ̃.

Let B̃ be the m × n matrix associated to the quiver Q̃ whose entry in position (i, j) is
given by

bij = |{arrows i −→ j}| − |{arrows j −→ i}|
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Denote by Ĩ the left m×n submatrix of the identity matrix of
size m×m. Assume that there exists some antisymmetric m×m integer matrix � such that

�(−B̃) =
[
In
0

]
, (2)

where In is the identity matrix of size n× n. Let R̃ = R̃Q̃ be the m× n matrix with its entry
in position (i, j) given by

r̃ij := dimkExt
1
kQ̃

(Sj , Si) = |{arrows j −→ i}|.

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Set R̃tr = R̃Q̃op . Denote the principal n × n submatrices of

B̃ and R̃ by B and R, respectively. Note that B̃ = R̃tr − R̃ and B = Rtr − R.
Let CQ̃ be the cluster category of kQ̃, i.e., the orbit category of the derived category

Db(Q̃) under the action of the functor F = τ ◦ [−1] (see [3]). Let Ii be the indecomposable
injective kQ̃ module for 1 ≤ i ≤ m. Then the indecomposable kQ̃-modules and Ii[−1] for
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1 ≤ i ≤ m exhaust all indecomposable objects of the cluster category CQ̃. Each object M

in CQ̃ can be uniquely decomposed as

M = M0 ⊕ IM [−1]
where M0 is a module and IM is an injective module.

The Euler form on kQ̃-modules M and N is given by

〈M,N〉 = dimkHom(M,N) − dimkExt
1(M,N).

Note that the Euler form only depends on the dimension vectors of M and N .
The quantum Caldero-Chapoton map of the quiver Q has been defined in [6, 8, 13, 15]

as

X? : obj CQ̃ −→ T
by the following rules:

(1) If M is a kQ-module, then

XM =
∑

e

|Gre M|q− 1
2 〈e,m−e〉X−B̃e−(Ĩ−R̃tr )m;

(2) If M is a kQ-module and I is an injective kQ̃-module, then

XM⊕I [−1] =
∑

e

|Gre M|q− 1
2 〈e,m−e−i〉X−B̃e−(Ĩ−R̃tr )m+dim soc I ,

where dimI = i, dimM = m and Gre M denotes the set of all submodules V of M with
dimV = e. We note that

XP [1] = XτP = XdimP/radP = Xdim soc I = XI [−1] = Xτ−1I .

for any projective kQ̃-module P and injective kQ̃-module I with soc I = P/radP.

In the following, for convenience, we always use the underlined lower letter x to denote
the corresponding dimension vector of a kQ-module X and view x as a column vector in
Z

n.

3 The Dual Ringel-Hall Algebras and the Cluster Multiplication
Formulas

Let A be the representation category of an acyclic quiver Q over a finite field and K(A)

the Grothendieck group of A. For an object V ∈ A, we will write [V ] for the isomorphism
class of V. LetH(A) = ⊕

k[V ] be the k-vector space spanned by the isomorphism classes
of objects of A with the natural grading via class in K(A). For U, V,W ∈ A define the
Hall number

gV
UW = |{R ⊂ V |R ∼= W,V/R ∼= U}|.

The assignment [U ][W ] = ∑
[V ] gV

UW [V ] defines an associative multiplication on
H(A). The algebra H(A) is known as the Ringel-Hall algebra. Denote by H∗(A)

the dual Ringel-Hall algebra, which is the space of linear functions H(A) →
k with a basis of all delta-functions δV labeled by isomorphism classes [V ] of
objects ofA.
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Proposition 3.1 Let M and N be kQ-modules, then the product

δM ∗ δN = q
1
2�((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)+〈m,n〉 ∑

E

hMN
E δE

defines an associative multiplication on H∗(A), where hMN
E = |Ext1kQ(M,N)E |

|HomkQ(M,N)| and

Ext1kQ(M,N)E is the subset of Ext1kQ(M,N) consisting of those equivalence classes of
short exact sequences with middle term E.

Proof Note that
∑
E

gE
MNgF

EL =
∑
G

gG
NLgF

MG, and the relation between hMN
E and gE

MN is

given by the Riedtmann-Peng’s formula

hMN
E = gE

MN |Aut(M)||Aut(N)||Aut(E)|−1.

Thus we have
∑

E hE
MNhF

EL = ∑
G hG

NLhF
MG. It is easy to see that φ(m, n) := 1

2�((Ĩ −
R̃

′
)m, (Ĩ − R̃

′
)n)+〈m, n〉 is a bilinear form on Zn. Hence the associativity can be deduced.

For any kQ̃−modules M,N and E, denote by εE
MN the cardinality of the set

Ext1
kQ̃

(M,N)E which is the subset of Ext1
kQ̃

(M,N) consisting of those equivalence classes

of short exact sequences with middle term E. Define

HomkQ̃(M, I)BI ′ := {f : M −→ I |kerf ∼= B, cokerf ∼= I ′}.
Denote

[M,N ] = dimkHomkQ̃(M,N) and [M, N ]1 = dimkExt
1
kQ̃

(M,N).

We have the following cluster multiplication formulas.

Theorem 3.2 [8][6] Let M and N be any kQ-modules, and I any injective kQ̃-module,
then

(1) q[M,N]1XMXN = q
1
2�((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)

∑
E εE

MNXE;
(2) q[M,I ]XMXI [−1] = q

1
2�((Ĩ−R̃

′
)m,−dimSocI )

∑
B,I ′ |HomkQ̃(M, I)BI ′ |XB⊕I ′[−1].

Note that Theorem 3.2(1) implies the following result which has been proved by
Berenstein and Rupel using generalities on bialgebras in braided monoidal categories.

Theorem 3.3 [1] The assignment δV → XV defines an algebra homomorphism � :
H∗(A) → T .

An alternative proof.

Note that the first cluster multiplication formula in Theorem 3.2 can be rewritten as

XMXN = q
1
2�((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)+<m,n>

∑
E

hMN
E XE.
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Thus we have

�(δM ∗ δN) = �

(
q

1
2�((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)+〈m,n〉 ∑

E

hMN
E δE

)

= q
1
2�((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)+〈m,n〉 ∑

E

hMN
E XE

= XMXN = �(δM)�(δN).

This completes the proof. �

4 Quantum Cluster Algebras for Bipartite Graphs

In this section, we assume that Q is an acyclic quiver whose underlying graph is bipar-
tite and the matrix B associated to the quiver Q is of full rank. Note that in this case the
corresponding quantum cluster algebras are coefficient-free.

Definition 4.1 With respect to the quantum Caldero-Chapoton map, XL is called the
quantum cluster character if L ∈ CQ.

Definition 4.2 For a quiver Q, denote by AH|k|(Q) the Z-subalgebra of F generated by
all the quantum cluster characters.

We will show that the algebraAH|k|(Q) is equal to the quantum cluster algebraA|k|(Q).
Let Q be an acyclic quiver and i a sink or a source in Q. We define the reflected

quiver σi(Q) by reversing all the arrows ending at i. An admissible sequence of sinks (resp.
sources) is a sequence (i1, . . . , il) such that i1 is a sink (resp. source) in Q and ik is a
sink (resp source) in σik−1 · · · σi1(Q) for any 2 ≤ k ≤ l. A quiver Q′ is called reflection-
equivalent to Q if there exists an admissible sequence of sinks or sources (i1, . . . , il) such
that Q′ = σil · · · σi1(Q). Note that mutations can be viewed as generalizations of reflec-
tions, i.e, if i is a sink or a source in a quiver Q, then μi(Q) = σi(Q) where μi denotes
the quiver mutation in the direction i. From now on, we assume that Q′ is quiver mutation-
equivalent to Q. Denote by �i : A|k|(Q) → A|k|(Q′) the natural canonical isomorphism of
quantum cluster algebras associated to sink or source for any 1 ≤ i ≤ n, which sends each
initial cluster variable ofA|k|(Q) to its Laurent expansion in the initial cluster ofA|k|(Q′).

Let +
i : rep(kQ) −→ rep(kQ′) be the standard BGP-reflection functor and R+

i :
CQ −→ CQ′ be the extended BGP-reflection functor defined in [16]:

R+
i :

⎧
⎪⎪⎨
⎪⎪⎩

X �→ +
i (X) if X �� Si is a module

Si �→ Pi[1]
Pj [1] �→ Pj [1] if j �= i

Pi[1] �→ Si

Rupel proved the following result.

Theorem 4.3 [15] For any indecomposable object M in CQ, we have that �i(X
Q
M) =

X
Q′
R+

i M
.
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The following lemma is well-known.

Lemma 4.4 [4, Lemma 8(b)] Let

M −→ E −→ N −→ M[1]
be a non-split triangle in CQ. Then

dimkExt
1
CQ

(E,E) < dimkExt
1
CQ

(M ⊕ N,M ⊕ N).

Theorem 4.5 Assume that Q is an acyclic quiver whose underlying graph is bipartite and
the matrix B associated to the quiver Q is of full rank, then AH|k|(Q) = A|k|(Q).

Proof Firstly, we prove that for any indecomposable object M ∈ CQ, XM is in the quantum
cluster algebraA|k|(Q).

Case 1: If Q is an alternating quiver (i.e, whose vertex is either a sink or a source).

By Theorem 4.3, we have that �i(X
Q
M) = X

Q′
R±

i M
for any indecomposable object M ∈

CQ. It is easy to see that Q′ is again an acyclic quiver. Then we obtain that

XM ∈ Z

[
X±1

]
∩ Z

[
X±1
1

]
∩ · · · ∩ Z

[
X±1

n

]
.

Note that the quiver Q is acyclic, thus the corresponding quantum upper cluster algebra
associated to Q coincides with the quantum cluster algebra A|k|(Q) (see Theorem 2.3).
Hence XM is in the quantum cluster algebraA|k|(Q).

Case 2: If Q is an acyclic quiver whose underlying graph is bipartite.

Note that Q is reflection–equivalent to some alternating quiver Q′ and in the Case 1 we
have showed that for any indecomposable object M ∈ CQ′ , XM is in the corresponding
quantum cluster algebra A|k|(Q′). Thus the rest of the proof immediately follows from
Theorem 4.3.

Now we need to prove that for any quantum cluster character XL ∈ AH|k|(Q), we have

that XL ∈ A|k|(Q). Let L ∼=
l⊕

i=1

L
⊕ni

i , ni ∈ N where Li (1 ≤ i ≤ l) are indecomposable

objects in CQ. According to Theorem 3.2, we obtain the following equality:

X
n1
L1

X
n2
L2

· · · Xnl

Ll
= q

1
2 nLXL +

∑

dimkExt1CQ
(E,E)<dimkExt1CQ

(L,L)

fnE
(q± 1

2 )XE

where nL ∈ Z and fnE
(q± 1

2 ) ∈ Z[q± 1
2 ]. Using Lemma 4.4 and proceeding by induction, it

is straightforward to verify that XL ∈ A|k|(Q).
This completes the proof.

Corollary 4.6 Assume that Q is an acyclic quiver whose underlying graph is bipartite, and
the matrix B associated to the quiver Q is of full rank, then �(H∗(A)) ⊆ A|k|(Q).

Proof By Theorem 3.3, we have that �(H∗(A)) ⊆ AH|k|(Q). Hence the proof
immediately follows from Theorem 4.5.
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Remark 4.7 It is natural to ask when �(H∗(A)) is equal to A|k|(Q). The key point
of this problem is to prove that the initial cluster variables can be written as a
Z[q±1/2]−combination of some product of cluster characters associated to kQ-modules. In
the following, we give an example in this direction.

Example 4.8 Set � =
(
0 1
−1 0

)
and B =

(
0 2
−2 0

)
. Thus the quiver Q associated to this

pair is the Kronecker quiver:

Let k be a finite field and q = √|k|. The category rep(kQ) of finite-dimensional rep-
resentations can be identified with the category of mod-kQ of finite-dimensional modules
over the path algebra kQ. It is well-known (see [5]) that up to isomorphism the indecompos-
able kQ-module contains three families: the preprojective modules with dimension vector
(n − 1, n) (denoted by M(n)), the indecomposable regular modules with dimension vector
(ndp, ndp) for p ∈ P

1
k of degree dp (in particular, denoted by Rp(n) for dp = 1) and the

preinjective modules with dimension vector (n, n − 1) (denoted by N(n)) for any n ∈ N.
For m ∈ Z \ {1, 2}, set

V (m) =
{

N(m − 2) if m ≥ 3;
M(−m + 1) if m ≤ 0.

Now, let T = Z[q±1/2]〈X±1
1 , X±1

2 : X1X2 = qX2X1〉 and F be the skew field
of fractions of T . The quantum cluster algebra of the Kronecker quiver Aq(2, 2) is the
Z[q±1/2]-subalgebra of F generated by the cluster variables in {Xk|k ∈ Z} defined
recursively by

Xm−1Xm+1 = qX2
m + 1.

With the above notation, we have the following results.

Lemma 4.9 [15] For any m ∈ Z \ {1, 2}, the m-th cluster variable Xm ofAq(2, 2) is equal
to XV (m).

Lemma 4.10 [7] For any n ∈ Z, we have that

XnXRp(1) = q− 1
2 Xn−1 + q

1
2 Xn+1.

For the Kronecker quiver, we show that the image of the dual Ringel-Hall algebra under
the homomorphism� coincides with the quantum cluster algebra.

Theorem 4.11 Assume that Q is the Kronecker quiver, we have that

�(H∗(A)) = A|k|(Q).

Proof By Corollary 4.6, we know that �(H∗(A)) ⊆ A|k|(Q). Note that � is an algebra
homomorphism according to Theorem 3.3, thus it is enough to prove that X1 and X2 have

preimages. By Lemma 4.10, we have X0XRp(1) = q− 1
2 X−1 + q

1
2 X1. This gives X1 =

q− 1
2 X0XRp(1) − q−1X−1 which can be rewritten as X1 = q− 1

2 XV (0)XRp(1) − q−1XV (−1)

according to Lemma 4.9. Hence we have X1 = q− 1
2 �(δV (0))�(δRp(1)) − q−1�(δV (−1)) =

�(q− 1
2 δV (0) ∗ δRp(1) − q−1δV (−1)). Similarly we have X3XRp(1) = q− 1

2 X2 + q
1
2 X4, and
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using the same method we deduce that X2 = �(q
1
2 δV (3) ∗ δRp(1) − qδV (4)). This completes

the proof.
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