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Abstract. The aim of this paper is to establish asymptotic formulas in the region
<(s) ≥ 1 of the `-th moment of quadratic L-functions over a rational function field Fq(t),
for arbitrary positive integer ` and odd prime power q. Specifically, we obtain the asymp-
totic formulas relating to two families. One is over all discriminants and another is over all
fundamental discriminants. In addition, we give applications including asymptotic formu-
las for the size of class numbers, algebraic K-groups K2, and limit distribution functions
associated with the quadratic L-functions.

Introduction

Let k = Fq(t) be a rational function field with odd characteristic p. Let A = Fq[t],
and A+ be the set of all monic polynomials. The infinite place ∞ of k corresponds to the
degree valuation. The letter P always denotes a monic irreducible polynomial in A, which
corresponds to a finite place of k.

Let
[ ·
·
]
be the quadratic symbol for Fq[t] (cf. [9, Chapter 3]). Given m ∈ A non-square,

define the function χm(n) :=
[
m
n

]
for n ∈ A − {0}. We are interested in the L-function

associated to χm which is defined by

L(s, χm) :=
∑
n∈A+

χm(n)q−s degn =
∏
P

(1− χm(P )q−s degP )−1, on <(s) > 1.

This is equal to a polynomial of degree at most degm− 1 in q−s.
Suppose that m ∈ A is square-free. Let

λ∞(m) :=


0, if ∞ is ramified in k(

√
m)/k;

−1, if ∞ is inert in k(
√
m)/k;

1, if ∞ splits in k(
√
m)/k.

Then
L∗(s, χm) := (1− λ∞(m)q−s)−1 · L(s, χm)

is the Artin L-function associated to the unique non-trivial character of the Galois group
Gal(k(

√
m)/k) (cf. [9, Theorem 17.6]). Let m(χm) := degm − 1 − |λ∞(m)|. Then the

functional equation for the complete L-function L∗(s, χm) is as follows:

L∗(s, χm) = qm(χm)(1/2−s)L∗(1− s, χm),

which implies that L(s, χm) is a polynomial of degree degm−1 in q−s. We classify quadratic
function fields K := k(

√
m) according to whether ∞ splits, is inert, or ramified in K/k. This

is analogous to classifying quadratic number fields as real or imaginary. That is
• If degm is even and sgn(m) ∈ (F×q )2, then ∞ splits in K/k.
• If degm is even, and sgn(m) 6∈ (F×q )2, then ∞ is inert in K/k.

2010 Mathematics Subject Classification. 14H05, 11F67, 11N45, 11L05.
Key words and phrases. Function fields, L-functions, Asymptotic Results, Gauss sums.
Research partially supported by Ministry of Science and Technology, Rep. of China.

1



2 CHIH-YUN CHUANG

• If degm is odd, then ∞ ramifies in K/k.
Here sgn(m) is the leading coefficient of m ∈ A. Let B be the integral closure of A in K/k.
Then the L-function L(s, χm) satisfies

ζB(s) = ζA(s) · L(s, χm),

where ζA ( reps. ζB) is the zeta function of A ( reps. B):

• ζA(s) :=
∑
I⊂A

N(I)−s =
∏
P

(1 − q−s degP )−1 on <(s) > 1, where N(I) denotes the

absolute norm.
• ζB(s) :=

∑
I⊂B

N(I)−s =
∏
P

(1 −N(P)−s)−1 on <(s) > 1, where the sum is over all

non-zero ideals in B, and the product is over all non-zero prime ideals in B.
These zeta functions both have a simple pole at s = 1, and are rational functions in q−s.

Throughout, we use the symbol � to denote square polynomials. Let γ be a fixed generator
of F×q , and ` be a positive integer. On the basis of classifying the quadratic fields K over k,
we are interested in considering the following averaging problems:

• Summing over all non-square monic polynomials (“discriminants”):

L(s,M, `)R =
∑
m∈A+:

degm=M

L(s, χm)`, if M is an odd integer;

L(s,M, `)S =
∑
m∈A+:

degm=M,m6=�

L(s, χm)`, if M is an even integer;

L(s,M, `)I =
∑
m∈A+:

degm=M,m6=�

L(s, χγ·m)`, if M is an even integer.

• Summing over all square-free monic polynomials (“fundamental discriminants”):

L∗(s,M, `)R :=
∑∗
m∈A+:

degm=M

L(s, χm)`, if M is an odd integer;

L∗(s,M, `)S :=
∑∗
m∈A+:

degm=M

L(s, χm)`, if M is an even integer;

L∗(s,M, `)I :=
∑∗
m∈A+:

degm=M

L(s, χγ·m)`, if M is an even integer.

Here ∗ means that the sum in question runs over all square-free monic polynomials.
We note that for any odd integer M ,

L(s,M, `)R =
∑

m∈A+:
degm=M

L(s, χγ·m)`, and L∗(s,M, `)R =
∑∗
m∈A+:

degm=M

L(s, χγ·m)`.

We divide our results into two parts.

0.1. The non-square case: In this case, when ` = 1, J. Hoffstein and M. Rosen (cf. [6,
Theorem 0.7, Theorem 1.4 and Theorem 1.5]) obtained formulas for above sums, as functions
of q−s, which immediately gives asymptotic formulas as M approaches infinity. One of goals
of this paper is derived asymptotic formulas for these sums when M goes to infinity with `
arbitrary. That is

Theorem 0.1. Let `,M be positive integers and ? be either S, I, or R, then we have, for
<(s) ≥ 1,

L(s,M, `)? = ζA(2s)
`(`+1)

2 · c`(s) · qM +O
(
q(1/2+δ)M

)
,
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for any δ > 0, as M →∞. Here c`(s) :=∏
P

{(
(1− q− degP )

(
(1 + q−s degP )` + (1− q−s degP )`

2

)
+ q− degP (1− q−2s degP )`

)
(1− q−2s degP )

`(`−1)
2

}
is absolutely convergent on <(s) > 1/4.

Remark 0.2.

(1). When ` = 1,
c1(s) = ζA(2s+ 1)−1

is a rational function in q−s. The above theorem reduces to the well-known averaging
L-values of J. Hoffstein and M. Rosen (cf. [9, p. 323-324]).

(2). Let D denote an integer congruent to 0 or 1 modulo 4 and non-square. Let ψD(n) :=(
D
n

)
denote the Kronecker symbol. The Dirichlet L-function associated with ψD is

given by

L(s, ψD) :=

∞∑
n=1

ψD(n)/ns, on <(s) > 1.

Concerning higher moments, M. B. Barban [2, Lemma 5.6] established the following
asymptotic formula, for any fixed positive integer `,∑

−N≤D≤−1

L`(1, ψD) = r`N +O(N exp(−c
√
N)), as N →∞,

where c > 0 is a constant independent of ` and

r` =

∞∑
n=1

n≡1 mod 2

ϕ(n)d`(n
2)

n3
.

Here d`(n) is the number of ways of expressing n as the product ` positive integers,
expressions in which only the order of the factors begin different is regarded as dis-
tinct, and ϕ(n) is the Euler totient function. In the function field case, the constant
of our main term is (cf. (2.1)):

ζA(2s)
`(`+1)

2 · c`(s) =
∑
n∈A+

d`(n
2) · ϕ(n)

|n|2s+1
:= r`(s).

Here |n| := qdegn for any n ∈ A− {0}. In particular, if s = 1, then

ζA(2)
`(`+1)

2 · c`(1) =
∑
n∈A+

d`(n
2) · ϕ(n)

|n|3
,

which is to be compared with the classical result. Here d`(n) is the number of ways of
expressing n as the product ` monic polynomials, expressions in which only the order
of the factors begin different is regarded as distinct, and ϕ(n) is the Euler totient
function for A.

(3). Although ζ`A(s) =
∑
n∈A+

d`(n)

|n|s
and ζA(s−1)

ζA(s) =
∑
n∈A+

ϕ(n)

|n|s
are both rational functions

in q−s, we do not know whether ζA(2s)
`(`+1)

2 · c`(s) =
∑
n∈A+

d`(n
2) · ϕ(n)

|n|2s+1
is a rational

function in q−s for ` > 1.
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(4). For each local factor at prime P , we have(
(1− q− degP )

(
(1 + q−s degP )` + (1− q−s degP )`

2

)
+ q− degP (1− q−2s degP )`

)
=1 +

∑
t:2|t

2≤t≤`

(
`

t

)
q−st degP − q− degP

∑
t:2|t

2≤t≤`

(
`

t

)
q−st degP + q− degP

∑̀
t=1

(
`

t

)
(−1)tq−2st degP ,

which is a polynomial of degree 2` in q−s degP . For each ` > 1, the infinite product∏
P

(
(1− q− degP )

(
(1 + q−s degP )` + (1− q−s degP )`

2

)
+ q− degP (1− q−2s degP )`

)
is holomorphic on <(s) > 1/2 and has a pole at s = 1/2 of order `(`−1)

2 . Since
c`(s) is equal to ζA(2s)−

`(`−1)
2 multiplying this infinite product, the function c`(s) is

holomorphic on <(s) > 1/4.

In M. B. Barban’s paper, he not only obtains the asymptotic formula of higher moment
described in the above remark (2), but also achieves a result of limit distributions with its
corresponding characteristic function (cf. [2, Theorem 5.2]). In the function field context, we
also have an analogous result and prove it in Subsection 2.1:

Corollary 0.3. For real s0 ≥ 1, as M →∞, the quantity

fM (x, s0) = q−M#{m ∈ A+,degm = M : L(s0, χm) ≤ x}, x ∈ R

converges to a distribution function f(x) := f(x, s0) at each point of continuity of the latter,
and the corresponding characteristic function has the form

φf,s0(x) = 1 +
∑
`≥1

r`(s0)

`!
(ix)`, x ∈ R.

Write m = m0m
2
1, where m0 is square-free. The polynomial m0 is well defined up to the

square of a constant. Define Bm to be the ring A + Am1
√
m0 ⊂ K = k(

√
m). It is an

A-order in K, (i.e. it is a ring, finitely generated as an A-module, and its quotient field is
K). Meanwhile, Bm is the unique subring of Bm0

such that m1 is the annihilator of the A
module Bm0

/Bm (cf. [9, Theorem 17.6]). The Picard group Pic(Bm) is the group of invertible
fractional ideals of Bm modulo the subgroup of principal fractional ideals. We set the class
number hm := # Pic(Bm).

Since L(1, χm) gives the size of Pic(Bm), setting s = 1 in Theorem 0.1, we obtain the
following average value results for the `-th moment of hm.

Corollary 0.4. Let ` be a positive integer.

(1). If degm = M is an odd integer, then∑
m∈A+:

degm=M,m6=�

h`m = q(1+
`
2 )M · q−`/2 · ζA(2)

`(`+1)
2 · c`(1) +O(q(1/2+δ+

`
2 )M ).

(2). If degm = M is an even integer and γ is a generator of F×q , then∑
m∈A+:

degm=γM,m 6=�

h`γm = q(1+
`
2 )M ·

(
2

q + 1

)`/2
· ζA(2)

`(`+1)
2 · c`(1) +O(q(1/2+δ+

`
2 )M ).
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(3). If degm = M is an even integer, then∑
m∈A+:

degm=M,m6=�

(hm ·Rm)` = q(1+
`
2 )M · (q − 1)−`/2 · ζA(2)

`(`+1)
2 · c`(1) +O(q(1/2+δ+

`
2 )M ).

Here Rm is the regulator of the ring Bm.

0.2. The square-free case: When ` = 1 and q ≡ 1 mod 4, J. Hoffstein and M. Rosen
established that (cf. [6, Theorem 0.8]):

Theorem 0.5. Let

P (s) :=
∏
P

(
1− |P |−2 − |P |−(2s+1) + |P |−(2s+2)

)
, on <(s) ≥ 1/2.

Choose any ε > 0. If <(s) ≥ 1, then

(1). If M is odd, then

(q − 1)−1(qM − qM−1)−1
∑

L(s, χm) = ζA(2)ζA(2s)P (s) +O(q−(M/2)(1−ε)),

where the sum is over all square-free m such that deg(m) = M .
(2). If M is even, then

2(q − 1)−1(qM − qM−1)−1
∑

L(s, χm) = ζA(2)ζA(2s)P (s) +O(q−(M/2)(1−ε)),

where the sum is over all square-free m such that deg(m) = M and sgn(m) ∈ (F×q )2

or over all square-free m such that deg(m) = M and sgn(m) 6∈ (F×q )2.

Hoffstein-Rosen uses the fact that the Fourier coefficients of Eisenstein series for the meta-
plectic group involve the values L(s, χm). In this paper, we are able to derive asymptotic
formulas for these averaging values, with q, ` arbitrary, by more elementary direct approach.
We have

Theorem 0.6. Let `,M be positive integers. Suppose that ? is either S, I, or R. Then, for
<(s) ≥ 1,

L∗(s,M, `)? = ζA(2s)
`(`+1)

2 · c∗` (s) · (qM · ζA(2)−1) +O
(
q(1/2+δ)M

)
for any δ > 0, as M →∞. Here

c∗` (s) :=
∏
P


(
1− q−2s degP

) `(`+1)
2

1 + q− degP

((
(1 + q−s degP )−` + (1− q−s degP )−`

2

)
+ q− degP

) ,

which is absolutely convergent in <(s) > 1/4. Here

(qM · ζA(2)−1) = qM − qM−1 = #{m ∈ A+ : degm = M and m is square-free}, for M > 1.

Remark 0.7.

(1). When ` = 1, we have (cf. (2.3))

ζA(2s)
`(`+1)

2 · c∗1(s) = ζA(2) · ζA(2s) ·
∏
P

(1− |P |−2 − |P |−2s−1 + |P |−2s−2) := r∗` (s).

The above theorem reduces to the averaging L-values of J. Hoffstein and M. Rosen
(cf. [6, Theorem 5.2]) in the region <(s) ≥ 1.
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(2). For each local factor at prime P , we have(1− q−2s degP ) `(`+1)
2

1 + q− degP

((
(1 + q−s degP )−` + (1− q−s degP )−`

2

)
+ q− degP

) (1− q−2 degP )

=
[
1 +

`(`− 1)

2
q−2s degP +

∑̀
t=4
2|t

(
`

t

)
q−st degP −

∑̀
t=2
2|t

(
`

t

)
q−(st+1) degP

+
∑̀
t=1

(−1)t
(
`

t

)
q−(2st+1) degP −

∑̀
t=0

(−1)t
(
`

t

)
q−(2st+2) degP

]
·
(
1− q−2s degP

) `(`−1)
2

which is a polynomial of degree `(`+ 1) in q−s degP . Thus, for each ` ≥ 1, the infinite
product gives that c∗` (s) is holomorphic on <(s) > 1/4.

Similarly, Theorem 0.5 also gives a limit distribution function of the square-free case.

Corollary 0.8. For real s0 ≥ 1, as M →∞, the quantity

f∗M (x, s0) = (qM−qM−1)−1#{m ∈ A+,degm = M and m is square-free : L(s0, χm) ≤ x}, x ∈ R

converges to a distribution function f∗(x) := f∗(x, s0) at each point of continuity of the latter,
and the corresponding characteristic function has the form

φ∗f,s0(x) = 1 +
∑
`≥1

r∗` (s0)

`!
(ix)`, x ∈ R.

Use the same argument as Corollary 0.4. Setting s = 1 in Theorem 0.6, we obtain the
following average value results for the `-th moment of hm.

Corollary 0.9. Let ` be a positive integer. Then, for any δ > 0,

(1). If degm = M is an odd integer, then∑∗
m∈A+:

degm=M

h`m = q(1+
`
2 )M · q−`/2 · ζA(2)−1 · ζA(2)

`(`+1)
2 · c∗` (1) +O(q(1/2+δ+

`
2 )M ).

(2). If degm = M is an even integer, and γ is a generator of F×q , then∑∗
m∈A+:

degm=M

h`γm = q(1+
`
2 )M ·

(
2
q+1

)`/2
· ζA(2)−1 · ζA(2)

`(`+1)
2 · c∗` (1) +O(q(1/2+δ+

`
2 )M ).

(3). If degm = M is an even integer, then∑∗
m∈A+:

degm=M

(hm ·Rm)` = q(1+
`
2 )M · (q − 1)−`/2 · ζA(2)−1 · ζA(2)

`(`+1)
2 · c∗` (1) +O(q(1/2+δ+

`
2 )M ).

Here Rm is the regulator of the ring Bm.

Remark 0.10. Let F be a quadratic extension over Q. Let ∆F/Q, hF , and RF be the discrim-
inant of F/Q, the class number, and the regulator of F , respectively. In 2008, T. Taniguchi
conjectured that (cf.[11, Theorem 1 and Conjecture 10.14]):

lim
X→∞

1

X2
·

∑
[F :Q]=2

0<|∆F/Q|≤X

h2F ·R2
F =

ζ(2)2

24
·
∏
p

(
1− 3

p3
+

2

p4
+

1

p5
− 1

p6

)
.
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When ` = 2, simplifying our cases (1), (2), and (3) in the above corollary, we have proved

(1) + (2) + (3)

=q(1+
`
2 )M ·

(
1

q − 1
+

2

q + 1
+

1

q

)
· ζA(2)−1 · ζA(2)

`(`+1)
2 · c∗2(1)

=

(
1

q − 1
+

2

q + 1
+

1

q

)
· ζA(2)2 ·

∏
P

(
1− 3

|P |3
+

2

|P |4
+

1

|P |5
− 1

|P |6

)
· q2M ,

which is to be compared with T. Taniguchi’s conjecture.

Since L(2, χm) gives the size of K-groups K2(Bm) (after Tate and Quillen, cf. [8]), setting
s = 2 in Theorem 0.6, we also obtain the following average value results for the `-th moment
of #(K2(Bm)) for arbitrary `.

Corollary 0.11. Let ` be a positive integer, m ∈ A be square-free. Then, for any δ > 0,

(1). If degm = M is an odd integer, then∑∗
m∈A+:

degm=M

(#K2(Bm))` = q−
3`
2 ·ζA(2)−1·ζA(4)

`(`+1)
2 ·c∗` (2)·q(1+

3`
2 )M+O(q(1/2+δ+3`/2)M ).

(2). If degm = M is an even integer, and γ is a generator of F×q , then∑∗
m∈A+:

degm=M

(#K2(Bγ·m))` =
(

(1+q−1)
q2+1

)`
· ζA(2)−1 · ζA(4)

`(`+1)
2 · c∗` (2) · q(1+

3`
2 )M +O(q(1/2+δ+3`/2)M ).

(3). If degm = M is an even integer, then∑∗
m∈A+:

degm=M

(#K2(Bm))` = (q2 + q)−` · ζA(2)−1 · ζA(4)
`(`+1)

2 · c∗` (2) · q(1+
3`
2 )M +O(q(1/2+δ+3`/2)M ).

The strategy of proving Theorem 0.1 and Theorem 0.6 is similar. We rewrite L(s,M, `)?
(or L∗(s,M, `)?) as a polynomial in q−s whose coefficients involve general divisor function d`
as well as quadratic Gauss sums (cf. Lemma 3.1 and Lemma 4.1). For the sake of applying a
function field version of the Tauberian theorem, we divide the above sums into parts according
to the locations and orders of poles of L-functions associated to d` and quadratic Gauss sums
(cf. Corollary 2.6). Finally, we mention that the main contribution comes form the quadratic
Gauss sums degenerating to the character sums (cf. Proposition 3.2 and Proposition 4.2).

The contents of this paper are as follows. In subsection 1.1, we introduce the quadratic
Gauss sums in our context and derive their exact values. The `-th moment of L-functions
associated with quadratic character χm for each positive integer ` is studied in subsection
1.2. We then establish asymptotic formulas in section 2 by a function field version of the
Tauberian theorem. Proofs of Corollary 0.3 and Corollary 0.8 are given in subsection 2.1.
We finally prove Theorem 0.1 in section 3 and Theorem 0.6 in section 4.

1. Preliminaries

Let k∞ be the completion field of k at ∞, O∞ be the valuation ring of k∞, and π∞ = t−1

be a fixed uniformizer. For y :=

∞∑
i=N

aiπ
i
∞ ∈ k∞ with aN 6= 0, we define ord∞(y) := N . We

fix an additive character ψ∞ of k∞ as the following, for y :=

∞∑
i=N

aiπ
i
∞ ∈ k∞,

ψ∞(y) := exp(
2πi

p
TrFq/Fp(−a1)) ∈ C×.
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For a locally constant function with compact support f : k∞ → C, the Fourier transform f∗

of f is defined to be

f̂(y) :=

ˆ
k∞

f(x)ψ∞(xy)dx,

where dx is the Haar measure of k∞ such that Vol(O∞) = q. Then ˆ̂
f(x) = f(−x) holds. It

is straightforward to prove that:

Proposition 1.1. (Poisson summation formula) Let f be a locally constant C-valued function
with compact support. Then for any x ∈ k×∞ and y ∈ k∞, we have

∑
m∈A

f(xm+ y) = qord∞(x)
∑
m′∈A

f̂

(
m′

x

)
· ψ∞

(
−ym

′

x

)
.

1.1. Quadratic symbol and Gauss sums. Let
[
a
b

]
be the Kronecker symbol for A with

a ∈ A and b ∈ A+. For a ∈ A, a 6= 0, we define sgn2(a) to be the leading coefficient of a
raised to the q−1

2 power. The reciprocity law of this symbol is stated as follows:

Proposition 1.2. (The quadratic reciprocity law) Let a, b ∈ A be relatively prime, nonzero
elements. Then [a

b

][ b
a

]
= (−1)

q−1
2 deg a deg b sgn2(a)deg b sgn2(b)− deg a.

Let n be a monic polynomial. For all polynomials e ∈ A, we define an analogue of Gauss
sum as follows:

Ge(n) :=
∑

a mod n

[a
n

]
ψ∞

(
−ae
n

)
∈ C,

and put

G̃e(n) :=

(
1 + i

2
+

[
−1

n

]
1− i

2

)
Ge(n).(1.1)

Here i :=
√
−1. Before we compute the exact values of G̃e(n) for all n ∈ A+, we note that

Lemma 1.3. Let P be a fixed monic irreducible polynomial. For all integers N satisfying⌈
degP

2

⌉
≤ N ≤ degP − 1, we have

∑
n∈A

degn=N

ψ∞

(
−n

2

P

)
= 0.

Proof. Let n =

0∑
i=−N

aiπ
i
∞ and P−1 =

∞∑
j=degP

bjπ
j
∞, where a−N , bdegP ∈ F×q , and ai, bj ∈ Fq

for all −N + 1 ≤ i ≤ 0 and j ≥ degP + 1. Then

n2

P
=

∞∑
u=−2N+degP

 ∑
j≥deg P

−N≤i1,i2≤0
i1+i2+j=u

ai1ai2bj

πu∞.
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Therefore, we have

∑
n∈A

degn=N

ψ∞

(
−n

2

P

)
=

∑
a−N∈F

×
q

al∈Fq,−N<l≤0

ψ∞

−
 ∑

j≥deg P
−N≤i1,i2≤0
i1+i2+j=1

ai1ai2bj

π∞


=

∑
a−N∈F

×
q

al∈Fq,−N<l≤0

∏
j≥deg P

−N≤i1,i2≤0
i1+i2+j=1

ψ∞ ((−ai1ai2bj)π∞) .

The definition of ψ∞ implies that we only focus on i1 + i2 + j = 1. Taking i1 = −N and
j = degP in the above equality, we have i2 = 1− degP +N, which implies that⌈

−degP

2

⌉
+ 1 ≤ i2 ≤ 0

by the assumption of N . Thus, there always exists i2 6= −N such that −N + i2 + degP = 1.

Meanwhile, for this i2 = 1 − degP + N , the solution i1 = −N and j = degP is the unique
solution satisfying i1 + i2 + j = 1 for −N ≤ i1 ≤ 0 and degP ≤ j. Thus, we derive

∑
n∈A

degn=N

ψ∞

(
−n

2

P

)
=

∑
a−N∈F

×
q

al∈Fq,−N<l≤0


∏

j≥deg P
−N≤i1,i2≤0
i1+i2+j=1

(i1,i2,j)6=(−N,1−deg P+N,deg P )
(i1,i2,j)6=(1−deg P+N,−N,deg P )

ψ∞ ((−ai1ai2bj)π∞)


·ψ∞ (−2 · a−N · bdegP · a1−degP+N · π∞)

=
∑

a−N∈F
×
q

al∈Fq,−N<l6=1−deg P+N≤0


∏

j≥deg P
−N≤i1,i2≤0
i1+i2+j=1

(i1,i2,j)6=(−N,1−deg P+N,deg P )
(i1,i2,j)6=(1−deg P+N,−N,deg P )

ψ∞ ((−ai1ai2bj)π∞)


·

 ∑
a1−deg P+N∈Fq

ψ∞ (a1−degP+N · π∞)

 = 0.

�

Now, we compute G̃e(n) for all n ∈ A+.

Lemma 1.4. (1). Suppose m and n are co-prime monic polynomials. Then

G̃e(mn) = G̃e(m)G̃e(n).

(2). Suppose that d ∈ A, and α is the largest power of irreducible polynomial P dividing e
(If e = 0 then set α =∞). Then for β ≥ 1

G̃e(P
β) :=



0, if β ≤ α is odd;

ϕ(P β), if β ≤ α is even;

−qα degP , if β = α+ 1 is even;

(γp,q)
degP ·

[
eP−α

P

]
· q(α+1/2) degP , if β = α+ 1 is odd;

0, if β ≥ α+ 2.
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Here,

γp,q := −

(
−

√(
−1

p

))[Fq :Fp]

·
(

1 + i

2
+ (−1)

q−1
2

1− i
2

)
∈ {±1}.(1.2)

where
(
·
p

)
is the Legendre symbol modulo p, [Fq : Fp] is the dimension of Fq over Fp, and for

f ∈ A, ϕ(f) := #(A/fA)× is the Euler totient function for A.

Proof. The statement (1). comes from the Chinese Remainder theorem and the quadratic
reciprocity law.
(2). We only show the crucial case β = α + 1. Others are straightforward to verify. If
β = α+ 1, then

Ge(P
β) =

∑
a mod Pβ

[ a
P β

]
ψ∞

(
− ae
P β

)
=

∑
l mod P

[
l

P β

] ∑
b mod Pβ−1

ψ∞

(
− (bp+ l)e

P β

)
= q(β−1) degP

∑
l mod P

[
l

P β

]
ψ∞

(
− le

P β

)
.

If β is even, then
∑

l mod P

[
l

P β

]
ψ∞

(
− le

P β

)
= −1. Set deg 0 = −∞. If β is odd, and degP

is odd, then∑
l mod P

[
l

P

]
ψ∞

(
− l(eP

−α)

P

)
=

[
eP−α

P

] ∑
l mod P

ψ∞

(
− l

2

P

)

=

[
eP−α

P

] ∑
l mod P

2 deg l−deg P<−1

ψ∞

(
− l

2

P

)
+

∑
l mod P

2 deg l−deg P=−1

ψ∞

(
− l

2

P

)
+

∑
l mod P

2 deg l−deg P>−1

ψ∞

(
− l

2

P

) , by Lemma 1.3

=

[
eP−α

P

]q(degP−1)/2 + q(degP−1)/2
∑
a∈F×q

exp

(
2πiTrFq/Fp(a2)

p

)
=

[
eP−α

P

]
q(degP−1)/2

∑
a∈Fq

exp

(
2πiTrFq/Fp(a2)

p

)

=−

(
−

√(
−1

p

))[Fq :Fp] [
eP−α

P

]
qdegP/2, by Davenport-Hasse relation [7, p. 158-162].

Meanwhile, in this case, we have 1+i
2 +

[−1
Pβ

]
1−i
2 = 1+i

2 + (−1)
q−1

2
1−i
2 . Combining the above

equalities, we obtain the desired result.
If β = α+ 1 is odd and degP is even, then we have∑

l mod P

[
l

P

]
ψ∞

(
− l(eP

−α)

P

)
=

[
eP−α

P

]
q(β−1/2) degP

by the same method as the above case.
�

1.2. Quadratic L-functions. Let K := k(
√
m) be a quadratic field over k, where m is

non-square with degm ≥ 1. One of our goals is to investigate the mean value of `-th moment
of the class numbers hm. If ∞ doesn’t split in K/k, then B×m = F×q , and if ∞ splits in K/k,
then B×m = F×q × < εm >, where < εm > is infinite cyclic. In this case, we set Rm equal to
the absolute value of logq q

ord∞(εm).
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Suppose m is square-free, the connection between L(1, χm) and class numbers is proven
by E. Artin. This result also can be generalized to the case of non-square polynomials (cf.
[9, Theorem 17.8B]) .

Theorem 1.5. Let m ∈ A be a non-square polynomial of degree M ≥ 1.
(1). L(1, χm) = q

1−M
2 · hm, if M is odd.

(2). L(1, χm) = q+1
2 · q

−M/2 · hm, if M is even and sgn2(m) = −1.
(3). L(1, χm) = (q − 1) · q−M/2 · hm ·Rm, if M is even and sgn2(m) = 1. Here Rm is the

regulator of the ring Bm.

Suppose that m is square-free. We are able to investigate the mean value of `-th moment
of #(K2(Bm)), since the connection between L(2, χm) and #(K2(Bm)) is already known by
Tate and Quillen. That is (cf. [8, Proposition 2]):

Theorem 1.6. Let m ∈ A be a square-free polynomial of degree M ≥ 1. Then
(1). #(K2(Bm)) = q(3/2)M · q−3/2 · L(2, χm), if M is odd.
(2). #(K2(Bm)) = q(3/2)M ·(1+q−1)·(q2+1)−1 ·L(2, χm), ifM is even and sgn2(m) = −1.
(3). #(K2(Bm)) = q(3/2)M · (q2 + q)−1 · L(2, χm), if M is even and sgn2(m) = 1.

For each positive integer `, the `-th moment of L-function L(s, χm) is:

(
L(s, χm)

)`
=

M−1∑
N=0

 ∑
n∈A+:

degn=N

χm(n)

 q−sN


`

=

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)χm(n)

 q−sN ,

where

d`(n) :=
∑

n1,n2,...,n`∈A+:
n1n2···n`=n

1(1.3)

is the number of ways of expressing n as the product of k monic polynomials, expressions in
which only the order of the factors being different is regarded as distinct. The main purpose
of this paper is to study the mean values of these `-th moments.

2. Asymptotic formulas for arithmetic functions

The following Tauberian Theorem is used to study asymptotic formulas for arithmetic
functions (cf. [3, Theorem 7]):

Theorem 2.1. Let f(u) :=
∑
N≥0

aNu
N with the numbers aN ∈ C for all N , be convergent in

{u ∈ C : |u| < q−a}

for a fixed real number a > 0. Assume that in the above domain

f(u) = g(u)(u− q−a)−w + h(u)

holds, where h(u), g(u) are analytic functions in {u ∈ C : |u| ≤ q−a}, g(q−a) 6= 0, and w > 0

is a positive integer. Then

aN = (−1)−w
g(q−a)qaw

Γ(w)
· qaNNw−1 +O

(
qaNNw−2) , as N →∞.
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Let a = 1, then Theorem 2.1 reduces to the case [9, Theorem 17.4].

Corollary 2.2. Let f(u) :=
∑
N≥0

aNu
N with the numbers aN ∈ C for all N , be convergent in

{u ∈ C : |u| < q−a}

for a fixed real number a > 0. Assume that in the above domain

f(u) = g(u)(u+ q−a)−w + h(u)

holds, where h(u), g(u) are analytic functions in {u ∈ C : |u| ≤ q−a}, g(−q−a) 6= 0 and w is
a positive integer. Then

aN = (−1)N
g(−q−a)qaw

Γ(w)
qaNNw−1 +O

(
qaNNw−2) , as N →∞.

Proof. Set f̃(u) = f(−u), g̃(u) = g(−u) and h̃(u) = h(−u). Thus, f̃(u) :=
∑
N≥0

(−1)NaNu
N

The condition f(u) = g(u)(u+ q−a)−w + h(u) is equivalent to

f̃(u) = (−1)−wg̃(u)(u− q−a)−w + h̃(u).

Applying Theorem 2.1, we obtain that

(−1)NaN =
g(−q−a)qaw

Γ(w)
qaNNw−1 +O

(
qaNNw−2) .

�

Let ` be a positive integer. The arithmetic function d`(n2) will also play a key role in our
asymptotic studies. Here d`(n) is the general divisor function defined in (1.3). Let ϕ(n) be
the Euler totient function for A. Applying Theorem 2.1 with a = 3 and w = `(`+1)

2 , it is not
difficult to drive the estimation below

Lemma 2.3. Let ` be a positive integer, then

∑
n∈A+:

degn=N

d`(n
2)ϕ(n2) = c`(1/2) · q

3N ·N
`(`+1)

2 −1

Γ
(
`(`+1)

2

) +O

(
q3N ·N

`(`+1)
2 −1

N

)
,

as N →∞.

Proof. For ` ≥ 1, we note that

∞∑
t=0

(2t+ 1)(2t+ 2) · ... · (2t+ `− 1)

(`− 1) !
xt =

[
(1 +

√
x)` + (1−

√
x)`

2

]
(1− x)−`.

Suppose ` = 1. d`(n) = 1 for all n ∈ A+. Thus,∑
n∈A+

degn=N

d`(n
2)ϕ(n2) = q3N (1− q−1)
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by [9, Proposition 2.7], which satisfies the statement of our lemma. For ` > 1, the generating
function of d`(n2)ϕ(n2) is:

ζd`,ϕ(s) :=
∑
n∈A+

d`(n
2)ϕ(n2)q−s degn

=
∏
P

{
(1− q− degP )

[
(1 + q

(2−s) deg P
2 )` + (1− q

(2−s) deg P
2 )`

2(1− q(2−s) degP )`

]
+ q− degP

}
(2.1)

=ζ
`(`+1)

2

A (s− 2) · c`
(
s− 2

2

)
,

which has a pole of order `(`+1)
2 at s = 3. Set u = q−s, ζ̃d`,ϕ(u) := ζd`,ϕ(s), and c̃`(u) :=

c`
(
s−2
2

)
. Then Theorem 2.1 (or [9, Theorem 17.4]) with a = 3 and w = `(`+1)

2 gives us the
desired result, since the leading coefficient of Laurent series of ζ̃d`,ϕ(u) at u = q−3 is equal to

(−q−3)
`(`+1)

2 · c̃`(q−3).

�

For each n ∈ A+, we define

ν(n) :=
∏
P |n

(
1− q−2 degP

)−1
.(2.2)

Applying Theorem 2.1 with a = 3 and w = `(`+1)
2 to d`(n2)ϕ(n2)ν(n), we have

Lemma 2.4. Let ` be a positive integer, then∑
n∈A+:

degn=N

d`(n
2)ϕ(n2)ν(n) = c∗` (1/2) · q

3N ·N
`(`+1)

2 −1

Γ
(
`(`+1)

2

) +O

(
q3N ·N

`(`+1)
2 −1

N

)
,

as N →∞.

Proof. The generating function of d`(n2)ϕ(n2)ν(n) is:

ζd`,ϕ,ν(s) :=
∑
n∈A+

d`(n
2)ϕ(n2)ν(n)q−s degn

=
∏
P

{
1

1 + q− degP

[[
(1 + q

(2−s) deg P
2 )−` + (1− q

(2−s) deg P
2 )−`

2

]
+ q− degP

]}
(2.3)

=ζ
`(`+1)

2

A (s− 2) · c∗`
(
s− 2

2

)
,

which has a pole of order `(`+1)
2 at s = 3.

Set u = q−s, ζd`,ϕ,ν(s) = ζ̃d`,ϕ,ν(u), and c̃∗` (u) := c∗`
(
s−2
2

)
. Then Theorem 2.1 (or [9,

Theorem 17.4]) with a = 3 and w = `(`+1)
2 gives us the desired result, since the leading

coefficient of Laurent series of ζ̃d`,ϕ,ν(u) at u = q−3 is equal to

(−q−3)
`(`+1)

2 · c̃∗` (q−3).

�

We finally study the asymptotic formulas of the general divisor function d` and the Gauss
sum G̃e. Let g ∈ A+ and

Lg(s, γp,q · χe) :=
∏
P -g

(
1− γdegPp,q χe(P )q−s degP

)−1
, on <(s) > 1
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for each monic polynomial e. We have

Lemma 2.5. Write e = e1e
2
2, where e1 ∈ A+ is a square-free polynomial, and e2 is a monic

polynomial. In the region <(s) > 3/2∑
n∈A+:
(n,g)=1

d`(n)G̃e(n)q−s degn = Lg(s−1/2, γp,q·χe1)`
∏
P -g

GP,d`,G̃e(s) := Lg(s−1/2, γp,q·χe1)`Gd`,G̃e,g(s),

where GP,d`,G̃e(s) is defined as follows:

GP,d`,G̃e(s) :=
(

1− γdegPp,q · χe1(P )q(1/2−s) degP
)` ∞∑

t≥0

d`(P
t)G̃e(P

t)q−st degP

 .

Then Gd`,G̃e,g(s) is holomorphic on <(s) > 1. Here γp,q is defined in (1.2).

Proof. The Euler product of Gd`,G̃e,g(s) follows from the multiplicativity of G̃e and d`.
By Lemma 1.4, we see that for P - e and ` ≥ 3,

GP,d`,G̃e(s) =
(

1− γdegPp,q χe1(P )q(1/2−s) degP
)` (

1 + γdegPp,q · ` · χe1(P )q(1/2−s) degP
)

=1− `(`+ 1)

2
q(1−2s) degP +O(q(3/2−3s) degP )

which implies that Gd`,G̃e,g(s) is holomorphic on <(s) > 1. When ` = 1 or 2, we use the same
method to prove that Gd`,G̃e,g(s) is holomorphic on <(s) > 1.

�

Corollary 2.6. If e ∈ A and g ∈ A+, then we have, for any δ > 0,∑
n∈A+:degn=N

(n,g)=1

d`(n)G̃e(n)�
{
q(1+δ)N , if e 6= �;

q(
3
2+δ)N , if e = �,

as N →∞.

Proof. Let Lg(s, χe) :=
∏
P -g

(1−χe(P )q−s degP )−1 for <(s) > 1. Set Lg(s, γp,q·χe) = L̃g(u, γp,q·

χe) and L̃g(u, χe) = Lg(s, χe) with u = q−s. Then

L̃g(u, γp,q · χe) =

{
L̃g(u, χe), if γp,q = 1;

L̃g(−u, χe), if γp,q = −1.

If e is not square, then the function L̃g(u, γp,q · χe) is holomorphic on C. If e is square, then
L̃g(u, γp,q·χe) is holomorphic on {u : |u| < q−3/2} and has a pole at the circle {u : |u| = q−3/2}.

Thus, for all g ∈ A+, the function Gd`,G̃e,g(s) is holomorphic on <(s) > 1 by the above
lemma, so Theorem 2.1 and Corollary 2.2 with a = 3/2 for the case e = � and a = 1 for the
case e 6= � imply that, for any g ∈ A+,∑

n∈A+:degn=N
(n,g)=1

d`(n)G̃e(n)�
{
q(1+δ)N , if e 6= �;

q(
3
2+δ)N , if e = �

for any δ > 0.
�

When degm = M is an even number, we will encounter extra contribution which is
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Lemma 2.7. Let ` be a positive integer. Then∑
n∈A+

d`(n) =
qN ·N `−1

Γ(`)
+O

(
qNN `−2) as N →∞.

This proof is simpler than the above cases, so we omit it.

2.1. Limit distributions. A distribution function is a non-decreasing function f : R→ [0, 1]

which is right continuous and satisfies f(−∞) = 0 and f(∞) = 1. In 1931, M. Fréchet’s and
J. Shohat’s proved that (cf. [5, Lemma 1.43])

Lemma 2.8. If all the fN (x) from a sequence of distribution functions fN (x) have finite

moments αT (N) =

ˆ
R
xT dfN (x) of every order and if αT (N) → βT as N → ∞ for each

T ∈ N, then the βT are the moments of some distribution function f(x). If, moreover, f(x)

is uniquely determined by its moments, then as N →∞ the sequence fN (x) converges to f(x)

at each point of continuity of f(x).

Now to justify the application of the above lemma, we still need one lemma (cf. [5, Lemma
1.44]).

Lemma 2.9. Let α0 = 1, α1, . . . αT , . . . be the moments of some distribution function f(x),
each being assumed finite, and suppose that the series

∞∑
T=0

αT
T !
τT0

is absolutely convergent for some τ0 > 0. Then f(x) is the unique distribution function
with moments α0, α1, α2, . . .. Moreover the characteristic function φf (y) : R → C of the
distribution f has the representation

φf (y) =

∞∑
T=0

αT
T !

(iy)T

for |y| < τ0.

The proof of Corollary 0.3 is similar to Corollary 0.8. We only prove one of them.

Proof of Corollary 0.3.

For a fixed s0 ∈ R with s0 ≥ 1, the real value function

fM (x, s0) :=
1

qM
#{m ∈ A+ : degm = M and L(s0, χm) ≤ x}, x ∈ R

are distribution functions for all M ∈ N. Theorem 0.1 says that

1

qM
L(s0,M, `)? = ζA(2s0)

`(`+1)
2 · c`(s0) =

∑
n∈A+

d`(n
2) · ϕ(n)

|n|2s0+1
= r`(s0), as M →∞,

where ? is either S, I or R. According to Lemma 2.3,

r`(s0) =
∑
N≥0

 ∑
n∈A+:

degn=N

d`(n
2)ϕ(n2)

 q−(2s0+2)N � 1

1− q(2s0−1−δ)
, for any δ > 0,

we obtain that
1 +

∑
`=1

r`(s0)x`/`!
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has the infinite radius of convergence. Hence Lemma 2.8 and Lemma 2.9 imply that for a
fixed s0 ∈ R with s0 ≥ 1, there exits a distribution function f such that

lim
x→∞

1

qM
#{m ∈ A+ : degm = M and L(s, χm) ≤ x} = f(x, s)

holds for s = s0 and f(·, s0) = f at all points of continuity x of f . Moreover, the `-th moment
of f is equal to r`(s0), so f has a characteristic function given by

φf,s0(y) = 1 +
∑
`≥1

r`(s0)

`!
(iy)`, y ∈ R.

�

3. Average values of `-th moments (the non-square case).

In this section, we prove Theorem 0.1. Basing on Lemma 3.1, we divide L(s,M, `)? into
four parts, where ? is either S, I, or R. Proposition 3.2 is the source of the main term. The
others (cf. Proposition 3.3, Proposition 3.4, and Proposition 3.5) give error terms.

3.1. Dividing averaging sums into parts. For convenience, we set deg 0 = −∞ and a
function j from {R, I,S} to {0, 1} defined by

j(R) := 0, j(I) := 1, and j(S) := 0.(3.1)

The following form can be regarded as a generalization of Hoffstein-Rosen’s closed form in
[6, Theorem 0.7, Theorem 1.4 and Theorem 1.5] (cf. Remark 3.6).

Lemma 3.1. Let ` be a positive integer, and ? can be either S, I or R. Then

L(s,M, `)? =

`(M−1)∑
N=0
2|N

qM−N
∑
n∈A+:

degn=N

d`(n)

 ∑
e∈A:

deg e≤N−M−2

G̃e(n)−
∑
e∈A+:

deg e=N−M−1

G̃e(n)

 q−sN

+
√
q

`(M−1)∑
N=0
2-N

qM−N

 ∑
n∈A+:

degn=N

d`(n)
∑
e∈A+:

deg e=N−M−1

γp,q · G̃e(n)

 (−1)j(?) · q−sN

−
∑
m∈A+:

degm=M
m=�

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)χm(n)

 (−1)j(?)Nq−sN .

where G̃e(n) is the Gauss sum defined in (1.1), γp,q is defined in (1.2), d`(n) is the general
divisor function defined in (1.3), and j is the function defined in (3.1).

Proof. We have

L(s,M, `)? =

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)
∑
m∈A

f(m)χm(n)

 (−1)j(?)N · q−sN

−
`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)
∑
m∈A+:

degm=M
m=�

χm(n)

 (−1)j(?)Nq−sN

:= I− II,
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where f(x) = 1π−M∞ (1+π∞O∞)(x) and
[
γ
n

]
= (−1)N . Splitting the sum overm below according

to the residue classes mod n and using Proposition 1.1, we have

(3.2)



I =

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)
∑

b mod n

[
b

n

]∑
e∈A

f(b+ ne)

 (−1)j(?)N · q−sN

=

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)q−N
∑
e∈A

f̂(d/n)Ge(n)

 (−1)j(?)N · q−sN ,

where f̂(x) = qM · ψ∞(π−M∞ x) · 1πM+1
∞ O∞

(x). Observe that

(3.3)



∑
e∈A

f̂(e/n)Ge(n)

=
∑
e∈A

qM · ψ∞(π−M∞ e/n) · 1πM+1
∞ O∞

(e/n)Ge(n)

=
∑

e∈A−{0}:
deg e=degn−M−1

qM · ψ∞(π−M∞ e/n)Ge(n) +
∑
e∈A:

deg e≤degn−M−2

qM ·Ge(n),

:= III + IV.

Now, we simplify III and IV. We have

III =
∑
e∈A+:

deg e=degn−M−1

qM ·Ge(n)

∑
ε∈F×q

exp

(
2πiTrFq/Fp(−ε)

p

)
·
[ ε
n

]

=qM ·


−

∑
e∈A+:

deg e=degn−M−1

G̃e(n), if deg n is even;

γp,q ·
√
q ·

∑
e∈A+:

deg e=degn−M−1

G̃e(n), if deg n is odd,

because of

∑
ε∈F×q

exp

(
2πiTrFq/Fp(−ε)

p

)
·
[ ε
n

]
=


−1, if deg n is even;

−√q
[−1
n

]
·
(
−
√(

−1
p

))[Fq :Fp]

, if deg n is odd.

For IV, we note that∑
e∈A−{0}:

deg e≤N−M−2

Ge(n) =
∑

e∈A−{0}:
deg e≤N−M−2

Gγ·e(n) =
∑

e∈A−{0}:
deg e≤N−M−2

[γ
n

]
·Ge(n),

and G0(n) = 0, if deg n is odd. Thus, the above equality implies that

IV =
qM

2

∑
e∈A:

deg e≤N−M−2

(
1 + (−1)degn

)
Ge(n) =

qM

2

∑
e∈A:

deg e≤N−M−2

(
1 + (−1)degn

)
G̃e(n).

The last equality comes from G̃e(n) = Ge(n), if deg n is even. Inserting (3.3)= III+ IV into
(3.2), we complete the proof.

�
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On the basis of the above lemma, we divide L(s,M, `)?, where ? is either S, I or R, into
four parts which are

P0(s)? :=

`(M−1)∑
N=0
2|N

qM−N

 ∑
n∈A+:

degn=N

d`(n)G̃0(n)

 q−sN ,

P�(s)? :=

`(M−1)∑
N=0
2|N

qM−N
∑
n∈A+:

degn=N

d`(n)

 ∑
e∈A−{0}:e��
deg e≤N−M−2

G̃e(n)−
∑

e∈A+:e��
deg e=N−M−1

G̃e(n)

 q−sN

+γp,q ·
√
q ·

`(M−1)∑
N=0
2-N

qM−N

 ∑
n∈A+:

degn=N

d`(n)
∑

e∈A+:e��
deg e=N−M−1

G̃e(n)

 (−1)j(?)q−sN ,

where � is = or 6=, and the term

P1(s)? :=
∑
m∈A+:

degm=M
m=�

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)χm(n)

 (−1)j(?)Nq−sN ,

such that
L(s,M, `)? = P0(s)? + P=(s)? − P1(s)? + P6=(s)?.

3.2. The contributions of P0, P=, P1, and P6=. For P0(s)?, we establish the following
asymptotic formula:

Proposition 3.2. Let `, M be positive integers, and ? be either S, I, or R. then, for any
δ > 0,

P0(s)? = ζA(2s)
`(`+1)

2 · c`(s) · qM +O(q(1+(−<(s)+1/2+δ))M ), if <(s) ≥ 1,

as M →∞. Here c`(s) is introduced in Theorem 0.1.

Proof. Suppose that ` ≥ 1 and <(s) > 1/2. Then we have

`(M−1)∑
N=0
2|N

qM−N

 ∑
n∈A+:

degn=N

d`(n) · G̃0(n)

 q−sN

=

∞∑
N=0

qM

 ∑
n∈A+:

degn=N

d`(n
2) · ϕ(n2)

 q−2(1+s)N −
∞∑

N=b `(M−1)
2 c+1

qM

 ∑
n∈A+:

degn=N

d`(n
2) · ϕ(n2)

 q−2(1+s)N

:= I− II.

By Lemma 2.3, we have

I = qM ·
∞∑
N=0

 ∑
n∈A+:

degn=N

d`(n
2) · ϕ(n2)

 q−2(1+s)N = qM · ζA(2s)
`(`+1)

2 · c`(s), on <(s) >
1

2
,

and for any δ > 0,

II� qM
q−(2<(s)−1−δ)

`(M−1)
2

1− q−(2<(s)−1−δ)
.

Combining the above estimations, we complete this proof. �
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As for P=(s)?, it appears on the case ` > 1. If ` = 1, then P=(s)? always equals to 0.

Proposition 3.3. Let ` ≥ 2,M be positive integers, and ? be either S, I, or R. Then we
have, for any δ > 0,

P=(s)? = q(1/2+δ)M , if <(s) ≥ 1,

as M →∞.

Proof. We have Suppose <(s) ≥ 1. We have, by Corollary 2.6,

P=(s)? �
`(M−1)∑
N≥M+1

2|N

qM−N
∑

d∈A−{0}:
deg d≤bN−M−1

2 c

q(
3
2+δ)Nq−<(s)N , for any δ > 0

�
`(M−1)∑
N≥M+1

2|N

qM/2q(1+δ−<(s))N +

`(M−1)∑
N≥M+1

2|N

qMq(1/2+δ−<(s))N

�q(
1
2+(1+δ−<(s)))M � q(1/2+δ)M .

�

The third contribution only occurs to the case of 2 |M .

Proposition 3.4. Let ` be a positive integer and ? be either S or I. Then we have, for
δ > 0,

P1(s)? = O
(
q(

1
2+δ)M

)
, if <(s) ≥ 1,

as M →∞.

Proof. Suppose that <(s) ≥ 1.

P1(s)? =
∑
m∈A+:

degm=M
2

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N
(n,m)=1

d`(n)

 (−1)j(?)Nq−sN

�
∑
m∈A+:

degm=M
2

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)

 q−<(s)N

�qM/2

`(M−1)∑
N=0

q(1−<(s)+δ)N , by By Lemma 2.7

�q(
1
2+`δ)M , for any δ > 0.

�

The estimation of P 6=(s)? is stated as follows:

Proposition 3.5. Let ` and M be positive integers and ? be either S, I or R, then we have,
for any δ > 0,

P 6=(s)? = O
(
qδM

)
, if <(s) ≥ 1,

as M →∞.
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Proof. Suppose <(s) ≥ 1.

P6=(s)? �
`(M−1)∑
N=0
2|N

qM−N

 ∑
d∈A+:d 6=�

deg d≤N−M−1

q(1+δ)N

 q−<(s)N , by Corollary 2.6

�
`(M−1)∑
N≥M+1

2|N

q(1+δ)N · q−<(s)N +

`(M−1)∑
N≥M+1

2|N

qMq(δ−<(s))N � q`δM .

The proof is finished.
�

Remark 3.6. When ` = 1, we have, for ? = I, S or R,

L(s,M, 1)? = qM +
M−1∑
N=2
2|N

qM−N

 ∑
n∈A+:

degn=N
a=�

∑
a mod n

[a
n

]
+

∑
n∈A+:

degn=N
a 6=�

∑
a mod n

[a
n

] q−sN

=qM +

M−1∑
N=2
2|N

qM−N

 ∑
n∈A+:

degn=N/2

ϕ(n2)

 q−sN ,

=qM + qM (1− q−1)

M−1∑
N=2
2|N

q(1/2−s)N , by [9, Proposition 2.7]

which also leads to the result [6, Theorem 0.7]. Similarly, [6, Theorem 1.4 and Theorem 1.5]
also can be obtained by computing extra term P1(s)?, where ? is S or I.

4. Average values of `-th moment of quadratic L-funcitons (the square-free
case).

The idea of Theorem 0.6 is similarly to Theorem 0.1, but it is more complex. Let µ(f)

be Möbius function for A and n ∈ A+. Then n 7→
∑
g2|n

µ(g) is the characteristic function for

square-free polynomials n. Using this fact, we have an analogue closed form Lemma 4.1 as
Lemma 3.1. The function L(s,M, `)? can be divided into three parts, where ? is either S, I,
or R. Proposition 4.2 is the source of the main term. The others (cf. Proposition 4.3, and
Proposition 4.4) give error terms.

4.1. Dividing averaging sums into parts. Similarly, the sums in question can be rewritten
as the following form:

Lemma 4.1. Let ` be a positive integer, and ? can be either S, I or R. Then

L∗(s,M, `)?

=

`(M−1)∑
N=0
2|N

∑
n∈A+:

degn=N

d`(n)
∑

0≤G≤bM2 c
qM−2G

∑
g∈A+:

deg g=G,
(g,n)=1

µ(g)

 ∑
e∈A:

deg e≤N−M+2G−2

G̃e(n)−
∑
e∈A+:

deg e=N−M+2G−1

G̃e(n)

 q−(1+s)N

+γp,q ·
√
q

`(M−1)∑
N=0
2-N

 ∑
n∈A+:

degn=N

d`(n)
∑

0≤G≤bM2 c
qM−2G−N

∑
g∈A+:

deg g=G,(g,n)=1

µ(g)
∑
e∈A+:

deg e=N−M+2G−1

G̃e(n)

 (−1)j(?) · q−sN .
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where G̃e(n) is the Gauss sum defined in (1.1), γp,q is defined in (1.2), d`(n) is the general
divisor function defined in (1.3), and j is the function defined in (3.1).

Proof. We have

L∗(s,M, `)? =

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)
∑
g∈A+:

deg g≤bM2 c

µ(g)
∑
m∈A+:
g2|m

χm(n)

 (−1)j(?)N · q−sN .

Write m = g2m1, where m1 ∈ A+. Then the above equality is equal to

I :=

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)
∑

0≤G≤bM2 c

∑
g∈A+:

deg g=G

µ(g)
∑

m1∈A+:
degm1=M−2G

χg2m1
(n)

 (−1)j(?)N · q−sN

=

`(M−1)∑
N=0

 ∑
n∈A+:

degn=N

d`(n)
∑

0≤G≤bM2 c

∑
g∈A+:

deg g=G
(g,n)=1

µ(g)
∑

m1∈A+:
degm1=M−2G

[m1

n

] (−1)j(?)N · q−sN .

Let f(x) = 1π−M+2G
∞ (1+π∞O∞)(x). Then∑

m1∈A+:
degm1=M−2G

[m1

n

]
=
∑
m1∈A

f(m1)
[m1

n

]
.

Using Proposition 1.1, the above equality is equal to

II :=
∑

b mod n

[
b

n

]∑
e∈A

f(b+ ne) =
∑

b mod n

[
b

n

]
q−N

∑
e∈A

f̂(e/n)ψ∞

(
−be
n

)
=q−N

∑
e∈A

f̂(e/n)Ge(n).

where f̂(x) = qM−2G · ψ∞(π−M+2G
∞ x) · 1πM−2G+1

∞ O∞
(x).

Observe that

II =
∑

e∈A−{0}:
deg e=degn−M+2G−1

qM−2G−N · ψ∞(π−M+2G
∞ e/n)Ge(n) +

∑
e∈A:

deg e≤degn−M+2G−2

qM−2G−N ·Ge(n)

:= III + IV.

Using the same argument as Lemma 3.1, we have

III = qM−2G−N ·


−

∑
e∈A+:

deg e=degn−M+2G−1

G̃e(n), if deg n is even;

γp,q ·
√
q ·

∑
e∈A+:

deg e=degn−M+2G−1

G̃e(n), if deg n is odd,

and

IV = qM−2G−N · 1

2

∑
e∈A:

deg e≤N−M+2G−2

(1 + (−1)degn) · G̃e(n).

Inserting II= III+ IV into I, the proof is complete. �
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On the basis of the above lemma, we divide L∗(s,M, `)?, where ? is either S, I or R, into
three parts which are

P∗0 (s)? :=

`(M−1)∑
N=0
2|N

 ∑
n∈A+:

degn=N

d`(n)
∑

0≤G≤bM2 c
qM−2G−N

∑
g∈A+:

deg g=G
(g,n)=1

µ(g)G̃0(n)

 q−sN ,

and

P∗� (s)?

:=

`(M−1)∑
N=0
2|N

∑
n∈A+:

degn=N

d`(n)
∑

0≤G≤bM2 c
qM−2G−N

∑
g∈A+:

deg g=G
(g,n)=1

µ(g)

 ∑
e∈A−{0}:e��

deg e≤N−M+2G−2

G̃e(n)−
∑

e∈A+:e��
deg e=N−M+2G−1

G̃e(n)

 q−sN

+γp,q ·
√
q ·

`(M−1)∑
N=0
2-N

 ∑
n∈A+:

degn=N

d`(n)
∑

0≤G≤bM2 c
qM−2G−N

∑
g∈A+:

deg g=G
(g,n)=1

µ(g)
∑

e∈A+:e=�
deg e�N−M+2G−1

G̃e(n)

 (−1)j(?)q−sN ,

where � is = or 6=, such that

L∗(s,M, `)? = P∗0 (s)? + P∗=(s)? + P∗6=(s)?.

4.2. The contributions of P∗0 , P∗=, and P∗6=. For P∗1 (s)?, we establish the following as-
ymptotic formula:

Proposition 4.2. Let `, M be positive integers, and ? be either S, I, or R. Then we have,
for any δ > 0,

P∗0 (s)? = ζA(2)−1ζA(2s)
`(`+1)

2 · c∗` (s) · qM +O
(
q(1/2+δ)M

)
, if <(s) ≥ 1,

as M →∞. Here c∗` (s) is introduced in Theorem 0.6.

Proof. Suppose that ` ≥ 1. We have

P∗0 (s)? =

`(M−1)∑
N=0
2|N

 ∑
degn=N/2

n∈A+

d`(n
2)ϕ(n2)

∑
0≤G≤bM2 c

qM−2G−N
∑
g∈A+:

deg g=G
(g,n)=1

µ(g)

 q−sN .(4.1)

Since ∑
0≤G≤bM2 c

q−2G
∑
g∈A+:

deg g=G
(g,n)=1

µ(g) =
∑
g∈A+:
(g,n)=1

µ(g)

q2 deg g
−

∑
bM2 c<G

q−2G
∑
g∈A+:

deg g=G
(g,n)=1

µ(g)

=ζA(2)−1 · ν(n) +O(q−
M
2 ), where ν(n) =

∏
P |n

(
1− q−2 degP

)−1
is defined in (2.2),

we have (4.1) which is equal to

qM

ζA(2)
·
b `(M−1)

2 c∑
N=0

 ∑
n∈A+:

degn=N

d`(n
2) · ϕ(n2) · ν(n)

 q−2(1+s)N +O

qM/2

b `(M−1)
2 c∑

N=0

∑
n∈A+:

degn=N

d`(n
2) · ϕ(n2)

q2(1+s)N


:= I + II.



AVERAGE VALUES OF HIGHER MOMENTS OF QUADRATIC L-FUNCTIONS 23

Suppose that <(s) > 1/2. We have

II = O(qM/2), by Lemma 2.3,

and for any δ > 0,

I =
∑
n∈A+

d`(n
2) · ϕ(n2) · ν(n)

q(2s+2) degn
− qM ·

∞∑
N=b `(M−1)

2 c+1

 ∑
n∈A+:

degn=N

d`(n
2) · ϕ(n2) · ν(n)

 q−2(1+s)N

=
∑
n∈A+

d`(n
2) · ϕ(n2) · ν(n)

q(2s+2) degn
+O

(
qMq(−`/2+`δ/2)M

)
, if <(s) ≥ 1.

Combining the above estimations, we complete the proof. �

As for P∗=(s)?, we have

Proposition 4.3. Let `,M be positive integers, and ? be either S, I, or R. Then we have,
for any δ > 0,

P∗=(s)? = O
(
q(

1
2+δ)M

)
, if <(s) ≥ 1,

as M →∞.

Proof. The equalities
∑
g∈A+:

deg g=G
(g,n)=1

µ(g) = O(qG),

∑
e∈A−{0}:

deg e≤bN−M+2G−2
2 c

G̃e2(n) = (q − 1)
∑
e∈A+:

deg e≤bN−M+2G−2
2 c

G̃e2(n)

and Corollary 2.6 say that, for any δ > 0,

P∗=(s)? �
`(M−1)∑
N=0
2|N

∑
0≤G≤bM2 c

qM−2G−N
∑
g∈A+:

deg g=G

µ(g)
∑
e∈A+:

deg e≤bN−M+2G−1
2 c

 ∑
n∈A+:

degn=N
(n,g)=1

d`(n)G̃e2(n)

 q−sN

�
`(M−1)∑
N=0
2|N

∑
0≤G≤bM2 c

qM−G−N
∑
e∈A+:

deg e≤bN−M+2G−2
2 c

q(3/2+δ−<(s))N .

Note that if deg d ≥ 0, then N ≥M − 2G+ 2. Thus we have

�
∑

0≤G≤bM2 c

`(M−1)∑
N≥M−2G+2

2|N

qM−G(qb
N−M+2G−2

2 c+1 − 1)q(1/2+δ−<(s))N

�M · qM/2 · q(1+δ−<(s))N +
∑

0≤G≤bM2 c
qM−G

(
q(1/2+δ−<(s))`M + q(1/2+δ−<(s))(M−2G+2)

)
�q(1/2+`δ)M , if <(s) ≥ 1.

�

The estimation of P∗6=(s)? is stated as follows:

Proposition 4.4. Let `,M be positive integers and ? be either S, I or R, then we have, for
any δ > 0,

P∗6=(s)? = O
(
q(

1
2+δ)M

)
, if <(s) ≥ 1,
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as M →∞.

Proof.

P∗6=(s)? �
∑

0≤G≤bM2 c

`(M−1)∑
N=0
2|N

qM−G−N (q − 1)

 ∑
e∈A+:e6=�

deg e≤N−M+2G−1

q(1+δ)N

 q−<(s)N , by Corollary 2.6

Note that if deg d ≥ 0, then N ≥M − 2G+ 1. Thus we have

�
∑

0≤G≤bM2 c

`(M−1)∑
N≥M−2G+1

2|N

qM−G(qN−M+2G+1 − 1)q(δ−<(s))N

�qM/2 · q(1+δ−<(s))`M +
∑

0≤G≤bM2 c
qM−G

(
q(δ−<(s))`M + q(δ−<(s))(M−2G)

)
�q(

1
2+`δ)M , if <(s) ≥ 1.

�
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