AVERAGE VALUES OF HIGHER MOMENTS OF QUADRATIC
L-FUNCTIONS OVER RATIONAL FUNCTION FIELDS

CHIH-YUN CHUANG

ABSTRACT. The aim of this paper is to establish asymptotic formulas in the region
R(s) > 1 of the ¢-th moment of quadratic L-functions over a rational function field Fq(¢),
for arbitrary positive integer ¢ and odd prime power q. Specifically, we obtain the asymp-
totic formulas relating to two families. One is over all discriminants and another is over all
fundamental discriminants. In addition, we give applications including asymptotic formu-
las for the size of class numbers, algebraic K-groups K3, and limit distribution functions
associated with the quadratic L-functions.

INTRODUCTION

Let k = F,(t) be a rational function field with odd characteristic p. Let A = F[t],
and AT be the set of all monic polynomials. The infinite place oo of k corresponds to the
degree valuation. The letter P always denotes a monic irreducible polynomial in A, which
corresponds to a finite place of k.

Let [+] be the quadratic symbol for Fy[t] (cf. [9, Chapter 3]). Given m € A non-square,
define the function x,(n) := [2] for n € A — {0}. We are interested in the L-function
associated to x,, which is defined by

L(s,xm) = > xm(n)g > " = T](1 = xm(P)g™* ") ™", on R(s) > 1.
neAt+ P

This is equal to a polynomial of degree at most degm — 1 in ¢—%.

Suppose that m € A is square-free. Let
0, if oo is ramified in k(y/m)/k;
Aoo(m) :=< =1, if oo is inert in k(y/m)/k;
1,  if oo splits in k(y/m)/k.
Then
L*(8,Xm) = (1 = Ao (m)g™*) ™" - L(s, Xom)
is the Artin L-function associated to the unique non-trivial character of the Galois group
Gal(k(y/m)/k) (cf. [9, Theorem 17.6]). Let m(x,,) := degm — 1 — |Aso(m)|. Then the
functional equation for the complete L-function L*(s, x.,) is as follows:

L*(s,xm) = ¢" 022D (1 — 5, x0m),
which implies that L(s, x.,) is a polynomial of degree degm —1 in ¢—*. We classify quadratic
function fields K := k(y/m) according to whether oo splits, is inert, or ramified in K/k. This
is analogous to classifying quadratic number fields as real or imaginary. That is
o If degm is even and sgn(m) € (F))?, then oo splits in K/k.
e If degm is even, and sgn(m) & (F))?, then oo is inert in K/k.
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e If degm is odd, then oo ramifies in K/k.

Here sgn(m) is the leading coefficient of m € A. Let B be the integral closure of A in K/k.
Then the L-function L(s, x.,) satisfies

CB(s) = Ca(s) - L(s, Xm),

where (4 ( reps. (p) is the zeta function of A ( reps. B):

e Ca(s) = Z NI)™® = H(l — ¢ %9 P)=1 on R(s) > 1, where N(I) denotes the
ICA P
absolute norm.
o (p(s) = Z N(I)™® = H(l — N(B) )" on R(s) > 1, where the sum is over all
ICB
non-zero ideals in B, and the product is over all non-zero prime ideals in B.

These zeta functions both have a simple pole at s = 1, and are rational functions in ¢—*.

Throughout, we use the symbol [J to denote square polynomials. Let v be a fixed generator
of F¥, and ¢ be a positive integer. On the basis of classifying the quadratic fields K over k,
we are interested in considering the following averaging problems:

e Summing over all non-square monic polynomials (“discriminants”):

L(s,M,l)r = Z L(s, Xm)é7 if M is an odd integer;
meAt:
deg m=M
L(s,M,{)s = Z L(s,xm)!,  if M is an even integer;
meAT:
deg m=M,mz0
L(s, M, l)7 = Z L(s,xvim)e, if M is an even integer.

meAt:
deg m=M,m#0

e Summing over all square-free monic polynomials (“fundamental discriminants”):

L*(s,M,0)g .= >.° L(s,xm)" if M is an odd integer;

meAT:
deg m=M

L*(s,M,0)s:= Y.° L(s,xm)’ if M is an even integer;

meAt:
deg m=M

L*(s,M,0)z = " L(s,Xym) if M is an even integer.

meATt:
deg m=M

Here * means that the sum in question runs over all square-free monic polynomials.

We note that for any odd integer M,
L(s,M,0)r = Y L(s,Xym)" and L*(s, M, O)g = >°° L(s,xy.m)"

meAt: meAt:
deg m=M deg m=M

We divide our results into two parts.

0.1. The non-square case: In this case, when ¢ = 1, J. Hoffstein and M. Rosen (cf. [6]
Theorem 0.7, Theorem 1.4 and Theorem 1.5]) obtained formulas for above sums, as functions
of ¢—*%, which immediately gives asymptotic formulas as M approaches infinity. One of goals
of this paper is derived asymptotic formulas for these sums when M goes to infinity with /¢
arbitrary. That is

Theorem 0.1. Let ¢, M be positive integers and x be either S, I, or R, then we have, for
R(s) > 1,

£(2+1)

L(s,M,0), =Ca(28)" 2 -ce(s) M +0 (q(1/2+5)M> ,
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for any § >0, as M — co. Here ¢y(s) :=

e 1+q75degP Z+ 17qfsdegP V4 e s de —osde ee—1)
H{((lq ng)(( )2( ) +ngP(17q2ng)£ (17q2ng)72
P

is absolutely convergent on R(s) > 1/4.

Remark 0.2.

(1). When £ =1,
ci(s) = Ca(2s +1)7!
is a rational function in ¢7°. The above theorem reduces to the well-known averaging
L-values of J. Hoffstein and M. Rosen (cf. [9, p. 323-324]).
(2). Let D denote an integer congruent to 0 or 1 modulo 4 and non-square. Let ¢p(n) :=
(%) denote the Kronecker symbol. The Dirichlet L-function associated with ¢ p is
given by

L(s,¥p) = pr(n)/ns, on R(s) > 1.
n=1

Concerning higher moments, M. B. Barban [2] Lemma 5.6] established the following
asymptotic formula, for any fixed positive integer /,

Z L*(1,¢p) = r¢N 4+ O(N exp(—cV'N)), as N — oo,
—N<D<-1

where ¢ > 0 is a constant independent of ¢ and

o0 2
@(n)de(n?)
nElﬂ’:nion

Here dg¢(n) is the number of ways of expressing n as the product ¢ positive integers,
expressions in which only the order of the factors begin different is regarded as dis-
tinct, and (n) is the Euler totient function. In the function field case, the constant

of our main term is (cf. (2.1))):
0641 2y.
Ca(25) 3 - culs) = 3 de(n®) - p(n) _ re(s).

In[2s+1
neAt
Here |n| := ¢q4°8™ for any n € A — {0}. In particular, if s = 1, then

@ )= Y ) )

neAt ‘n|3

9

which is to be compared with the classical result. Here dy(n) is the number of ways of
expressing n as the product ¢ monic polynomials, expressions in which only the order
of the factors begin different is regarded as distinct, and ¢(n) is the Euler totient
function for A.

d _
(3). Although (4(s) = Z [(Z) and C‘éf(s)l) = 80(”5) are both rational functions
ncAt |TL| ncAt ‘n| )
d .
in ¢—%, we do not know whether (4 (25)% ce(s) = Z W is a rational

neAt
function in ¢—* for £ > 1.
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(4). For each local factor at prime P, we have

1 —sdeg P\¢ 1— —sdeg P\/
<(1—qd0gp) (( +q ) +( q ) >+qdch(1_q25dch)£)

2
¢ ¢ L
=1+ Z <t> qfstdegP —q deg P Z <t) qfstdegP +q degPZ (t> (_1)tq72stdegP,
2|t 2|t t=1
2<t<s 2<t<e

which is a polynomial of degree 2¢ in ¢~*49°¢ " For each ¢ > 1, the infinite product

H <(1 7q7degP) ((1+qsdegP)€+ (1 —qsdegp)f> +q7degp(1 qzsdegP)Z)

2
P

£(0-1)
2

ce(s) is equal to Ca (25)_@ multiplying this infinite product, the function c,(s) is
holomorphic on (s) > 1/4.

is holomorphic on #(s) > 1/2 and has a pole at s = 1/2 of order Since

In M. B. Barban’s paper, he not only obtains the asymptotic formula of higher moment
described in the above remark (2), but also achieves a result of limit distributions with its
corresponding characteristic function (cf. [2, Theorem 5.2]). In the function field context, we
also have an analogous result and prove it in Subsection 2.1}

Corollary 0.3. For real s > 1, as M — oo, the quantity
fM(:L'VSO) = qu\/[#{m € A+>degm =M: L(507Xm) S 1’}, zeR

converges to a distribution function f(x) := f(x,so) at each point of continuity of the latter,
and the corresponding characteristic function has the form

Grso(@) =14 %(m){ z €R.
>1 ’

Write m = mqm?, where mg is square-free. The polynomial mq is well defined up to the
square of a constant. Define B, to be the ring A + Amy\/mg C K = k(y/m). It is an
A-order in K, (i.e. it is a ring, finitely generated as an A-module, and its quotient field is
K). Meanwhile, B,, is the unique subring of B,,, such that m; is the annihilator of the A
module By, /B, (cf. [9, Theorem 17.6]). The Picard group Pic(B,,) is the group of invertible
fractional ideals of B, modulo the subgroup of principal fractional ideals. We set the class
number h,, := # Pic(By,).

Since L(1,x) gives the size of Pic(B,,), setting s = 1 in Theorem [0.1} we obtain the
following average value results for the ¢-th moment of h,,.

Corollary 0.4. Let ¢ be a positive integer.
(1). If degm = M s an odd integer, then
Z e = q(1+§)M Ll CA(2)[(22+1) (1) +O(q(1/2+6+§)M).

meAT:
deg m=M,m#0

(2). If degm = M is an even integer and v is a generator of F, then

/2
£ 2 £e+1) L
> =Y ()G ) + 0
meAt: q+
deg m=yM,m#0
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(3). If degm = M is an even integer, then
S (- Ra) = qUTEM (= 1)782 . ¢, (2)7F (1) + O(q(V/2Ho+5) M),

meAT:
deg m=M,mz0

Here R, is the regulator of the ring B,,.

0.2. The square-free case: When ¢ = 1 and ¢ = 1 mod 4, J. Hoffstein and M. Rosen
established that (cf. [6, Theorem 0.8]):

Theorem 0.5. Let
P(s) =] (1 —|P|72 — |P|m @D 4 \P\—(28+2>) . on R(s) > 1/2.
P
Choose any € > 0. If R(s) > 1, then
(1). If M is odd, then

(q—1)"Y(gM — gM1)~1 ZL(&Xm) = Ca(2)Ca(25)P(s) + O(q~ M/D1=<)),

where the sum is over all square-free m such that deg(m) = M.
(2). If M is even, then

20— 1) (g™ — g™ L(s, xm) = Ca(2)Ca(25)P(s) + O(q~ MDAy,

where the sum is over all square-free m such that deg(m) = M and sgn(m) € (Fy)?
or over all square-free m such that deg(m) = M and sgn(m) & (FX)?.

Hoffstein-Rosen uses the fact that the Fourier coefficients of Eisenstein series for the meta-
plectic group involve the values L(s, x,,). In this paper, we are able to derive asymptotic

formulas for these averaging values, with ¢, ¢ arbitrary, by more elementary direct approach.
We have

Theorem 0.6. Let ¢, M be positive integers. Suppose that x is either S, Z, or R. Then, for
R(s) > 1,
N 2(041) " _
£5(5, M, 0), = Ca(29) T i) - (g™ - Ca(2) ) + O (/30
for any 6 >0, as M — oco. Here

L(L+1)

* - (1 — q_QSdegP) § (1 + qfsdegP)fl + (1 B q—sdegP)fé —deg P
Cé(s) _H 1+q—degP 92 +q )

which is absolutely convergent in R(s) > 1/4. Here
(MA@ H =M =M =H#{m e AT : degm = M and m is square-free}, for M > 1.

Remark 0.7.

(1). When ¢ =1, we have (cf. (2.3))

Ca(28) 3 - ¢i(s) = Ca(2) - Ca(25) - [T = 1PI72 = [P 7271 4 |P|7272) := 1 (s).
P

The above theorem reduces to the averaging L-values of J. Hoffstein and M. Rosen
(cf. |6} Theorem 5.2]) in the region R(s) > 1.
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(2). For each local factor at prime P, we have

£(641)

—2sde —sde — —sde —

(1 — g 2sdeeP) 2 (14 g sdeeP)y=t 4 (1 — g=sdes P)=¢ bgdemP) | (1 - g 2der )
1+ dee? 2

O N N S

t=2
2|t 2|t

& t ¢ —(2st+1) deg P : t ¢ —(2st+2) deg P —2sdeg P @
30 (})a () ] (L qr2eder)

t=1 t=0

which is a polynomial of degree £(£+ 1) in g~*9°¢ ¥, Thus, for each ¢ > 1, the infinite
product gives that c;(s) is holomorphic on R(s) > 1/4.

Similarly, Theorem [0.5 also gives a limit distribution function of the square-free case.
Corollary 0.8. For real s > 1, as M — oo, the quantity
frr(z,50) = (@ =MV ¥ {m € AT, degm = M and m is square-free : L(sg,Xm) <z}, z € R

converges to a distribution function f*(x) := f*(x, so) at each point of continuity of the latter,
and the corresponding characteristic function has the form
750 (T) = @), @ .

>1

Use the same argument as Corollary [0.4 Setting s = 1 in Theorem we obtain the
following average value results for the ¢-th moment of h,,.

Corollary 0.9. Let ¢ be a positive integer. Then, for any d > 0,
(1). If degm = M is an odd integer, then

S b, = qUEEM 2 (2)71 e (a(2) T (1) + O(g(/AHT )M,
1n€A+:
deg m=M

(2). If degm = M is an even integer, and vy is a generator of F,\, then

> hﬁm:q“*%)“( 2 )£/2~CA(2)‘1-CA(2)% i (1) + O(q(1/2Ho+ )My

q+1
meATt:
deg m=M

(3). If degm = M is an even integer, then
* £ _ _ £(£+1) « £
S (b Run)t = qUHM (g = 1)702. C4(2) 71 Ca(2) "5 - (1) + O(g1/2H0+E)M),

meAt:
deg m=M

Here R, is the regulator of the ring B,,.

Remark 0.10. Let F' be a quadratic extension over Q. Let Ap/q, hr, and Rr be the discrim-
inant of F/Q, the class number, and the regulator of F', respectively. In 2008, T. Taniguchi
conjectured that (cf.[I1, Theorem 1 and Conjecture 10.14]):

1 ((2)2 3.2 1 1
lim — - h - R% = T(-S+5+=-=).
Koo X2 mz@;ﬂ d 2t 1;[ P E
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When ¢ = 2, simplifying our cases (1), (2), and (3) in the above corollary, we have proved
M+ 2)+6)

_q<1+5>M.<qi1+qil ><A<> @) 50

1 2 3 2 1 1
=—+—— : 1- + + — M,
(q_1 P )CA“ H( IR |P|6) ‘

P

which is to be compared with T. Taniguchi’s conjecture.

Since L(2, xm ) gives the size of K-groups Ka(B,,) (after Tate and Quillen, cf. [§]), setting
s = 2 in Theorem [0.6] we also obtain the following average value results for the /-th moment
of #(K2(B,,)) for arbitrary £.

Corollary 0.11. Let ¢ be a positive integer, m € A be square-free. Then, for any 6 > 0,
(1). If degm = M is an odd integer, then
S #E(Bn)) = ¥ a2 @) T (2)-g TN Lo/,

meAt:
deg m=M
(2). If degm = M is an even integer, and vy is a generator of F,\, then
PN
S (#Ka(Bym)) = ((1;;11 )> Ca(2)7L ()T (2) - qUTEIM O (g(1/248+30/2)0 )

meAT:
deg m=M

(3). If degm = M s an even integer, then
* _ 2(L+1) « 3¢
S (#Ka(Bn))' = (@ + @) Ca2) 7 Ca@) TE - j(2) - U RV 4 O(g1 /20w,

meAt:
deg m=M

The strategy of proving Theorem and Theorem is similar. We rewrite L(s, M, £),
(or L*(s, M, £),) as a polynomial in ¢—* whose coefficients involve general divisor function dy
as well as quadratic Gauss sums (cf. Lemma and Lemma. For the sake of applying a
function field version of the Tauberian theorem, we divide the above sums into parts according
to the locations and orders of poles of L-functions associated to dy and quadratic Gauss sums
(cf. Corollary. Finally, we mention that the main contribution comes form the quadratic
Gauss sums degenerating to the character sums (cf. Proposition and Proposition .

The contents of this paper are as follows. In subsection [I.I] we introduce the quadratic
Gauss sums in our context and derive their exact values. The ¢-th moment of L-functions
associated with quadratic character y,, for each positive integer ¢ is studied in subsection
[[:2] We then establish asymptotic formulas in section [2] by a function field version of the
Tauberian theorem. Proofs of Corollary [0.3] and Corollary [0.8] are given in subsection
We finally prove Theorem in section [3] and Theorem in section [4]

1. PRELIMINARIES
Let k., be the completion field of k at 0o, O be the valuation ring of ko, and me, = t~*

be a fixed uniformizer. For y := Z a; 7 € koo With ay # 0, we define ordy(y) := N. We
i=N

fix an additive character 1, of ks as the following, for y := Z amfx) € koo,
i=N

211
Yoo (y) = exp(% Trg, /r,(—a1)) € C*.
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For a locally constant function with compact support f : ko, — C, the Fourier transform f*
of f is defined to be

f(y>:=:/£ F (@) o (),

where dz is the Haar measure of ko such that Vol(Os) = ¢. Then f(z) = f(—x) holds. It
is straightforward to prove that:

Proposition 1.1. (Poisson summation formula) Let f be a locally constant C-valued function
with compact support. Then for any x € kX and y € koo, we have

Y flam+y) =gori=) Y- f(i:) Yoo (y;n’) .

meA m/€A

1.1. Quadratic symbol and Gauss sums. Let [%} be the Kronecker symbol for A with

a € Aand b€ A*. Fora € A, a # 0, we define sgn,(a) to be the leading coefficient of a

raised to the %1 power. The reciprocity law of this symbol is stated as follows:

Proposition 1.2. (The quadratic reciprocity law) Let a,b € A be relatively prime, nonzero
elements. Then

[F1[2] = (—1)"7 5o s () 2e5" sgn, ()~ 5.

Let n be a monic polynomial. For all polynomials e € A, we define an analogue of Gauss

sum as follows:
e X [2on () e

a modn

and put

n

(1.1) G(n) = (l—l—i N {—1} 1—1

S

Here i := \/—1. Before we compute the exact values of G, (n) for all n € A*, we note that

Lemma 1.3. Let P be a fixred monic irreducible polynomial. For all integers N satisfying
[de%Pi‘ < N <degP — 1, we have

5 ()

neA
deg n=N
0 o)
Proof. Let n = Z a;w’, and P71 = Z bjml,, where a_n,baeg P € IFqX7 and a;,b; € Fy
i=—N j=deg P
forall —-N+1<i<0andj>degP+ 1. Then

2 o0
n u
? = E E ailaizbj Too-
u=—2N+deg P j>deg P

—N<ig,ip<0
i1tigti=u
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Therefore, we have

2
Z 1/100 (nP> = Z woo - Z ailaizbj Too

neA X j>deg P
deg n=N a—N€Fg —N<Ziqp,in<0
aj€Fg,—N<I<0 i1tig+i=1
= > [T veo (—as,0ib)) 7o) -
X j>deg P
C-NCT _ NZipin<o

aj€Fq,—N<I1<0 52T

The definition of 14, implies that we only focus on iy 4+ i; + j = 1. Taking i1 = —N and
j = deg P in the above equality, we have io = 1 — deg P + N, which implies that

—deg P

2

by the assumption of N. Thus, there always exists io # —IN such that —N + iy +deg P = 1.

Meanwhile, for this ioc = 1 — deg P + N, the solution i, = —N and j = deg P is the unique
solution satisfying i1 +io + j = 1 for —N < i; <0 and deg P < j. Thus, we derive

-‘+1<i2<0

> ow(-%)- X% 11 e (1,0, 7

nea x j>deg P
degn=N °-NSTa —N<iy,ia<0
aj€Fq,—N<I<0 P

(i1,i2,4)#(—N,1—deg P+N,deg P)

(i1,i2,j)#(1—deg P+N,—N,deg P)

Yoo (2 A_N - bdeg P * G1—deg P+N * Too)

= Z H Yoo ((_a’ila’i2bj)7r00)

o X j=>deg P
ol ol —NZiyiz<o
a]€Fg,— N <I#1l—deg P+N<0 PR

(i1,i2,5)#(—N,1—deg P+N,deg P)
(i1,i9,j)#(1—deg P+N,— N,deg P)

Z 1/100 (alfdeg P+N - ﬂ-oo) =0.

a1 —deg P+N€Fq

Now, we compute G, (n) for all n € A,

Lemma 1.4. (1). Suppose m and n are co-prime monic polynomials. Then

Ge(mn) = Ge(m)Ge(n).

(2). Suppose that d € A, and « is the largest power of irreducible polynomial P dividing e
(If e =0 then set « = c0). Then for § > 1

0, if B < « is odd,
W(PB), if B < « is even;
G’G(Pﬂ) = —qdes? if B=a-+1 is even;

(,Yp,q)dch . [g} _q(a+1/2) degP7 if B=a+1is odd;
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Here,

[Fy F, ) , _
(1.2) Yo = — (— (j)) : (I;Z (-1 1;) e {£1}.

where <7) is the Legendre symbol modulo p, [Fy : F,] is the dimension of F, over F,, and for
P
feA, o(f) =#(A/fA)* is the Euler totient function for A.

Proof. The statement (1). comes from the Chinese Remainder theorem and the quadratic
reciprocity law.
(2). We only show the crucial case § = « + 1. Others are straightforward to verify. If
B8 =a+1, then

6P = 3 | ps] v (- 55)

a mod PP
- l (bp+l)€ o (ﬁ—l) deg P l le
= > {pﬁ} b %o(—pﬁ =q > | pr| v~ 55
I mod P b mod PA-1 I mod P
It 3 i h : ') _ 1. Set deg0 — If B is odd, and deg P
[ is even, t enlzdp ﬁwoo —p5 ) =L et deg0 = —oo. If B is odd, and deg
mo
is odd, then
l l(eP™)\ _[eP™® 2
> )] 2 e ()
! mod P ! mod P
[eP~«] 2 1? 2
=P Z Yoo (—P> + Z Voo (—P) + Z Poo <_P> , by Lemma (1.3
L - ! mod P !l mod P !l mod P
| 2degl—deg P<—1 2degl—deg P=—1 2degl—deg P>—1

o : 2
_ eP— gdeg P=1)/2 | (deg P=1)/2 Z exp (27rzTr]Fq/JFp(a ))

P ‘ P
L ackF;
_€P_a_ 27TiTrF F (az)
_ (deg P—1)/2 a/Fp
= [ e 3 e (1
- a€lF,
[Fq:Fp]

-1 eP™% | qegp/2 .
=— |- — 5|4 85/2 ) by Davenport-Hasse relation [7, p. 158-162].

p
Meanwhile, in this case, we have 1% + [55] 1% = 4 + (—1)% 1=t Combining the above

equalities, we obtain the desired result.
If 8=a+1is odd and deg P is even, then we have

N

! mod P

by the same method as the above case.
O

1.2. Quadratic L-functions. Let K := k(y/m) be a quadratic field over k, where m is
non-square with degm > 1. One of our goals is to investigate the mean value of /-th moment
of the class numbers h,,. If co doesn’t split in K/k, then B = F, and if oo splits in K/k,
then B, = Fx < €, >, where < ¢,, > is infinite cyclic. In this case, we set R,, equal to
the absolute value of log, qordee(em)
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Suppose m is square-free, the connection between L(1,x,,) and class numbers is proven
by E. Artin. This result also can be generalized to the case of non-square polynomials (cf.
[9, Theorem 17.8B]) .

Theorem 1.5. Let m € A be a non-square polynomial of degree M > 1.

(1). L1, Xm) =q" 2= - hu, if M is odd.

(2). L(1,xm) = %1 cq M2 by, if M ois even and sgny(m) = —1.
)
r

(3). L, Xm) = (q—1)-¢M/?2 hy, - R,,, if M is even and sgny(m) = 1. Here R, is the
requlator of the ring By, .

Suppose that m is square-free. We are able to investigate the mean value of /-th moment
of #(K2(By)), since the connection between L(2, ) and #(K2(By,)) is already known by
Tate and Quillen. That is (cf. [8, Proposition 2|):

Theorem 1.6. Let m € A be a square-free polynomial of degree M > 1. Then
(1). #(Ks(Bp)) = qB/PM . q=3/2 . (2, x), if M is odd.
(2). #(Ko(Bp)) = q®/PM. (14¢1) (¢ +1)" - L(2, Xm), if M is even and sgny(m) = —1.
(3). #(K(Bm)) = a®/2M - (¢2 4+ q)~L - L(2, Xm), if M is even and sgny(m) = 1.

For each positive integer ¢, the {-th moment of L-function L(s, x,,) is:

L
M—-1

L) =X | X xmln) | ¢

N=0 neAt:

deg n=N
o(M—1)
= > | D dem)xm(n) | ¢,
N=0 neAt:
degn=N

where

(1.3) de(n) == > 1

is the number of ways of expressing n as the product of k£ monic polynomials, expressions in
which only the order of the factors being different is regarded as distinct. The main purpose
of this paper is to study the mean values of these /-th moments.

2. ASYMPTOTIC FORMULAS FOR ARITHMETIC FUNCTIONS

The following Tauberian Theorem is used to study asymptotic formulas for arithmetic
functions (cf. [3, Theorem 7]):

Theorem 2.1. Let f(u) := Z anu™ with the numbers ay € C for all N, be convergent in
N>0
{ueC:lul <qg*}
for a fized real number a > 0. Assume that in the above domain
flu) =g(w)(u—q"")"" + h(u)

holds, where h(u), g(u) are analytic functions in {u € C: |u| < ¢}, g(¢=*) #0, and w >0
s a positive integer. Then

w9 ) g™

R )

g NNYTL L0 (anwaz) , as N — oo.



12 CHIH-YUN CHUANG
Let a = 1, then Theorem [2.1| reduces to the case [9, Theorem 17.4].

Corollary 2.2. Let f(u) := Z anu™ with the numbers ax € C for all N, be convergent in
N>0

{ueC:|ul <q %}
for a fized real number a > 0. Assume that in the above domain

fu) = g(u)(u+q~*)"" + h(u)

holds, where h(u), g(u) are analytic functions in {u € C: |u| < ¢}, g(—¢™%) # 0 and w is
a positive integer. Then

aw

ay = (_1)N g(_g(w;q anNw—l +0 (anNw—Z) . as N — oco.

Proof. Set f(u) = f(—u), §(u) = g(—u) and h(u) = h(—u). Thus, f(u) := Z(—I)NaNuN
N>0
The condition f(u) = g(u)(u+ ¢~ *)~™ + h(u) is equivalent to

Flu) = (=1)""g(w)(u—q~*) " + h(w).

O

Let £ be a positive integer. The arithmetic function d¢(n?) will also play a key role in our
asymptotic studies. Here dy(n) is the general divisor function defined in (I.3). Let ¢(n) be
the Euler totient function for A. Applying Theorem with a = 3 and w = @, it is not
difficult to drive the estimation below

Lemma 2.3. Let ¢ be a positive integer, then

3N et g 3N Let1) g
2 2y _ 4a N2 ¢ N2
Z dg(’l’l, )‘P(n )_Cf(1/2) 1—1(5(4-9-1)) +O< N >7
neAt: 2

deg n=N

as N — oo.

Proof. For £ > 1, we note that

i(2t+1)(2t+2)-...-(2t—|—€—1) . [(1+\/:E)‘3+

. -], .
1) v= 2 ](1‘“””) ‘

t=0
Suppose £ = 1. dg(n) =1 for all n € AT. Thus,
> den)p(n®) =¢*N(1-q )

neAt
deg n=N
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(2—s)deg P (2—s)deg P
2 2

) +(1—q )’

2(1 _ q(27s) deg P)@

(1+¢q

neAt
2

by [9, Proposition 2.7], which satisfies the statement of our lemma. For ¢ > 1, the generating
(2.1) =H{(1 —q el
P
0(6+1) s—2
o a(152).
c¢ (552). Then Theorem (or [9, Theorem 17.4]) with @ = 3 and w = @ gives us the
-3

function of dy(n?)p(n?) is:
Cap(8) = Y de(n®)p(n?)g* 2"
+q” degP}
which has a pole of order 25 at s = 3. Set u = ¢, Cay o() := Ca,.0(5), and & (u) =
desired result, since the leading coeflicient of Laurent series of CNdZ,@(u) at u =gq
(=47 (g ™?).

is equal to

£(041)
2

For each n € AT, we define

(2.2) vin) =] (1 —q2%e?)".

P|n
Applying Theorem with ¢ = 3 and w = @ to d¢(n?)p(n?)v(n), we have

Lemma 2.4. Let ¢ be a positive integer, then

3N fder) g 3N fQerl g
ey €N NS ¢ NG
Z de(n®)p(n®)v(n) = c;(1/2) - 7wy 0 <N> )
neAt: F (T)

degn=N

as N — oo.
Proof. The generating function of dy(n?)p(n?)v(n) is:
Cdl»s@,u(s) = Z d[(nz)sp(nz)y(n)qfsdegn

neAt

1
(2.3) ZI;I{Hq_degp

£(041) L[s5—2
e (550,

which has a pole of order LD a5 =3.

(2—s)deg P (2—s)deg P
2 2

) f+(1-q
2

(1+g¢ )t

4 (]_ degP‘| }
2

Set u = q%, Cayon(5) = Capp(u), and &(u) == ¢ (252). Then Theorem (or |9,
Theorem 17.4]) with @ = 3 and w = @ gives us the desired result, since the leading
3

coefficient of Laurent series of (4, ., (u) at u = ¢~2 is equal to

£(2+1)

(—¢7) = - &(q).

O

We finally study the asymptotic formulas of the general divisor function dy and the Gauss
sum G.. Let g € AT and

e —sde -1
Lg(s, 7.0 - Xe) = [ ] (1 =15 X (P)g* &) ", on R(s) > 1
Ptg
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for each monic polynomial e. We have

Lemma 2.5. Write e = eje3, where e; € AT is a square-free polynomial, and ey is a monic
polynomial. In the region R(s) > 3/2

Z df(n)ée (n)q_Sdcgn = Lg4(s—1/2, 'anq'Xh)K H gP,dg,C?c (s) 1= Ly(s—1/2, ’Yp,q'XeJegdg}éE,g(S)v

ncAt: Ptg
(n,g9)=1

where Gp 4, &.(s) is defined as follows:

e[ 5 .
Gpa,a.(s) = (1 - ngqu Xey (P)q1/29) degP) Zde(Pt)Ge(Pt)q—stdegP

>0
Then G,, &. ,(s) is holomorphic on R(s) > 1. Here vy, 4 is defined in .

Proof. The Euler product of G d0.Cog (s) follows from the multiplicativity of G. and dy.
By Lemma we see that for P fe and £ > 3,

¢
Gy 6.(5) = (1~ 18P xey (P39 P) (1 p o8 gy, (P)g1/2=den )
0+ 1
1 ( ;‘ )q(1—25)degP+O(q(3/2—33)degP)

which implies that G, . (s) is holomorphic on (s) > 1. When £ = 1 or 2, we use the same
method to prove that G, » (s) is holomorphic on R(s) > 1.

O
Corollary 2.6. Ife € A and g € AT, then we have, for any § > 0,
(1+6)N )
= q , ife# 1
ORICIAUES S e
neA‘*’:deg n=N ’ ’
(n,g)=1
as N — oo.
Proof. Let Ly(s, xe) := 1_[(1—)@(13)(175degp)f1 for R(s) > 1. Set Ly(s, Vp,qXe) = Zg(u,’yp,q-

Ptg
Xe) and f/g(u, Xe) = Lg(s,xe) with u =¢~°. Then

. Ly (u,xe) if ¥p,q = 15
L Xe) = { ol Xe): e
g(%’)’p,q X ) { Lg(_u7 X€)7 lf vaq = _1

If e is not square, then the function f/g(u, Vp,q - Xe) is holomorphic on C. If e is square, then
Ly (t,Yp.4-Xe) is holomorphic on {u : |u| < ¢~3/2} and has a pole at the circle {u : |u| = ¢~3/2}.

Thus, for all g € A™, the function G, & (s) is holomorphic on R(s) > 1 by the above
lemma, so Theorem and Corollary with a = 3/2 for the case e = O and a = 1 for the
case e # [ imply that, for any g € AT,

Y. d(n)Ge(n) < {

neA+t:degn=N
(n,g)=1

q(1+6)N7 if e 7& 0,
q(%+5)N, ife=0

for any § > 0.

When degm = M is an even number, we will encounter extra contribution which is
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Lemma 2.7. Let ¢ be a positive integer. Then

qN . N@—l
Z de(n) = ———+—+0 (¢"N?) as N - .
ncAt F(é)

This proof is simpler than the above cases, so we omit it.

2.1. Limit distributions. A distribution function is a non-decreasing function f : R — [0, 1]
which is right continuous and satisfies f(—oc0) = 0 and f(co) = 1. In 1931, M. Fréchet’s and
J. Shohat’s proved that (cf. [5, Lemma 1.43])

Lemma 2.8. If all the fn(x) from a sequence of distribution functions fy(x) have finite

moments ap(N) = [ zTdfy(z) of every order and if ar(N) — Br as N — oo for each

R
T € N, then the Bt are the moments of some distribution function f(x). If, moreover, f(x)
is uniquely determined by its moments, then as N — oo the sequence fy(x) converges to f(x)
at each point of continuity of f(x).

Now to justify the application of the above lemma, we still need one lemma (cf. [5, Lemma
1.44]).

Lemma 2.9. Let ag =1, ay,...ar,... be the moments of some distribution function f(x),
each being assumed finite, and suppose that the series

(6%

T

E Tg
T=0

is absolutely convergent for some 179 > 0. Then f(x) is the unique distribution function
with moments ag, o, Qa,.... Moreover the characteristic function ¢5(y) : R — C of the
distribution f has the representation

or(y) = > —(iy)”

T=0 ~°

Q

for ly| < 7o.
The proof of Corollary [0.3]is similar to Corollary We only prove one of them.
Proof of Corollary[0-3
For a fixed so € R with sq > 1, the real value function
1
fa(z, so) = q—M#{m € AT :degm = M and L(sg,xm) <z}, T€R

are distribution functions for all M € N. Theorem [0.1] says that

1 £(e+1) de(n?) - p(n
WE(SO,M, 0)s =Ca(2s0) 2 - ces0) = Z n|250+1) =r¢(so), as M — oo,
neAt

where « is either S, Z or R. According to Lemma |2.3

1
1— ¢@s0—1-0)’

re(s0) = Z Z dé(rﬂ)(p(n?) q7(250+2)N<<

N>0 \ nea+:
degn=N

for any § > 0,

we obtain that

1+ Z ro(s0)zt /0!
=1
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has the infinite radius of convergence. Hence Lemma 2.8 and Lemma [2.9] imply that for a
fixed sg € R with sg > 1, there exits a distribution function f such that

lim —#{m € AT :degm = M and L(s, xmm) < z} = f(z,5)

ac—>oo

holds for s = sg and f(+,s9) = f at all points of continuity = of f. Moreover, the {-th moment
of f is equal to r¢(sp), so f has a characteristic function given by

TE
Gr.s0(y _1+Z L yeRr.
>1

3. AVERAGE VALUES OF {(-TH MOMENTS (THE NON-SQUARE CASE).

In this section, we prove Theorem Basing on Lemma we divide L(s, M, ), into
four parts, where « is either S, Z, or R. Proposition [3.2]is the source of the main term. The
others (cf. Proposition Proposition and Proposition [3.5|) give error terms.

3.1. Dividing averaging sums into parts. For convenience, we set deg0 = —oco and a
function j from {R,Z,S} to {0,1} defined by
(3.1) Jj(R):=0, j(Z):=1,and j(S) := 0.

The following form can be regarded as a generalization of Hoffstein-Rosen’s closed form in
[6, Theorem 0.7, Theorem 1.4 and Theorem 1.5] (cf. Remark .

Lemma 3.1. Let ¢ be a positive integer, and = can be either S,Z or R. Then

L(M—-1)
L= 30 o™ 30 ddm | 30 G 3 Gelm) o7
neATt: ecA: ceAt:
2\1\’ degn=N dege<N—M~—2 dege=N-—M—1
(M—1)
wVa Y TN YD dln) YD g Geln) | (<17 g
neA+t: eeAt:
2f{N deg n=N dege=N—M—1
L(M—1)
- > }: Y de(m)xm(n) | (=1)7INgoN,
meAt: ncAt:
deg m=M deg n=N
m=0

where Go(n) is the Gauss sum defined in s Yp.g @5 defined in , d¢(n) is the general
divisor function defined in , and j is the function defined in .

Proof. We have

L(M—1)
L(s,M,0),= Y > de(n) > fm)xm(n) | (=1)7ON . gmoN
N=0 ncAt: meA
deg n=N
L(M—1)
- Yo den) Y xm(n) | (1PN gN
N=0 neAt: meAt:
deg n=N deg m=M

m=0

=1-1I,
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where f(z) =1, -u . o y(z)and [1] = (~1)". Splitting the sum over m below according
to the residue classes mod n and using Proposition we have

o(M—1)
b : ,
I = > S de(n) > HZf(bJrne) (—1)JCIN _ g=sN
N=0 neAt: b modn n ecA
(3.2) deg n=N
o(M—1)
= > | Y dlmg VY fd/m)Gen) | (10N g7,
N=0 dneA+1:V ecA

where f(z) = ¢M - Yoo (n M) - 1 m+15_(z). Observe that

S fle/n)Ge(n)

ecA

=Y qM vae(mMe/n) - 1 (e/n)Ge(n)

(33) ecA o
= Z ™M Yoo (W;oMe/n)Ge (n) + Z q" - Ge(n),
ec A—{0}: e€A:
deg e=degn—M—1 deg e<degn—M—2
=TI+ 1IV.

Now, we simplify IIT and IV. We have

I = Z g™ - G.(n) Z exp <2m TYF;/FP(_E)) . [ﬂ

deg e:efe,ﬁiMfl c€Fy
- Z Ge(n), if degn is even;
:qM . dege:edeeQ:;M—l
Tog "V Z G’e(n), if degn is odd,
ecAt:

deg e=deg n— M —1
because of

if degn is even;

> exp (W) ' [ﬂ ] -valE]- ( (1)>[FQ:FP], if degn is odd.

eEF;

For IV, we note that

> Gm= Y Gem= Y 1],

ec A—{0}: ecA—{0}: ecA—{0}:
dege<N—M-—2 dege<N—M—2 dege<N—M—2

and Go(n) =0, if degn is odd. Thus, the above equality implies that

g g -~
=5 Y G =t Y (L (-1 Gul),
deg e;%A;M—Z deg eéfVA;]\/172

The last equality comes from G, (n) = G.(n), if degn is even. Inserting (3.3)= III+ IV into

(3.2), we complete the proof.
O
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On the basis of the above lemma, we divide L(s, M, {),, where % is either S, Z or R, into
four parts which are

L(M—1)
Po(s)ei= Y "N | > d(n)Go(n) | ¢",
N=0 neAt
2|N degn=N
L(M—1)
Po(8)s := Z gM=N Z d¢(n) Z G.(n) — Z Ge(n) | ¢V
N=0 neA+t: ecA—{0}:e0 ecAt:eol
2|N deg n=N dege<N—M-—2 dege=N—M—1
L(M—1)
+Yp.qg V- Z gM Z de(n) Z Ge(n) (_1)](*)‘175]\]’
N=0 neAt: ecAt:eol
2f{N deg n=N dege=N—M—1
where ¢ is = or #, and the term
L(M—1)
Pis)i= D> >, | D diln)xmn) | (=17PNg N,
meAt: N=0 ncAt:
defnviE]\/I deg n=N

such that
L(s, M, £), = Po(5)x +P=(5)x — P1(8)x + Px(5)«-

3.2. The contributions of Py, P=, P1, and Px. For Py(s),, we establish the following
asymptotic formula:

Proposition 3.2. Let ¢, M be positive integers, and * be either S, I, or R. then, for any
0 >0,

£(041)

7)0(8)* _ CA(QS) . Cz(S) . qM + O<q(1+(—§R(s)+1/2+5))]M)’ if §R(8) > 1,
as M — oo. Here cy(s) is introduced in Theorem [0.1]

Proof. Suppose that £ > 1 and £(s) > 1/2. Then we have

O(M—-1)

Z M Z de(n) - Go(n) | ¢~
N=0 neAt:

2|N degn=N

oo

=> " D du(n®)-p(n?) | g POV - S M DD dn?)pn?) | g0
N=0

aenty N=[ €5 el
=1-—1L
By Lemma [2.3] we have
M - 2 2 —2(14s)N M ety 1
I=q¢"" D din®)-o(n®) | q =q" - Ca(2s)7 7 - cqls), on R(s) > 5,
N=0 \ nea+:

deg n=N
and for any 6 > 0,
(R (s) 1 &) L=
g~ CRE-1=9) 2
1= ¢ CRe)-1-0)

II<gq

Combining the above estimations, we complete this proof. [
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As for P—(s)s, it appears on the case £ > 1. If £ = 1, then P—(s), always equals to 0.

Proposition 3.3. Let £ > 2, M be positive integers, and x be either S, Z, or R. Then we
have, for any § > 0,

P_(s), = q1/2HOM i R(s) > 1,

as M — oo.

Proof. We have Suppose R(s) > 1. We have, by Corollary

(M=1)
Po(s) < Z M= Z q(%"'(s)l\[q_%(s)]v7 for any § > 0

N>M+1 de A—{0}:
2|N dcgdSLN*IQW*IJ
L(M-1) L(M—-1)
< Z qM/2q(1+6—§R(s))N + Z qu(1/2+6—§R(s))N
N>M+1 N>M+1
2|N 2|N

<<q(%+(1+578?(s)))M < g1/2 M

The third contribution only occurs to the case of 2 | M.

Proposition 3.4. Let ¢ be a positive integer and %= be either S or Z. Then we have, for
§ >0,

Pi(s)e = 0 (¢H+V) i (s) > 1,
as M — oo.

Proof. Suppose that R(s) > 1.

L(M-1)
Pils)e= Y. > 7 di(n) | (—1)7 NG
meAt: N=0 ncAt:
deg m= % ?;ET;T:AI’
L(M—1)
< X | X dw) [N
meAt: N=0 neAt:
degvn:% degn=N
L(M—-1)
<gM/? Z I REOTON po By Lemma [2.7]
N=0

<q3TIM o1 any § > 0.

The estimation of Px(s), is stated as follows:

Proposition 3.5. Let £ and M be positive integers and x be either S, T or R, then we have,
for any d >0,
Pe(s)e =0 (@), if R(s) > 1,

as M — oo.
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Proof. Suppose R(s) > 1

L(M—1)
Pr(s)e < Z M= Z gIHON | = RGNy Corollary [2:6]
N=0 deA+t:dz0
2|N deg d<N—M—1
L(M—1) L(M—1)
< Z q(1+5)N —R(s)N + Z qM (6—R(s))N < q£6M.
N>M+1 N>M+1
2|N 2|N

The proof is finished.

Remark 3.6. When £ = 1, we have, for x =7, S or R,

L(s. M.1). = oM M-N { } [E} —sN
(.M. Du =g+ > g > X 22 )]s
N=2 n€eAt: a modn neAt: mod n
2|N degn=N degn=N
a=0 a0
M-—1
=M+ MV YT e |,
neA+t:
2|N deg n=N/2
M-1
=¢" + "1 —¢") Y "2V by [9, Proposition 2.7]
N=2
2|N

which also leads to the result [6l Theorem 0.7]. Similarly, [6, Theorem 1.4 and Theorem 1.5
also can be obtained by computing extra term P;(s),, where x is S or Z.

4. AVERAGE VALUES OF {-TH MOMENT OF QUADRATIC L-FUNCITONS (THE SQUARE-FREE
CASE).

The idea of Theorem is similarly to Theorem but it is more complex. Let p(f)
be Mébius function for A and n € AT. Then n Z 1(g) is the characteristic function for
2|n
square-free polynomials n. Using this fact, we havg ‘an analogue closed form Lemma [{1] as
Lemma The function L(s, M, ), can be divided into three parts, where % is either S, Z,
or R. Proposition is the source of the main term. The others (cf. Proposition and
Proposition give error terms.

4.1. Dividing averaging sums into parts. Similarly, the sums in question can be rewritten
as the following form:

Lemma 4.1. Let ¢ be a positive integer, and = can be either S,Z or R. Then

L*(s,M,0),
L(M—-1)
=D > A Y AN ulg) Yo G- Y Gen) | g MY
gi\? Jéff;v OSGSI_%J iis;):c:;, dcgcsl\ifﬁf:+2072 dege:?\fEfA;l»jFQGfl
g,m)=1

L(M—1)

gV Y, | D dem) Y MOV YT wg) Y Ge) | (m1 g
neAt: 0<G<|_MJ geATt: ecAt:
2tN deg n=N - —=L2 deg g=G,(g,n)=1 dege=N—-M+2G—1
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where Ge(n) is the Gauss sum defined in , Yp,q 15 defined in , d¢(n) is the general
divisor function defined in , and j is the function defined in .

Proof. We have

2(M—1)
LA, MO = > | D den) D ulg) D Xm(n) [ (=1)7IN g7,
N=0 neAt: geAt: meAT:

deg n=N deg g< L%J 92|m

Write m = g?m;, where m; € AT. Then the above equality is equal to

L(M—1)
Ti= > doodn) D D w9 D Xerm () | (F1)IPN gV

N=0 necAt: 0<G<|_MJ geAt: mi€eAT:

deg n=N ==L 2] degg=a deg m=M—2G
L(M—1)
mq : _s

PN IDIIIOND SIS DTGNS DI -l | [C R

Y o\mn esesl¥lgsle L

Let f(ﬂj) = 1W;M+2G(1+ﬂ'ooooo)(x)' Then

miy_ m
> [T = X s 2]
myeAT: mi€EA
degmq=M—2G
Using Proposition the above equality is equal to

m= Y {Z]Zf(b—kne): > Mq‘NZf(e/n)woo(—ff)

b modn ecA b mod n ecA

=Y fle/n)Ge(n).

ecA

where f(z) = ¢M 726 . h (m M+202) - L y—scrig (7).
Observe that

= > MO @M emGm Y MY G
ec A—{0}: e€A:
deg e=degn—M+2G—1 deg e<degn—M+2G—2
=TI+ 1IV.

Using the same argument as Lemma |3.1} we have

- Z Ge(n), if degn is even;
e€AT:
III — qM72G7N . deg e=degn—M+2G—1 B
ITRRVCE > Ge(n), if degn is odd,

ecAt:
deg e=degn—M+4+2G—1

and
1 -
— M-2G-N  ~ __1\degny |
IV =g > ;EAZ (1+ (~1)%7) - Ge(n).

deg e<N—M+2G—2

Inserting II= III+ IV into I, the proof is complete. [
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On the basis of the above lemma, we divide L*(s, M, £),, where x is either S, Z or R, into

three parts which are

Ge(n) —

ecAtie=0

L(M—1)
M—-2G—N
Po(s)ei= > > de(n) > ¢ >
N=0 +. M +.
2|N dzgf N SGSLTJ dii:;‘:G
(g,n)=1
and
P (s)
L(M—-1)
M—-2G—N
= > D ddm) 3 a > >
N=0 = neaAt: 0<@G < M geATt: e€A—{0}:e00
2|N  degn=N ="=L12 ?legg):G deg e<N—M+2G—2
g,n)=1
L(M—-1)
M—-2G—N
+¥p.a - VA E, E de(n) E q E
ncAt: M At
2tN degn:N OSGSL 2 J c(lgeirg):c
g,n)=1

where ¢ is = or #, such that

degeoN—M+4+2G—1

L(s, M, £) = P5(5)s +PL(8)s + PL(5)-

4.2. The contributions of Pj, PZ, and P. For Py (8)s, we establish the following as-

ymptotic formula:

Proposition 4.2. Let ¢, M be positive integers, and x be either S, T, or R. Then we have,

for any § > 0,
Po(s)x =Ca(2)”

£(0+1)

'Ca(2s) 2

as M — oo. Here c;(s) is introduced in

Proof. Suppose that £ > 1. We have

L(M—-1)
1) Pols)= )
N=0 degn=N/2
2|N neAt
Since
—2G
> ¢ )
0<G < M geAt:
———=L2 deg g=G
(g,m)=1

=Ca(2)7" - v(n) +O(q

we have (4.1]) which is equal to

Lz{(Mz—nJ

M

. Yoo | X d?
Ca(2) N=0 meat:
degn=N

=141L

Z de(n®)p(n?

>

geAt:
(g,m)=1

_%), where v(n) =

n?) - v(n)

>

ecAt:eol

dege=N—-M+42G—1

ci(s)-a™ + 0 (VMY i R(s) 2 1

Theorem .

)X

oo<|¥]

2degg o
M <G

P|n

H (1 _ q—2degP)

qM—2G—N Z

geAt:
deg g=G
(g,n)=1

YOIV

geAt:
deg g=G
(g,m)=1

Lz(M2—1)J

q—2(1+s)N+O qM/2 Z Z

N=0

' s defined in (2.2)),

neAt:
degn=N

d@(TLQ
q2(1+s)N

) - (n?)
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Suppose that f(s) > 1/2. We have
IT = O(¢™/?), by Lemma 2.3
and for any ¢ > 0,

de(n?) - p(n®) - v(n) © i
=2 G 4 > D de(n®) - p(n?) - v(n) | g 2TV
neA+ q N:LWJ_H cflf»fijv

2 . 2 .

=y o) ) Lo (Mgt ) ) > 1
q S n

neAt

Combining the above estimations, we complete the proof. ([l
As for P*(s),, we have

Proposition 4.3. Let ¢, M be positive integers, and x be either S, I, or R. Then we have,
for any & > 0,

P(s). = O (aF+M), if R(s) > 1,

as M — oo.
Proof. The equalities Z w(g) = O(q%),
g€A+:
deg g=G
(g,m)=1
> Gex(n) = (¢ — 1) > Ge2(n)
ec A—{0}: ecAt:
deg e< L%J degeg\_N—ZVI-é—QG—2J

and Corollary [2.6] say that, for any 6 > 0,

o(M—1)
Prls)e<< D > qMPN N u(g) > > de(n)Ge(n) | g
b oses|¥] £5026 epee| Moo {gsz‘);
= 2 n,g)=1
o(M—1)
M-G-N (3/245—R(s))N
<Y Y > .
N osos|¥] S

degegLN—A4;2G—2J

Note that if degd > 0,then N > M — 2G + 2. Thus we have

o(M—1)
< Z Z qJVI—G<q|_%J+1 _ 1)q(1/2+6—§re(s))1v

0<G< I_%J szv;r]\?cwz

<M - gM/2 . gUH=REN Z MG (q(1/2+5—§R(s))2M n q(1/2+6—§R(s))(M—2G+2))
0<G<| ¥

<<q(1/2—i-£($)M7 if %(S) > 1.

The estimation of PJ(s) is stated as follows:

Proposition 4.4. Let {, M be positive integers and x be either S, T or R, then we have, for
any § >0,

Pi(s). = O (¢FFM) i () 2 1,
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as M — oo.
Proof.
oM—1)
PL(s)s < Z Z M EN(g—-1) Z qUHIN | g~ REN Ty Corollary 2.6]
o<es|y] AW s v

Note that if degd > 0,then N > M — 2G + 1. Thus we have

o(M—1)
< Z Z gM =G (gN—M+2G+1 _ 1) (0—R()N
osG<|F ] ML
<gM/? . qUH6=R(ENEM | Z MG <q(579‘3(s))13M _|_q(678%(s))(M72G)>
0<<| ¥
<qBHOM i R(s) > 1.
U
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