HALL ALGEBRAS OF CYCLIC QUIVERS AND q-DEFORMED FOCK SPACES

BANGMING DENG AND JIE XIAO

ABSTRACT. Based on the work of Ringel and Green, one can define the (Drinfeld) double Ringel-Hall algebra $\mathcal{D}(Q)$ of a quiver Q as well as its highest weight modules. The main purpose of the present paper is to show that the basic representation $L(\Lambda_0)$ of $\mathcal{D}(\Delta_n)$ of the cyclic quiver Δ_n provides a realization of the q-deformed Fock space \bigwedge^{∞} defined by Hayashi. This is worked out by extending a construction of Varagnolo and Vasserot. By analysing the structure of nilpotent representations of Δ_n , we obtain a decomposition of the basic representation $L(\Lambda_0)$ which induces the Kashiwara–Miwa–Stern decomposition of \bigwedge^{∞} and a construction of the canonical basis of \bigwedge^{∞} defined by Leclerc and Thibon in terms of certain monomial basis elements in $\mathcal{D}(\Delta_n)$.

1. INTRODUCTION

In [40], Ringel introduced the Hall algebra $\mathcal{H}(\Delta_n)$ of the cyclic quiver Δ_n with *n* vertices and showed that its subalgebra generated by simple representations, called the composition algebra, is isomorphic to the positive part $\mathbf{U}_v^+(\widehat{\mathfrak{sl}}_n)$ of the quantized enveloping algebra $\mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$. Schiffmann [41] further showed that $\mathcal{H}(\Delta_n)$ is the tensor product of $\mathbf{U}_v^+(\widehat{\mathfrak{sl}}_n)$ with a central subalgebra which is the polynomial ring in infinitely many indeterminates. Following the approach in [46], the double Ringel-Hall algebra $\mathcal{D}(\Delta_n)$ was defined in [6]. Based on [12, 21] and an explicit description of central elements of $\mathcal{H}(\Delta_n)$ in [19], it was shown in [6, Th. 2.3.3] that $\mathcal{D}(\Delta_n)$ is isomorphic to the quantum affine algebra $\mathbf{U}_v(\widehat{\mathfrak{gl}}_n)$ defined by Drinfeld's new presentation [10].

The q-deformed Fock space representation \bigwedge^{∞} of the quantized enveloping algebra $\mathbf{U}_{v}(\widehat{\mathfrak{sl}}_{n})$ has been constructed by Hayashi [17], and its crystal basis was described by Misra and Miwa [36]. Further, by work of Kashiwara, Miwa, and Stern [27], the action of $\mathbf{U}_{v}(\widehat{\mathfrak{sl}}_{n})$ on \bigwedge^{∞} is centralized by a Heisenberg algebra which arises from affine Hecke algebras. This yields a bimodule isomorphism from \bigwedge^{∞} to the tensor product of the basic representation of $\mathbf{U}_{v}(\widehat{\mathfrak{sl}}_{n})$ and the Fock space representation of the Heisenberg algebra.

By defining a natural semilinear involution on \bigwedge^{∞} , Leclerc and Thibon [29] obtained in an elementary way a canonical basis of \bigwedge^{∞} . It was conjectured in [28, 29] that for q = 1, the coefficients of the transition matrix of the canonical basis on the natural basis of \bigwedge^{∞} are equal to the decomposition numbers for Hecke algebras and quantum Schur algebras at roots of unity. These conjecture have been proved, respectively, by Ariki [1] and Varagnolo and Vasserot [47]. For the categorification of the Fock space, see, for example, [43, 18, 45].

In [47], Varagnolo and Vasserot extended the $\mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$ -action on the Fock space \bigwedge^{∞} to that of the extended Ringel-Hall algebra $\mathcal{D}(\Delta_n)^{\leq 0}$ of the cyclic quiver Δ_n . They also showed that the canonical basis of the Ringel-Hall algebra $\mathcal{H}(\Delta_n)$ in the sense of Lusztig induces a basis of \bigwedge^{∞} which conjecturally coincides with the canonical basis constructed by Leclerc and Thibon [29]. This conjecture was proved by Schiffmann [41] by identifying the central subalgebra of $\mathcal{H}(\Delta_n)$ with the ring of symmetric functions.

²⁰⁰⁰ Mathematics Subject Classification. 17B37, 16G20.

Key words and phrases. cyclic quiver, Ringel-Hall algebra, quantum group, Fock space.

Supported partially by the Natural Science Foundation of China.

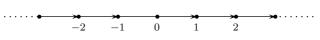
The main purpose of the present paper is to extend Varagnolo–Vasserot's construction to obtain a $\mathcal{D}(\Delta_n)$ -module structure on the Fock space \bigwedge^{∞} which is shown to be isomorphic to the basic representation $L(\Lambda_0)$ of $\mathcal{D}(\Delta_n)$. Moreover, the central elements in the positive and negative parts of $\mathcal{D}(\Delta_n)$ constructed by Hubery [19] give rise naturally to the operators introduced in [27] which generate the Heisenberg algebra. Furthermore, the structure of $\mathcal{D}(\Delta_n)$ yields a decomposition of $L(\Lambda_0)$ which induces the Kashiwara–Miwa–Stern decomposition of \bigwedge^{∞} . This also provides a way to construct the canonical basis of \bigwedge^{∞} in [29] in terms of certain monomial basis elements of $\mathcal{D}(\Delta_n)$.

The paper is organized as follows. In Section 2 we review the classification of (nilpotent) representations of both infinite linear quiver Δ_{∞} and the cyclic quiver Δ_n with n vertices and discuss their generic extensions. Section 3 recalls the definition of Ringel-Hall algebras $\mathcal{H}(\Delta_{\infty})$ and $\mathcal{H}(\Delta_n)$ of Δ_{∞} and Δ_n as well as the maps from the homogeneous spaces of $\mathcal{H}(\Delta_n)$ to those of $\mathcal{H}(\Delta_{\infty})$ introduced in [47]. The images of basis elements of $\mathcal{H}(\Delta_n)$ under these maps are described. In Section 4 we first follow the approach in [46] to present the construction of double Ringel-Hall algebras of both Δ_{∞} and Δ_n and then study the irreducible highest weight $\mathcal{D}(\Delta_n)$ -modules based on the results in [23]. Section 5 recalls from [17, 36, 47] the Fock space representation \bigwedge^{∞} over $\mathbf{U}_v(\widehat{\mathfrak{sl}}_{\infty})$ ($\cong \mathcal{D}(\Delta_{\infty})$) as well as over $\mathbf{U}_v^+(\widehat{\mathfrak{sl}}_n)$. In Section 6 we define the $\mathcal{D}(\Delta_n)$ -module structure on \bigwedge^{∞} based on [27, 47]. It is shown in Section 7 that \bigwedge^{∞} is isomorphic to the basic representation of $\mathcal{D}(\Delta_n)$. In the final section, we present a way to construct the canonical basis of \bigwedge^{∞} and interpret the "ladder method" construction of certain basis elements in \bigwedge^{∞} in terms of generic extensions of nilpotent representations of Δ_n .

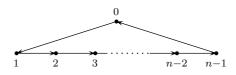
2. NILPOTENT REPRESENTATIONS AND GENERIC EXTENSIONS

In this section we consider nilpotent representations of both a cyclic quiver $\Delta = \Delta_n$ with n vertices $(n \ge 2)$ and the infinite quiver $\Delta = \Delta_\infty$ of type A_∞^∞ and study their generic extensions. We show that the degeneration order of nilpotent representations of Δ_n induces the dominant order of partitions.

Let Δ_{∞} denote the infinite quiver of type A_{∞}^{∞}



with vertex set $I = I_{\infty} = \mathbb{Z}$, and for $n \ge 2$, let Δ_n denote the cyclic quiver



with vertex set $I = I_n = \mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$. For each $i \in I_{\infty} = \mathbb{Z}$, let \overline{i} denote its residue class in $I_n = \mathbb{Z}/n\mathbb{Z}$. We also simply write $\overline{i} \pm 1$ to denote the residue class of $i \pm 1$ in $\mathbb{Z}/n\mathbb{Z}$.

Given a field k, we denote by Rep⁰ Δ the category of finite dimensional nilpotent representations of $\Delta (= \Delta_{\infty} \text{ or } \Delta_n)$ over k. (Note that each finite dimensional representation of Δ_{∞} is automatically nilpotent.) Given a representation $V = (V_i, V_{\rho}) \in \text{Rep}^0 \Delta$, the vector **dim** $V = (\dim_k V_i)_{i \in I}$ is called the *dimension vector* of V. The Grothendieck group of Rep⁰ Δ is identified with the free abelian group $\mathbb{Z}I$ with basis I. Let $\{\varepsilon_i \mid i \in I\}$ denote the standard basis of $\mathbb{Z}I$. Thus, elements in $\mathbb{Z}I$ will be written as $\mathbf{d} = (d_i)_{i \in I}$ or $\mathbf{d} = \sum_{i \in I} d_i \varepsilon_i$. In case $I = \mathbb{Z}/n\mathbb{Z}$, we sometimes write \mathbb{Z}^n for $\mathbb{Z}I$.

The Euler form $\langle -, - \rangle : \mathbb{Z}I \times \mathbb{Z}I \to \mathbb{Z}$ is defined by

$$\langle \operatorname{\mathbf{dim}} M, \operatorname{\mathbf{dim}} N \rangle = \dim_k \operatorname{Hom}_{k\Delta}(M, N) - \dim_k \operatorname{Ext} \frac{1}{k\Delta}(M, N)$$

Its symmetrization

$$(\dim M, \dim N) = \langle \dim M, \dim N \rangle + \langle \dim N, \dim M \rangle$$

is called the symmetric Euler form.

It is well known that the isoclasses (isomorphism classes) of representations in Rep⁰ Δ are parametrized by the set \mathfrak{M} consisting of all multisegments

$$\mathfrak{m} = \sum_{i \in I, \, l \geqslant 1} m_{i,l}[i,l),$$

where all $m_{i,l} \in \mathbb{N}$ but finitely many are zero. More precisely, the representation $M(\mathfrak{m}) = M_k(\mathfrak{m})$ associated with \mathfrak{m} is defined by

$$M(\mathfrak{m}) = \bigoplus_{i \in I, l \geqslant 1} m_{i,l} S_i[l],$$

where $S_i[l]$ denotes the indecomposable representation of Δ with the simple top S_i and length l. For each $\mathbf{d} \in \mathbb{N}I$, put

$$\mathfrak{M}^{\mathbf{d}} = \{ \mathfrak{m} \in \mathfrak{M} \mid \dim M(\mathfrak{m}) = \mathbf{d} \}.$$

Furthermore, we will write $\mathfrak{M} = \mathfrak{M}_{\infty}$ (resp., $\mathfrak{M} = \mathfrak{M}_n$) if $I = \mathbb{Z}$ (resp., $I = \mathbb{Z}/n\mathbb{Z}$).

It is also known that there exist Auslander–Reiten sequences in Rep⁰ Δ , that is, for each $M \in \text{Rep}^{0}\Delta$, there is an Auslander–Reiten sequence

$$0 \longrightarrow \tau M \longrightarrow E \longrightarrow M \longrightarrow 0,$$

where τM denotes the Auslander–Reiten translation of M. It is clear that τ induces an isomorphism $\tau : \mathbb{Z}I \to \mathbb{Z}I$ such that $\tau(\dim M) = \dim \tau M$. In particular, $\tau(\varepsilon_i) = \varepsilon_{i+1}, \forall i \in I$. If $\Delta = \Delta_n$, then $\tau^{sn} = \text{id}$ for all $s \in \mathbb{Z}$. For $\mathfrak{m} \in \mathfrak{M}$, let $\tau \mathfrak{m}$ be defined by $M(\tau \mathfrak{m}) \cong \tau M(\mathfrak{m})$.

Given $\mathbf{d} \in \mathbb{N}I$, let $V = \bigoplus_{i \in I} V_i$ be an *I*-graded vector space with dimension vector \mathbf{d} . Consider

$$E_V = \{ (x_i) \in \bigoplus_{i \in I} \operatorname{Hom}_k(V_i, V_{i+1}) \mid x_{n-1} \cdots x_0 \text{ is nilpotent if } \Delta = \Delta_n. \}.$$

Then each element $x \in E_V$ defines a representation (V, x) of dimension vector **d** in Rep⁰ Δ . Moreover, the group

$$G_V = \prod_{i \in I} \operatorname{GL}(V_i)$$

acts on E_V by conjugation, and there is a bijection between the G_V -orbits and the isoclasses of representations in Rep⁰ Δ of dimension vector **d**. For each $x \in E_V$, by \mathcal{O}_x we denote the G_V -orbit of x. In case k is algebraically closed, we have the equalities

(2.0.1)
$$\dim \mathcal{O}_x = \dim G_V - \dim \operatorname{End}_{k\Delta}(V, x) = \sum_{i \in I} d_i^2 - \dim \operatorname{End}_{k\Delta}(V, x).$$

By abuse of notation, for each $M \in \operatorname{Rep}^0 \Delta$, we denote by \mathcal{O}_M the orbit of M.

Following [3, 37, 5], given two representations M, N in $\operatorname{Rep}^{0}\Delta$, there exists a unique (up to isomorphism) extension G of M by N such that $\dim \operatorname{End}_{k\Delta}(G)$ is minimal. The extension G is called the *generic extension* of M by N, denoted by M * N. Moreover, generic extensions satisfy the associativity, i.e., for $L, M, N \in \operatorname{Rep}^{0}\Delta$,

$$L * (M * N) \cong (L * M) * N.$$

Let $\mathcal{M}(\Delta)$ denote the set of isoclasses of representations in Rep⁰ Δ . Define a multiplication on $\mathcal{M}(\Delta)$ by setting

$$[M] * [N] = [M * N].$$

Then $\mathcal{M}(\Delta)$ is a monoid with identity [0], the isoclass of zero representation of Δ .

By [37, 5], the generic extension M * N can be also characterized as the unique maximal element among all the extensions of M by N with respect to the degeneration order \leq_{deg} which is defined by setting $M \leq_{\text{deg}} N$ if $\dim M = \dim N$ and

(2.0.2)
$$\dim_k \operatorname{Hom}_{k\Delta}(M, X) \ge \dim_k \operatorname{Hom}_{k\Delta}(N, X), \text{ for all } X \in \operatorname{Rep}^0 \Delta.$$

If k is algebraically closed, then $M \leq_{\text{deg}} N$ if and only if $\overline{\mathcal{O}}_M \subseteq \mathcal{O}_N$, where $\overline{\mathcal{O}}_M$ is the closure of \mathcal{O}_M . This defines a partial order relation on the set $\mathcal{M}(\Delta)$ of isoclasses of representations in Rep⁰ Δ ; see [48, Th. 2] or [5, Lem. 3.2]. By [37, 2.4], for $M, N, M', N' \in \text{Rep}^0\Delta$,

$$M' \leq_{\deg} M, N' \leq_{\deg} N \Longrightarrow M' * N' \leq_{\deg} M * N.$$

For $\mathfrak{m}, \mathfrak{m}' \in \mathfrak{M}_n$ (resp., \mathfrak{M}_∞), we write $\mathfrak{m} \leq_{\text{deg}} \mathfrak{m}'$ (resp., $\mathfrak{m} \leq_{\text{deg}}^\infty \mathfrak{m}'$) if $M(\mathfrak{m}) \leq_{\text{deg}} M(\mathfrak{m}')$ in Rep ${}^0\Delta_n$ (resp., Rep Δ_∞).

By [4, 13], there is a covering functor

$$\mathscr{F}: \operatorname{Rep} \Delta_{\infty} \longrightarrow \operatorname{Rep}^{0} \Delta_{n}$$

sending $S_i[l]$ to $S_{\overline{i}}[l]$ for $i \in \mathbb{Z}$ and $l \ge 1$. Moreover, \mathscr{F} is dense and exact, and the Galois group of \mathscr{F} is the infinite cyclic group G generated by τ^n , i.e., $\tau^n(S_i[l] = S_{i+n}[l])$. For $\mathfrak{m} \in \mathfrak{M}_{\infty}$, let $\mathscr{F}(\mathfrak{m}) \in \mathfrak{M}_n$ be such that $M(\mathscr{F}(\mathfrak{m})) \cong \mathscr{F}(M(\mathfrak{m})) \in \operatorname{Rep}^0 \Delta_n$. From (2.0.2) we easily deduce that for $M, N \in \operatorname{Rep} \Delta_{\infty}$,

$$(2.0.3) M \leq_{\deg} N \Longrightarrow \mathscr{F}(M) \leq_{\deg} \mathscr{F}(N)$$

The following two classes of representations will play an important role later on. For each $\mathbf{d} = (d_i) \in \mathbb{N}I$, we set

$$S_{\mathbf{d}} = \bigoplus_{i \in I} d_i S_i[1] \in \operatorname{Rep}^0 \Delta.$$

In other words, $S_{\mathbf{d}}$ is the unique semisimple representation of dimension vector \mathbf{d} .

Let Π be the set of all partitions $\lambda = (\lambda_1, \ldots, \lambda_t)$ (i.e., $\lambda_1 \ge \cdots \ge \lambda_t \ge 1$). For each $\lambda \in \Pi$, define

$$\mathfrak{m}_{\lambda} = \sum_{s=1}^{t} [1-s, \lambda_s) \in \mathfrak{M}.$$

Then

$$M(\mathfrak{m}_{\lambda}) = S_0[\lambda_1] \oplus S_{-1}[\lambda_2] \oplus \cdots \oplus S_{1-t}[\lambda_t] \in \operatorname{Rep}^0 \Delta$$

If $\Delta = \Delta_{\infty}$, then we sometimes write $\mathfrak{m}_{\lambda} = \mathfrak{m}_{\lambda}^{\infty} \in \mathfrak{M}_{\infty}$ to make a distinction. It follows from the definition that $\mathscr{F}(\mathfrak{m}_{\lambda}^{\infty}) = \mathfrak{m}_{\lambda}$ for all $\lambda \in \Pi$.

Proposition 2.1. Let $\lambda, \mu \in \Pi$.

(1) If $\Delta = \Delta_{\infty}$, then

$$\dim M(\mathfrak{m}^{\infty}_{\mu}) = \dim M(\mathfrak{m}^{\infty}_{\lambda}) \Longleftrightarrow \mu = \lambda.$$

In particular, for each $\mathfrak{m} \in \mathfrak{M}_{\infty}$, there exists at most one $\nu \in \Pi$ such that $\mathfrak{m} = \mathfrak{m}_{\nu}^{\infty}$. (2) If $\Delta = \Delta_n$, then

$$M(\mathfrak{m}_{\mu}) \leq_{\mathrm{deg}} M(\mathfrak{m}_{\lambda}) \Longrightarrow \mu \trianglelefteq \lambda,$$

where \leq is the dominance order on Π , i.e., $\mu \leq \lambda \iff \sum_{j=1}^{i} \mu_j \leq \sum_{j=1}^{i} \lambda_j, \forall i \geq 1$.

Proof. (1) By definition, both the socles of $M(\mathfrak{m}^{\infty}_{\lambda})$ and $M(\mathfrak{m}^{\infty}_{\mu})$ are multiplicity-free. Thus, comparing the socles of $S_0[\lambda_1]$ and $S_0[\mu_1]$ gives $\lambda_1 = \mu_1$. The lemma then follows from an inductive argument.

(2) Suppose $M(\mathfrak{m}_{\mu}) \leq_{\text{deg}} M(\mathfrak{m}_{\lambda})$. By viewing \mathfrak{m}_{λ} and \mathfrak{m}_{μ} as multipartitions in \mathfrak{M}_n , we obtain by [7, Prop. 2.7] that for each $l \geq 1$,

$$\sum_{s=1}^{l} \widetilde{\mu}_s \geqslant \sum_{s=1}^{l} \widetilde{\lambda}_s,$$

where $\widetilde{\lambda} = (\widetilde{\lambda}_1, \widetilde{\lambda}_2, ...)$ and $\widetilde{\mu} = (\widetilde{\mu}_1, \widetilde{\mu}_2, ...)$ are the dual partition of λ and μ , respectively, that is, $\widetilde{\mu} \succeq \widetilde{\lambda}$. By [35, 1.1], $\mu \leq \lambda$.

3. Ringel-Hall algebra of the quiver Δ

In this section we introduce the Ringel-Hall algebra $\mathcal{H}(\Delta)$ of Δ (= Δ_n or Δ_∞) and the maps from homogeneous subspaces of $\mathcal{H}(\Delta_n)$ to those of $\mathcal{H}(\Delta_\infty)$ defined in [47, 6.1]. We also describe the images of basis elements of $\mathcal{H}(\Delta_n)$ under these maps.

The cyclic quiver Δ_n gives the $n \times n$ Cartan matrix $C_n = (a_{ij})_{i,j \in I}$ of type \widehat{A}_{n-1} , while Δ_{∞} defines the infinite Cartan matrix $C_{\infty} = (a_{ij})_{i,j \in \mathbb{Z}}$. Thus, we have the associated quantum enveloping algebras $\mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$ and $\mathbf{U}_v(\mathfrak{sl}_{\infty})$ which are $\mathbb{Q}(v)$ -algebras with generators $K_i^{\pm 1}, E_i, F_i, D^{\pm 1}$ $(i \in I = \mathbb{Z}/n\mathbb{Z})$ and $K_i^{\pm 1}, E_i, F_i$ $(i \in \mathbb{Z})$, respectively, and the quantum Serre relations. In particular, the relations involving the generator $D^{\pm 1}$ in $\mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$ are

$$DD^{-1} = 1 = D^{-1}D, K_iD = DK_i, DE_i = v^{\delta_{0,i}}E_iD, DF_i = v^{-\delta_{0,i}}F_iD, \forall i \in I;$$

see [2, Def. 3.16]. The subalgebra of $\mathbf{U}_{v}(\widehat{\mathfrak{sl}}_{n})$ generated by $K_{i}^{\pm 1}, E_{i}, F_{i}$ $(i \in I = \mathbb{Z}/n\mathbb{Z})$ is denoted by $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$; see [27, 1.1].

By [38, 40, 16], for $\mathfrak{p}, \mathfrak{m}_1, \ldots, \mathfrak{m}_t \in \mathfrak{M}$, there is a polynomial $\varphi^{\mathfrak{p}}_{\mathfrak{m}_1, \ldots, \mathfrak{m}_t}(q) \in \mathbb{Z}[q]$ (called Hall polynomial) such that for each finite field k,

$$\varphi^{\mathfrak{p}}_{\mathfrak{m}_{1},\ldots,\mathfrak{m}_{t}}(|k|) = F^{M_{k}(\mathfrak{p})}_{M_{k}(\mathfrak{m}_{1}),\ldots,M_{k}(\mathfrak{m}_{t})},$$

which is by definition the number of the filtrations

$$M_k(\mathfrak{p}) = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{t-1} \supseteq M_t = 0$$

such that $M_{s-1}/M_s \cong M_k(\mathfrak{m}_s)$ for all $1 \leq s \leq t$. By [39, Sect. 2], for each $\mathfrak{m} \in \mathfrak{M}$, there is a polynomial $a_{\mathfrak{m}}(q) \in \mathbb{Z}[q]$ such that for each finite field k,

$$a_{\mathfrak{m}}(|k|) = |\operatorname{Aut}_{k\Delta}(M_k(\mathfrak{m}))|.$$

Let $\mathcal{Z} = \mathbb{Z}[v, v^{-1}]$ be the Laurent polynomial ring over \mathbb{Z} in indeterminate v. By definition, the (twisted generic) *Ringel-Hall algebra* $\mathcal{H}(\Delta)$ of Δ is the free \mathcal{Z} -module with basis $\{u_{\mathfrak{m}} \mid \mathfrak{m} \in \mathfrak{M}\}$ and multiplication given by

(3.0.1)
$$u_{\mathfrak{m}}u_{\mathfrak{m}'} = v^{\langle \dim M(\mathfrak{m}), \dim M(\mathfrak{m}') \rangle} \sum_{\mathfrak{p} \in \mathfrak{M}} \varphi_{\mathfrak{m}, \mathfrak{m}'}^{\mathfrak{p}}(v^2) u_{\mathfrak{p}}.$$

In practice, we also write $u_{\mathfrak{m}} = u_{[M(\mathfrak{m})]}$ in order to make certain calculations in terms of modules. Furthermore, for each $\mathbf{d} \in \mathbb{N}I$, we simply write $u_{\mathbf{d}} = u_{[S_{\mathbf{d}}]}$.

For each $i \in I$, set $u_i = u_{[S_i]}$. We then denote by $\mathcal{C}(\Delta)$ the subalgebra of $\mathcal{H}(\Delta)$ generated by the divided power $u_i^{(t)} = u_i^t / [t]!$, $i \in I$ and $t \ge 1$, called the *composition algebra* of Δ , where

(3.0.2)
$$[t]! = [t][t-1]\cdots[1] \text{ with } [m] = (v^m - v^{-m})/(v - v^{-1}).$$

Moreover, both $\mathcal{H}(\Delta)$ and $\mathcal{C}(\Delta)$ are $\mathbb{N}I$ -graded:

(3.0.3)
$$\mathcal{H}(\Delta) = \bigoplus_{\mathbf{d} \in \mathbb{N}I} \mathcal{H}(\Delta)_{\mathbf{d}} \text{ and } \mathcal{C}(\Delta) = \bigoplus_{\mathbf{d} \in \mathbb{N}I} \mathcal{C}(\Delta)_{\mathbf{d}}$$

where $\mathcal{H}(\Delta)_{\mathbf{d}}$ is spanned by all $u_{\mathfrak{m}}$ with $\mathfrak{m} \in \mathfrak{M}^{\mathbf{d}}$ and $\mathcal{C}(\Delta)_{\mathbf{d}} = \mathcal{C}(\Delta) \cap \mathcal{H}(\Delta)_{\mathbf{d}}$. Since the Auslander-Reiten translate τ : Rep⁰ $\Delta \to \operatorname{Rep}^{0}\Delta$ is an auto-equivalence, it induces an automorphism τ : $\mathcal{H}(\Delta) \to \mathcal{H}(\Delta), u_{\mathfrak{m}} \mapsto u_{\tau\mathfrak{m}}$. We also consider the $\mathbb{Q}(v)$ -algebras

$$\mathcal{H}(\Delta) = \mathcal{H}(\Delta) \otimes_{\mathcal{Z}} \mathbb{Q}(v) \text{ and } \mathcal{C}(\Delta_n) = \mathcal{C}(\Delta_n) \otimes_{\mathcal{Z}} \mathbb{Q}(v).$$

Remark 3.1. We remark that the Hall algebra of Δ defined in [47] is the opposite algebra of $\mathcal{H}(\Delta)$ given here with v being replaced by v^{-1} . Thus, v and v^{-1} should be swaped when comparing with the formulas in [47].

Following [38], $\mathcal{C}(\Delta_{\infty}) = \mathcal{H}(\Delta_{\infty})$, and there is an isomorphism $\mathbf{U}_{v}^{+}(\mathfrak{sl}_{\infty}) \cong \mathcal{H}(\Delta_{\infty})$ taking $E_{i} \mapsto u_{i}, \forall i \in I_{\infty} = \mathbb{Z}$. But, for $n \geq 2$, $\mathcal{C}(\Delta_{n})$ is a proper subalgebra of $\mathcal{H}(\Delta_{n})$. By [40],

$$\mathbf{U}_v^+(\mathfrak{sl}_n) \cong \mathcal{C}(\Delta_n), \ E_i \longmapsto u_i, \ \forall i \in I_n.$$

By [41, Th. 2.2], $\mathcal{H}(\Delta_n)$ is decomposed into the tensor product of $\mathcal{C}(\Delta_n)$ and a polynomial ring in infinitely many indeterminates which are central elements in $\mathcal{H}(\Delta_n)$. Such central elements have been explicitly constructed in [19]. More precisely, for each $t \ge 1$, let

(3.1.1)
$$\boldsymbol{c}_t = (-1)^t v^{-2nt} \sum_{\mathfrak{m}} (-1)^{\dim \operatorname{End}(M(\mathfrak{m}))} a_{\mathfrak{m}}(v^2) u_{\mathfrak{m}} \in \mathcal{H}(\Delta_n),$$

where the sum is taken over all $\mathfrak{m} \in \mathfrak{M}_n$ such that $\dim M(\mathfrak{m}) = t\delta$ with $\delta = (1, \ldots, 1) \in \mathbb{N}I_n$, and soc $M(\mathfrak{m})$ is square-free, i.e., $\dim \operatorname{soc} M(\mathfrak{m}) \leq \delta$. The following result is proved in [19].

Theorem 3.2. The elements c_m are central in $\mathcal{H}(\Delta_n)$. Moreover, there is a decomposition

$$\mathcal{H}(\Delta_n) = \mathcal{C}(\Delta_n) \otimes_{\mathbb{Q}(v)} \mathbb{Q}(v)[c_1, c_2, \dots],$$

where $\mathbb{Q}(v)[\mathbf{c}_1, \mathbf{c}_2, \dots]$ is the polynomial algebra in \mathbf{c}_t for $t \ge 1$. In particular, $\mathcal{H}(\Delta_n)$ is generated by u_i and \mathbf{c}_t for $i \in I_n$ and $t \ge 1$.

For each $\mathfrak{m} \in \mathfrak{M}$, set $d(\mathfrak{m}) = \dim M(\mathfrak{m})$, $\mathbf{d}(\mathfrak{m}) = \dim M(\mathfrak{m})$ and define

(3.2.1)
$$\widetilde{u}_{\mathfrak{m}} = v^{\dim \operatorname{End}_{k\Delta}(M(\mathfrak{m})) - d(\mathfrak{m})} u_{\mathfrak{m}}.$$

Then $\{\widetilde{u}_{\mathfrak{m}} \mid \mathfrak{m} \in \mathfrak{M}\}\$ is also a \mathcal{Z} -basis of $\mathcal{H}(\Delta)$ which plays a role in the construction of the canonical basis. In particular,

$$\widetilde{u}_i = u_i$$
 for each $i \in I$ and $\widetilde{u}_{\mathbf{d}} = v^{\sum_i (d_i^2 - d_i)} u_{\mathbf{d}}$ for each $\mathbf{d} \in \mathbb{N}I$.

Consider the map $\pi : \mathbb{Z}I_{\infty} \to \mathbb{Z}I_n, \mathbf{d} \mapsto \bar{\mathbf{d}}$, where $\pi(\mathbf{d}) = \bar{\mathbf{d}} = (d_{\bar{i}})$ is defined by

$$d_{\overline{i}} = \sum_{j \in \overline{i}} d_j, \ \forall \, \overline{i} \in I_n = \mathbb{Z}/n\mathbb{Z}.$$

In particular, for each representation $M \in \operatorname{Rep} \Delta_{\infty}$, $\dim \mathscr{F}(M) = \pi(\dim M)$.

In the following we briefly recall from [47, 6.1] the \mathcal{Z} -linear map

$$\gamma_{\mathbf{d}}: \mathcal{H}(\Delta_n)_{\bar{\mathbf{d}}} \longrightarrow \mathcal{H}(\Delta_\infty)_{\mathbf{d}}$$

for each $\mathbf{d} \in \mathbb{N}I_{\infty}$. These maps play a crucial role in defining an action of $\mathcal{H}(\Delta_n)$ on the Fock space later on.

Let $k = \mathbb{F}_q$ be a finite filed with q elements and let $V = \bigoplus_{i \in I} V_i$ be an I-graded \mathbb{F}_q -vector space with dimension vector \mathbf{d} . Then we define $\mathbb{C}_{G_V}(E_V)$ to be the set of G_V -invariant functions $E_V \to \mathbb{C}$, which is a vector space over \mathbb{C} . Then $\mathcal{H}(\Delta)_{\mathbf{d}} \otimes_{\mathcal{Z}} \mathbb{C}$ (at $v = \sqrt{q}$) can be identified with $\mathbb{C}_{G_V}(E_V)$ via taking $u_{[(V,x)]}$ to the characteristic function of the G_V -orbit of x in E_V . Now take $\mathbf{d} \in \mathbb{N}I_{\infty}$ and let $V = \bigoplus_{i \in \mathbb{Z}} V_i$ be an I_{∞} -graded \mathbb{F}_q -vector space of dimension vector \mathbf{d} . This gives an I_n -graded space $\overline{V} = \bigoplus_{i \in I_n} V_i$ of dimension vector \mathbf{d} with $\overline{V}_i = \bigoplus_{j \in \overline{i}} V_j$, $\forall i \in I_n$. Moreover, \overline{V} admits a filtration by the subspaces

$$\overline{V}_{\geqslant i} = \bigoplus_{j \geqslant i} V_j, \; \forall \, i \in \mathbb{Z}.$$

Then the associated graded space $\bigoplus_{i \in \mathbb{Z}} \overline{V}_{\geq i}/\overline{V}_{\geq i-1}$ is naturally identified with the \mathbb{Z} -graded space V. Set

$$E_{\overline{V},V} = \{ x \in E_{\overline{V}} \mid x(\overline{V}_{\geqslant i}) \subseteq \overline{V}_{i+1} \} \subset E_{\overline{V}}.$$

This gives a map $p : E_{\overline{V},V} \to E_V$, which takes a representation of Δ_n in $E_{\overline{V}}$ to the induced representation of Δ_{∞} in E_V , and the embedding $\iota : E_{\overline{V},V} \to E_{\overline{V}}$. By specializing v to \sqrt{q} , the map $\gamma_{\mathbf{d}}$ is then given by

$$(\gamma_{\mathbf{d}} \otimes_{\mathcal{Z}} \mathbb{C}) \mid_{v=\sqrt{q}} : \mathbb{C}_{G_{\overline{V}}}(E_{\overline{V}}) \longrightarrow \mathbb{C}_{G_{V}}(E_{V}), \ f \longmapsto \sqrt{q}^{h(\mathbf{d})} p_! \iota^*(f),$$

where $h(\mathbf{d}) = \sum_{i < j, \overline{i} = \overline{j}} d_i (d_{j+1} - d_j)$. Here we identify $\mathcal{H}(\Delta_n)_{\mathbf{d}} \otimes_{\mathcal{Z}} \mathbb{C}$ with $\mathbb{C}_{G_{\overline{V}}}(E_{\overline{V}})$ and $\mathcal{H}(\Delta_{\infty})_{\mathbf{d}} \otimes_{\mathcal{Z}} \mathbb{C}$ with $\mathbb{C}_{G_V}(E_V)$.

The first two statements in the following lemma are taken from [47, Sect. 6.1], and the third one follows from the isomorphism $\tau : \mathcal{H}(\Delta_{\infty}) \to \mathcal{H}(\Delta_{\infty})$.

Lemma 3.3. (1) For each $\mathbf{d} \in \mathbb{N}I_{\infty}$, $\gamma_{\mathbf{d}}(\widetilde{u}_{\bar{\mathbf{d}}}) = v^{-h(\mathbf{d})}\widetilde{u}_{\mathbf{d}}$. (2) Fix $\alpha, \beta \in \mathbb{N}I_n$ with $\bar{\mathbf{d}} = \alpha + \beta$. Then for $x \in \mathcal{H}(\Delta_n)_{\alpha}$ and $y \in \mathcal{H}(\Delta_n)_{\beta}$,

(3.3.1)
$$\sum_{\mathbf{a},\mathbf{b}} v^{\kappa(\mathbf{a},\mathbf{b})} \gamma_{\mathbf{a}}(x) \gamma_{\mathbf{b}}(y) = \gamma_{\mathbf{d}}(xy),$$

where the sum is taken over all pairs $\mathbf{a}, \mathbf{b} \in \mathbb{N}I_{\infty}$ satisfying $\mathbf{a} + \mathbf{b} = \mathbf{d}$, $\bar{\mathbf{a}} = \alpha$, and $\bar{\mathbf{b}} = \beta$, and $\kappa(\mathbf{a}, \mathbf{b}) = \sum_{i>j, \bar{i}=\bar{j}} a_i(2b_j - b_{j-1} - b_{j+1})$.

(3) For each $\mathbf{d} \in \mathbb{N}I_{\infty}$ and $\mathfrak{m} \in \mathfrak{M}_{n}^{\mathbf{d}}, \gamma_{\tau^{n}(\mathbf{d})}(\widetilde{u}_{\mathfrak{m}}) = \tau^{n}(\gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{m}})).$

We now describe the images of the basis elements $\widetilde{u}_{\mathfrak{m}}$ of $\mathcal{H}(\Delta_n)_{\bar{\mathbf{d}}}$ under $\gamma_{\mathbf{d}}$.

Proposition 3.4. Let $\mathbf{d} \in \mathbb{N}I_{\infty}$ and $\mathfrak{m} \in \mathfrak{M}_n$ be such that $\alpha := \dim M(\mathfrak{m}) = \overline{\mathbf{d}}$. Then

$$\gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{m}}) \in \sum_{\mathfrak{z} \in \mathfrak{M}_{\infty}, \, \mathscr{F}(\mathfrak{z}) \leqslant_{\mathrm{deg}} \mathfrak{m}} \mathcal{Z}\widetilde{u}_{\mathfrak{z}}$$

Proof. Consider the radical filtration of $M = M(\mathfrak{m})$

$$M = \operatorname{rad}^{0} M \supseteq \operatorname{rad} M (= \operatorname{rad}^{1} M) \supseteq \cdots \supseteq \operatorname{rad}^{\ell-1} M \supseteq \operatorname{rad}^{\ell} M = 0$$

with rad ${}^{s-1}M/\operatorname{rad}{}^sM \cong S_{\alpha_s}$, where ℓ is the Loewy length of M and $\alpha_s \in \mathbb{N}I_n$ for $1 \leq s \leq \ell$. Then $M = S_{\alpha_1} * \cdots * S_{\alpha_\ell}$. Moreover, by [8, Sect. 9],

$$\widetilde{u}_{\alpha_1}\cdots \widetilde{u}_{\alpha_\ell} = \widetilde{u}_{\mathfrak{m}} + \sum_{\mathfrak{p} <_{\mathrm{deg}} \mathfrak{m}} f_{\mathfrak{m},\mathfrak{p}} \widetilde{u}_{\mathfrak{p}}, \ \text{where} \ f_{\mathfrak{m},\mathfrak{p}} \in \mathcal{Z}.$$

On the one hand, by induction with respect to the order \leq_{deg} , we may assume that for each $\mathfrak{p} \in \mathfrak{M}_n^{\mathbf{d}}$ with $\mathfrak{p} <_{\text{deg}} \mathfrak{m}$, $\gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{p}})$ is a \mathcal{Z} -linear combination of $\widetilde{u}_{\mathfrak{y}}$ with $\mathfrak{y} \in \mathfrak{M}_{\infty}$ satisfying $\mathscr{F}(\mathfrak{y}) \leq_{\text{deg}} \mathfrak{p}$. Therefore,

(3.4.1)
$$\gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{m}}) = \gamma_{\mathbf{d}}(\widetilde{u}_{\alpha_1}\cdots\widetilde{u}_{\alpha_\ell}) + x,$$

where $x = -\sum_{\mathfrak{p} <_{\deg} \mathfrak{m}} f_{\mathfrak{m},\mathfrak{p}} \gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{p}})$ is a \mathcal{Z} -linear combination of $\widetilde{u}_{\mathfrak{z}}$ with $\mathscr{F}(\mathfrak{z}) <_{\deg} \mathfrak{m}$.

On the other hand, by applying (3.3.1) inductively, we obtain

(3.4.2)
$$\gamma_{\mathbf{d}}(\widetilde{u}_{\alpha_{1}}\cdots\widetilde{u}_{\alpha_{\ell}}) = \sum_{\mathbf{a}_{1},\dots,\mathbf{a}_{\ell}} v^{\sum_{s< t}\kappa(\mathbf{a}_{s},\mathbf{a}_{t})-\sum_{s}h(\mathbf{a}_{s})}\widetilde{u}_{\mathbf{a}_{1}}\cdots\widetilde{u}_{\mathbf{a}_{\ell}}$$

where the sum is taken over all sequences $\mathbf{a}_1, \ldots, \mathbf{a}_\ell \in \mathbb{N}I_\infty$ satisfying

 $\mathbf{a}_1 + \cdots + \mathbf{a}_{\ell} = \mathbf{d}$ and $\overline{\mathbf{a}_s} = \alpha_s, \forall 1 \leq s \leq \ell.$

By the definition, each term $\widetilde{u}_{\mathbf{a}_1} \cdots \widetilde{u}_{\mathbf{a}_\ell}$ is a \mathcal{Z} -linear combination of $\widetilde{u}_{\mathfrak{y}}$ such that $M(\mathfrak{y})$ admits a filtration

$$M(\mathfrak{y}) = X_0 \supset X_1 \supset \cdots \supset X_{\ell-1} \supset X_\ell = 0$$

satisfying $X_{s-1}/X_s \cong S_{\mathbf{a}_s}$ for all $1 \leq s \leq \ell$. Applying the exact functor \mathscr{F} gives a filtration of $\mathscr{F}(M(\mathfrak{y}))$

$$\mathscr{F}(M(\mathfrak{y})) = \mathscr{F}(X_0) \supset \mathscr{F}(X_1) \supset \cdots \supset \mathscr{F}(X_{\ell-1}) \supset \mathscr{F}(X_\ell) = 0$$

such that

$$\mathscr{F}(X_{s-1})/\mathscr{F}(X_s) \cong \mathscr{F}(X_{s-1}/X_s) \cong S_{\alpha_s}, \ \forall 1 \leqslant s \leqslant \ell.$$

Therefore,

$$\mathscr{F}(M(\mathfrak{g})) = M(\mathscr{F}(\pi)) \leqslant_{\deg} S_{\alpha_1} * \cdots * S_{\alpha_\ell} = M(\mathfrak{m})$$

that is, $\mathscr{F}(\mathfrak{y}) \leq_{\text{deg}} \mathfrak{m}$.

In conclusion, we obtain that

$$\gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{m}}) \in \sum_{\mathfrak{z} \in \mathfrak{M}_{\infty}, \, \mathscr{F}(\mathfrak{z}) \leqslant_{\mathrm{deg}} \mathfrak{m}} \mathcal{Z}\widetilde{u}_{\mathfrak{z}}.$$

Fix $\lambda \in \Pi$ and write

$$\mathbf{d}(\lambda) = \mathbf{dim} \, M(\mathfrak{m}_{\lambda}^{\infty}) \in \mathbb{N}I_{\infty} \text{ and } \alpha(\lambda) = \mathbf{dim} \, M(\mathfrak{m}_{\lambda}) \in \mathbb{N}I_{n}$$

By the definition of $M(\mathfrak{m}_{\lambda}^{\infty})$ and $M(\mathfrak{m}_{\lambda})$, the radical filtration of $\widetilde{M} = M(\mathfrak{m}_{\lambda}^{\infty})$

$$\widetilde{M} = \operatorname{rad}^{0} \widetilde{M} \supseteq \operatorname{rad} \widetilde{M} \supseteq \cdots \supseteq \operatorname{rad}^{\ell-1} \widetilde{M} \supseteq \operatorname{rad}^{\ell} \widetilde{M} = 0$$

gives rise to the radical filtration of $M(\mathfrak{m}_{\lambda}) = \mathscr{F}(\widetilde{M})$

$$M(\mathfrak{m}_{\lambda}) = \mathscr{F}(\mathrm{rad}^{0}\widetilde{M}) \supseteq \mathscr{F}(\mathrm{rad}^{\widetilde{M}}) \supseteq \cdots \supseteq \mathscr{F}(\mathrm{rad}^{\ell-1}\widetilde{M}) \supseteq \mathscr{F}(\mathrm{rad}^{\ell}\widetilde{M}) = 0,$$

that is, $\mathscr{F}(\operatorname{rad}^{s}\widetilde{M}) = \operatorname{rad}^{s}(M(\mathfrak{m}_{\lambda}))$ for $1 \leq s \leq \ell$. Let $\mathbf{d}(\lambda)_{s} \in \mathbb{N}I_{\infty}$ and $\alpha(\lambda)_{s} \in \mathbb{N}I_{n}, 1 \leq s \leq \ell$, be such that

$$\operatorname{rad}^{s-1}\widetilde{M}/\operatorname{rad}^{s}\widetilde{M} \cong S_{\mathbf{d}(\lambda)_{s}} \text{ and } \operatorname{rad}^{s-1}M(\mathfrak{m}_{\lambda})/\operatorname{rad}^{s}M(\mathfrak{m}_{\lambda}) \cong S_{\alpha(\lambda)_{s}}.$$

Then $\overline{\mathbf{d}(\lambda)_s} = \alpha(\lambda)_s$ for $1 \leq s \leq \ell$. Applying (3.4.1) and (3.4.2) to \mathfrak{m}_{λ} gives the following result.

Corollary 3.5. (1) Let $\lambda \in \Pi$ and keep the notation above. Then

$$\gamma_{\mathbf{d}(\lambda)}(\widetilde{u}_{\mathfrak{m}_{\lambda}}) \in v^{\theta(\lambda)}\widetilde{u}_{\mathfrak{m}_{\lambda}^{\infty}} + \sum_{\mathfrak{z} \in \mathfrak{M}_{\infty}, \, \mathscr{F}(\mathfrak{z}) <_{\mathrm{deg}} \mathfrak{m}_{\lambda}} \mathcal{Z}\widetilde{u}_{\mathfrak{z}}$$

where $\theta(\lambda) = \sum_{s < t} \kappa(\mathbf{d}(\lambda)_s, \mathbf{d}(\lambda)_t) - \sum_{s=1}^{\ell} h(\mathbf{d}(\lambda)_s).$ (2) Let $\mathbf{d} \in \mathbb{N}I_{\infty}$ with $\overline{\mathbf{d}} = \alpha(\lambda)$. If $\mathbf{d} = \tau^{rm}(\mathbf{d}(\lambda))$ for some $r \in \mathbb{Z}$, then

$$\gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{m}_{\lambda}}) \in v^{\theta(\lambda)}\widetilde{u}_{\tau^{rm}(\mathfrak{m}_{\lambda}^{\infty})} + \sum_{\mathfrak{z}\in\mathfrak{M}_{\infty},\,\mathscr{F}(\mathfrak{z})<_{\mathrm{deg}}\mathfrak{m}_{\lambda}}\mathcal{Z}\widetilde{u}_{\mathfrak{z}}$$

8

Otherwise,

$$\gamma_{\mathbf{d}}(\widetilde{u}_{\mathfrak{m}_{\lambda}}) \in \sum_{\mathfrak{z} \in \mathfrak{M}_{\infty}^{\mathbf{d}}, \, \mathscr{F}(\mathfrak{z}) <_{\mathrm{deg}} \mathfrak{m}_{\lambda}} \mathcal{Z}\widetilde{u}_{\mathfrak{z}}$$

In the following we briefly recall the canonical basis of $\mathcal{H}(\Delta)$ for $\Delta = \Delta_n$ or Δ_∞ . By [31] and [47, Prop. 7.5], there is a semilinear ring involution $\iota : \mathcal{H}(\Delta) \to \mathcal{H}(\Delta)$ taking $v \mapsto v^{-1}$ and $\tilde{u}_{\mathbf{d}} \mapsto \tilde{u}_{\mathbf{d}}$ for all $\mathbf{d} \in \mathbb{Z}I$. It is often called the bar-involution, usually written as $\bar{x} = \iota(x)$. The canonical basis (or the global crystal basis in the sense of Kashiwara) $\mathbf{B} := \{b_{\mathfrak{m}} \mid \mathfrak{m} \in \mathfrak{M}\}$ for $\mathcal{H}(\Delta)$ (at $v = \infty$) can be characterized as follows:

(3.5.1)
$$\overline{b}_{\mathfrak{m}} = b_{\mathfrak{m}}, \ b_{\mathfrak{m}} \in \widetilde{u}_{\mathfrak{m}} + \sum_{\mathfrak{p} <_{\deg} \mathfrak{m}} v^{-1} \mathbb{Z}[v^{-1}] \widetilde{u}_{\mathfrak{p}};$$

see [31]. The canonical basis elements $b_{\mathfrak{m}}$ also admit a geometric characterization given in [32, 47]. Let $H^i_{\mathcal{O}_{\mathfrak{p}}}(IC_{\mathcal{O}_{\mathfrak{m}}})$ be the stalk at a point of $\mathcal{O}_{\mathfrak{p}}$ of the *i*-th intersection cohomology sheaf of the closure $\overline{\mathcal{O}_{\mathfrak{m}}}$ of $\mathcal{O}_{\mathfrak{m}}$. Then

$$b_{\mathfrak{m}} = \sum_{\substack{i \in \mathbb{N} \\ \mathfrak{p} \leq_{\deg} \mathfrak{m}}} v^{i - \dim \mathcal{O}_{\mathfrak{m}} + \dim \mathcal{O}_{\mathfrak{p}}} \dim H^{i}_{\mathcal{O}_{\mathfrak{p}}}(IC_{\mathcal{O}_{\mathfrak{m}}})\widetilde{u}_{\mathfrak{p}}.$$

For the cyclic quiver case, by [33], the subset of **B**

$$\mathbf{B}^{\mathrm{ap}} := \{ b_{\mathfrak{m}} \mid \mathfrak{m} \in \mathfrak{M}_n^{\mathrm{ap}} \}$$

is the canonical basis of $\mathcal{C}(\Delta_n)$, where $\mathfrak{M}_n^{\mathrm{ap}}$ denotes the set of aperiodic multisegments, that is, those multisegments $\mathfrak{m} = \sum_{i \in I_n, l \ge 1} m_{i,l}[i,l)$ satisfying that for each $l \ge 1$, there is some $i \in I_n$ such that $m_{i,l} = 0$. In other words, \mathbf{B}^{ap} is the canonical basis of $\mathbf{U}_v^{\pm}(\widehat{\mathfrak{sl}}_n)$. Note that for each $\lambda = (\lambda_1, \ldots, \lambda_m) \in \Pi$, the corresponding multisegment \mathfrak{m}_{λ} is aperiodic if and only if λ is *n*-regular which, by definition, satisfies $\lambda_s > \lambda_{s+n-1}$ for $1 \le s \le s+n-1 \le m$.

4. DOUBLE RINGEL-HALL ALGEBRAS AND HIGHEST WEIGHT MODULES

In this section we follows [46, 6] to define the double Ringel-Hall algebra $\mathcal{D}(\Delta)$ of the quiver $\Delta = \Delta_n$ or Δ_{∞} and study the irreducible highest weight modules of $\mathcal{D}(\Delta_n)$ associated with integral dominant weights in terms of a quantized generalized Kac-Moody algebra.

The Ringel-Hall algebra $\mathcal{H}(\Delta)$ of Δ can be extended to a Hopf algebra $\mathcal{D}(\Delta)^{\geq 0}$ which is a $\mathbb{Q}(v)$ -vector space with a basis $\{u_{\mathfrak{m}}^+K_{\alpha} \mid \alpha \in \mathbb{Z}I, \mathfrak{m} \in \mathfrak{M}\}$; see [38, 15, 46] or [6, Prop. 1.5.3]. Its algebra structure is given by

(4.0.2)
$$K_{\alpha}K_{\beta} = K_{\alpha+\beta}, \quad K_{\alpha}u_{\mathfrak{m}}^{+} = v^{(\mathbf{d}(\mathfrak{m}),\alpha)}u_{\mathfrak{m}}^{+}K_{\alpha}$$
$$u_{\mathfrak{m}}^{+}u_{\mathfrak{m}'}^{+} = \sum_{\mathfrak{p}\in\mathfrak{M}} v^{\langle \mathbf{d}(\mathfrak{m}),\mathbf{d}(\mathfrak{m}')\rangle}\varphi_{\mathfrak{m},\mathfrak{m}'}^{\mathfrak{p}}(v^{2})u_{\mathfrak{p}}^{+},$$

where $\mathfrak{m}, \mathfrak{m}' \in \mathfrak{M}$ and $\alpha, \beta \in \mathbb{Z}I$, and its coalgebra structure is given by (4.0.3)

$$\Delta(u_{\mathfrak{m}}^{+}) = \sum_{\mathfrak{m}',\mathfrak{m}''\in\mathfrak{M}} v^{\langle \mathbf{d}(\mathfrak{m}'),\mathbf{d}(\mathfrak{m}'')\rangle} \frac{\mathfrak{a}_{\mathfrak{m}'}(v^{2})\mathfrak{a}_{\mathfrak{m}''}(v^{2})}{\mathfrak{a}_{\mathfrak{m}}(v^{2})} \varphi_{\mathfrak{m}',\mathfrak{m}''}^{\mathfrak{m}}(v^{2})u_{\mathfrak{m}''}^{+} \otimes u_{\mathfrak{m}'}^{+}K_{\mathbf{d}(\mathfrak{m}'')},$$
$$\Delta(K_{\alpha}) = K_{\alpha} \otimes K_{\alpha}, \quad \varepsilon(u_{\mathfrak{m}}^{+}) = 0 \quad (\mathfrak{m} \neq 0), \quad \varepsilon(K_{\alpha}) = 1,$$

where $\mathfrak{m} \in \mathfrak{M}$ and $\alpha \in \mathbb{Z}I$. We refer to [46] or [6] for the definition of the antipode.

Dually, there is a Hopf algebra $\mathcal{D}(\Delta)^{\leq 0}$ with basis $\{K_{\alpha}u_{\mathfrak{m}}^{-} \mid \alpha \in \mathbb{Z}I, \mathfrak{m} \in \mathfrak{M}\}$. In particular, the multiplication is given by

(4.0.4)
$$K_{\alpha}K_{\beta} = K_{\alpha+\beta}, \quad K_{\alpha}u_{\overline{\mathfrak{m}}} = v^{-(\mathbf{d}(\mathfrak{m}),\alpha)}u_{\overline{\mathfrak{m}}}K_{\alpha},$$
$$u_{\overline{\mathfrak{m}}}^{-}u_{\overline{\mathfrak{m}}'}^{-} = \sum_{\mathfrak{p}\in\mathfrak{M}} v^{\langle \mathbf{d}(\mathfrak{m}'),\mathbf{d}(\mathfrak{m})\rangle}\varphi_{\mathfrak{m}',\mathfrak{m}}^{\mathfrak{p}}(v^{2})u_{\overline{\mathfrak{p}}}^{-},$$

where $\mathfrak{m}, \mathfrak{m}' \in \mathfrak{M}$ and $\alpha, \beta \in \mathbb{Z}I$. The comultiplication and the counit are given by

(4.0.5)
$$\Delta(u_{\mathfrak{m}}^{-}) = \sum_{\mathfrak{m}',\mathfrak{m}''\in\mathfrak{M}} v^{\langle \mathbf{d}(\mathfrak{m}'),\mathbf{d}(\mathfrak{m}'')\rangle} \frac{\mathfrak{a}_{\mathfrak{m}'}\mathfrak{a}_{\mathfrak{m}''}}{\mathfrak{a}_{\mathfrak{m}}} \varphi_{\mathfrak{m}',\mathfrak{m}''}^{\mathfrak{m}}(v^{2}) u_{\mathfrak{m}''}^{-} K_{-\mathbf{d}(\mathfrak{m}')} \otimes u_{\mathfrak{m}'}^{-} \\\Delta(K_{\alpha}) = K_{\alpha} \otimes K_{\alpha}, \ \varepsilon(u_{\mathfrak{m}}^{-}) = 0 \ (\mathfrak{m} \neq 0), \ \varepsilon(K_{\alpha}) = 1,$$

where $\alpha \in \mathbb{Z}I$ and $\mathfrak{m} \in \mathfrak{M}$.

It is routine to check that the bilinear form $\psi : \mathcal{D}(\Delta)^{\geq 0} \times \mathcal{D}(\Delta)^{\leq 0} \to \mathbb{Q}(v)$ defined by

(4.0.6)
$$\psi(K_{\alpha}u_{\mathfrak{m}}^{+}, K_{\beta}u_{\mathfrak{m}'}^{-}) = v^{(\alpha,\beta) - \langle \mathbf{d}(\mathfrak{m}), \mathbf{d}(\mathfrak{m}) \rangle + 2d(\mathfrak{m})} \frac{\delta_{\mathfrak{m},\mathfrak{m}'}}{\mathfrak{a}_{\mathfrak{m}}(v^{2})}$$

is a skew-Hopf pairing in the sense of [24]; see, for example, [6, Prop. 2.1.3].

Following [46] or [6, §2.1], with the triple $(\mathcal{D}(\Delta)^{\geq 0}, \mathcal{D}(\Delta)^{\leq 0}, \psi)$ we obtain the associated reduced double Ringel-Hall algebra $\mathcal{D}(\Delta)$ which inherits a Hopf algebra structure from those of $\mathcal{D}(\Delta)^{\geq 0}$ and $\mathcal{D}(\Delta)^{\leq 0}$. In particular, for all elements $x \in \mathcal{D}(\Delta)^{\geq 0}$ and $y \in \mathcal{D}(\Delta)^{\leq 0}$, we have in $\mathcal{D}(\Delta)$ the following relations

(4.0.7)
$$\sum \psi(x_1, y_1) y_2 x_2 = \sum \psi(x_2, y_2) x_1 y_1,$$

where $\Delta(x) = \sum x_1 \otimes x_2$ and $\Delta(y) = \sum y_1 \otimes y_2$ (Here we use the Sweedler notation). Moreover, $\mathcal{D}(\Delta)$ admits a triangular decomposition

(4.0.8)
$$\mathcal{D}(\Delta) = \mathcal{D}(\Delta)^+ \otimes \mathcal{D}(\Delta)^0 \otimes \mathcal{D}(\Delta)^-,$$

where $\mathcal{D}(\Delta)^{\pm}$ are subalgebras generated by $u_{\mathfrak{m}}^{\pm}$ ($\mathfrak{m} \in \mathfrak{M}$), and $\mathcal{D}(\Delta)^{0}$ is generated by K_{α} ($\alpha \in \mathbb{Z}I$). Thus, $\mathcal{D}(\Delta)^{0}$ is identified with the Laurent polynomial ring $\mathbb{Q}(v)[K_{i}^{\pm 1}: i \in I]$,

$$\mathcal{H}(\Delta) = \mathcal{H}(\Delta) \otimes_{\mathcal{Z}} \mathbb{Q}(v) \xrightarrow{\sim} \mathcal{D}(\Delta)^+, \quad u_{\mathfrak{m}} \longmapsto u_{\mathfrak{m}}^+,$$
$$\mathcal{H}(\Delta)^{\mathrm{op}} = \mathcal{H}(\Delta)^{\mathrm{op}} \otimes_{\mathcal{Z}} \mathbb{Q}(v) \xrightarrow{\sim} \mathcal{D}(\Delta)^-, \quad u_{\mathfrak{m}} \longmapsto u_{\mathfrak{m}}^-,$$

For $i \in I$, $\alpha \in \mathbb{N}I$ and $\mathfrak{m} \in \mathfrak{M}$, we write

$$u_i^{\pm} = u_{[S_i]}^{\pm}, \ u_{\alpha}^{\pm} = u_{[S_{\alpha}]}^{\pm}, \ \text{ and } \ \widetilde{u}_{\mathfrak{m}}^{\pm} = v^{\dim \operatorname{End}_{\Delta}(M(\mathfrak{m})) - \dim M(\mathfrak{m})} u_{\mathfrak{m}}^{\pm}.$$

The canonical basis of $\mathcal{H}(\Delta)$ in (3.5.1) gives the canonical bases $\mathbf{B}^{\pm} := \{b_{\mathfrak{m}}^{\pm} \mid \mathfrak{m} \in \mathfrak{M}\}\$ of $\mathcal{D}(\Delta)^{\pm}$ satisfying

(4.0.9)
$$b_{\mathfrak{m}}^{\pm} \in \widetilde{u}_{\mathfrak{m}}^{\pm} + \sum_{\mathfrak{p} <_{\deg} \mathfrak{m}} v^{-1} \mathbb{Z}[v^{-1}] \widetilde{u}_{\mathfrak{p}}^{\pm}.$$

It is known that $\mathcal{D}(\Delta_{\infty})$ is generated by $u_i^{\pm}, K_i^{\pm 1}$ $(i \in \mathbb{Z})$ and is isomorphic to $\mathbf{U}_v(\mathfrak{sl}_{\infty})$. By [40], the $\mathbb{Q}(v)$ -subalgebra of $\mathcal{D}(\Delta_n)$ generated by $u_i^{\pm}, K_i^{\pm 1}$ $(i \in I_n = \mathbb{Z}/n\mathbb{Z})$ is isomorphic to $\mathbf{U}'_v(\widehat{\mathfrak{sl}}_n)$, while $\mathcal{D}(\Delta_n)$ is isomorphic to $\mathbf{U}_v(\widehat{\mathfrak{gl}}_n)$; see [42, 21, 6]. From now on, we write for notational simplicity,

$$\mathcal{D}(\infty) = \mathcal{D}(\Delta_{\infty})$$
 and $\mathcal{D}(n) = \mathcal{D}(\Delta_n)$.

Remarks 4.1. (1) The construction of $\mathcal{D}(n)$ is slightly different from that in [6, §2.1]. In particular, the K_i here play a role as $\widetilde{K}_i = K_i K_{i+1}^{-1}$ there. In particular, they do not satisfy the equality $K_0 K_1 \cdots K_{n-1} = 1$.

(2) We can extend $\mathcal{D}(n)$ to the $\mathbb{Q}(v)$ -algebra $\widehat{\mathcal{D}}(n)$ by adding new generators $D^{\pm 1}$ with relations

$$DD^{-1} = 1 = D^{-1}D, \ K_i D = DK_i, \ DE_i = v^{\delta_{0,i}} E_i D, \ DF_i = v^{-\delta_{0,i}} F_i D, \ Du_{\mathfrak{m}}^{\pm} = v^{\pm a_0} u_{\mathfrak{m}}^{\pm} D$$

for all $i \in I_n$ and $\mathfrak{m} \in \mathfrak{M}$, where $\mathbf{d}(\mathfrak{m}) = (a_i)_{i \in I_n}$. Then $\mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$ clearly becomes a subalgebra of $\widehat{\mathcal{D}}(n)$.

As in (3.1.1), define for each $t \ge 1$,

$$\boldsymbol{c}_t^{\pm} = (-1)^t v^{-2tn} \sum_{\mathfrak{m}} (-1)^{\dim \operatorname{End}(M(\mathfrak{m}))} \mathfrak{a}_{\mathfrak{m}}(v^2) u_{\mathfrak{m}}^{\pm} \in \boldsymbol{\mathcal{D}}(n)^{\pm},$$

By Theorem 3.2, the elements c_t^+ and c_t^- are central in $\mathcal{D}(n)^+$ and $\mathcal{D}(n)^-$, respectively. Following [21, Sect. 4], define recursively for $t \ge 1$,

$$\boldsymbol{x}_t^{\pm} = t\boldsymbol{c}_t^{\pm} - \sum_{s=1}^{t-1} \boldsymbol{x}_s^{\pm} \boldsymbol{c}_{t-s}^{\pm} \in \boldsymbol{\mathcal{D}}(n)^{\pm}.$$

Clearly, \boldsymbol{x}_t^+ and \boldsymbol{x}_t^- are again central elements in $\mathcal{D}(n)^+$ and $\mathcal{D}(n)^-$, respectively. By applying [19, Cor. 10 & 12], the \boldsymbol{x}_t^{\pm} are primitive, i.e.,

$$\Delta(\boldsymbol{x}_t^+) = \boldsymbol{x}_t^+ \otimes K_{t\delta} + 1 \otimes \boldsymbol{x}_t^+ \text{ and } \Delta(\boldsymbol{x}_t^-) = \boldsymbol{x}_t^- \otimes 1 + K_{-t\delta} \otimes \boldsymbol{x}_t^-,$$

and they satisfy

$$\psi(\boldsymbol{x}_t^+, \boldsymbol{x}_s^-) = v^{2tn}\{\boldsymbol{x}_t, \boldsymbol{x}_s\} = \delta_{t,s} t v^{2tn} v^{-2tn} (1 - v^{-2tn}) = \delta_{t,s} t (1 - v^{-2tn}).$$

Finally, as in [6, § 2.2], we scale the elements \boldsymbol{x}_t^\pm by setting

$$\boldsymbol{z}_t^{\pm} = \frac{v^{tn}}{v^t - v^{-t}} \boldsymbol{x}_t^{\pm} \in \boldsymbol{\mathcal{D}}(n)^{\pm} \text{ for } t \ge 1.$$

Then

(4.1.1)
$$\Delta(\boldsymbol{z}_t^+) = \boldsymbol{z}_t^+ \otimes K_{t\delta} + 1 \otimes \boldsymbol{z}_t^+, \ \Delta(\boldsymbol{z}_t^-) = \boldsymbol{z}_t^- \otimes 1 + K_{-t\delta} \otimes \boldsymbol{z}_t^-,$$

and

$$\psi(\boldsymbol{z}_t^+, \boldsymbol{z}_s^-) = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2}.$$

Lemma 4.2. (1) For each $i \in I_n$,

$$[u_i^+, u_i^-] = \frac{K_i - K_i^{-1}}{v - v^{-1}}.$$

(2) For $\alpha \in \mathbb{N}I_n$ and $t, s \ge 1$, $K_{\alpha} \boldsymbol{z}_t^{\pm} = \boldsymbol{z}_t^{\pm} K_{\alpha}$ and

(4.2.1)
$$[\boldsymbol{z}_t^+, \boldsymbol{z}_s^-] = \delta_{t,s} \, \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (K_{t\delta} - K_{-t\delta}).$$

Moreover, for each $i \in I_n$ and $t \ge 1$,

$$[u_i^+, \boldsymbol{z}_t^-] = 0 = [u_i^-, \boldsymbol{z}_t^+].$$

Proof. We only prove the formula (4.2.1). The remaining ones are easy calculations. Since $\Delta(\boldsymbol{z}_t^+) = \boldsymbol{z}_t^+ \otimes K_{t\delta} + 1 \otimes \boldsymbol{z}_t^+$ and $\Delta(\boldsymbol{z}_s^-) = \boldsymbol{z}_s^- \otimes 1 + K_{-s\delta} \otimes \boldsymbol{z}_s^-$, we have by (4.0.7) that

$$K_{t\delta}\psi(\boldsymbol{z}_{t}^{+},\boldsymbol{z}_{s}^{-}) + \boldsymbol{z}_{t}^{+}\psi(1,\boldsymbol{z}_{s}^{-}) + \boldsymbol{z}_{s}^{-}K_{t\delta}\psi(\boldsymbol{z}_{t}^{+},K_{-s\delta}) + \boldsymbol{z}_{s}^{-}\boldsymbol{z}_{t}^{+}\psi(1,K_{-s\delta})$$

$$= \boldsymbol{z}_{t}^{+}\boldsymbol{z}_{s}^{-}\psi(K_{t\delta},1) + \boldsymbol{z}_{s}^{-}\psi(\boldsymbol{z}_{t}^{+},1) + \boldsymbol{z}_{t}^{+}K_{-s\delta}\psi(K_{t\delta},\boldsymbol{z}_{s}^{-}) + K_{-s\delta}\psi(\boldsymbol{z}_{t}^{+},\boldsymbol{z}_{s}^{-}).$$

This implies that

$$[\boldsymbol{z}_{t}^{+}, \boldsymbol{z}_{s}^{-}] = \psi(\boldsymbol{z}_{t}^{+}, \boldsymbol{z}_{s}^{-})(K_{t\delta} - K_{-s\delta}) = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^{t} - v^{-t})^{2}}(K_{t\delta} - K_{-t\delta})$$

since $\psi(1, \mathbf{z}_s^-) = \psi(\mathbf{z}_t^+, K_{s\delta}) = \psi(\mathbf{z}_t^+, 1) = \psi(K_{t\delta}, \mathbf{z}_s^-) = 0$ and $\psi(1, K_{s\delta}) = \psi(K_{-t\delta}, 1) = 1.$ Using arguments similar to those in the proof of [6, Th. 2.3.1], we obtain a presentation of $\mathcal{D}(n)$.

Using arguments similar to those in the proof of [6, 1h. 2.3.1], we obtain a presentation of $\mathcal{D}(n)$. More precisely, $\mathcal{D}(n)$ is the $\mathbb{Q}(v)$ -algebra generated by $K_i^{\pm 1}$, $u_i^+ = E_i$, $u_i^- = F_i$, and \mathbf{z}_t^{\pm} for $i \in I_n$ and $t \ge 1$ with defining relations:

(DH1) $K_i K_j = K_j K_i, \ K_i K_i^{-1} = 1 = K_i^{-1} K_i;$ (DH2) $K_i E_j = v^{a_{ij}} E_j K_i, \ K_i F_j = v^{-a_{ij}} F_j K_i, \ K_i \mathbf{z}_t^{\pm} = \mathbf{z}_t^{\pm} K_i;$ (DH3) $[E_i, F_j] = \delta_{i,j} \frac{K_i - K_i^{-1}}{v - v^{-1}}, \ [E_i, \mathbf{z}_t^{-}] = 0, \ [\mathbf{z}_t^{+}, F_i] = 0,$ $[\mathbf{z}_t^{+}, \mathbf{z}_s^{-}] = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (K_{t\delta} - K_{-t\delta});$ (DH4) $\sum_{i=1}^{n} (-1)^a \begin{bmatrix} 1 - c_{i,j} \end{bmatrix} E_i^a E_i E_i^b = 0 \text{ for } i < i$

(DH4)
$$\sum_{\substack{a+b=1-c_{i,j}\\ z_t^+ z_s^+ = z_s^+ z_t^+, E_i z_t^+ = z_t^+ E_i;} (DH5) \sum_{\substack{a+b=1-c_{i,j}\\ a+b=1-c_{i,j}}} (-1)^a \begin{bmatrix} 1-c_{i,j}\\ a \end{bmatrix} F_i^a F_j F_i^b = 0 \text{ for } i \neq j,$$

$$\boldsymbol{z}_t^- \boldsymbol{z}_s^- = \boldsymbol{z}_s^- \boldsymbol{z}_t^-, \ F_i \boldsymbol{z}_t^- = \boldsymbol{z}_t^- F_i,$$

where $i, j \in I_n$ and $t, s \ge 1$.

In the following we simply identify $I_n = \mathbb{Z}/n\mathbb{Z}$ with the subset $\{0, 1, \ldots, n-1\}$ of \mathbb{Z} . Let $P^{\vee} = (\bigoplus_{i \in I_n} \mathbb{Z}h_i) \oplus \mathbb{Z}d$ be the free abelian group with basis $\{h_i \mid i \in I_n\} \cup \{d\}$. Set $\mathfrak{h} = P^{\vee} \otimes_{\mathbb{Z}} \mathbb{Q}$ and define

$$P = \{\Lambda \in \mathfrak{h}^* = \operatorname{Hom}_{\mathbb{Q}}(\mathfrak{h}, \mathbb{Q}) \mid \Lambda(P^{\vee}) \subset \mathbb{Z}\}.$$

Then $P = (\bigoplus_{i \in I_n} \mathbb{Z}\Lambda_i) \oplus \mathbb{Z}\omega$, where $\{\Lambda_i \mid i \in I_n\} \cup \{\omega\}$ is the dual basis of $\{h_i \mid i \in I_n\} \cup \{d\}$. This gives rise to the Cartan datum $(P^{\vee}, P, \Pi^{\vee}, \Pi)$ associated with the Cartan matrix $C_n = (a_{ij})$, where $\Pi^{\vee} = \{h_i \mid i \in I_n\}$ is set of simple coroots and $\Pi = \{\alpha_i \mid i \in I_n\}$ is the set of simple roots defined by

$$\alpha_i(h_j) = a_{ji}, \ \alpha_i(d) = \delta_{0,i} \text{ for all } i, j \in I_n.$$

Finally, let

$$P^{+} = \{\Lambda \in P \mid \Lambda(h_{i}) \ge 0, \forall i \in I_{n}\} = \left(\bigoplus_{i \in I_{n}} \mathbb{N}\Lambda_{i}\right) \oplus \mathbb{Z}\omega$$

denote the set of dominant weights.

For each $\Lambda \in P$, consider the left ideal J_{Λ} of $\mathcal{D}(n)$ defined by

$$J_{\Lambda} = \sum_{\mathfrak{m}\in\mathfrak{M}_{n}\setminus\{0\}} \mathcal{D}(n)u_{\mathfrak{m}}^{+} + \sum_{\alpha\in\mathbb{Z}I_{n}} \mathcal{D}(n)(K_{\alpha} - v^{\Lambda(\alpha)})$$
$$= \sum_{\mathfrak{m}\in\mathfrak{M}_{n}\setminus\{0\}} \mathcal{D}(n)u_{\mathfrak{m}}^{+} + \sum_{i\in I_{n}} \mathcal{D}(n)(K_{i} - v^{\Lambda(h_{i})}),$$

where
$$\Lambda(\alpha) = \sum_{i \in I_n} a_i \Lambda(h_i)$$
 if $\alpha = \sum_{i \in I_n} a_i \varepsilon_i \in \mathbb{Z}I_n$. The quotient module
 $M(\Lambda) := \mathcal{D}(n)/J_{\Lambda}$

is called the Verma module which is a highest weight module with highest vector $\eta_{\Lambda} := 1 + J_{\Lambda}$. Applying the triangular decomposition (4.0.8) shows that

$$\mathcal{D}(n)^- \longrightarrow M(\Lambda), \ x^- \longmapsto x^- + J_\Lambda$$

is an isomorphism of $\mathbb{Q}(v)$ -vector spaces. Via this isomorphism, $\mathcal{D}(n)^-$ becomes a $\mathcal{D}(n)$ -module. It is clear that $M(\Lambda)$ contains a unique maximal submodule M' which gives rise to an irreducible $\mathcal{D}(n)$ -module $L(\Lambda) = M(\Lambda)/M'$.

Remark 4.3. By the construction, if $\Lambda, \Lambda' \in P^+$ satisfy $\Lambda - \Lambda' \in \mathbb{Z}\omega$, then $L(\Lambda) = L(\Lambda')$. Therefore, it might be more appropriate to work with the algebra $\widehat{\mathcal{D}}(n)$ defined in Remark 4.1(2).

Theorem 4.4. Let $\Lambda = \sum_{i \in I_n} a_i \Lambda_i + b\omega \in P^+$ be a dominant weight with $\sum_{i \in I_n} a_i > 0$. Then

$$L(\Lambda) \cong \mathcal{D}(n)^{-} / \Big(\sum_{i \in I_n} \mathcal{D}(n)^{-} (u_i^{-})^{a_i + 1} \Big).$$

Proof. As in [9, Sect. 3], we extend the Cartan matrix $C = (a_{ij})_{i,j\in I_n}$ to a Borcherds–Cartan matrix $\widetilde{C} = (\widetilde{a}_{ij})_{i,j\in\mathbb{N}}$ by setting $\widetilde{a}_{ij} = a_{ij}$ for $0 \leq i, j < n$ and $\widetilde{a}_{ij} = 0$ otherwise. Consider the free abelian group $\widetilde{P}^{\vee} = (\bigoplus_{i\in\mathbb{N}}\mathbb{Z}h_i) \oplus (\bigoplus_{i\in\mathbb{N}}\mathbb{Z}d_i)$ and define

$$\widetilde{P} = \{ \theta \in (\widetilde{P}^{\vee} \otimes \mathbb{Q})^* \mid \theta(\widetilde{P}^{\vee}) \subset \mathbb{Z} \}.$$

We then obtain a Cartan datum of type \widetilde{C}

$$(\widetilde{P}^{\vee}, \widetilde{P}, \widetilde{\Pi}^{\vee} = \{h_i \mid i \in \mathbb{N}\}, \widetilde{\Pi} = \{\widetilde{\alpha}_i \mid i \in \mathbb{N}\})$$

where the $\tilde{\alpha}_i$ are defined by

$$\widetilde{\alpha}_i(h_j) = \widetilde{a}_{ji}$$
 and $\widetilde{\alpha}_i(d_j) = \delta_{i,j}, \ \forall i, j \in \mathbb{N}.$

Following [25, Def. 2.1] or [23, Def. 1.3], with the above Cartan datum we have the associated quantum generalized Kac–Moody algebra $\mathbf{U}_{v}(\widetilde{C})$ which is by definition a $\mathbb{Q}(v)$ -algebra generated by $K_{i}^{\pm 1}, D_{i}^{\pm 1}, E_{i}, F_{i}$ for $i \in \mathbb{N}$ with relations; see [23, (1.4)] for the details. Clearly, the subalgebra of $\mathbf{U}_{v}(\widetilde{C})$ generated by $K_{i}^{\pm 1}, D_{0}^{\pm 1}, E_{i}, F_{i}$ for $0 \leq i < n$ is isomorphic to $\mathbf{U}_{v}(\widehat{\mathfrak{sl}}_{n})$.

In order to make a comparison with $\mathcal{D}(n)$, we consider the subalgebra $\widetilde{\mathbf{U}}$ of $\mathbf{U}_{v}(\widetilde{C})$ generated by $K_{i}^{\pm 1}, E_{i}, F_{i}$ for $i \in \mathbb{N}$. Then $\widetilde{\mathbf{U}}$ admits a triangular decomposition

$$\widetilde{\mathbf{U}} = \widetilde{\mathbf{U}}^- \otimes \widetilde{\mathbf{U}}^0 \otimes \widetilde{\mathbf{U}}^+,$$

where $\widetilde{\mathbf{U}}^-$, $\widetilde{\mathbf{U}}^+$, and $\widetilde{\mathbf{U}}^0$ are subalgebras generated by F_i , E_i , and $K_i^{\pm 1}$ for $i \in \mathbb{N}$, respectively. In particular, $\widetilde{\mathbf{U}}^0 = \mathbb{Q}(v)[K_i^{\pm 1} : i \in \mathbb{N}]$. It follows from the definition that there is a surjective algebra homomorphism $\Psi : \widetilde{\mathbf{U}} \to \mathcal{D}(n)$ given by

$$\Psi(E_i) = \begin{cases} u_i^+, & \text{if } 0 \leq i < n; \\ y_{i-n+1} z_{i-n+1}^+, & \text{if } i \geq n, \end{cases} \Psi(F_i) = \begin{cases} u_i^-, & \text{if } 0 \leq i < n; \\ z_{i-n+1}^-, & \text{if } i \geq n \end{cases}, \quad \text{and} \\ \Psi(K_i^{\pm 1}) = \begin{cases} K_i^{\pm 1}, & \text{if } 0 \leq i < n; \\ K_{(i-n+1)\delta}^{\pm 1}, & \text{if } i \geq n, \end{cases}$$

where $y_t = t(v^{2tn} - 1)(v - v^{-1})/(v^t - v^{-t})^2$ for $t \ge 1$; see (4.2.1). Hence, each $\mathcal{D}(n)$ -module can be viewed as a $\widetilde{\mathbf{U}}$ -module via the homomorphism Ψ . By the definition, Ψ induces isomorphisms $\widetilde{\mathbf{U}}^{\pm} \cong \mathcal{D}(n)^{\pm}$. Thus, in what follows, we will identify $\widetilde{\mathbf{U}}^{\pm}$ with $\mathcal{D}(n)^{\pm}$ via Ψ . As defined in [23, Sect. 2.1], for each $\theta \in \tilde{P}$, there is an associated irreducible $\tilde{\mathbf{U}}$ -module $L(\theta)$. By [23, Prop. 3.3], $L(\theta)$ is integrable if and only if θ is dominant, that is,

$$\theta \in \widetilde{P}^+ = \{ \rho \in (\widetilde{P}^{\vee} \otimes \mathbb{Q})^* \mid \rho(\widetilde{P}^{\vee}) \subset \mathbb{N} \}.$$

Moreover, by [25, Cor. 4.7], for $\theta \in \tilde{P}^+$,

$$L(\theta) \cong \widetilde{\mathbf{U}}^{-} / \big(\sum_{i \in I_n} \widetilde{\mathbf{U}}^{-} F_i^{\theta(h_i)+1} + \sum_{i \ge n, \theta(h_i)=0} \widetilde{\mathbf{U}}^{-} F_i \big).$$

Viewing the irreducible $\mathcal{D}(n)$ -module $L(\Lambda)$ as a $\widetilde{\mathbf{U}}$ -module, it is then isomorphic to $L(\widetilde{\Lambda})$, where $\widetilde{\Lambda} \in \widetilde{P}$ is defined by

$$\widetilde{\Lambda}(h_i) = \begin{cases} \Lambda(h_i) = a_i, & \text{if } 0 \leq i < n;\\ (i - n + 1) \sum_{0 \leq j < n} a_j, & \text{if } i \geq n \end{cases} \quad \text{and} \quad \widetilde{\Lambda}(d_i) = \delta_{i,0} b.$$

From the assumption $\sum_{i \in I} a_i > 0$ it follows that $\widetilde{\Lambda}(h_i) > 0$ for all $i \ge n$. Consequently,

$$L(\Lambda) \cong L(\widetilde{\Lambda}) \cong \widetilde{\mathbf{U}}^{-} / \left(\sum_{i \in I_n} \widetilde{\mathbf{U}}^{-} F_i^{a_i + 1}\right) = \mathcal{D}(n)^{-} / \left(\sum_{i \in I_n} \mathcal{D}(n)^{-} (u_i^{-})^{a_i + 1}\right).$$

For each $\Lambda \in P$, let $L_0(\Lambda)$ denote the irreducible $\mathbf{U}'_v(\widehat{\mathfrak{sl}}_n)$ -module of highest weight Λ . Applying Theorem 3.2 gives the following result.

Corollary 4.5. Let $\Lambda = \sum_{i \in I_n} a_i \Lambda_i + b\omega \in P^+$ with $\sum_{i \in I_n} a_i > 0$. Then $L_0(\Lambda)$ is the $\mathbf{U}'_v(\widehat{\mathfrak{sl}}_n)$ -submodule of $L(\Lambda)$ generated by the highest weight vector η_{Λ} and there is a vector space decomposition

$$L(\Lambda) = L_0(\Lambda) \otimes \mathbb{Q}(v)[\boldsymbol{z}_1^-, \boldsymbol{z}_2^-, \dots].$$

In particular, if $L(\Lambda)|_{\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})}$ denotes the $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -module via restriction, then

(4.5.1)
$$L(\Lambda)|_{\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})} \cong \bigoplus_{m \ge 0} L_{0}(\Lambda - m\delta^{*})^{\oplus p(m)},$$

where $\delta^* = \sum_{i \in I_n} \alpha_i$ and p(m) is the number of partitions of m. Proof. By Theorem 3.2,

$$\mathcal{D}(n)^- = \mathbf{U}_v^-(\widehat{\mathfrak{sl}}_n) \otimes \mathbb{Q}(v)[\boldsymbol{z}_1^-, \boldsymbol{z}_2^-, \dots].$$

This implies that

$$L(\Lambda) \cong \mathcal{D}(n)^{-} / \big(\sum_{i \in I_n} \mathcal{D}(n)^{-} (u_i^{-})^{a_i+1}\big) \cong \big(\mathbf{U}_v^{-}(\widehat{\mathfrak{sl}}_n) / \big(\sum_{i \in I_n} \mathbf{U}_v^{-}(\widehat{\mathfrak{sl}}_n) F_i^{a_i+1}\big)\big) \otimes \mathbb{Q}(v)[\mathbf{z}_1^{-}, \mathbf{z}_2^{-}, \dots].$$

By [34, Cor. 6.2.3], $L_0(\Lambda) \cong \mathbf{U}_v^-(\widehat{\mathfrak{sl}}_n)/(\sum_{i \in I_n} \mathbf{U}_v^-(\widehat{\mathfrak{sl}}_n)F_i^{a_i+1})$. Hence, $L_0(\Lambda)$ is the $\mathbf{U}_v'(\widehat{\mathfrak{sl}}_n)$ -submodule of $L(\Lambda)$ generated by η_{Λ} and the desired decomposition is obtained.

For each family of nonnegative integers $\{m_t \mid t \ge 1\}$ satisfying all but finitely many m_t are zero, $L_0(\Lambda) \otimes \prod_{t\ge 1} (\boldsymbol{z}_t^-)^{m_t}$ is a $\mathbf{U}'_v(\widehat{\mathfrak{sl}}_n)$ -submodule of $L(\Lambda)$ since $[u_i^{\pm}, \boldsymbol{z}_t^-] = 0$ for all $i \in I_n$ and $t \ge 1$. It is easy to see that

$$L_0(\Lambda) \otimes \prod_{t \ge 1} (\boldsymbol{z}_t^-)^{m_t} \cong L_0(\Lambda - (\sum_{t \ge 1} m_t)\delta^*)$$

We conclude that

$$L(\Lambda)|_{\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})} \cong \bigoplus_{m \ge 0} L_{0}(\Lambda - m\delta^{*})^{\oplus p(m)}$$

By [34, Th. 14.4.11], for each $\Lambda \in P^+$, the canonical basis $\{b_{\mathfrak{m}}^- \mid \mathfrak{m} \in \mathfrak{M}_n^{\mathrm{ap}}\}$ of $\mathbf{U}_v^-(\widehat{\mathfrak{sl}}_n)$ gives rise to the canonical basis

$$\{b_{\mathfrak{m}}^{-}\eta_{\Lambda}\neq 0\mid \mathfrak{m}\in\mathfrak{M}_{n}^{\mathrm{ap}}\}\$$

of $L_0(\Lambda)$. On the other hand, the crystal basis theory for the quantum generalized Kac–Moody algebra $\mathbf{U}(\widetilde{C})$ has been developed in [23]. Since all the F_i for $i \ge n$ correspond to imaginary simple roots and are central in $\widetilde{\mathbf{U}}^- = \mathcal{D}(n)^-$, applying the construction in [23, Sect. 6] shows that the set

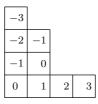
$$\mathbf{B}' := \left\{ \left(\prod_{i \ge n} F_i^{m_i}\right) b_{\mathfrak{m}}^- \mid \mathfrak{m} \in \mathfrak{M}_n^{\mathrm{ap}} \text{ and all } m_i \in \mathbb{N} \text{ but finitely many are zero} \right\}$$

forms the global crystal basis of $\widetilde{\mathbf{U}}^- = \mathcal{D}(n)^-$. We remark that \mathbf{B}' does not coincide with the canonical basis \mathbf{B}^- of $\mathcal{D}(n)^-$.

5. The q-deformed Fock space I: $\mathcal{D}(\infty)$ -module

In this section we introduce the q-deformed Fock space Λ^{∞} from [17] and review its module structure over $\mathcal{D}(\infty) = \mathbf{U}_v(\mathfrak{sl}_{\infty})$ defined in [36, 47], as well as its $\mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$ -module structure. We also provide a proof of [47, Prop. 5.1] by using the properties of representations of Δ_{∞} . Throughout this section, we identify $\mathcal{D}(\infty)$ with $\mathbf{U}_v(\widehat{\mathfrak{sl}}_{\infty})$ via taking $u_i^+ \mapsto E_i$, $u_i^- \mapsto F_i$ for all $i \in I_{\infty} = \mathbb{Z}$.

For each partition $\lambda \in \Pi$, let $T(\lambda)$ denote the tableau of shape λ whose box in the intersection of the *i*-th row and the *j*-th column is labelled with j - i (The box is then said to be with color j - i). For example, if $\lambda = (4, 2, 2, 1)$, then $T(\lambda)$ has the form



For given $i \in \mathbb{Z}$, a removable *i*-box of $T(\lambda)$ is by definition a box with color *i* which can be removed in such a way that the new tableau has the form $T(\mu)$ for some $\mu \in \Pi$. On the contrary, an indent *i*-box of $T(\lambda)$ is a box with color *i* which can be added to $T(\lambda)$. For $i \in \mathbb{Z}$ and $\lambda \in \Pi$, define

 $n_i(\lambda) = |\{\text{indent } i\text{-boxes of } T(\lambda)\}| - |\{\text{removable } i\text{-boxes of } T(\lambda)\}|.$

Let \bigwedge^{∞} be the $\mathbb{Q}(v)$ -vector space with basis $\{|\lambda\rangle \mid \lambda \in \Pi\}$. Following [47, 4.2], there is a left $\mathbf{U}_{v}(\mathfrak{sl}_{\infty})$ -module structure on \bigwedge^{∞} defined by

(5.0.2)
$$K_i \cdot |\lambda\rangle = v^{n_i(\lambda)} |\lambda\rangle, \ E_i \cdot |\lambda\rangle = |\nu\rangle, \ F_i \cdot |\lambda\rangle = |\mu\rangle, \ \forall i \in \mathbb{Z}, \lambda \in \Pi,$$

where $\mu, \nu \in \Pi$ are such that $T(\mu) - T(\lambda)$ and $T(\lambda) - T(\nu)$ are a box with color *i*. As remarked in [36, Sect. 2] and [47, 4.2], \bigwedge^{∞} is isomorphic to the basic representation of $\mathbf{U}_{v}(\mathfrak{sl}_{\infty})$ with the canonical basis $\{|\lambda\rangle \mid \lambda \in \Pi\}$.

Lemma 5.1. (1) For $i \in \mathbb{Z}$ and $\lambda, \mu \in \Pi$, if $u_i^- \cdot |\mu\rangle = |\lambda\rangle$, then there is an exact sequence

$$0 \longrightarrow S_i \longrightarrow M(\mathfrak{m}_{\lambda}) \longrightarrow M(\mathfrak{m}_{\mu}) \longrightarrow 0.$$

(2) Let $\mathfrak{m} = [i, l)$ for some $i \in \mathbb{Z}$ and $l \ge 1$. Then $\widetilde{u}_{\mathfrak{m}}^- \cdot |\emptyset\rangle \in \mathcal{Z}|\lambda\rangle$ if $i \le 0$ and $i + l - 1 \ge 0$ and 0 otherwise, where $\lambda = (i + l, 1^{(-i)})$. In particular, if i = 0, then $\widetilde{u}_{\mathfrak{m}}^- \cdot |\emptyset\rangle = |\lambda\rangle$.

Proof. (1) This follows directly from the definition.

(2) We proceed induction on l. The statement is trivial if l = 1. Suppose now l > 1. By the definition, $M(\mathfrak{m}) = S_i[l]$ with $\dim M(\mathfrak{m}) = \sum_{j=i}^{i+l-1} \varepsilon_j$. Then

$$u_{i+l-1}^- \cdots u_{i+1}^- u_i^- = v^{1-l} u_{\mathfrak{m}}^- + \sum_{\mathfrak{z} <_{\deg}^\infty \mathfrak{m}} v^{1-l} u_{\mathfrak{z}}^-$$

For each \mathfrak{z} with $\mathfrak{z} <_{\text{deg}}^{\infty} \mathfrak{m}$, $M(\mathfrak{z})$ is decomposable. Thus, we may write

$$M(\mathfrak{z}) = M(\mathfrak{y}) \oplus M(\mathfrak{z}_1)$$

where $\mathfrak{y} \in \mathfrak{M}_{\infty}$ and $\mathfrak{z}_1 = [j, i+l-j)$ for some $i < j \leq i+l-1$. This implies that

$$u_{\mathfrak{y}}^{-}u_{\mathfrak{z}_{1}}^{-}=u_{\mathfrak{z}}^{-}$$

By the induction hypothesis,

$$u_{\mathfrak{z}_1}^- \cdot |\emptyset\rangle \in \mathcal{Z}|\mu\rangle \text{ if } j \leqslant 0 \text{ and } i+l-1 \geqslant 0,$$

and 0 otherwise, where $\mu = (i + l, 1^{(-j)})$. Let now $j \leq 0$ and $i + l - 1 \geq 0$ and let k_1, \ldots, k_{j-i} be a permutation of $i, i + 1, \ldots, j - 1$. Then

$$(u_{k_1}^- u_{k_2}^- \cdots u_{k_{j-i}}^-) \cdot |\mu\rangle = 0$$

unless $k_1 = i, k_2 = i + 1 \dots, k_{j-i} = j - 1$, and moreover

$$(u_i^- u_{i+1}^- \cdots u_{j-1}^-) \cdot |\mu\rangle = |\lambda\rangle.$$

Since $u_{\mathfrak{y}}^-$ is a \mathcal{Z} -linear combination of the monomials $u_{k_1}^- u_{k_2}^- \cdots u_{k_{j-i}}^-$, we have $\widetilde{u}_{\mathfrak{m}}^- \cdot |\emptyset\rangle \in \mathcal{Z}|\lambda\rangle$. Now let i = 0. Then $u_{\mathfrak{z}_1}^- \cdot |\emptyset\rangle = 0$ for each $\mathfrak{z}_1 = [j, i+l-j)$ with $0 < j \leq i+l-1$. Hence,

$$\widetilde{u}_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle = v^{1-l} u_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle = (u_{l-1}^{-} \cdots u_{1}^{-} u_{0}^{-}) \cdot |\emptyset\rangle + \sum_{\mathfrak{z} < deg}^{\infty} \mathfrak{m} u_{\mathfrak{z}}^{-} \cdot |\emptyset\rangle = |\lambda\rangle.$$

Lemma 5.2. Let $\mathfrak{m} = \sum_{l \ge 1} m_{i,l}[i,l) \in \mathfrak{M}_{\infty}$ and $\lambda \in \Pi$.

- (1) If there is $j \in \mathbb{Z}$ such that $\sum_{l \ge 1} m_{j,l} \ge 2$, then $\widetilde{u}_{\mathfrak{m}} \cdot |\lambda\rangle = 0$. In particular, for each $i \in \mathbb{Z}$ and $t \ge 2$, $(u_i^-)^{(t)} \cdot |\lambda\rangle = 0$, where $(u_i^-)^{(t)} = (u_i^-)^t / [t]!$; see (3.0.2).
- (2) The element $\tilde{u}_{\mathfrak{m}}^{-} \cdot |\lambda\rangle$ is a \mathbb{Z} -linear combination of $|\mu\rangle$ with $\mu \in \Pi$.

Proof. (1) For each $i \in \mathbb{Z}$, we put

$$m_i = \sum_{l \ge 1} m_{i,l}$$
 and $M_i = \bigoplus_{l \ge 1} m_{i,l} S_i[l]$

Then $M = M(\mathfrak{m}) = \bigoplus_{i \in \mathbb{Z}} M_i$, where all but finitely many M_i are zero and

$$u_{\mathfrak{m}}^{-} = v^{-\sum_{i>j} \langle \dim M_{i}, \dim M_{j} \rangle} (\cdots u_{[M-1]}^{-} u_{[M_{0}]}^{-} u_{[M_{1}]}^{-} \cdots)$$

Suppose there is $j \in \mathbb{Z}$ with $m = m_j \ge 2$. Then M_j admits a decomposition

$$M_j = S_j[a_1] \oplus \cdots \oplus S_j[a_m]$$
 with $a_1 \ge \cdots \ge a_m \ge 1$.

This implies that

$$u_{[S_j[a_m]]}^- \cdots u_{[S_j[a_1]]}^- = v^{o_j} u_{[M_j]}^-$$

where $b_j = \sum_{1 \leq p < q \leq m} \langle \dim S_j[m_p], \dim S_j[m_q] \rangle$. Hence, it suffices to show that for each $\mu \in \Pi$,

$$u_{[M_j]}^- \cdot |\mu\rangle = v^{-o_j} (u_{[S_j[a_m]]}^- \cdots u_{[S_j[a_1]]}^-) \cdot |\mu\rangle = 0$$

By the definition, $u_{[S_j[a_1]]}^- \cdot |\mu\rangle$ is a $\mathbb{Q}(v)$ -linear combination of ν which are obtained from μ by adding a (j+r)-box for each $0 \leq r < a_1$. Thus, each such ν does not admit an indent *j*-box. Thus, $u_{[S_j[a_1]]}^- \cdot |\nu\rangle = 0$ and, hence, $(u_{[S_j[a_m]]}^- \cdots u_{[S_j[a_1]]}^-) \cdot |\mu\rangle = 0$. We conclude that $\widetilde{u}_{\mathfrak{m}}^- \cdot |\lambda\rangle = 0$.

(2) It is known that $\tilde{u}_{\mathfrak{m}}^-$ is a \mathcal{Z} -linear combination of monomials of divided powers $(u_i^-)^{(t)}$ for $i \in \mathbb{Z}$ and $t \ge 1$. Since by (1), $(u_i^-)^{(t)} \cdot |\mu\rangle = 0$ for all $i \in \mathbb{Z}$, $\mu \in \Pi$ and $t \ge 2$, it follows that $\tilde{u}_{\mathfrak{m}}^- \cdot |\lambda\rangle$ is a \mathcal{Z} -linear combination of $(u_{i_1}^- \cdots u_{i_m}^-) \cdot |\lambda\rangle$, where $m = \dim M(\mathfrak{m})$ and $i_1, \ldots, i_m \in \mathbb{Z}$. By the definition, $(u_{i_1}^- \cdots u_{i_m}^-) \cdot |\lambda\rangle$ either is zero or equal to $|\mu\rangle$ for some $\mu \in \Pi$. Therefore, $\tilde{u}_{\mathfrak{m}}^- \cdot |\lambda\rangle$ is a \mathcal{Z} -linear combination of $|\mu\rangle$ with $\mu \in \Pi$.

Proposition 5.3. (1) For each $\mathfrak{m} \in \mathfrak{M}_{\infty}$,

$$\widetilde{u}_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle \in \mathcal{Z}|\lambda\rangle \text{ for some } \lambda \in \Pi \text{ with } \mathfrak{m}_{\lambda} \leqslant_{\deg}^{\infty} \mathfrak{m}.$$

(2) For each $\lambda \in \Pi$,

$$\widetilde{u}_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle = |\lambda\rangle \ \ and \ \ \widetilde{u}_{\mathfrak{p}}^{-} \cdot |\emptyset\rangle = 0 \ \ for \ all \ \mathfrak{p} \in \mathfrak{M} \ with \ \mathfrak{p} <^{\infty}_{\deg} \mathfrak{m}_{\lambda}$$

In particular, $b_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle = |\lambda\rangle$.

Proof. (1) If $\tilde{u}_{\mathfrak{m}} \cdot |\emptyset\rangle = 0$, there is nothing to prove. Now suppose $\tilde{u}_{\mathfrak{m}} \cdot |\emptyset\rangle \neq 0$. By Lemma 5.2(2), we write

$$\widetilde{u}_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle = \sum_{\lambda \in \Pi} f_{\lambda}(v) |\lambda\rangle,$$

where all $f_{\lambda}(v) \in \mathbb{Z}$ but finitely many are zero. If $f_{\lambda}(v) \neq 0$, then $\dim M(\mathfrak{m}_{\lambda}) = \dim M(\mathfrak{m})$. By Lemma 2.1(1), such a $\lambda \in \Pi$ is unique. Hence, we may suppose $\widetilde{u}_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle = f(v)|\lambda\rangle$ for some $0 \neq f(v) \in \mathbb{Z}$ and $\lambda \in \Pi$. It remains to show that $\mathfrak{m}_{\lambda} \leq_{\text{deg}}^{\infty} \mathfrak{m}$.

Applying Lemma 5.2(1) implies that

$$M = M(\mathfrak{m}) = S_{i_1}[a_1] \oplus \cdots \oplus S_{i_t}[a_t]$$

where $i_1 < \cdots < i_t$ and $a_1, \ldots, a_t \ge 1$. Then

$$u_{[S_{i_1}[a_1]]}^- \cdots u_{[S_{i_t}[a_t]]}^- = v^a u_{\mathfrak{m}}^-,$$

where $a = \sum_{1 \leq p < q \leq t} \langle \dim S_{i_q}[a_q], \dim S_{i_p}[a_p] \rangle.$

We proceed induction on t to show that $M(\mathfrak{m}_{\lambda}) \leq_{\text{deg}}^{\infty} M = M(\mathfrak{m})$. If t = 1, this follows from Lemma 5.1(2). Let now t > 1 and let $\mu \in \Pi$ be such that

$$\langle u^-_{[S_{i_2}[a_2]]} \cdots u^-_{[S_{i_t}[a_t]]} \rangle \cdot |\emptyset\rangle = g(v)|\mu\rangle \text{ for some } 0 \neq g(v) \in \mathcal{Z}$$

Then $u^{-}_{[S_{i_1}[a_1]]} \cdot |\mu\rangle = v^a f(v)g(v)^{-1}|\lambda\rangle$. By the induction hypothesis,

$$M(\mathfrak{m}_{\mu}) \leqslant_{\deg}^{\infty} S_{i_2}[a_2] \oplus \cdots \oplus S_{i_t}[a_t].$$

By writing $u_{[S_{i_1}[a_1]]}^-$ as a \mathcal{Z} -linear combination of monomials of u_i^- 's and applying Lemma 5.1(1), there exists $X \in \operatorname{Rep} \Delta_{\infty}$ satisfying $\dim X = \dim S_{i_1}[a_1]$ with an exact sequence

$$0 \longrightarrow X \longrightarrow M(\mathfrak{m}_{\lambda}) \longrightarrow M(\mathfrak{m}_{\mu}) \longrightarrow 0.$$

Since $S_{i_1}[a_1]$ is indecomposable, it follows that $X \leq_{\text{deg}}^{\infty} S_{i_1}[a_1]$. Therefore,

$$M(\mathfrak{m}_{\lambda}) \leq_{\deg}^{\infty} M(\mathfrak{m}_{\mu}) * X \leq_{\deg}^{\infty} (S_{i_2}[a_2] \oplus \cdots \oplus S_{i_t}[a_t]) * S_{i_1}[a_1]$$
$$= (S_{i_2}[a_2] \oplus \cdots \oplus S_{i_t}[a_t]) \oplus S_{i_1}[a_1] = M(\mathfrak{m}),$$

that is, $\mathfrak{m}_{\lambda} \leq_{\mathrm{deg}}^{\infty} \mathfrak{m}$.

(2) Write $\lambda = (\lambda_1, \ldots, \lambda_t)$ with $\lambda_1 \ge \cdots \ge \lambda_t \ge 1$. Since

 $M(\mathfrak{m}_{\lambda}) = S_0[\lambda_1] \oplus S_{-1}[\lambda_2] \oplus \cdots \oplus S_{1-t}[\lambda_t],$

we have that

$$u_{[S_{1-t}[\lambda_t]]}^- \cdots u_{[S_{-1}[\lambda_2]]}^- u_{[S_0[\lambda_1]]}^- = v^c u_{\mathfrak{m}_{\lambda}}^-,$$

where

$$c = \sum_{1 \leqslant r < s \leqslant t} \langle \dim S_{1-r}[\lambda_r], \dim S_{1-s}[\lambda_s] \rangle = \sum_{1 \leqslant r < s \leqslant t} \dim \operatorname{Hom}_{\Delta_{\infty}}(S_{1-r}[\lambda_r], S_{1-s}[\lambda_s]).$$

By using an argument similar to that in the proof of Lemma 5.1(2), we obtain that

$$\begin{split} v^{c}u_{\mathfrak{m}_{\lambda}}^{-} &\cdot |\emptyset\rangle &= (u_{[S_{1-t}[\lambda_{t}]]}^{-} \cdots u_{[S_{-1}[\lambda_{2}]]}^{-} u_{[S_{0}[\lambda_{1}]]}^{-}) \cdot |\emptyset\rangle \\ &= v^{\lambda_{1}-1}(u_{[S_{1-t}[\lambda_{t}]]}^{-} \cdots u_{[S_{-1}[\lambda_{2}]]}^{-}) \cdot |(\lambda_{1})\rangle \\ &= c^{\lambda_{1}+\lambda_{2}-2}(u_{[S_{1-t}[\lambda_{t}]]}^{-} \cdots u_{[S_{-2}[\lambda_{3}]]}^{-}) \cdot |(\lambda_{1},\lambda_{2})\rangle \\ &= v^{\lambda_{1}+\dots+\lambda_{t}-t}|(\lambda_{1},\dots,\lambda_{t})\rangle = v^{\lambda_{1}+\dots+\lambda_{t}-t}|\lambda\rangle. \end{split}$$

Since

$$\dim \operatorname{End}_{\Delta_{\infty}}(M(\mathfrak{m}_{\lambda})) = \sum_{1 \leqslant r \leqslant s \leqslant t} \dim \operatorname{Hom}_{\Delta_{\infty}}(S_{1-r}[\lambda_{r}], S_{1-s}[\lambda_{s}]) = c + t$$

and dim $M(\mathfrak{m}_{\lambda}) = \lambda_1 + \cdots + \lambda_t$, it follows that

$$\widetilde{u}_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle = v^{c+t-(\lambda_{1}+\dots+\lambda_{t})} u_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle = |\lambda\rangle$$

Now let $\mathfrak{p} <_{\text{deg}}^{\infty} \mathfrak{m}_{\lambda}$ and suppose $\widetilde{u}_{\mathfrak{p}}^{-} \cdot |\emptyset\rangle \neq 0$. By (1), there exists $\mu \in \Pi$ with $\mathfrak{m}_{\mu} \leq_{\text{deg}}^{\infty} \mathfrak{p}$ such that $\widetilde{u}_{\mathfrak{p}}^{-} \cdot |\emptyset\rangle = f(v)|\mu\rangle$ for some $f(v) \in \mathcal{Z}$. Thus, $\mathfrak{m}_{\mu} <_{\text{deg}}^{\infty} \mathfrak{m}_{\lambda}$. By Lemma 2.1(1), $\mu = \lambda$ since $\dim M(\mathfrak{m}_{\mu}) = \dim M(\mathfrak{m}_{\lambda})$. This is a contradiction. Hence, $\widetilde{u}_{\mathfrak{p}}^{-} \cdot |\emptyset\rangle = 0$.

By (4.0.9),

$$b^-_{\mathfrak{m}_{\lambda}} \in \widetilde{u}^-_{\mathfrak{m}_{\lambda}} + \sum_{\mathfrak{p} <^{\infty}_{\deg} \mathfrak{m}_{\lambda}} v^{-1} \mathbb{Z}[v^{-1}] \widetilde{u}^-_{\mathfrak{p}}.$$

We conclude that $b_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle = \widetilde{u}_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle = |\lambda\rangle.$

As a consequence of the proposition above, we obtain [47, Prop. 5.1] as follows.

Corollary 5.4. The subspace \mathcal{I} of $\mathbf{U}_v^-(\mathfrak{sl}_\infty)$ spanned by $b_{\mathfrak{m}}^-$ with $\mathfrak{m} \in \mathfrak{M} - {\mathfrak{m}_{\lambda} \mid \lambda \in \Pi}$ is a left ideal of $\mathbf{U}_v^-(\mathfrak{sl}_\infty)$. Moreover, the map

$$\mathbf{U}_v^-(\mathfrak{sl}_\infty)/\mathcal{I} \longrightarrow \bigwedge^\infty, \ \mathfrak{b}_{\mathfrak{m}_\lambda}^- + \mathcal{I} \longmapsto |\lambda\rangle, \ \forall \, \lambda \in \Pi$$

is an isomorphism of $\mathbf{U}_v^-(\mathfrak{sl}_\infty)$ -modules.

Proof. On the one hand, by [34, Th. 14.4.11], the set

$$\{b_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle \neq 0 \mid \mathfrak{m} \in \mathfrak{M}_{\infty}\}$$

is a basis of \bigwedge^{∞} . On the other hand, there is a $\mathbf{U}_{v}^{-}(\mathfrak{sl}_{\infty})$ -module homomorphism

$$\phi: \mathbf{U}_v^-(\mathfrak{sl}_\infty) \longrightarrow {\textstyle\bigwedge}^\infty, \ x \longmapsto x \cdot |\emptyset\rangle.$$

It follows from Proposition 5.3(2) that $\mathcal{I} = \operatorname{Ker} \phi$ is a left ideal of $\mathbf{U}_v^-(\mathfrak{sl}_\infty)$ and that ϕ induces the desired isomorphism.

Finally, for $i \in \mathbb{Z}$ and $\lambda \in \Pi$, put

$$n_i^-(\lambda) = \sum_{j < i, j \in \overline{i}} n_j(\lambda), \ n_i^+(\lambda) = \sum_{j > i, j \in \overline{i}} n_j(\lambda), \ \text{ and } \ n_{\overline{i}}(\lambda) = \sum_{j \in \overline{i}} n_j(\lambda)$$

18

By [17, 36], there is a $\mathbf{U}_v(\widehat{\mathfrak{sl}}_n)$ -module structure on \bigwedge^{∞} defined by (5.4.1)

$$K_{\overline{i}} \cdot |\lambda\rangle = v^{n_{\overline{i}}(\lambda)} |\lambda\rangle, \ E_{\overline{i}} \cdot |\lambda\rangle = \sum_{j \in \overline{i}} v^{n_{j}^{-}(\lambda)} E_{j} \cdot |\lambda\rangle, \ F_{\overline{i}} \cdot |\lambda\rangle = \sum_{j \in \overline{i}} v^{-n_{j}^{+}(\lambda)} F_{j} \cdot |\lambda\rangle,$$

where $\overline{i} \in I_n = \mathbb{Z}/n\mathbb{Z}$.

6. The q-deformed Fock space II: $\mathcal{D}(n)$ -module

In this section we first recall the left $\mathcal{D}(n)^{\leq 0}$ -module structure on the Fock space \bigwedge^{∞} defined by Varagnolo and Vasserot in [47] and then extend their construction to obtain a $\mathcal{D}(n)$ -module structure on \bigwedge^{∞} .

For each $x = \sum_{\mathfrak{m}} x_{\mathfrak{m}} u_{\mathfrak{m}} \in \mathcal{H}(\Delta)$ with $\Delta = \Delta_n$ or Δ_{∞} , we write

$$x^{\pm} = \sum_{\mathfrak{m}} x_{\mathfrak{m}} u_{\mathfrak{m}}^{\pm} \in \mathcal{D}(\Delta)^{\pm}.$$

Then for each $\mathbf{d} \in \mathbb{N}I_{\infty}$, the map $\gamma_{\mathbf{d}} : \mathcal{H}(\Delta_n)_{\mathbf{d}} \to \mathcal{H}(\Delta_\infty)_{\mathbf{d}}$ defined in Section 3 induces $\mathbb{Q}(v)$ -linear maps

$$\gamma_{\mathbf{d}}^{\pm}: \mathcal{D}(n)_{\bar{\mathbf{d}}}^{\pm} \longrightarrow \mathcal{D}(\infty)_{\mathbf{d}}^{\pm}$$

such that $\gamma_{\mathbf{d}}^{\pm}(x^{\pm}) = (\gamma_{\mathbf{d}}(x))^{\pm}$ for each $x \in \mathcal{H}(\Delta_{\infty})$. Following [47, 6.2], for each $\overline{i} \in I_n = \mathbb{Z}/n\mathbb{Z}, \lambda \in \mathfrak{M}_n$ and $x \in \mathcal{D}(n)_{\alpha}^-$, define

 $K_{\overline{i}} \cdot |\lambda\rangle = v^{n_{\overline{i}}(\lambda)} |\lambda\rangle$ and $x \cdot |\lambda\rangle = \sum_{\mathbf{d}} \left(\gamma_{\mathbf{d}}(x) K_{-\mathbf{d}'}\right) \cdot |\lambda\rangle,$ (6.0.2)

where the sum is taken over all $\mathbf{d} \in \mathbb{N}I_{\infty}$ such that $\bar{\mathbf{d}} = \alpha$ and $\mathbf{d}' = \sum_{i > j, \bar{i} = \bar{j}} d_j \varepsilon_i$. By [47, Cor. 6.2], this defines a left $\mathcal{D}(n)^{\leq 0}$ -module structure on \bigwedge^{∞} which extends the Hayashi action of $\mathbf{U}_{v}^{\leq 0}(\widehat{\mathfrak{sl}}_{n})$ on \bigwedge^{∞} defined in (5.4.1).

Dually, for each $\lambda \in \Pi$ and $x \in \mathcal{D}(n)^+_{\alpha}$, define

(6.0.3)
$$x \cdot |\lambda\rangle = \sum_{\mathbf{d}} \left(\gamma_{\mathbf{d}}^{+}(x)K_{\mathbf{d}^{\prime\prime}}\right) \cdot |\lambda\rangle$$

where the sum is taken over all $\mathbf{d} \in \mathbb{N}I_{\infty}$ such that $\overline{\mathbf{d}} = \alpha$ and $\mathbf{d}'' = \sum_{i < j, \, \overline{i} = \overline{j}} d_j \varepsilon_i$.

Proposition 6.1. The formula (6.0.3) defines a left $\mathcal{D}(n)^{\geq 0}$ -module structure on \bigwedge^{∞} which extends the Hayashi action of $\mathbf{U}_{v}^{\geq 0}(\widehat{\mathfrak{sl}}_{n})$ on \bigwedge^{∞} .

Proof. Let $x \in \mathcal{D}(n)^+_{\alpha}$ and $y \in \mathcal{D}(n)^+_{\beta}$, where $\alpha, \beta \in \mathbb{N}I_n$. By the definition, we have, on the one hand, that

$$(xy) \cdot |\lambda\rangle = \sum_{\mathbf{d}} \left(\gamma_{\mathbf{d}}^+(xy)K_{\mathbf{d}''}\right) \cdot |\lambda\rangle$$

and, on the other hand, that

$$x \cdot (y \cdot |\lambda\rangle) = \sum_{\mathbf{a},\mathbf{b}} \left(\gamma_{\mathbf{a}}^+(x) K_{\mathbf{a}''} \gamma_{\mathbf{b}}^+(y) K_{\mathbf{b}''} \right) \cdot |\lambda\rangle,$$

where the sum is taken over all $\mathbf{a}, \mathbf{b} \in \mathbb{N}I_{\infty}$ such that $\bar{\mathbf{a}} = \alpha$ and $\bar{\mathbf{b}} = \beta$. Since $K_{\mathbf{a}''}\gamma_{\mathbf{b}}^+(y) = v^{(\mathbf{a}'',\mathbf{b})}\gamma_{\mathbf{b}}^+(y)K_{\mathbf{a}''}$, we obtain that

$$x \cdot (y \cdot |\lambda\rangle) = \sum_{\mathbf{d}} \sum_{\mathbf{a}+\mathbf{b}=\mathbf{d}} v^{(\mathbf{a}'',\mathbf{b})} (\gamma_{\mathbf{a}}^{+}(x)\gamma_{\mathbf{b}}^{+}(y)K_{\mathbf{d}''}) \cdot |\lambda\rangle.$$

By the definition,

$$(\mathbf{a}'', \mathbf{b}) = \left(\sum_{i < j, \bar{i} = \bar{j}} a_j \varepsilon_i, \sum_i b_i \varepsilon_i\right) = \sum_{i < j, \bar{i} = \bar{j}} b_i (2a_j - a_{j-1} - a_{j+1}) = \kappa(\mathbf{a}, \mathbf{b}).$$

Applying Lemma 3.3(2) gives that

$$(xy) \cdot |\lambda\rangle = x \cdot (y \cdot |\lambda\rangle).$$

Hence, \bigwedge^{∞} becomes a left $\mathcal{D}(n)^{\geq 0}$ -module. For each $\overline{i} \in I_n = \mathbb{Z}/n\mathbb{Z}$ and $\lambda \in \Pi$, we have

$$|u_{\overline{i}}^{+} \cdot |\lambda\rangle = \sum_{j \in \overline{i}} (u_{j}^{+} K_{-\varepsilon_{j}''}) \cdot |\lambda\rangle$$

Since $\varepsilon_{i}'' = \sum_{l < i, \bar{l} = \bar{i}} \varepsilon_l$ for each $j \in \bar{i}$, it follows that

$$K_{\varepsilon_j''}\cdot|\lambda\rangle=\prod_{l< j,\bar{l}=\bar{j}}K_{\varepsilon_l}\cdot|\lambda\rangle=v^{\sum_{l< j,\bar{l}=\bar{j}}n_l(\lambda)}|\lambda\rangle=v^{n_j^-(\lambda)}|\lambda\rangle.$$

This implies that

$$u_{\overline{i}}^{+} \cdot |\lambda\rangle = \sum_{j \in \overline{i}} v^{n_{\overline{j}}^{-}(\lambda)} u_{j}^{+} \cdot |\lambda\rangle,$$

which coincides with the formula for $E_{\bar{i}} \cdot |\lambda\rangle$ in (5.4.1), as required.

Remark 6.2. The proof of Proposition 6.1 is analogous to that of [47, Cor. 6.2]. However, it seems to us that the $\mathcal{D}(n)^+$ -module structure on \bigwedge^{∞} can not be directly obtained form its $\mathcal{D}(n)^-$ -module structure via certain duality between $\mathcal{D}(n)^-$ and $\mathcal{D}(n)^+$.

The main purpose of this section is to prove that formulas (6.0.2) and (6.0.3) indeed define a $\mathcal{D}(n)$ -module structure on \bigwedge^{∞} . The strategy is to pass to the semi-infinite v-wedge spaces studied in [44, 27].

Let Ω denote the $\mathbb{Q}(v)$ -vector space with basis $\{\omega_i \mid i \in \mathbb{Z}\}$. By [6, Prop. 3.5], Ω admits a $\mathcal{D}(n)$ -module structure defined by

(6.2.1)
$$\begin{aligned} u_i^+ \cdot \omega_s &= \delta_{i+1,\bar{s}}\omega_{s-1}, \ u_i^- \cdot \omega_s &= \delta_{i,\bar{s}}\omega_{s+1} \\ K_i^{\pm 1} \cdot \omega_s &= v^{\pm \delta_{i,\bar{s}} \mp \delta_{i+1,\bar{s}}}\omega_s, \ \boldsymbol{z}_m^{\pm} \cdot \omega_s &= \omega_{s \mp mn} \end{aligned}$$

for all $i \in I_n$ and $s, m \in \mathbb{Z}$ with $m \ge 1$. In particular, $K_{\delta}^{\pm 1} \cdot \omega_s = \omega_s$ for each $s \in \mathbb{Z}$. This is an extension of the $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -action on Ω defined in [27, 1.1] as well as an extension of the $\mathcal{D}(n)^{\leq 0}$ -action on Ω defined in [47, 8.1]; see [6, 3.5].

For a fixed positive integer r, consider the r-fold tensor product $\Omega^{\otimes r}$ which has a basis

$$\{\omega_{\mathbf{i}} = \omega_{i_1} \otimes \cdots \otimes \omega_{i_r} \mid \mathbf{i} = (i_1, \ldots, i_r) \in \mathbb{Z}^r\}.$$

The Hopf algebra structure of $\mathcal{D}(n)$ induces a $\mathcal{D}(n)$ -module structure on the r-fold tensor product $\Omega^{\otimes r}$. By (4.1.1), we have for each $t \ge 1$,

(6.2.2)
$$\Delta^{(r-1)}(\boldsymbol{z}_t^+) = \sum_{s=0}^{r-1} \underbrace{1 \otimes \cdots \otimes 1}_{s} \otimes \boldsymbol{z}_t^+ \otimes \underbrace{K_{t\delta} \otimes \cdots \otimes K_{t\delta}}_{r-s-1} \text{ and}$$
$$\Delta^{(r-1)}(\boldsymbol{z}_t^-) = \sum_{s=0}^{r-1} \underbrace{K_{-t\delta} \otimes \cdots \otimes K_{-t\delta}}_{s} \otimes \boldsymbol{z}_t^- \otimes \underbrace{1 \otimes \cdots \otimes 1}_{r-s-1}.$$

20

This implies particularly that for each $t \ge 1$ and $\omega_{\mathbf{i}} = \omega_{i_1} \otimes \cdots \otimes \omega_{i_r} \in \Omega^{\otimes r}$,

(6.2.3)
$$\boldsymbol{z}_{t}^{\pm} \cdot \boldsymbol{\omega}_{\mathbf{i}} = \sum_{s=1}^{r} \boldsymbol{\omega}_{i_{1}} \otimes \cdots \otimes \boldsymbol{\omega}_{i_{s-1}} \otimes \boldsymbol{\omega}_{i_{s}\mp tn} \otimes \boldsymbol{\omega}_{i_{s+1}} \otimes \cdots \otimes \boldsymbol{\omega}_{i_{r}}$$

By (4.0.3) and (4.0.5), for each $\alpha \in \mathbb{N}I_n$, we have (6.2.4)

$$\Delta^{(r-1)}(\widetilde{u}_{\alpha}^{+}) = \sum_{\alpha=\alpha^{(1)}+\dots+\alpha^{(r)}} v^{\sum_{s>t}\langle\alpha^{(s)},\alpha^{(t)}\rangle} \times$$
$$\widetilde{u}_{\alpha^{(1)}}^{+} \otimes \widetilde{u}_{\alpha^{(2)}}^{+} K_{\alpha^{(1)}} \otimes \dots \otimes \widetilde{u}_{\alpha^{(r)}}^{+} K_{(\alpha^{(1)}+\alpha^{(2)}+\dots+\alpha^{(r-1)})},$$
$$\Delta^{(r-1)}(\widetilde{u}_{\alpha}^{-}) = \sum_{\alpha=\alpha^{(1)}+\dots+\alpha^{(r)}} v^{\sum_{s>t}\langle\alpha^{(s)},\alpha^{(t)}\rangle} \times$$
$$\widetilde{u}_{\alpha^{(1)}}^{-} K_{-(\alpha^{(2)}+\dots+\alpha^{(r)})} \otimes \dots \otimes u_{\alpha^{(r-1)}}^{-} K_{-\alpha^{(r)}} \otimes \widetilde{u}_{\alpha^{(r)}}^{-}.$$

This gives the following lemma; see [47, Lem. 8.3] and [6, Cor. 3.5.8].

Lemma 6.3. Let $\alpha \in \mathbb{N}I_n$ and $\mathbf{i} = (i_1, \dots, i_r) \in \mathbb{Z}^r$. Then

(6.3.1)
$$\widetilde{u}_{\alpha}^{+} \cdot \omega_{\mathbf{i}} = \sum_{\mathbf{n}} v^{c^{+}(\mathbf{i},\mathbf{i}-\mathbf{n})} \omega_{\mathbf{i}-\mathbf{n}},$$

where the sum is taken over the sequences $\mathbf{n} = (n_1, \ldots, n_r) \in \{0, 1\}^r$ satisfying $\alpha = \sum_{s=1}^r n_s \varepsilon_{\overline{i_s-1}}$ and

$$c^{+}(\mathbf{i}, \mathbf{i} - \mathbf{n}) = \sum_{1 \leq s < t \leq r} n_{s}(n_{t} - 1) \langle \varepsilon_{\tilde{i}_{t}}, \varepsilon_{\tilde{i}_{s}} \rangle;$$

(6.3.2)
$$\widetilde{u}_{\alpha}^{-} \cdot \omega_{\mathbf{i}} = \sum_{\mathbf{n}} v^{c^{-}(\mathbf{i},\mathbf{i}+\mathbf{n})} \omega_{\mathbf{i}+\mathbf{n}},$$

where the sum is taken over the sequences $\mathbf{n} = (n_1, \ldots, n_r) \in \{0, 1\}^r$ satisfying $\alpha = \sum_{s=1}^r n_s \varepsilon_{\overline{i}_s}$ and

$$c^{-}(\mathbf{i}, \mathbf{i} + \mathbf{n}) = \sum_{1 \leq s < t \leq r} n_t (n_s - 1) \langle \varepsilon_{\overline{i}_t}, \varepsilon_{\overline{i}_s} \rangle.$$

On the other hand, let $\widehat{\mathbf{H}}(r)$ be the Hecke algebra of affine symmetric group of type A which is by definition a $\mathbb{Q}(v)$ -algebra with generators T_i and $X_j^{\pm 1}$ for $i = 1, \ldots, r-1, j = 1, \ldots, r$ and relations:

$$\begin{split} &(T_i+1)(T_i-v^2)=0,\\ &T_iT_{i+1}T_i=T_{i+1}T_iT_{i+1}, \ T_iT_j=T_jT_i \ (|i-j|>1),\\ &X_iX_i^{-1}=1=X_i^{-1}X_i, \ X_iX_j=X_jX_i,\\ &T_iX_iT_i=v^2X_{i+1}, \ X_jT_i=T_iX_j \ (j\neq i,i+1). \end{split}$$

This is the so-called *Bernstein presentation* of $\widehat{\mathbf{H}}(r)$.

By [47, Sect. 8.2], there is a right $\widehat{\mathbf{H}}(r)$ -module structure on $\Omega^{\otimes r}$ defined by

$$(6.3.3) \qquad \qquad \omega_{\mathbf{i}} \cdot X_t = \omega_{i_1} \cdots \omega_{i_{t-1}} \omega_{i_{t-1}} \omega_{i_{t+1}} \cdots \omega_{i_r},$$
$$(6.3.3) \qquad \qquad \omega_{\mathbf{i}} \cdot T_k = \begin{cases} v^2 \omega_{\mathbf{i}}, & \text{if } i_k = i_{k+1}; \\ v \omega_{\mathbf{i}s_k}, & \text{if } -n < i_k < i_{k+1} \leqslant 0; \\ v \omega_{\mathbf{i}s_k} + (v^2 - 1)\omega_{\mathbf{i}}, & \text{if } -n < i_{k+1} < i_k \leqslant 0, \end{cases}$$

where $\mathbf{i} = (i_1, \ldots, i_r) \in \mathbb{Z}^r$, $\omega_{\mathbf{i}} = \omega_{i_1} \otimes \cdots \otimes \omega_{i_r}$ and

$$\omega_{\mathbf{i}s_k} = \omega_{i_1} \otimes \cdots \otimes \omega_{i_{k+1}} \otimes \omega_{i_k} \otimes \cdots \otimes \omega_{i_r}$$

Following [6, Prop. 3.5.5], the tensor space $\Omega^{\otimes r}$ is indeed a $\mathcal{D}(n)$ - $\widehat{\mathbf{H}}(r)$ -bimodule. Set

$$\Xi^r = \sum_{i=1}^{r-1} \operatorname{Im} \left(1 + T_i \right) \subseteq \Omega^{\otimes r},$$

which is clearly a $\mathcal{D}(n)$ -submodule of $\Omega^{\otimes r}$. Thus, the quotient space $\Omega^{\otimes r}/\Xi^r$ becomes a $\mathcal{D}(n)$ -module. For each $\mathbf{i} = (i_1, \ldots, i_r) \in \mathbb{Z}^r$, write

$$\wedge \omega_{\mathbf{i}} = \omega_{i_1} \wedge \ldots \wedge \omega_{i_r} = \omega_{\mathbf{i}} + \Xi^r \in \Omega^{\otimes r} / \Xi^r$$

By [27, Prop. 1.3], the set

$$\{\wedge \omega_{\mathbf{i}} \mid i_1 > \cdots > i_r\}$$

forms a basis of $\Omega^{\otimes r}/\Xi^r$.

For each $m \in \mathbb{Z}$, let \mathscr{B}_m denote the set of sequences $\mathbf{i} = (i_1, i_2, ...) \in \mathbb{Z}^\infty$ satisfying that $i_s = m - s + 1$ for $s \gg 0$, and set $\mathscr{B}_\infty = \bigcup_{m \in \mathbb{Z}} \mathscr{B}_m$. As in [47, Sect. 10.1], let Ω^∞ denote the space spanned by semi-infinite monomials

$$\omega_{\mathbf{i}} = \omega_{i_1} \otimes \omega_{i_2} \otimes \cdots, \text{ where } \mathbf{i} = (i_1, i_2, \dots) \in \mathscr{B}_{\infty}.$$

Then the affine Hecke algebra $\widehat{\mathbf{H}}(\infty)$ acts on Ω^{∞} via the formulas in (6.3.3). Set

$$\Xi^{\infty} = \sum_{i=1}^{\infty} \operatorname{Im} \left(1 + T_i \right) \subseteq \Omega^{\infty}.$$

For each $\mathbf{i} = (i_1, i_2, \dots) \in \mathscr{B}_{\infty}$ as above, write

$$\wedge \omega_{\mathbf{i}} = \omega_{i_1} \wedge \omega_{i_2} \wedge \dots = \omega_{\mathbf{i}} + \Xi^{\infty} \in \Omega^{\infty} / \Xi^{\infty}.$$

For each $m \in \mathbb{Z}$, let $\mathcal{F}_{(m)}$ be the subspace of $\Omega^{\infty}/\Xi^{\infty}$ spanned by $\wedge \omega_{\mathbf{i}}$ with $\mathbf{i} \in \mathscr{B}_m$. Then

$$\Omega^{\infty}/\Xi^{\infty} = \bigoplus_{m \in \mathbb{Z}} \mathcal{F}_{(m)}.$$

By [27, 1.4], the $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -module structure on $\Omega^{\otimes r}/\Xi^{r}$ induces a $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -module structure on $\mathcal{F}_{(m)}$ for each $m \in \mathbb{Z}$ and, hence, a $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -module structure on $\Omega^{\infty}/\Xi^{\infty}$ as well. Moreover, by [27, Prop. 1.4], the injective map

$$\kappa: \bigwedge^{\infty} \longrightarrow \Omega^{\infty}/\Xi^{\infty}, \ |\lambda\rangle \longmapsto \wedge \omega_{\mathbf{i}_{\lambda}}$$

is a homomorphism of $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -modules which induces an isomorphism $\bigwedge^{\infty} \cong \mathcal{F}_{(0)}$, where $\mathbf{i}_{\lambda} = (i_{1}, i_{2}, \dots)$ with $i_{s} = \lambda_{s} + 1 - s, \forall s \ge 1$.

As in [27, (49)], for each $m \in \mathbb{Z}$, write

$$|m\rangle = \omega_m \wedge \omega_{m-1} \wedge \omega_{m-2} \wedge \cdots$$

Clearly, for each $\mathbf{i} = (i_1, i_2, \dots) \in \mathscr{B}_m$, there exists a sufficiently large N such that

$$\wedge \omega_{\mathbf{i}} = (\omega_{i_1} \wedge \dots \wedge \omega_{i_N}) \wedge |m - N\rangle.$$

By [27, Lem. 2.2] and (6.2.4), for given $\alpha \in \mathbb{N}I$ and $\mathbf{i} \in \mathscr{B}_m$, there is $t \gg 0$ such that

$$u_{\alpha}^{-} \cdot (\wedge \omega_{\mathbf{i}}) = \left(u_{\alpha}^{-} \cdot (\omega_{i_{1}} \wedge \dots \wedge \omega_{i_{t}}) \right) \wedge |m - t\rangle.$$

Hence, the $\mathcal{D}(n)^{\leq 0}$ -module structure on $\Omega^{\otimes r}/\Xi^r$ induces a $\mathcal{D}(n)^{\leq 0}$ -module structure on $\Omega^{\infty}/\Xi^{\infty}$; see [47, Sect. 10.1]. Moreover, by [47, Lem. 10.1], the map $\kappa : \bigwedge^{\infty} \to \Omega^{\infty}/\Xi^{\infty}$ is a $\mathcal{D}(n)^{\leq 0}$ -module homomorphism.

Dually, for each given $\mathbf{i} \in \mathscr{B}_m$, there is $t \gg 0$ such that

$$u_{\alpha}^{+} \cdot (\wedge \omega_{\mathbf{i}}) = \left(u_{\alpha}^{+} \cdot (\omega_{i_{1}} \wedge \dots \wedge \omega_{i_{t}}) \right) \wedge \left(K_{\alpha} \cdot |m - t \rangle \right).$$

Thus, $\Omega^{\infty}/\Xi^{\infty}$ becomes a left $\mathcal{D}(n)^{\geq 0}$ -module, too. We have the following result whose proof is similar to that of [47, Lem. 10.1].

Proposition 6.4. The map κ is a $\mathcal{D}(n)^{\geq 0}$ -module homomorphism.

Proof. We need to show that for each $\lambda \in \Pi$ and $\alpha \in \mathbb{N}I_n$,

$$\kappa(\widetilde{u}_{\alpha}^{+}\cdot|\lambda\rangle) = \widetilde{u}_{\alpha}^{+}(\kappa(|\lambda\rangle)).$$

For simplicity, write $\mathbf{i} := \mathbf{i}_{\lambda} = (i_1, i_2, ...)$. By (6.0.3),

$$\widetilde{u}_{\alpha}^{+} \cdot |\lambda\rangle = \sum_{\mathbf{d}} (\gamma_{\mathbf{d}}^{+}(\widetilde{u}_{\alpha}^{+})K_{\mathbf{d}^{\prime\prime}}) \cdot |\lambda\rangle = \sum_{\mathbf{d}} v^{-h(\mathbf{d})}(\widetilde{u}_{\mathbf{d}}^{+}K_{\mathbf{d}^{\prime\prime}}) \cdot |\lambda\rangle,$$

where the sum is taken over all $\mathbf{d} \in \mathbb{N}I_{\underline{\alpha}}$ such that $\overline{\mathbf{d}} = \alpha$ and $h(\mathbf{d}) = \sum_{i < j, \overline{i} = \overline{j}} d_i (d_{j+1} - d_j)$.

For each fixed $\mathbf{d} = (d_i) \in \mathbb{N}I_{\infty}$ with $\bar{\mathbf{d}} = \alpha$, we have

$$\widetilde{u}_{\mathbf{d}}^{+} = \cdots \widetilde{u}_{d_{1}\varepsilon_{1}}^{+} \widetilde{u}_{d_{0}\varepsilon_{0}}^{+} \widetilde{u}_{d_{-1}\varepsilon_{-1}}^{+} \cdots = \prod_{i \in \mathbb{Z}} \widetilde{u}_{d_{i}\varepsilon_{i}}^{+}$$

By the definition, $\widetilde{u}_{\mathbf{d}}^+ \cdot |\lambda\rangle \neq 0$ implies that

$$\mathbf{d} = \sum_{s \ge 1} n_s \varepsilon_{i_s - 1},$$

where $n_s \in \{0, 1\}$ for all $s \ge 1$. Moreover, if this is the case, then

$$\widetilde{\mu}_{\mathbf{d}}^{+} \cdot |\lambda\rangle = |\mu_{\mathbf{n}}\rangle,$$

where $\mathbf{n} = (n_1, n_2, ...)$ and $\mu_{\mathbf{n}} = \mu \in \Pi$ is determined by $\mathbf{i}_{\mu} = \mathbf{i} - \mathbf{n}$. Therefore, for $\mathbf{d} \in \mathbb{N}I_{\infty}$ with $\mathbf{d} = \sum_{s \ge 1} n_s \varepsilon_{i_s - 1}$,

$$K_{\mathbf{d}''} = \prod_{\bar{i}_s = \bar{i}_t, \, i_s > i_t} K_{i_t - 1}^{n_s} \text{ and } h(\mathbf{d}) = \sum_{i_s > i_t} -n_s n_t (\delta_{\bar{i}_s, \bar{i}_t} - \delta_{\bar{i}_s, \bar{i}_t + 1}) = -\sum_{i_s > i_t} n_s n_t \langle \varepsilon_{\bar{i}_t}, \varepsilon_{\bar{i}_s} \rangle.$$

A calculation together with (6.3.1) implies that

 $\kappa(\widetilde{u}^+_{\alpha}\cdot|\lambda\rangle)=\widetilde{u}^+_{\alpha}(\wedge\omega_{\mathbf{i}})=\widetilde{u}^+_{\alpha}(\kappa(|\lambda\rangle)).$

As a consequence of the results above, to prove that the formulas (6.0.2) and (6.0.3) define a $\mathcal{D}(n)$ -module structure on \bigwedge^{∞} , it suffices to show that the $\mathcal{D}(n)^{\leq 0}$ -module and $\mathcal{D}(n)^{\geq 0}$ -module structures on $\Omega^{\infty}/\Xi^{\infty}$ define a $\mathcal{D}(n)$ -module structure. In other words, we need to show that the actions of $K_i^{\pm 1}, u_i^+, u_i^ (i \in I_n)$ and $\mathbf{z}_s^+, \mathbf{z}_s^ (s \geq 1)$ on $\Omega^{\infty}/\Xi^{\infty}$ satisfy the relations (DH1)–(DH5) in Section 4.

Since, as discussed above, $\Omega^{\infty}/\Xi^{\infty}$ is a $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -module, all the relations in (DH1)–(DH5) in which the \mathbf{z}_{s}^{\pm} are not involved are satisfied. In the following we are going to check the relations

$$[\boldsymbol{z}_{t}^{+}, \boldsymbol{z}_{s}^{-}] = \delta_{t,s} \, \frac{t(v^{2tn} - 1)}{(v^{t} - v^{-t})^{2}} (K_{t\delta} - K_{-t\delta}), \ \forall s, t \ge 1.$$

By [27, §2], for each $t \ge 1$, there are Heisenberg operators

$$B_t^{\pm}: \Omega^{\infty}/\Xi^{\infty} \to \Omega^{\infty}/\Xi^{\infty}, \ \wedge \omega_{\mathbf{i}} \longmapsto \sum_{s=1}^{\infty} \wedge \omega_{\mathbf{i} \mp tn \mathbf{e}_s},$$

where $\mathbf{i} \in \mathscr{B}_{\infty}$ and $\mathbf{e}_s = (\delta_{i,s})_{i \ge 1} \in \mathbb{Z}^{\infty}$. Note that for each $\mathbf{i} \in \mathscr{B}_{\infty}$, $\wedge \omega_{\mathbf{i} \mp tn \mathbf{e}_s} = 0$ for $s \gg 0$. **Proposition 6.5.** For each $t \ge 1$ and $\mathbf{i} \in \mathscr{B}_{\infty}$,

$$B_t^+(\wedge\omega_{\mathbf{i}}) = v^t \boldsymbol{z}_t^+ \cdot (\wedge\omega_{\mathbf{i}}) \quad and \quad B_t^-(\wedge\omega_{\mathbf{i}}) = \boldsymbol{z}_t^- \cdot (\wedge\omega_{\mathbf{i}}).$$

Proof. For each $m \in \mathbb{Z}$, recall the element

$$|m\rangle = \omega_m \wedge \omega_{m-1} \wedge \omega_{m-2} \wedge \dots \in \Omega^{\infty}/\Xi^{\infty}$$

Then $\boldsymbol{z}_t^+ \cdot |m\rangle = 0$ and $K_{\delta} \cdot |m\rangle = q|m\rangle$. Write

$$\wedge \omega_{\mathbf{i}} = \omega_{i_1} \wedge \cdots \wedge \omega_{i_N} \wedge |N - m\rangle.$$

Applying (6.2.2) gives that

$$\begin{aligned} \boldsymbol{z}_{t}^{+} \cdot (\wedge \omega_{\mathbf{i}}) \\ &= \sum_{s=0}^{N} \underbrace{\omega_{i_{1}} \wedge \dots \wedge \omega_{i_{s}}}_{s} \wedge \boldsymbol{z}_{t}^{+} \cdot \omega_{i_{s+1}} \wedge \underbrace{K_{t\delta} \cdot \omega_{i_{s+2}} \wedge \dots \wedge K_{t\delta} \cdot \omega_{i_{N}}}_{N-s-1} \wedge (K_{t\delta} \cdot |N-m\rangle) \\ &= \sum_{s=0}^{N} v^{t} \underbrace{\omega_{i_{1}} \wedge \dots \wedge \omega_{i_{s}}}_{s} \wedge \omega_{i_{s+1}+tn} \wedge \underbrace{\omega_{i_{s+2}} \wedge \dots \wedge \omega_{i_{N}}}_{N-s-1} \wedge |N-m\rangle \\ &= v^{t} B_{t}^{+} (\wedge \omega_{\mathbf{i}}) \quad (\text{since } B_{t}^{+} (|N-m\rangle) = 0), \end{aligned}$$

that is, $B_t^+(\wedge \omega_i) = v^t \boldsymbol{z}_t^+ \cdot (\wedge \omega_i)$. The second equality can be proved similarly. Corollary 6.6. Let $t, s \ge 1$. Then for each $\mathbf{i} \in \mathscr{B}_{\infty}$,

$$[\boldsymbol{z}_t^+, \boldsymbol{z}_s^-] \cdot (\wedge \omega_{\mathbf{i}}) = \delta_{t,s} \, \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (K_{t\delta} - K_{-t\delta}) \cdot (\wedge \omega_{\mathbf{i}})$$

Proof. By [27, Prop. 2.2 & 2.6] (with q = v),

$$[B_t^+, B_s^-] = \delta_{t,s} \frac{t(1 - v^{2tn})}{1 - v^{2n}}$$

This together with Proposition 6.5 implies that for each $\mathbf{i} \in \mathscr{B}_{\infty}$,

$$[\boldsymbol{z}_t^+, \boldsymbol{z}_s^-] \cdot (\wedge \omega_{\mathbf{i}}) = v^t [B_t^+, B_s^-] \delta_{t,s} \cdot (\wedge \omega_{\mathbf{i}}) = \delta_{t,s} \frac{t v^t (1 - v^{2tn})}{1 - v^{2n}} (\wedge \omega_{\mathbf{i}}).$$

On the other hand,

$$\delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (K_{t\delta} - K_{-t\delta}) \cdot (\wedge \omega_{\mathbf{i}}) = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (v^t - v^{-t}) (\wedge \omega_{\mathbf{i}})$$
$$= \delta_{t,s} \frac{tv^t (1 - v^{2tn})}{1 - v^{2n}} (\wedge \omega_{\mathbf{i}}).$$

This gives the desired equality.

By [27, Prop. 2.1] (or direct calculations), the actions of \boldsymbol{z}_t^{\pm} on $\Omega^{\infty}/\Xi^{\infty}$ commutes with that of $\mathbf{U}'_v(\widehat{\mathfrak{sl}}_n)$. In conclusion, the actions of $K_i^{\pm 1}, u_i^+, u_i^ (i \in I_n)$ and $\boldsymbol{z}_s^+, \boldsymbol{z}_s^ (s \ge 1)$ on $\Omega^{\infty}/\Xi^{\infty}$ satisfy the relations (DH1)–(DH5). Therefore, the formulas (6.0.2) and (6.0.3) define a $\boldsymbol{\mathcal{D}}(n)$ -module structure on Λ^{∞} .

7. An isomorphism from $L(\Lambda_0)$ to \bigwedge^{∞}

In this section we show that the Fock space \bigwedge^{∞} as a $\mathcal{D}(n)$ -module is isomorphic to the basic representation $L(\Lambda_0)$ defined in Section 4. As an application, the decomposition of $L(\Lambda_0)$ in Corollary 4.5 induces the Kashiwara–Miwa–Stern decomposition of \bigwedge^{∞} in [27].

Proposition 7.1. For each $\mathfrak{m} \in \mathfrak{M}_n$, $\widetilde{u}_{\mathfrak{m}}^- \cdot |\emptyset\rangle$ is a \mathbb{Z} -linear combination of those $|\mu\rangle$ satisfying $\mathfrak{m}_{\mu} \leq_{\text{deg}} \mathfrak{m}$.

24

Proof. By (6.0.2),

$$\widetilde{u}_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle = \sum_{\mathbf{d}} \left(\gamma_{\mathbf{d}}^{-}(\widetilde{u}_{\mathfrak{m}}^{-}) K_{-\mathbf{d}'} \right) \cdot |\emptyset\rangle, \text{ where } \mathbf{d}' = \sum_{i} \left(\sum_{j < i, \, \overline{j} = \overline{i}} d_{j} \right) \varepsilon_{i}$$

Since $K_i \cdot |\emptyset\rangle = v^{\delta_{i,0}} |\emptyset\rangle$ for $i \in \mathbb{Z}$, it follows that $K_{-\mathbf{d}'} \cdot |\emptyset\rangle = v^{-\sum_{j < 0, \bar{j} = \bar{0}} d_j} |\emptyset\rangle$. By Proposition 3.4,

$$\gamma_{\mathbf{d}}^{-}(\widetilde{u}_{\mathfrak{m}}^{-}) \in \sum_{\mathfrak{z}} \mathcal{Z}\widetilde{u}_{\mathfrak{z}}^{-},$$

where the sum is taken over $\mathfrak{z} \in \mathfrak{M}_{\infty}$ with $\mathscr{F}(\mathfrak{z}) \leq_{\text{deg}}^{\infty} \mathfrak{m}$. Further, by Proposition 5.3(1),

$$\widetilde{u}_{\mathfrak{z}}^{-} \cdot |\emptyset\rangle \in \mathcal{Z}|\mu\rangle$$

for some $\mu \in \Pi$ with $\mathfrak{m}_{\mu}^{\infty} \leq_{\deg}^{\infty} \mathfrak{z}$. This implies that

$$\mathfrak{m}_{\mu} = \mathscr{F}(\mathfrak{m}_{\mu}^{\infty}) \leqslant_{\mathrm{deg}} \mathscr{F}(\mathfrak{z}) \leqslant_{\mathrm{deg}} \mathfrak{m}$$

This finishes the proof.

For each $\mathbf{d} = (d_i) \in \mathbb{N}I_{\infty}$, set

$$\sigma(\mathbf{d}) = -\sum_{i<0,\,\bar{i}=\bar{0}} d_i.$$

For $\lambda \in \Pi$, we write $\sigma(\lambda) = \sigma(\dim M(\mathfrak{m}_{\lambda}^{\infty}))$. The following result was proved in [47, 9.2 & 10.1]. We provide here a direct proof for completeness.

Corollary 7.2. For each $\lambda \in \Pi$,

$$\widetilde{u}_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle \in |\lambda\rangle + \sum_{\mu \lhd \lambda} \mathcal{Z}|\mu\rangle.$$

In particular, the $\mathcal{D}(n)$ -module \bigwedge^{∞} is generated by $|\emptyset\rangle$ and the set

$$\{b_{\mathfrak{m}_{\lambda}}^{-}\cdot|\emptyset\rangle\mid\lambda\in\Pi\}$$

is a basis of \bigwedge^{∞} .

Proof. Applying Corollary 3.5 gives that

$$\begin{split} \widetilde{u}_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle &= \sum_{\mathbf{d}} \left(\gamma_{\mathbf{d}}^{-}(\widetilde{u}_{\mathfrak{m}_{\lambda}}^{-})K_{-\mathbf{d}'} \right) \cdot |\emptyset\rangle = \sum_{\mathbf{d}} v^{\sigma(\mathbf{d})} \gamma_{\mathbf{d}}^{-}(\widetilde{u}_{\mathfrak{m}_{\lambda}}^{-}) \cdot |\emptyset\rangle \\ &= \sum_{r \in \mathbb{Z}} v^{\theta(\lambda) + \sigma(\lambda)} \widetilde{u}_{\tau^{rm}(\mathfrak{m}_{\lambda}^{\infty})} \cdot |\emptyset\rangle + \sum_{\mathfrak{z} \in \mathfrak{M}_{\infty}, \, \mathscr{F}(\mathfrak{z}) <_{\mathrm{deg}} \mathfrak{m}_{\lambda}} f_{\lambda, \mathfrak{z}} \, \widetilde{u}_{\mathfrak{z}}^{-} \cdot |\emptyset\rangle, \end{split}$$

where $f_{\lambda,\mathfrak{z}} \in \mathcal{Z}$. By Proposition 5.3 and its proof,

$$\widetilde{u}^-_{\mathfrak{m}^\infty_\lambda} \cdot |\emptyset\rangle = |\lambda\rangle \ \text{ and } \ \widetilde{u}^-_{\tau^{rm}(\mathfrak{m}^\infty_\lambda)} \cdot |\emptyset\rangle = 0 \text{ for } r > 0.$$

Furthermore, for each r < 0, $\tilde{u}_{\tau^{rm}(\mathfrak{m}_{\lambda}^{\infty})} \cdot |\emptyset\rangle \in \mathcal{Z}|\mu\rangle$ such that $\mathfrak{m}_{\mu}^{\infty} \leq_{\text{deg}}^{\infty} \tau^{rm}(\mathfrak{m}_{\lambda}^{\infty})$. Then $\mathfrak{m}_{\mu} = \mathscr{F}(\mathfrak{m}_{\mu}^{\infty}) \leq_{\text{deg}} \mathscr{F}(\tau^{rm}(\mathfrak{m}_{\lambda}^{\infty})) = \mathfrak{m}_{\lambda}$, which implies that $\mu \leq \lambda$. Since $M(\tau^{rm}(\mathfrak{m}_{\lambda}^{\infty}))$ does not have a composition factor isomorphic to S_{λ_1-1} , μ does not contain a box with color $\lambda_1 - 1$. Thus, $\mu \neq \lambda$ and $\mu < \lambda$.

Finally, by Proposition 7.1, for each $\mathfrak{z} \in \mathfrak{M}_{\infty}$ with $\mathscr{F}(\mathfrak{z}) <_{\text{deg}} \mathfrak{m}_{\lambda}, \widetilde{u}_{\mathfrak{z}}^{-} \cdot |\emptyset\rangle$ is a \mathscr{Z} -linear combination of $|\mu\rangle$ satisfying $\mathfrak{m}_{\mu} \leq_{\text{deg}} \mathscr{F}(\mathfrak{z})$. Thus, $\mathfrak{m}_{\mu} \leq_{\text{deg}} \mathscr{F}(\mathfrak{z}) <_{\text{deg}} \mathfrak{m}_{\lambda}$, which by Lemma 2.1 implies that $\mu \lhd \lambda$. Hence, each $\widetilde{u}_{\mathfrak{z}}^{-} \cdot |\emptyset\rangle$ is a \mathscr{Z} -linear combination of $|\mu\rangle$ with $\mu \lhd \lambda$. Consequently,

$$\widetilde{u}_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle \in v^{\theta(\lambda) + \sigma(\lambda)} |\lambda\rangle + \sum_{\mu \lhd \lambda} \mathcal{Z} |\mu\rangle.$$

Therefore, it remains to show that

$$\theta(\lambda) + \sigma(\lambda) = 0.$$

Write $\lambda = (\lambda_1, \ldots, \lambda_m)$ with $\lambda_1 \ge \cdots \ge \lambda_m \ge 1$ and set $|\lambda| = \sum_{s=1}^m \lambda_s$. We proceed induction on $|\lambda|$ to show that $\theta(\lambda) + \sigma(\lambda) = 0$. By the definition,

$$\theta(\lambda) = \sum_{s < t} \kappa(\mathbf{d}_s, \mathbf{d}_t) - \sum_{s=1}^{\ell} h(\mathbf{d}_s),$$

where $\ell = \lambda_1$ is the Loewy length of $M = M(\mathfrak{m}^{\infty}_{\lambda})$ and $S_{\mathbf{d}_s} \cong \operatorname{rad}^{s-1} M/\operatorname{rad}^s M$ for $1 \leq s \leq \ell$. Let $1 \leq t \leq m$ be such that $\lambda_1 = \cdots = \lambda_t > \lambda_{t+1}$ and define

$$\lambda' = (\lambda_1, \cdots, \lambda_{t-1}, \lambda_t - 1, \lambda_{t+1}, \lambda_m).$$

Then $|\lambda'| = |\lambda| - 1$. By the induction hypothesis, we have $\theta(\lambda') + \sigma(\lambda') = 0$.

For each $1 \leq s \leq \ell$, let $\mathbf{d}'_s \in \mathbb{N}I_\infty$ be defined by setting $S_{\mathbf{d}'_i} \cong \operatorname{rad}^{s-1}M'/\operatorname{rad}^sM'$, where $M' = M(\mathfrak{m}_{\mathcal{V}}^\infty)$. Then

$$\mathbf{d}'_{\ell} = \mathbf{d}_{\ell} - \varepsilon_{\ell-t}$$
 and $\mathbf{d}'_s = \mathbf{d}_s$ for $1 \leq s < \ell$

This implies that

$$\sum_{s=1}^{\ell} h(\mathbf{d}_s) - \sum_{s=1}^{\ell} h(\mathbf{d}'_s) = h(\mathbf{d}_\ell) - h(\mathbf{d}'_\ell) = -\delta_{\bar{t},\bar{1}} \text{ and}$$
$$\sum_{s < t} \kappa(\mathbf{d}_s, \mathbf{d}_t) - \sum_{s < t} \kappa(\mathbf{d}'_s, \mathbf{d}'_t) = \sum_{1 \le s < \ell} \kappa(\mathbf{d}_s, \varepsilon_{\ell-t}).$$

Hence,

$$\theta(\lambda) - \theta(\lambda') = \sum_{1 \leq s < \ell} \kappa(\mathbf{d}_s, \varepsilon_{\ell-t}) + \delta_{\bar{t}, \bar{1}}.$$

On the other hand, $\sigma(\lambda) = \sigma(\lambda') - 1$ if $\ell - t < 0$ and $\bar{\ell} = \bar{t}$, and $\sigma(\lambda) = \sigma(\lambda')$ otherwise. A direct calculation shows that if $\ell - t \ge 0$, then

$$\sum_{1 \leqslant s < \ell} \kappa(\mathbf{d}_s, \varepsilon_{\ell-t}) = -\delta_{\bar{t}, \bar{1}},$$

and if $\ell - t < 0$, then

$$\sum_{1 \leqslant s < \ell} \kappa(\mathbf{d}_s, \varepsilon_{\ell-t}) = \begin{cases} \delta_{\bar{\ell}, \bar{t}} - 1, & \text{if } \bar{t} = \bar{1}; \\ \delta_{\bar{\ell}, \bar{t}}, & \text{if } \bar{t} \neq \bar{1}. \end{cases}$$

We conclude that in all cases,

$$\theta(\lambda) + \sigma(\lambda) = \theta(\lambda') + \sigma(\lambda') = 0.$$

By the definition, for each $i \in I_n = \mathbb{Z}/n\mathbb{Z}$,

$$K_i|\emptyset\rangle = v^{\delta_{i,0}}|\emptyset\rangle.$$

This together with the corollary above implies that \bigwedge^{∞} is a highest weight $\mathcal{D}(n)$ -module of highest weight Λ_0 . Consequently, there is a unique surjective $\mathcal{D}(n)$ -module homomorphism

$$\varphi: \mathcal{D}(n)^- = M(\Lambda_0) \longrightarrow \bigwedge^{\infty}, \ \eta_{\Lambda_0} \longmapsto |\emptyset\rangle$$

Theorem 7.3. The homomorphism φ induces an isomorphism of $\mathcal{D}(n)$ -modules

$$\bar{\varphi}: L(\Lambda_0) \longrightarrow \bigwedge^{\infty}.$$

Proof. By definition, we have

$$F_i \cdot |\emptyset\rangle = 0$$
 for $i \in I_n \setminus \{0\}$ and $F_0^2 \cdot |\emptyset\rangle = 0$.

This together with Theorem 4.4 implies that φ induces a surjective homomorphism

$$\bar{\varphi}: L(\Lambda_0) = \mathcal{D}(n)^- / \big(\sum_{i \in I_n} \mathcal{D}(n)^- F_i^{\Lambda_0(h_i)+1}\big) \longrightarrow \bigwedge^{\infty}.$$

Since $L(\Lambda_0)$ is simple, we conclude that $\bar{\varphi}$ is an isomorphism.

Combining the theorem with Corollary 4.5 gives the decomposition of \bigwedge^{∞} obtained by Kashiwara, Miwa and Stern in [27, Prop. 2.3].

Corollary 7.4. As a $\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})$ -module, \bigwedge^{∞} has a decomposition

$$\bigwedge^{\infty}|_{\mathbf{U}'_{v}(\widehat{\mathfrak{sl}}_{n})} \cong \bigoplus_{m \ge 0} L_{0}(\Lambda_{0} - m\delta^{*})^{\oplus p(m)}.$$

8. The canonical basis for \bigwedge^{∞}

In this section we show that the canonical basis of \bigwedge^{∞} defined in [29] can be constructed by using the monomial basis of the Ringel-Hall algebra of Δ_n given in [8]. We also interpret the "ladder method" in [28] in terms of generic extensions defined in Section 2.

Recall that there is a bar-involution $a \mapsto \iota(a) = \overline{a}$ on $\mathcal{D}(n)^-$ which takes $\overline{v} \mapsto v^{-1}$ and fixes all \widetilde{u}_{α} for $\alpha \in \mathbb{N}I_n$. Then it induces a semilinear involution on the basic representation $L(\Lambda_0)$ by setting

$$\overline{a\eta_{\Lambda_0}} = \overline{a\eta_{\Lambda_0}}$$
 for all $a \in \mathcal{D}(n)^-$.

On the other hand, by [29], there is a semilinear involution $x \mapsto \overline{x}$ on \bigwedge^{∞} which, by [47], satisfies

(i)
$$|\emptyset\rangle = |\emptyset\rangle$$
,

(ii)
$$\overline{ax} = \overline{a} \overline{x}$$
 for all $a \in \mathcal{D}(n)^-$ and $x \in \bigwedge^{\infty}$

Therefore, the isomorphism $L(\Lambda_0) \to \bigwedge^{\infty}$ given in Theorem 7.3 is compatible with the barinvolutions.

It is proved in [29, Th. 3.3] that for each $\lambda \in \Pi$,

(8.0.1)
$$\overline{|\lambda\rangle} = |\lambda\rangle + \sum_{\mu \lhd \lambda} a_{\mu,\lambda} |\mu\rangle, \text{ where } a_{\mu,\lambda} \in \mathcal{Z}.$$

Then applying the standard linear algebra method to the basis $\{|\lambda\rangle \mid \lambda \in \Pi\}$ in [31] (or see [11] for more details) gives rise to an "IC basis" $\{b_\lambda \mid \lambda \in \Pi\}$ which is characterized by

$$\overline{b_{\lambda}} = b_{\lambda} \text{ and } b_{\lambda} \in |\lambda\rangle + \sum_{\mu \lhd \lambda} v^{-1} \mathbb{Z}[v^{-1}] |\mu\rangle,$$

The basis $\{b_{\lambda} \mid \lambda \in \Pi\}$ is called the *canonical basis* of \bigwedge^{∞} . In other words, the basis elements b_{λ} are uniquely determined by the polynomials $a_{\mu,\lambda}$.

Remark 8.1. Varagnolo and Vasserot [47] have conjectured that

$$b_{\mathfrak{m}_{\lambda}}^{-} \cdot |\emptyset\rangle = b_{\lambda}$$
 for each $\lambda \in \Pi$.

This conjecture was proved by Schiffmann [41].

In the following we provide a way to deduce (8.0.1) by using the monomial basis of the Ringel-Hall algebra of Δ_n given in [8]. As in [8, Sect. 3], set

$$I^e = I_n \cup \{ \text{all sincere vectors in } \mathbb{N}I_n \}$$

and consider the set Σ of all words on the alphabet I^e . Recall that a vector $\mathbf{a} = (a_i) \in \mathbb{N}I_n$ is called sincere if $a_i \neq 0$ for all $i \in I_n$. Since $\mathcal{D}(n)^-$ is isomorphic to the opposite Ringel-Hall algebra of Δ_n , we define

$$M \ast' N = N \ast M$$

This gives the map

$$\wp^{\mathrm{op}}: \Sigma \longrightarrow \mathfrak{M}, \ w = \mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_t \longmapsto S_{\mathbf{a}_1} *' S_{\mathbf{a}_2} *' \cdots *' S_{\mathbf{a}_t}$$

By [8, Sect. 9], for each $\mathfrak{m} \in \mathfrak{M}$, there is a distinguished word $w_{\mathfrak{m}} \in (\wp^{\mathrm{op}})^{-1}(\mathfrak{m})$ which defines a monomial $m^{(w_{\mathfrak{m}})}$ on $\tilde{u}_{\mathbf{a}}^{-}$ with $\mathbf{a} \in \tilde{I}$ such that

$$m^{(w_{\mathfrak{m}})} = \widetilde{u}_{\mathfrak{m}}^{-} + \sum_{\mathfrak{p} <_{\mathrm{deg}} \mathfrak{m}} \theta_{\mathfrak{p},\mathfrak{m}} \widetilde{u}_{\mathfrak{p}}^{-} \text{ for some } \theta_{\mathfrak{m},\mathfrak{p}} \in \mathcal{Z};$$

see [8, (9.1.1)]. If $\mathfrak{m} = \mathfrak{m}_{\lambda}$ for some $\lambda \in \Pi$, we simply write $w_{\mathfrak{m}_{\lambda}} = w_{\lambda}$. Thus,

(8.1.1)
$$m^{(w_{\lambda})} = \widetilde{u}_{\mathfrak{m}_{\lambda}}^{-} + \sum_{\mathfrak{p} <_{\mathrm{deg}} \mathfrak{m}_{\lambda}} \theta_{\mathfrak{p},\mathfrak{m}_{\lambda}} \widetilde{u}_{\mathfrak{p}}^{-}.$$

This together with Proposition 7.1 and Corollary 7.2 implies that

(8.1.2)
$$m^{(w_{\lambda})}|\emptyset\rangle = |\lambda\rangle + \sum_{\mu \lhd \lambda} \tau_{\mu,\lambda}|\mu\rangle,$$

where $\tau_{\mu,\lambda} \in \mathcal{Z}$. Since the monomials $m^{(w_{\lambda})}$ are bar-invariant, we deduce that for each $\lambda \in \Pi$,

$$\overline{|\lambda\rangle} = |\lambda\rangle + \sum_{\mu \lhd \lambda} a'_{\mu,\lambda} |\mu\rangle \text{ for some } a'_{\mu,\lambda} \in \mathcal{Z}.$$

Comparing with (8.0.1) gives that

$$a_{\mu,\lambda} = a'_{\mu,\lambda}$$
 for all $\mu \lhd \lambda$.

In case λ is *n*-regular, then \mathfrak{m}_{λ} is aperiodic and the word w_{λ} can be chosen in Ω , the subset of all words on the alphabet $I_n = \mathbb{Z}/n\mathbb{Z}$; see [8, Sect. 4]. In other words, $m^{(w_{\lambda})}$ is a monomial of the divided powers $(u_i^-)^{(t)} = F_i^{(t)}$ for $i \in I_n$ and $t \ge 1$. We now interpret the "ladder method" in [28, Sect. 6] in terms of the generic extension map. Let $\lambda = (\lambda_1, \ldots, \lambda_t) \in \Pi$ be *n*-regular. Recall the corresponding nilpotent representation

$$M(\mathfrak{m}_{\lambda}) = \bigoplus_{a=1}^{t} S_{1-a}[\lambda_{a}],$$

where 1 - a is viewed as an element in I_n . Take $1 \leq s \leq t$ with $\lambda_1 = \cdots = \lambda_s > \lambda_{s+1}$ ($\lambda_{t+1} = 0$ by convention) and let $k \geq 0$ be maximal such that

$$\lambda_{s+l(n-1)+1} = \dots = \lambda_{s+(l+1)(n-1)}$$
 and $\lambda_{s+l(n-1)} = \lambda_{s+l(n-1)+1} + 1$ for $0 \le l \le k-1$.

Let $i_1 \in I$ be such that soc $(S_{1-s}[\lambda_s]) = S_{i_1}$. Then for each a = s + l(n-1) with $0 \leq l \leq k$,

$$\operatorname{soc}\left(S_{1-a}[\lambda_a]\right) = S_{i_1}$$

Define $\mu = (\mu_1, \ldots, \mu_t) \in \Pi$ by setting

$$\mu_a = \begin{cases} \lambda_a - 1, & \text{if } a = s + l(n-1) \text{ for some } 0 \leq l \leq k; \\ \lambda_a, & \text{otherwise.} \end{cases}$$

It is easy to see from the construction that μ is again *n*-regular. Moreover, by applying an argument similar to that in the proof of [5, Prop. 3.7],

$$(k+1)S_{i_1} *' M(\mathfrak{m}_{\mu}) = M(\mathfrak{m}_{\mu}) * (k+1)S_{i_1} = M(\mathfrak{m}_{\lambda}).$$

Repeating the above process, we finally obtain a sequence i_1, \ldots, i_d in I_n and positive integers $k_1 = k + 1, \ldots, k_d$ such that

$$(k_1 S_{i_1}) *' \cdots *' (k_d S_{i_d}) = M(\mathfrak{m}_{\lambda}).$$

In other word, the word $w_{\lambda} := i_1^{k_1} \cdots i_d^{k_d}$ lies in $(\wp^{\text{op}})^{-1}(\mathfrak{m}_{\lambda})$. It can be also checked that the word w_{λ} is distinguished. Thus, the corresponding monomial

$$m^{(w_{\lambda})} = (u_{i_1}^-)^{(k_1)} \cdots (u_{i_d}^-)^{(k_d)} = F_{i_1}^{(k_1)} \cdots F_{i_d}^{(k_d)}$$

gives rise to the equality (8.1.2) for the element $m^{(w_{\lambda})}|\emptyset\rangle$. We remark that $m^{(w_{\lambda})}|\emptyset\rangle$ coincides with the element $A(\lambda)$ constructed in [28, (8)] by using the "ladder method" of James and Kerber [22].

References

- [1] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto Univ. **36** (1996), 789–808.
- [2] S. Ariki, *Representations of quantum algebras and combinatorics of Young tableaux*, University Lecture Series, 26. American Mathematical Society, Providence, RI, 2002.
- [3] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math. 121 (1996), 245–287.
- [4] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1982), 331–378.
- [5] B. Deng and J. Du, Monomial bases for quantum affine \mathfrak{sl}_n , Adv. Math. **191** (2005), 276–304.
- [6] B. Deng, J. Du and Q. Fu, A double Hall algebra approach to affine quantum Schur-Weyl theory, London Math. Soc. Lect. Note Series Volume 401, Cambridge University Press, 2012.
- [7] B. Deng, J. Du and A. Mah, Generic extensions and composition monoids of cyclic quivers, Contem. Math. vol. 602, 2013, 99–114.
- [8] B. Deng, J. Du and J. Xiao, Generic extensions and canonical bases for cyclic quivers, Can. J. Math. 59 (2007), 1260–1283.
- [9] B. Deng and J. Xiao, On double Ringel-Hall algebras, J. Algebra 251 (2002), 110–149.
- [10] V. G. Drinfeld, A new realization of Yangians and quantized affine alegbras, Soviet Math. Dokl. 32 (1988), 212–216.
- [11] J. Du, IC bases and quantum linear groups, Proc. Sympos. Pure Math. 56 (1994), 135–148.
- [12] E. Frenkel and E. Mukhin, The Hopf algebra Rep $U_q(\hat{\mathfrak{gl}}_{\infty})$, Sel. math., New Ser. 8 (2002), 537–635.
- [13] P. Gabriel, The universal cover of a representation-finite algebra, In: Representations of algebras, Lecture Notes in Math. 903, 68–105, Berlin-Heidelberg-New York, 1981.
- [14] F. Goodman and H. Wenzl, Crystal bases of quantum affine algebras and affine Kazhdan-Lusztig polynomials, Internat. Math. Res. Notices 5 (1999), 251–275.
- [15] J. A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. math. 120 (1995), 361–377.
- [16] J. Y. Guo, The Hall polynomials of a cyclic serial algebra, Comm. Algebra 23 (1995), 743–751.
- [17] T. Hayashi, q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990), 129–144.
- [18] J. Hong and O. Yacobi, Polynomial representations and categorifications of Fock space, Algebr. Represent. Theory 16 (2013), 1273–1311.
- [19] A. Hubery, Symmetric functions and the center of the Ringel-Hall algebra of a cyclic quiver, Math. Z. 251 (2005), 705–719.
- [20] A. Hubery, Ringel-Hall algebras of cyclic quivers, São Paulo J. Math. Sci. 4 (2010), no. 3, 351-398.
- [21] A. Hubery, Three presentations of the Hopf algebra $\mathcal{U}_{v}(\widehat{\mathfrak{gl}}_{n})$, preprint.
- [22] G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16. Addison-Wesley Publishing Co., Reading, Mass., 1981.
- [23] K. Jeong, S. J. Kang, and M. Kashiwara, Crystal bases for quantum generalized Kac-Moody algebras, Proc. London Math. Soc. 90 (2005), no. 3, 395–438.
- [24] A. Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 29, Springer-Verlag, Berlin, 1995.
- [25] S. J. Kang, Quantum deformations of generalized Kac-Moody algebras and their modules, J. Algebra 175 (1995), no. 3, 1041–1066.
- [26] M. Kashiwara, On cystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

BANGMING DENG AND JIE XIAO

- [27] M. Kashiwara, T. Miwa, and E. Stern, Decomposition of q-deformed Fock spaces, Selecta Math. (N.S.) 1 (1995), 787–805.
- [28] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), 205–263.
- [29] B. Leclerc and J.-Y. Thibon, Canonical bases of q-deformed Fock spaces, Internat. Math. Res. Notices 1996, 447-C456.
- [30] B. Leclerc, J.-Y. Thibon and E. Vasserot, Zelevinsky's involution at roots of unity, J. reine angew. Math. 513 (1999), 33–51.
- [31] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.
- [32] G. Lusztig, Quivers, perverse sheaves, and the quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 366-421.
- [33] G. Lusztig, Affine quivers and canonical bases, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 111-163.
- [34] G. Lusztig, Introduction to Quantum Groups, Birkhäuser, Boston, 1993.
- [35] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford, 1995.
- [36] K. C. Misra and T. Miwa, Crystal base for the basic representation of $U_q(\widehat{\mathfrak{sl}}(n))$, Commun. Math. Phys. 134 (1990), 79–88.
- [37] M. Reineke, Generic extensions and multiplicative bases of quantum groups at q = 0, Represent. Theory 5 (2001), 147–163.
- [38] C. M. Ringel, Hall algebras and quantum groups, Invent. math. 101 (1990), 583-592.
- [39] C. M. Ringel, Hall algebras, in: Topics in Algebra, Part 1, S. Balcerzyk et al. (eds.), Banach Center Publications, no. 26, 1988, pp. 433–447.
- [40] C. M. Ringel, The composition algebra of a cyclic quiver, Proc. London Math. Soc. 66 (1993), 507–537.
- [41] O. Schiffmann, The Hall algebra of a cyclic quiver and canonical bases of Fock spaces, Internat. Math. Res. Notices (2000), 413–440.
- [42] O. Schiffmann, Quivers of type A, flag varieties and representation theory, Fields Inst. Commun. 40, 453–479, Amer. Math. Soc., Providence, RI, 2004.
- [43] P. Shan, Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann. Sci. Éc. Norm. Supér.
 (4) 44 (2011), 147–182.
- [44] E. Stern, Semi-infinite wedges and vertex operators, Internat. Math. Res. Notices 4 (1995), 201–219.
- [45] C. Stroppel and B. Webster, Quiver Schur algebras and q-Fock space, arXiv:1110.1115v2.
- [46] J. Xiao, Drinfeld double and Ringel-Green theory of Hall algebras, J. Algebra 190 (1997), 100–144.
- [47] M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), 267–297.
- [48] G. Zwara, Degenerations for modules over representation-finite biserial algebras, J. Algebra 198 (1997), 563–581.

YAU MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA *E-mail address*: bmdeng@math.tsinghua.edu.cn

DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA *E-mail address*: jxiao@math.tsinghua.edu.cn