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Abstract. Based on the work of Ringel and Green, one can define the (Drinfeld) double Ringel–
Hall algebra D(Q) of a quiver Q as well as its highest weight modules. The main purpose of the
present paper is to show that the basic representation L(Λ0) of D(∆n) of the cyclic quiver ∆n

provides a realization of the q-deformed Fock space
∧

∞ defined by Hayashi. This is worked out
by extending a construction of Varagnolo and Vasserot. By analysing the structure of nilpotent
representations of ∆n, we obtain a decomposition of the basic representation L(Λ0) which induces
the Kashiwara–Miwa–Stern decomposition of

∧
∞ and a construction of the canonical basis of

∧
∞

defined by Leclerc and Thibon in terms of certain monomial basis elements in D(∆n).

1. Introduction

In [40], Ringel introduced the Hall algebra H(∆n) of the cyclic quiver ∆n with n vertices and
showed that its subalgebra generated by simple representations, called the composition algebra, is

isomorphic to the positive part U+
v (ŝln) of the quantized enveloping algebra Uv(ŝln). Schiffmann

[41] further showed that H(∆n) is the tensor product of U
+
v (ŝln) with a central subalgebra which is

the polynomial ring in infinitely many indeterminates. Following the approach in [46], the double
Ringel–Hall algebra D(∆n) was defined in [6]. Based on [12, 21] and an explicit description of
central elements of H(∆n) in [19], it was shown in [6, Th. 2.3.3] that D(∆n) is isomorphic to the

quantum affine algebra Uv(ĝln) defined by Drinfeld’s new presentation [10].

The q-deformed Fock space representation
∧∞ of the quantized enveloping algebra Uv(ŝln)

has been constructed by Hayashi [17], and its crystal basis was described by Misra and Miwa

[36]. Further, by work of Kashiwara, Miwa, and Stern [27], the action of Uv(ŝln) on
∧∞ is

centralized by a Heisenberg algebra which arises from affine Hecke algebras. This yields a bimodule

isomorphism from
∧∞ to the tensor product of the basic representation of Uv(ŝln) and the Fock

space representation of the Heisenberg algebra.
By defining a natural semilinear involution on

∧∞, Leclerc and Thibon [29] obtained in an
elementary way a canonical basis of

∧∞. It was conjectured in [28, 29] that for q = 1, the
coefficients of the transition matrix of the canonical basis on the natural basis of

∧∞ are equal
to the decomposition numbers for Hecke algebras and quantum Schur algebras at roots of unity.
These conjecture have been proved, respectively, by Ariki [1] and Varagnolo and Vasserot [47]. For
the categorification of the Fock space, see, for example, [43, 18, 45].

In [47], Varagnolo and Vasserot extended the Uv(ŝln)-action on the Fock space
∧∞ to that of

the extended Ringel–Hall algebra D(∆n)
60 of the cyclic quiver ∆n. They also showed that the

canonical basis of the Ringel–Hall algebra H(∆n) in the sense of Lusztig induces a basis of
∧∞

which conjecturally coincides with the canonical basis constructed by Leclerc and Thibon [29]. This
conjecture was proved by Schiffmann [41] by identifying the central subalgebra of H(∆n) with the
ring of symmetric functions.
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The main purpose of the present paper is to extend Varagnolo–Vasserot’s construction to obtain
a D(∆n)-module structure on the Fock space

∧∞ which is shown to be isomorphic to the basic
representation L(Λ0) of D(∆n). Moreover, the central elements in the positive and negative parts
of D(∆n) constructed by Hubery [19] give rise naturally to the operators introduced in [27] which
generate the Heisenberg algebra. Furthermore, the structure of D(∆n) yields a decomposition of
L(Λ0) which induces the Kashiwara–Miwa–Stern decomposition of

∧∞. This also provides a way to
construct the canonical basis of

∧∞ in [29] in terms of certain monomial basis elements of D(∆n).
The paper is organized as follows. In Section 2 we review the classification of (nilpotent) repre-

sentations of both infinite linear quiver ∆∞ and the cyclic quiver ∆n with n vertices and discuss
their generic extensions. Section 3 recalls the definition of Ringel–Hall algebras H(∆∞) and H(∆n)
of ∆∞ and ∆n as well as the maps from the homogeneous spaces of H(∆n) to those of H(∆∞)
introduced in [47]. The images of basis elements of H(∆n) under these maps are described. In Sec-
tion 4 we first follow the approach in [46] to present the construction of double Ringel–Hall algebras
of both ∆∞ and ∆n and then study the irreducible highest weight D(∆n)-modules based on the

results in [23]. Section 5 recalls from [17, 36, 47] the Fock space representation
∧∞ over Uv(ŝl∞)

(∼= D(∆∞)) as well as over U+
v (ŝln). In Section 6 we define the D(∆n)-module structure on

∧∞

based on [27, 47]. It is shown in Section 7 that
∧∞ is isomorphic to the basic representation of

D(∆n). In the final section, we present a way to construct the canonical basis of
∧∞ and interpret

the “ladder method” construction of certain basis elements in
∧∞ in terms of generic extensions

of nilpotent representations of ∆n.

2. Nilpotent representations and generic extensions

In this section we consider nilpotent representations of both a cyclic quiver ∆ = ∆n with n
vertices (n > 2) and the infinite quiver ∆ = ∆∞ of type A∞

∞ and study their generic extensions.
We show that the degeneration order of nilpotent representations of ∆n induces the dominant order
of partitions.

Let ∆∞ denote the infinite quiver of type A∞
∞

b b b b b b b

−2 −1 0 1 2

with vertex set I = I∞ = Z, and for n > 2, let ∆n denote the cyclic quiver

b b b b b

b
0

1 2 3 n−2 n−1

with vertex set I = In = Z/nZ = {0, 1, . . . , n − 1}. For each i ∈ I∞ = Z, let ī denote its residue
class in In = Z/nZ. We also simply write ī± 1 to denote the residue class of i± 1 in Z/nZ.

Given a field k, we denote by Rep 0∆ the category of finite dimensional nilpotent representations
of ∆ (= ∆∞ or ∆n) over k. (Note that each finite dimensional representation of ∆∞ is automatically
nilpotent.) Given a representation V = (Vi, Vρ) ∈ Rep 0∆, the vector dim V = (dim kVi)i∈I is called
the dimension vector of V . The Grothendieck group of Rep 0∆ is identified with the free abelian
group ZI with basis I. Let {εi | i ∈ I} denote the standard basis of ZI. Thus, elements in ZI will
be written as d = (di)i∈I or d =

∑
i∈I diεi. In case I = Z/nZ, we sometimes write Zn for ZI.

The Euler form 〈−,−〉 : ZI × ZI → Z is defined by

〈dimM,dimN〉 = dim kHomk∆(M,N)− dim kExt
1
k∆(M,N).
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Its symmetrization

(dimM,dimN) = 〈dimM,dimN〉+ 〈dimN,dimM〉
is called the symmetric Euler form.

It is well known that the isoclasses (isomorphism classes) of representations in Rep 0∆ are
parametrized by the set M consisting of all multisegments

m =
∑

i∈I, l>1

mi,l[i, l),

where all mi,l ∈ N but finitely many are zero. More precisely, the representation M(m) = Mk(m)
associated with m is defined by

M(m) =
⊕

i∈I,l>1

mi,lSi[l],

where Si[l] denotes the indecomposable representation of ∆ with the simple top Si and length l.
For each d ∈ NI, put

Md = {m ∈ M | dimM(m) = d}.
Furthermore, we will write M = M∞ (resp., M = Mn) if I = Z (resp., I = Z/nZ).

It is also known that there exist Auslander–Reiten sequences in Rep 0∆, that is, for each M ∈
Rep 0∆, there is an Auslander–Reiten sequence

0 −→ τM −→ E −→M −→ 0,

where τM denotes the Auslander–Reiten translation ofM . It is clear that τ induces an isomorphism
τ : ZI → ZI such that τ(dimM) = dim τM . In particular, τ(εi) = εi+1, ∀ i ∈ I. If ∆ = ∆n, then
τ sn = id for all s ∈ Z. For m ∈ M, let τm be defined by M(τm) ∼= τM(m).

Given d ∈ NI, let V = ⊕i∈IVi be an I-graded vector space with dimension vector d. Consider

EV = {(xi) ∈
⊕

i∈I
Homk(Vi, Vi+1) | xn−1 · · · x0 is nilpotent if ∆ = ∆n.}.

Then each element x ∈ EV defines a representation (V, x) of dimension vector d in Rep 0∆. More-
over, the group

GV =
∏

i∈I
GL(Vi)

acts on EV by conjugation, and there is a bijection between the GV -orbits and the isoclasses of
representations in Rep 0∆ of dimension vector d. For each x ∈ EV , by Ox we denote the GV -orbit
of x. In case k is algebraically closed, we have the equalities

dimOx = dimGV − dimEndk∆(V, x) =
∑

i∈I
d2i − dimEndk∆(V, x).(2.0.1)

By abuse of notation, for each M ∈ Rep 0∆, we denote by OM the orbit of M .
Following [3, 37, 5], given two representations M,N in Rep 0∆, there exists a unique (up to

isomorphism) extension G of M by N such that dimEndk∆(G) is minimal. The extension G is
called the generic extension of M by N , denoted by M ∗N . Moreover, generic extensions satisfy
the associativity, i.e., for L,M,N ∈ Rep 0∆,

L ∗ (M ∗N) ∼= (L ∗M) ∗N.
Let M(∆) denote the the set of isoclasses of representations in Rep 0∆. Define a multiplication on
M(∆) by setting

[M ] ∗ [N ] = [M ∗N ].

Then M(∆) is a monoid with identity [0], the isoclass of zero representation of ∆.
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By [37, 5], the generic extension M ∗N can be also characterized as the unique maximal element
among all the extensions of M by N with respect to the degeneration order 6deg which is defined
by setting M 6deg N if dimM = dimN and

dim kHomk∆(M,X) > dim kHomk∆(N,X), for all X ∈ Rep 0∆.(2.0.2)

If k is algebraically closed, then M 6deg N if and only if OM ⊆ ON , where OM is the closure
of OM . This defines a partial order relation on the set M(∆) of isoclasses of representations in
Rep 0∆; see [48, Th. 2] or [5, Lem. 3.2]. By [37, 2.4], for M,N,M ′, N ′ ∈ Rep 0∆,

M ′
6deg M,N ′

6deg N =⇒M ′ ∗N ′
6deg M ∗N.

For m,m′ ∈ Mn (resp., M∞), we write m 6deg m′ (resp., m 6∞
deg m′) if M(m) 6deg M(m′) in

Rep 0∆n (resp., Rep∆∞).
By [4, 13], there is a covering functor

F : Rep∆∞ −→ Rep 0∆n

sending Si[l] to Sī[l] for i ∈ Z and l > 1. Moreover, F is dense and exact, and the Galois group
of F is the infinite cyclic group G generated by τn, i.e., τn(Si[l] = Si+n[l]). For m ∈ M∞, let
F (m) ∈ Mn be such that M(F (m)) ∼= F (M(m)) ∈ Rep 0∆n. From (2.0.2) we easily deduce that
for M,N ∈ Rep∆∞,

M 6deg N =⇒ F (M) 6deg F (N).(2.0.3)

The following two classes of representations will play an important role later on. For each
d = (di) ∈ NI, we set

Sd =
⊕

i∈I
diSi[1] ∈ Rep 0∆.

In other words, Sd is the unique semisimple representation of dimension vector d.
Let Π be the set of all partitions λ = (λ1, . . . , λt) (i.e., λ1 > · · · > λt > 1). For each λ ∈ Π,

define

mλ =

t∑

s=1

[1− s, λs) ∈ M.

Then

M(mλ) = S0[λ1]⊕ S−1[λ2]⊕ · · · ⊕ S1−t[λt] ∈ Rep 0∆.

If ∆ = ∆∞, then we sometimes write mλ = m∞
λ ∈ M∞ to make a distinction. It follows from the

definition that F (m∞
λ ) = mλ for all λ ∈ Π.

Proposition 2.1. Let λ, µ ∈ Π.

(1) If ∆ = ∆∞, then

dimM(m∞
µ ) = dimM(m∞

λ ) ⇐⇒ µ = λ.

In particular, for each m ∈ M∞, there exists at most one ν ∈ Π such that m = m∞
ν .

(2) If ∆ = ∆n, then

M(mµ) 6deg M(mλ) =⇒ µ E λ,

where E is the dominance order on Π, i.e., µ E λ⇐⇒ ∑i
j=1 µj 6

∑i
j=1 λj, ∀ i > 1.

Proof. (1) By definition, both the socles of M(m∞
λ ) and M(m∞

µ ) are multiplicity-free. Thus, com-
paring the socles of S0[λ1] and S0[µ1] gives λ1 = µ1. The lemma then follows from an inductive
argument.
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(2) Suppose M(mµ) 6deg M(mλ). By viewing mλ and mµ as multipartitions in Mn, we obtain
by [7, Prop. 2.7] that for each l > 1,

l∑

s=1

µ̃s >

l∑

s=1

λ̃s,

where λ̃ = (λ̃1, λ̃2, . . . ) and µ̃ = (µ̃1, µ̃2, . . . ) are the dual partition of λ and µ, respectively, that is,

µ̃� λ̃. By [35, 1.1], µ E λ. �

3. Ringel–Hall algebra of the quiver ∆

In this section we introduce the Ringel–Hall algebra H(∆) of ∆ (= ∆n or ∆∞) and the maps
from homogeneous subspaces of H(∆n) to those of H(∆∞) defined in [47, 6.1]. We also describe
the images of basis elements of H(∆n) under these maps.

The cyclic quiver ∆n gives the n×n Cartan matrix Cn = (aij)i,j∈I of type Ân−1, while ∆∞ defines
the infinite Cartan matrix C∞ = (aij)i,j∈Z. Thus, we have the associated quantum enveloping

algebras Uv(ŝln) and Uv(sl∞) which are Q(v)-algebras with generators K±1
i , Ei, Fi,D

±1 (i ∈ I =

Z/nZ) and K±1
i , Ei, Fi (i ∈ Z), respectively, and the quantum Serre relations. In particular, the

relations involving the generator D±1 in Uv(ŝln) are

DD−1 = 1 = D−1D, KiD = DKi, DEi = vδ0,iEiD, DFi = v−δ0,iFiD, ∀ i ∈ I;

see [2, Def. 3.16]. The subalgebra of Uv(ŝln) generated by K±1
i , Ei, Fi (i ∈ I = Z/nZ) is denoted

by U′
v(ŝln); see [27, 1.1].

By [38, 40, 16], for p,m1, . . . ,mt ∈ M, there is a polynomial ϕp
m1,... ,mt

(q) ∈ Z[q] (called Hall
polynomial) such that for each finite field k,

ϕp
m1,... ,mt

(|k|) = F
Mk(p)
Mk(m1),... ,Mk(mt)

,

which is by definition the number of the filtrations

Mk(p) =M0 ⊇M1 ⊇ · · · ⊇Mt−1 ⊇Mt = 0

such that Ms−1/Ms
∼= Mk(ms) for all 1 ≤ s ≤ t. By [39, Sect. 2], for each m ∈ M, there is a

polynomial am(q) ∈ Z[q] such that for each finite field k,

am(|k|) = |Autk∆(Mk(m))|.
Let Z = Z[v, v−1] be the Laurent polynomial ring over Z in indeterminate v. By definition, the

(twisted generic) Ringel–Hall algebra H(∆) of ∆ is the free Z-module with basis {um | m ∈ M}
and multiplication given by

umum′ = v〈dimM(m),dimM(m′)〉 ∑

p∈M
ϕp
m,m′(v

2)up.(3.0.1)

In practice, we also write um = u[M(m)] in order to make certain calculations in terms of modules.
Furthermore, for each d ∈ NI, we simply write ud = u[Sd].

For each i ∈ I, set ui = u[Si]. We then denote by C(∆) the subalgebra of H(∆) generated by the

divided power u
(t)
i = uti/[t]

!, i ∈ I and t > 1, called the composition algebra of ∆, where

[t]! = [t][t− 1] · · · [1] with [m] = (vm − v−m)/(v − v−1).(3.0.2)

Moreover, both H(∆) and C(∆) are NI-graded:

H(∆) =
⊕

d∈NI
H(∆)d and C(∆) =

⊕

d∈NI
C(∆)d,(3.0.3)



6 BANGMING DENG AND JIE XIAO

where H(∆)d is spanned by all um with m ∈ Md and C(∆)d = C(∆)∩H(∆)d. Since the Auslander–
Reiten translate τ : Rep 0∆ → Rep 0∆ is an auto-equivalence, it induces an automorphism τ :
H(∆) → H(∆), um 7→ uτm. We also consider the Q(v)-algebras

H(∆) = H(∆)⊗Z Q(v) and C(∆n) = C(∆n)⊗Z Q(v).

Remark 3.1. We remark that the Hall algebra of ∆ defined in [47] is the opposite algebra of H(∆)
given here with v being replaced by v−1. Thus, v and v−1 should be swaped when comparing with
the formulas in [47].

Following [38], C(∆∞) = H(∆∞), and there is an isomorphism U+
v (sl∞) ∼= H(∆∞) taking

Ei 7→ ui, ∀ i ∈ I∞ = Z. But, for n > 2, C(∆n) is a proper subalgebra of H(∆n). By [40],

U+
v (ŝln)

∼= C(∆n), Ei 7−→ ui, ∀ i ∈ In.

By [41, Th. 2.2], H(∆n) is decomposed into the tensor product of C(∆n) and a polynomial ring in
infinitely many indeterminates which are central elements in H(∆n). Such central elements have
been explicitly constructed in [19]. More precisely, for each t > 1, let

ct = (−1)tv−2nt
∑

m

(−1)dimEnd(M(m))am(v
2)um ∈ H(∆n),(3.1.1)

where the sum is taken over all m ∈ Mn such that dimM(m) = tδ with δ = (1, . . . , 1) ∈ NIn, and
socM(m) is square-free, i.e., dim socM(m) 6 δ. The following result is proved in [19].

Theorem 3.2. The elements cm are central in H(∆n). Moreover, there is a decomposition

H(∆n) = C(∆n)⊗Q(v) Q(v)[c1, c2, . . . ],

where Q(v)[c1, c2, . . . ] is the polynomial algebra in ct for t > 1. In particular, H(∆n) is generated

by ui and ct for i ∈ In and t > 1.

For each m ∈ M, set d(m) = dimM(m), d(m) = dimM(m) and define

ũm = vdimEndk∆(M(m))−d(m)um.(3.2.1)

Then {ũm | m ∈ M} is also a Z-basis of H(∆) which plays a role in the construction of the canonical
basis. In particular,

ũi = ui for each i ∈ I and ũd = v
∑

i(d
2
i−di)ud for each d ∈ NI.

Consider the map π : ZI∞ → ZIn,d 7→ d̄, where π(d) = d̄ = (dī) is defined by

dī =
∑

j∈ī
dj , ∀ ī ∈ In = Z/nZ.

In particular, for each representation M ∈ Rep∆∞, dimF (M) = π(dimM).
In the following we briefly recall from [47, 6.1] the Z-linear map

γd : H(∆n)d̄ −→ H(∆∞)d

for each d ∈ NI∞. These maps play a crucial role in defining an action of H(∆n) on the Fock space
later on.

Let k = Fq be a finite filed with q elements and let V = ⊕i∈IVi be an I-graded Fq-vector space
with dimension vector d. Then we define CGV

(EV ) to be the set of GV -invariant functions EV → C,
which is a vector space over C. Then H(∆)d ⊗Z C (at v =

√
q) can be identified with CGV

(EV )
via taking u[(V,x)] to the characteristic function of the GV -orbit of x in EV .
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Now take d ∈ NI∞ and let V = ⊕i∈ZVi be an I∞-graded Fq-vector space of dimension vector

d. This gives an In-graded space V = ⊕ī∈InVī of dimension vector d̄ with V ī = ⊕j∈īVj , ∀ ī ∈ In.

Moreover, V admits a filtration by the subspaces

V >i =
⊕

j>i

Vj, ∀ i ∈ Z.

Then the associated graded space ⊕i∈ZV >i/V >i−1 is naturally identified with the Z-graded space
V . Set

EV ,V = {x ∈ EV | x(V >i) ⊆ V i+1} ⊂ EV .

This gives a map p : EV ,V → EV , which takes a representation of ∆n in EV to the induced

representation of ∆∞ in EV , and the embedding ι : EV ,V → EV . By specializing v to
√
q, the map

γd is then given by

(γd ⊗Z C) |v=√
q: CG

V
(EV ) −→ CGV

(EV ), f 7−→ √
qh(d)p!ι

∗(f),

where h(d) =
∑

i<j,̄i=j̄ di(dj+1−dj). Here we identify H(∆n)d⊗ZC with CG
V
(EV ) andH(∆∞)d⊗Z

C with CGV
(EV ).

The first two statements in the following lemma are taken from [47, Sect. 6.1], and the third one
follows from the isomorphism τ : H(∆∞) → H(∆∞).

Lemma 3.3. (1) For each d ∈ NI∞, γd(ũd̄) = v−h(d)ũd.
(2) Fix α, β ∈ NIn with d̄ = α+ β. Then for x ∈ H(∆n)α and y ∈ H(∆n)β ,

∑

a,b

vκ(a,b)γa(x)γb(y) = γd(xy),(3.3.1)

where the sum is taken over all pairs a,b ∈ NI∞ satisfying a + b = d, ā = α, and b̄ = β, and
κ(a,b) =

∑
i>j,̄i=j̄ ai(2bj − bj−1 − bj+1).

(3) For each d ∈ NI∞ and m ∈ Md̄
n, γτn(d)(ũm) = τn(γd(ũm)).

We now describe the images of the basis elements ũm of H(∆n)d̄ under γd.

Proposition 3.4. Let d ∈ NI∞ and m ∈ Mn be such that α := dimM(m) = d. Then

γd(ũm) ∈
∑

z∈M∞,F (z)6degm

Zũz.

Proof. Consider the radical filtration of M =M(m)

M = rad 0M ⊇ radM(= rad 1M) ⊇ · · · ⊇ rad ℓ−1M ⊇ rad ℓM = 0

with rad s−1M/rad sM ∼= Sαs , where ℓ is the Loewy length of M and αs ∈ NIn for 1 6 s 6 ℓ. Then
M = Sα1 ∗ · · · ∗ Sαℓ

. Moreover, by [8, Sect. 9],

ũα1 · · · ũαℓ
= ũm +

∑

p<degm

fm,pũp, where fm,p ∈ Z.

On the one hand, by induction with respect to the order 6deg, we may assume that for each

p ∈ Md
n with p <deg m, γd(ũp) is a Z-linear combination of ũy with y ∈ M∞ satisfying F (y) 6deg p.

Therefore,

γd(ũm) = γd(ũα1 · · · ũαℓ
) + x,(3.4.1)

where x = −∑
p<degm

fm,pγd(ũp) is a Z-linear combination of ũz with F (z) <deg m.
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On the other hand, by applying (3.3.1) inductively, we obtain

γd(ũα1 · · · ũαℓ
) =

∑

a1,... ,aℓ

v
∑

s<t κ(as,at)−
∑

s h(as)ũa1 · · · ũaℓ
,(3.4.2)

where the sum is taken over all sequences a1, . . . ,aℓ ∈ NI∞ satisfying

a1 + · · · + aℓ = d and as = αs, ∀ 1 6 s 6 ℓ.

By the definition, each term ũa1 · · · ũaℓ
is a Z-linear combination of ũy such that M(y) admits a

filtration

M(y) = X0 ⊃ X1 ⊃ · · · ⊃ Xℓ−1 ⊃ Xℓ = 0

satisfying Xs−1/Xs
∼= Sas for all 1 6 s 6 ℓ. Applying the exact functor F gives a filtration of

F (M(y))

F (M(y)) = F (X0) ⊃ F (X1) ⊃ · · · ⊃ F (Xℓ−1) ⊃ F (Xℓ) = 0

such that

F (Xs−1)/F (Xs) ∼= F (Xs−1/Xs) ∼= Sαs , ∀ 1 6 s 6 ℓ.

Therefore,

F (M(y)) =M(F (π)) 6deg Sα1 ∗ · · · ∗ Sαℓ
=M(m),

that is, F (y) 6deg m.
In conclusion, we obtain that

γd(ũm) ∈
∑

z∈M∞,F (z)6degm

Zũz.

�

Fix λ ∈ Π and write

d(λ) = dimM(m∞
λ ) ∈ NI∞ and α(λ) = dimM(mλ) ∈ NIn.

By the definition of M(m∞
λ ) and M(mλ), the radical filtration of M̃ =M(m∞

λ )

M̃ = rad 0M̃ ⊇ rad M̃ ⊇ · · · ⊇ rad ℓ−1M̃ ⊇ rad ℓM̃ = 0

gives rise to the radical filtration of M(mλ) = F (M̃ )

M(mλ) = F (rad 0M̃) ⊇ F (rad M̃) ⊇ · · · ⊇ F (rad ℓ−1M̃ ) ⊇ F (rad ℓM̃) = 0,

that is, F (rad sM̃) = rad s(M(mλ)) for 1 6 s 6 ℓ. Let d(λ)s ∈ NI∞ and α(λ)s ∈ NIn, 1 6 s 6 ℓ,
be such that

rad s−1M̃/rad sM̃ ∼= Sd(λ)s and rad s−1M(mλ)/rad
sM(mλ) ∼= Sα(λ)s .

Then d(λ)s = α(λ)s for 1 6 s 6 ℓ. Applying (3.4.1) and (3.4.2) to mλ gives the following result.

Corollary 3.5. (1) Let λ ∈ Π and keep the notation above. Then

γd(λ)(ũmλ
) ∈ vθ(λ)ũm∞

λ
+

∑

z∈M∞,F (z)<degmλ

Zũz,

where θ(λ) =
∑

s<t κ(d(λ)s,d(λ)t)−
∑ℓ

s=1 h(d(λ)s).

(2) Let d ∈ NI∞ with d = α(λ). If d = τ rm(d(λ)) for some r ∈ Z, then

γd(ũmλ
) ∈ vθ(λ)ũτrm(m∞

λ
) +

∑

z∈M∞,F (z)<degmλ

Zũz.
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Otherwise,

γd(ũmλ
) ∈

∑

z∈Md
∞
,F (z)<degmλ

Zũz.

In the following we briefly recall the canonical basis of H(∆) for ∆ = ∆n or ∆∞. By [31] and
[47, Prop. 7.5], there is a semilinear ring involution ι : H(∆) → H(∆) taking v 7→ v−1 and ũd 7→ ũd
for all d ∈ ZI. It is often called the bar-involution, usually written as x̄ = ι(x). The canonical basis
(or the global crystal basis in the sense of Kashiwara) B := {bm | m ∈ M} for H(∆) (at v = ∞)
can be characterized as follows:

bm = bm, bm ∈ ũm +
∑

p<degm

v−1Z[v−1]ũp;(3.5.1)

see [31]. The canonical basis elements bm also admit a geometric characterization given in [32, 47].
Let H i

Op
(ICOm

) be the stalk at a point of Op of the i-th intersection cohomology sheaf of the closure

Om of Om. Then

bm =
∑

i∈N

p6degm

vi−dimOm+dimOpdimH i
Op

(ICOm
)ũp.

For the cyclic quiver case, by [33], the subset of B

Bap := {bm | m ∈ Map
n }

is the canonical basis of C(∆n), where M
ap
n denotes the set of aperiodic multisegments, that is,

those multisegments m =
∑

i∈In, l>1mi,l[i, l) satisfying that for each l > 1, there is some i ∈ In

such that mi,l = 0. In other words, Bap is the canonical basis of U±
v (ŝln). Note that for each

λ = (λ1, . . . , λm) ∈ Π, the corresponding multisegment mλ is aperiodic if and only if λ is n-regular
which, by definition, satisfies λs > λs+n−1 for 1 6 s 6 s+ n− 1 6 m.

4. Double Ringel–Hall algebras and highest weight modules

In this section we follows [46, 6] to define the double Ringel–Hall algebra D(∆) of the quiver
∆ = ∆n or ∆∞ and study the irreducible highest weight modules of D(∆n) associated with integral
dominant weights in terms of a quantized generalized Kac–Moody algebra.

The Ringel–Hall algebra H(∆) of ∆ can be extended to a Hopf algebra D(∆)>0 which is a
Q(v)-vector space with a basis {u+mKα | α ∈ ZI,m ∈ M}; see [38, 15, 46] or [6, Prop. 1.5.3]. Its
algebra structure is given by

KαKβ = Kα+β, Kαu
+
m = v(d(m),α)u+mKα,

u+mu
+
m′ =

∑

p∈M
v〈d(m),d(m′)〉ϕp

m,m′(v
2)u+p ,

(4.0.2)

where m,m′ ∈ M and α, β ∈ ZI, and its coalgebra structure is given by

∆(u+m) =
∑

m′,m′′∈M
v〈d(m

′),d(m′′)〉 am′(v2)am′′(v2)

am(v2)
ϕm
m′,m′′(v2)u+m′′ ⊗ u+m′Kd(m′′),

∆(Kα) = Kα ⊗Kα, ε(u+m) = 0 (m 6= 0), ε(Kα) = 1,

(4.0.3)

where m ∈ M and α ∈ ZI. We refer to [46] or [6] for the definition of the antipode.
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Dually, there is a Hopf algebra D(∆)60 with basis {Kαu
−
m | α ∈ ZI,m ∈ M}. In particular, the

multiplication is given by

KαKβ = Kα+β , Kαu
−
m = v−(d(m),α)u−mKα,

u−mu
−
m′ =

∑

p∈M
v〈d(m

′),d(m)〉ϕp
m′,m(v

2)u−p ,
(4.0.4)

where m,m′ ∈ M and α, β ∈ ZI. The comultiplication and the counit are given by

∆(u−m) =
∑

m′,m′′∈M
v〈d(m

′),d(m′′)〉 am′am′′

am
ϕm
m′,m′′(v2)u−m′′K−d(m′) ⊗ u−m′ ,

∆(Kα) = Kα ⊗Kα, ε(u−m) = 0 (m 6= 0), ε(Kα) = 1,

(4.0.5)

where α ∈ ZI and m ∈ M.
It is routine to check that the bilinear form ψ : D(∆)>0 ×D(∆)60 → Q(v) defined by

ψ(Kαu
+
m ,Kβu

−
m′) = v(α,β)−〈d(m),d(m)〉+2d(m) δm,m′

am(v2)
(4.0.6)

is a skew-Hopf pairing in the sense of [24]; see, for example, [6, Prop. 2.1.3].
Following [46] or [6, §2.1], with the triple (D(∆)>0,D(∆)60, ψ) we obtain the associated reduced

double Ringel–Hall algebra D(∆) which inherits a Hopf algebra structure from those of D(∆)>0

and D(∆)60. In particular, for all elements x ∈ D(∆)>0 and y ∈ D(∆)60, we have in D(∆) the
following relations

∑
ψ(x1, y1)y2x2 =

∑
ψ(x2, y2)x1y1,(4.0.7)

where ∆(x) =
∑
x1 ⊗ x2 and ∆(y) =

∑
y1 ⊗ y2 (Here we use the Sweedler notation). Moreover,

D(∆) admits a triangular decomposition

D(∆) = D(∆)+ ⊗D(∆)0 ⊗D(∆)−,(4.0.8)

where D(∆)± are subalgebras generated by u±m (m ∈ M), and D(∆)0 is generated by Kα (α ∈ ZI).
Thus, D(∆)0 is identified with the Laurent polynomial ring Q(v)[K±1

i : i ∈ I],

H(∆) = H(∆)⊗Z Q(v)
∼−→ D(∆)+, um 7−→ u+m ,

H(∆)op = H(∆)op ⊗Z Q(v)
∼−→ D(∆)−, um 7−→ u−m .

For i ∈ I, α ∈ NI and m ∈ M, we write

u±i = u±[Si]
, u±α = u±[Sα]

, and ũ±m = vdimEnd∆(M(m))−dimM(m)u±m .

The canonical basis of H(∆) in (3.5.1) gives the canonical bases B± := {b±m | m ∈ M} of D(∆)±

satisfying

b±m ∈ ũ±m +
∑

p<degm

v−1Z[v−1]ũ±p .(4.0.9)

It is known that D(∆∞) is generated by u±i ,K
±1
i (i ∈ Z) and is isomorphic to Uv(sl∞). By [40],

the Q(v)-subalgebra of D(∆n) generated by u±i ,K
±1
i (i ∈ In = Z/nZ) is isomorphic to U′

v(ŝln),

while D(∆n) is isomorphic to Uv(ĝln); see [42, 21, 6]. From now on, we write for notational
simplicity,

D(∞) = D(∆∞) and D(n) = D(∆n).
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Remarks 4.1. (1) The construction ofD(n) is slightly different from that in [6, §2.1]. In particular,

the Ki here play a role as K̃i = KiK
−1
i+1 there. In particular, they do not satisfy the equality

K0K1 · · ·Kn−1 = 1.

(2) We can extend D(n) to the Q(v)-algebra D̂(n) by adding new generators D±1 with relations

DD−1 = 1 = D−1D, KiD = DKi, DEi = vδ0,iEiD, DFi = v−δ0,iFiD, Du
±
m = v±a0u±mD

for all i ∈ In and m ∈ M, where d(m) = (ai)i∈In . Then Uv(ŝln) clearly becomes a subalgebra of

D̂(n).

As in (3.1.1), define for each t > 1,

c
±
t = (−1)tv−2tn

∑

m

(−1)dimEnd(M(m))am(v
2)u±m ∈ D(n)±,

By Theorem 3.2, the elements c+t and c
−
t are central in D(n)+ and D(n)−, respectively. Following

[21, Sect. 4], define recursively for t > 1,

x
±
t = tc±t −

t−1∑

s=1

x
±
s c

±
t−s ∈ D(n)±.

Clearly, x+
t and x

−
t are again central elements in D(n)+ and D(n)−, respectively. By applying [19,

Cor. 10 & 12], the x
±
t are primitive, i.e.,

∆(x+
t ) = x

+
t ⊗Ktδ + 1⊗ x

+
t and ∆(x−

t ) = x
−
t ⊗ 1 +K−tδ ⊗ x

−
t ,

and they satisfy

ψ(x+
t ,x

−
s ) = v2tn{xt,xs} = δt,stv

2tnv−2tn(1− v−2tn) = δt,st(1− v−2tn).

Finally, as in [6, § 2.2], we scale the elements x±
t by setting

z
±
t =

vtn

vt − v−t
x
±
t ∈ D(n)± for t > 1.

Then

∆(z+
t ) = z

+
t ⊗Ktδ + 1⊗ z

+
t , ∆(z−

t ) = z
−
t ⊗ 1 +K−tδ ⊗ z

−
t ,(4.1.1)

and

ψ(z+
t ,z

−
s ) = δt,s

t(v2tn − 1)

(vt − v−t)2
.

Lemma 4.2. (1) For each i ∈ In,

[u+i , u
−
i ] =

Ki −K−1
i

v − v−1
.

(2) For α ∈ NIn and t, s > 1, Kαz
±
t = z

±
t Kα and

[z+
t ,z

−
s ] = δt,s

t(v2tn − 1)

(vt − v−t)2
(Ktδ −K−tδ).(4.2.1)

Moreover, for each i ∈ In and t > 1,

[u+i ,z
−
t ] = 0 = [u−i ,z

+
t ].
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Proof. We only prove the formula (4.2.1). The remaining ones are easy calculations. Since ∆(z+
t ) =

z
+
t ⊗Ktδ + 1⊗ z

+
t and ∆(z−

s ) = z
−
s ⊗ 1 +K−sδ ⊗ z

−
s , we have by (4.0.7) that

Ktδψ(z
+
t ,z

−
s ) + z

+
t ψ(1,z

−
s ) + z

−
s Ktδψ(z

+
t ,K−sδ) + z

−
s z

+
t ψ(1,K−sδ)

=z
+
t z

−
s ψ(Ktδ , 1) + z

−
s ψ(z

+
t , 1) + z

+
t K−sδψ(Ktδ ,z

−
s ) +K−sδψ(z

+
t ,z

−
s ).

This implies that

[z+
t ,z

−
s ] = ψ(z+

t ,z
−
s )(Ktδ −K−sδ) = δt,s

t(v2tn − 1)

(vt − v−t)2
(Ktδ −K−tδ)

since ψ(1,z−
s )= ψ(z+

t ,Ksδ) =ψ(z
+
t , 1) =ψ(Ktδ ,z

−
s ) =0 and ψ(1,Ksδ) =ψ(K−tδ , 1) =1. �

Using arguments similar to those in the proof of [6, Th. 2.3.1], we obtain a presentation of D(n).
More precisely, D(n) is the Q(v)-algebra generated by K±1

i , u+i = Ei, u
−
i = Fi, and z

±
t for i ∈ In

and t > 1 with defining relations:

(DH1) KiKj = KjKi, KiK
−1
i = 1 = K−1

i Ki;

(DH2) KiEj = vaijEjKi, KiFj = v−aijFjKi, Kiz
±
t = z

±
t Ki;

(DH3) [Ei, Fj ] = δi,j
Ki−K−1

i

v−v−1 , [Ei,z
−
t ] = 0, [z+

t , Fi] = 0,

[z+
t ,z

−
s ] = δt,s

t(v2tn−1)
(vt−v−t)2

(Ktδ −K−tδ);

(DH4)
∑

a+b=1−ci,j

(−1)a
[
1− ci,j
a

]
Ea

i EjE
b
i = 0 for i 6= j,

z
+
t z

+
s = z

+
s z

+
t , Eiz

+
t = z

+
t Ei;

(DH5)
∑

a+b=1−ci,j

(−1)a
[
1− ci,j
a

]
F a
i FjF

b
i = 0 for i 6= j,

z
−
t z

−
s = z

−
s z

−
t , Fiz

−
t = z

−
t Fi,

where i, j ∈ In and t, s > 1.
In the following we simply identify In = Z/nZ with the subset {0, 1, . . . , n − 1} of Z. Let

P∨ = (⊕i∈InZhi)⊕ Zd be the free abelian group with basis {hi | i ∈ In} ∪ {d}. Set h = P∨ ⊗Z Q

and define

P = {Λ ∈ h∗ = HomQ(h,Q) | Λ(P∨) ⊂ Z}.
Then P = (⊕i∈InZΛi)⊕Zω, where {Λi | i ∈ In} ∪ {ω} is the dual basis of {hi | i ∈ In} ∪ {d}. This
gives rise to the Cartan datum (P∨, P,Π∨,Π) associated with the Cartan matrix Cn = (aij), where
Π∨ = {hi | i ∈ In} is set of simple coroots and Π = {αi | i ∈ In} is the set of simple roots defined
by

αi(hj) = aji, αi(d) = δ0,i for all i, j ∈ In.

Finally, let

P+ = {Λ ∈ P | Λ(hi) > 0, ∀ i ∈ In} =
(⊕

i∈In
NΛi

)
⊕ Zω

denote the set of dominant weights.
For each Λ ∈ P , consider the left ideal JΛ of D(n) defined by

JΛ =
∑

m∈Mn\{0}
D(n)u+m +

∑

α∈ZIn
D(n)(Kα − vΛ(α))

=
∑

m∈Mn\{0}
D(n)u+m +

∑

i∈In
D(n)(Ki − vΛ(hi)),
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where Λ(α) =
∑

i∈In aiΛ(hi) if α =
∑

i∈In aiεi ∈ ZIn. The quotient module

M(Λ) := D(n)/JΛ

is called the Verma module which is a highest weight module with highest vector ηΛ := 1 + JΛ.
Applying the triangular decomposition (4.0.8) shows that

D(n)− −→M(Λ), x− 7−→ x− + JΛ

is an isomorphism of Q(v)-vector spaces. Via this isomorphism, D(n)− becomes a D(n)-module.
It is clear that M(Λ) contains a unique maximal submodule M ′ which gives rise to an irreducible
D(n)-module L(Λ) =M(Λ)/M ′.

Remark 4.3. By the construction, if Λ,Λ′ ∈ P+ satisfy Λ − Λ′ ∈ Zω, then L(Λ) = L(Λ′).
Therefore, it might be more appropriate to work with the algebra D̂(n) defined in Remark 4.1(2).

Theorem 4.4. Let Λ =
∑

i∈In aiΛi + bω ∈ P+ be a dominant weight with
∑

i∈In ai > 0. Then

L(Λ) ∼= D(n)−/
(∑

i∈In
D(n)−(u−i )

ai+1
)
.

Proof. As in [9, Sect. 3], we extend the Cartan matrix C = (aij)i,j∈In to a Borcherds–Cartan matrix

C̃ = (ãij)i,j∈N by setting ãij = aij for 0 6 i, j < n and ãij = 0 otherwise. Consider the free abelian

group P̃∨ = (⊕i∈NZhi)⊕ (⊕i∈NZdi) and define

P̃ = {θ ∈ (P̃∨ ⊗Q)∗ | θ(P̃∨) ⊂ Z}.
We then obtain a Cartan datum of type C̃

(P̃∨, P̃ , Π̃∨ = {hi | i ∈ N}, Π̃ = {α̃i | i ∈ N})
where the α̃i are defined by

α̃i(hj) = ãji and α̃i(dj) = δi,j , ∀ i, j ∈ N.

Following [25, Def. 2.1] or [23, Def. 1.3], with the above Cartan datum we have the associated

quantum generalized Kac–Moody algebra Uv(C̃) which is by definition a Q(v)-algebra generated
by K±1

i ,D±1
i , Ei, Fi for i ∈ N with relations; see [23, (1.4)] for the details. Clearly, the subalgebra

of Uv(C̃) generated by K±1
i ,D±1

0 , Ei, Fi for 0 6 i < n is isomorphic to Uv(ŝln).

In order to make a comparison with D(n), we consider the subalgebra Ũ of Uv(C̃) generated by

K±1
i , Ei, Fi for i ∈ N. Then Ũ admits a triangular decomposition

Ũ = Ũ− ⊗ Ũ0 ⊗ Ũ+,

where Ũ−, Ũ+, and Ũ0 are subalgebras generated by Fi, Ei, and K
±1
i for i ∈ N, respectively. In

particular, Ũ0 = Q(v)[K±1
i : i ∈ N]. It follows from the definition that there is a surjective algebra

homomorphism Ψ : Ũ → D(n) given by

Ψ(Ei) =

{
u+i , if 0 6 i < n;

yi−n+1z
+
i−n+1, if i > n,

Ψ(Fi) =

{
u−i , if 0 6 i < n;

z−i−n+1, if i > n
, and

Ψ(K±1
i ) =

{
K±1

i , if 0 6 i < n;

K±1
(i−n+1)δ , if i > n,

where yt = t(v2tn − 1)(v − v−1)/(vt − v−t)2 for t > 1; see (4.2.1). Hence, each D(n)-module can

be viewed as a Ũ-module via the homomorphism Ψ. By the definition, Ψ induces isomorphisms

Ũ± ∼= D(n)±. Thus, in what follows, we will identify Ũ± with D(n)± via Ψ.
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As defined in [23, Sect. 2.1], for each θ ∈ P̃ , there is an associated irreducible Ũ-module L(θ).
By [23, Prop. 3.3], L(θ) is integrable if and only if θ is dominant, that is,

θ ∈ P̃+ = {ρ ∈ (P̃∨ ⊗Q)∗ | ρ(P̃∨) ⊂ N}.
Moreover, by [25, Cor. 4.7], for θ ∈ P̃+,

L(θ) ∼= Ũ−/
(∑

i∈In
Ũ−F θ(hi)+1

i +
∑

i>n,θ(hi)=0

Ũ−Fi

)
.

Viewing the irreducible D(n)-module L(Λ) as a Ũ-module, it is then isomorphic to L(Λ̃), where

Λ̃ ∈ P̃ is defined by

Λ̃(hi) =

{
Λ(hi) = ai, if 0 6 i < n;

(i− n+ 1)
∑

06j<n aj , if i > n
and Λ̃(di) = δi,0b.

From the assumption
∑

i∈I ai > 0 it follows that Λ̃(hi) > 0 for all i > n. Consequently,

L(Λ) ∼= L(Λ̃) ∼= Ũ−/
(∑

i∈In
Ũ−F ai+1

i

)
= D(n)−/

(∑

i∈In
D(n)−(u−i )

ai+1
)
.

�

For each Λ ∈ P , let L0(Λ) denote the irreducible U′
v(ŝln)-module of highest weight Λ. Applying

Theorem 3.2 gives the following result.

Corollary 4.5. Let Λ =
∑

i∈In aiΛi + bω ∈ P+ with
∑

i∈In ai > 0. Then L0(Λ) is the U′
v(ŝln)-

submodule of L(Λ) generated by the highest weight vector ηΛ and there is a vector space decompo-

sition

L(Λ) = L0(Λ)⊗Q(v)[z−
1 ,z

−
2 , . . . ].

In particular, if L(Λ)|
U′

v(ŝln)
denotes the U′

v(ŝln)-module via restriction, then

L(Λ)|
U′

v(ŝln)
∼=

⊕

m>0

L0(Λ−mδ∗)⊕p(m),(4.5.1)

where δ∗ =
∑

i∈In αi and p(m) is the number of partitions of m.

Proof. By Theorem 3.2,

D(n)− = U−
v (ŝln)⊗Q(v)[z−

1 ,z
−
2 , . . . ].

This implies that

L(Λ) ∼= D(n)−/
(∑

i∈In
D(n)−(u−i )

ai+1
) ∼=

(
U−

v (ŝln)/
(∑

i∈In
U−

v (ŝln)F
ai+1
i

))
⊗Q(v)[z−

1 ,z
−
2 , . . . ].

By [34, Cor. 6.2.3], L0(Λ) ∼= U−
v (ŝln)/

(∑
i∈In U

−
v (ŝln)F

ai+1
i

)
. Hence, L0(Λ) is the U′

v(ŝln)-
submodule of L(Λ) generated by ηΛ and the desired decomposition is obtained.

For each family of nonnegative integers {mt | t > 1} satisfying all but finitely many mt are zero,

L0(Λ)⊗
∏

t>1(z
−
t )

mt is a U′
v(ŝln)-submodule of L(Λ) since [u±i ,z

−
t ] = 0 for all i ∈ In and t > 1. It

is easy to see that

L0(Λ)⊗
∏

t>1

(z−
t )

mt ∼= L0(Λ− (
∑

t>1

mt)δ
∗).

We conclude that
L(Λ)|

U′
v(ŝln)

∼=
⊕

m>0

L0(Λ−mδ∗)⊕p(m).

�
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By [34, Th. 14.4.11], for each Λ ∈ P+, the canonical basis {b−m | m ∈ M
ap
n } of U−

v (ŝln) gives rise
to the canonical basis

{b−mηΛ 6= 0 | m ∈ Map
n }

of L0(Λ). On the other hand, the crystal basis theory for the quantum generalized Kac–Moody

algebra U(C̃) has been developed in [23]. Since all the Fi for i > n correspond to imaginary simple

roots and are central in Ũ− = D(n)−, applying the construction in [23, Sect. 6] shows that the set

B′ :=
{(∏

i>n

Fmi

i

)
b−m | m ∈ Map

n and all mi ∈ N but finitely many are zero
}

forms the global crystal basis of Ũ− = D(n)−. We remark that B′ does not coincide with the
canonical basis B− of D(n)−.

5. The q-deformed Fock space I: D(∞)-module

In this section we introduce the q-deformed Fock space Λ∞ from [17] and review its module

structure over D(∞) = Uv(sl∞) defined in [36, 47], as well as its Uv(ŝln)-module structure. We
also provide a proof of [47, Prop. 5.1] by using the properties of representations of ∆∞. Throughout

this section, we identify D(∞) with Uv(ŝl∞) via taking u+i 7→ Ei, u
−
i 7→ Fi for all i ∈ I∞ = Z.

For each partition λ ∈ Π, let T (λ) denote the tableau of shape λ whose box in the intersection
of the i-th row and the j-th column is labelled with j − i (The box is then said to be with color
j − i). For example, if λ = (4, 2, 2, 1), then T (λ) has the form

0 1 2 3

−1 0

−2 −1

−3

For given i ∈ Z, a removable i-box of T (λ) is by definition a box with color i which can be removed
in such a way that the new tableau has the form T (µ) for some µ ∈ Π. On the contrary, an indent
i-box of T (λ) is a box with color i which can be added to T (λ). For i ∈ Z and λ ∈ Π, define

ni(λ) = |{indent i-boxes of T (λ)}| − |{removable i-boxes of T (λ)}|.

Let
∧∞ be the Q(v)-vector space with basis {|λ〉 | λ ∈ Π}. Following [47, 4.2], there is a left

Uv(sl∞)-module structure on
∧∞ defined by

Ki · |λ〉 = vni(λ)|λ〉, Ei · |λ〉 = |ν〉, Fi · |λ〉 = |µ〉, ∀ i ∈ Z, λ ∈ Π,(5.0.2)

where µ, ν ∈ Π are such that T (µ) − T (λ) and T (λ) − T (ν) are a box with color i. As remarked
in [36, Sect. 2] and [47, 4.2],

∧∞ is isomorphic to the basic representation of Uv(sl∞) with the
canonical basis {|λ〉 | λ ∈ Π}.

Lemma 5.1. (1) For i ∈ Z and λ, µ ∈ Π, if u−i · |µ〉 = |λ〉, then there is an exact sequence

0 −→ Si −→M(mλ) −→M(mµ) −→ 0.

(2) Let m = [i, l) for some i ∈ Z and l > 1. Then ũ−m · |∅〉 ∈ Z|λ〉 if i 6 0 and i+ l− 1 > 0 and 0
otherwise, where λ = (i+ l, 1(−i)). In particular, if i = 0, then ũ−m · |∅〉 = |λ〉.
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Proof. (1) This follows directly from the definition.
(2) We proceed induction on l. The statement is trivial if l = 1. Suppose now l > 1. By the

definition, M(m) = Si[l] with dimM(m) =
∑i+l−1

j=i εj . Then

u−i+l−1 · · · u−i+1u
−
i = v1−lu−m +

∑

z<∞

degm

v1−lu−z .

For each z with z <∞
deg m, M(z) is decomposable. Thus, we may write

M(z) =M(y)⊕M(z1),

where y ∈ M∞ and z1 = [j, i+ l − j) for some i < j 6 i+ l − 1. This implies that

u−y u
−
z1
= u−z .

By the induction hypothesis,

u−z1 · |∅〉 ∈ Z|µ〉 if j 6 0 and i+ l − 1 > 0,

and 0 otherwise, where µ = (i+ l, 1(−j)). Let now j 6 0 and i+ l− 1 > 0 and let k1, . . . , kj−i be a
permutation of i, i+ 1, . . . , j − 1. Then

(u−k1u
−
k2

· · · u−kj−i
) · |µ〉 = 0

unless k1 = i, k2 = i+ 1 . . . , kj−i = j − 1, and moreover

(u−i u
−
i+1 · · · u−j−1) · |µ〉 = |λ〉.

Since u−y is a Z-linear combination of the monomials u−k1u
−
k2

· · · u−kj−i
, we have ũ−m · |∅〉 ∈ Z|λ〉.

Now let i = 0. Then u−z1 · |∅〉 = 0 for each z1 = [j, i + l − j) with 0 < j 6 i+ l − 1. Hence,

ũ−m · |∅〉 = v1−lu−m · |∅〉 = (u−l−1 · · · u−1 u−0 ) · |∅〉+
∑

z<∞

degm

u−z · |∅〉 = |λ〉.

�

Lemma 5.2. Let m =
∑

l>1mi,l[i, l) ∈ M∞ and λ ∈ Π.

(1) If there is j ∈ Z such that
∑

l>1mj,l > 2, then ũ−m · |λ〉 = 0. In particular, for each i ∈ Z

and t > 2, (u−i )
(t) · |λ〉 = 0, where (u−i )

(t) = (u−i )
t/[t]!; see (3.0.2).

(2) The element ũ−m · |λ〉 is a Z-linear combination of |µ〉 with µ ∈ Π.

Proof. (1) For each i ∈ Z, we put

mi =
∑

l>1

mi,l and Mi =
⊕

l>1

mi,lSi[l].

Then M =M(m) = ⊕i∈ZMi, where all but finitely many Mi are zero and

u−m = v−
∑

i>j〈dimMi,dimMj〉(· · · u−[M−1]
u−[M0]

u−[M1]
· · · ).

Suppose there is j ∈ Z with m = mj > 2. Then Mj admits a decomposition

Mj = Sj[a1]⊕ · · · ⊕ Sj [am] with a1 > · · · > am > 1.

This implies that

u−[Sj [am]] · · · u
−
[Sj [a1]]

= vbju−[Mj]
,

where bj =
∑

16p<q6m〈dimSj[mp],dimSj[mq]〉. Hence, it suffices to show that for each µ ∈ Π,

u−[Mj ]
· |µ〉 = v−bj (u−[Sj [am]] · · · u

−
[Sj [a1]]

) · |µ〉 = 0.
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By the definition, u−[Sj [a1]]
· |µ〉 is a Q(v)-linear combination of ν which are obtained from µ by

adding a (j+ r)-box for each 0 6 r < a1. Thus, each such ν does not admit an indent j-box. Thus,
u−[Sj [a1]]

· |ν〉 = 0 and, hence, (u−[Sj [am]] · · · u
−
[Sj [a1]]

) · |µ〉 = 0. We conclude that ũ−m · |λ〉 = 0.

(2) It is known that ũ−m is a Z-linear combination of monomials of divided powers (u−i )
(t) for

i ∈ Z and t > 1. Since by (1), (u−i )
(t) · |µ〉 = 0 for all i ∈ Z, µ ∈ Π and t > 2, it follows that ũ−m · |λ〉

is a Z-linear combination of (u−i1 · · · u
−
im
) · |λ〉, where m = dimM(m) and i1, . . . , im ∈ Z. By the

definition, (u−i1 · · · u
−
im
) · |λ〉 either is zero or equal to |µ〉 for some µ ∈ Π. Therefore, ũ−m · |λ〉 is a

Z-linear combination of |µ〉 with µ ∈ Π. �

Proposition 5.3. (1) For each m ∈ M∞,

ũ−m · |∅〉 ∈ Z|λ〉 for some λ ∈ Π with mλ 6∞
deg m.

(2) For each λ ∈ Π,

ũ−mλ
· |∅〉 = |λ〉 and ũ−p · |∅〉 = 0 for all p ∈ M with p <∞

deg mλ.

In particular, b−mλ
· |∅〉 = |λ〉.

Proof. (1) If ũ−m · |∅〉 = 0, there is nothing to prove. Now suppose ũ−m · |∅〉 6= 0. By Lemma 5.2(2),
we write

ũ−m · |∅〉 =
∑

λ∈Π
fλ(v)|λ〉,

where all fλ(v) ∈ Z but finitely many are zero. If fλ(v) 6= 0, then dimM(mλ) = dimM(m).
By Lemma 2.1(1), such a λ ∈ Π is unique. Hence, we may suppose ũ−m · |∅〉 = f(v)|λ〉 for some
0 6= f(v) ∈ Z and λ ∈ Π. It remains to show that mλ 6∞

deg m.

Applying Lemma 5.2(1) implies that

M =M(m) = Si1 [a1]⊕ · · · ⊕ Sit [at],

where i1 < · · · < it and a1, . . . , at > 1. Then

u−[Si1
[a1]]

· · · u−[Sit
[at]]

= vau−m ,

where a =
∑

16p<q6t〈dimSiq [aq],dimSip [ap]〉.
We proceed induction on t to show that M(mλ) 6∞

deg M = M(m). If t = 1, this follows from

Lemma 5.1(2). Let now t > 1 and let µ ∈ Π be such that

(u−[Si2
[a2]]

· · · u−[Sit
[at]]

) · |∅〉 = g(v)|µ〉 for some 0 6= g(v) ∈ Z.

Then u−[Si1
[a1]]

· |µ〉 = vaf(v)g(v)−1|λ〉. By the induction hypothesis,

M(mµ) 6
∞
deg Si2 [a2]⊕ · · · ⊕ Sit [at].

By writing u−[Si1
[a1]]

as a Z-linear combination of monomials of u−i ’s and applying Lemma 5.1(1),

there exists X ∈ Rep∆∞ satisfying dimX = dimSi1 [a1] with an exact sequence

0 −→ X −→M(mλ) −→M(mµ) −→ 0.

Since Si1 [a1] is indecomposable, it follows that X 6∞
deg Si1 [a1]. Therefore,

M(mλ) 6
∞
deg M(mµ) ∗X 6∞

deg(Si2 [a2]⊕ · · · ⊕ Sit [at]) ∗ Si1 [a1]
=(Si2 [a2]⊕ · · · ⊕ Sit [at])⊕ Si1 [a1] =M(m),

that is, mλ 6∞
deg m.

(2) Write λ = (λ1, . . . , λt) with λ1 > · · · > λt > 1. Since

M(mλ) = S0[λ1]⊕ S−1[λ2]⊕ · · · ⊕ S1−t[λt],
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we have that

u−[S1−t[λt]]
· · · u−[S−1[λ2]]

u−[S0[λ1]]
= vcu−mλ

,

where

c =
∑

16r<s6t

〈dimS1−r[λr],dimS1−s[λs]〉 =
∑

16r<s6t

dimHom∆∞
(S1−r[λr], S1−s[λs]).

By using an argument similar to that in the proof of Lemma 5.1(2), we obtain that

vcu−mλ
· |∅〉 = (u−[S1−t[λt]]

· · · u−[S−1[λ2]]
u−[S0[λ1]]

) · |∅〉
= vλ1−1(u−[S1−t[λt]]

· · · u−[S−1[λ2]]
) · |(λ1)〉

= cλ1+λ2−2(u−[S1−t[λt]]
· · · u−[S−2[λ3]]

) · |(λ1, λ2)〉
= vλ1+···+λt−t|(λ1, . . . , λt)〉 = vλ1+···+λt−t|λ〉.

Since

dimEnd∆∞
(M(mλ)) =

∑

16r6s6t

dimHom∆∞
(S1−r[λr], S1−s[λs]) = c+ t

and dimM(mλ) = λ1 + · · ·+ λt, it follows that

ũ−mλ
· |∅〉 = vc+t−(λ1+···+λt)u−mλ

· |∅〉 = |λ〉.
Now let p <∞

deg mλ and suppose ũ−p · |∅〉 6= 0. By (1), there exists µ ∈ Π with mµ 6∞
deg p such

that ũ−p · |∅〉 = f(v)|µ〉 for some f(v) ∈ Z. Thus, mµ <
∞
deg mλ. By Lemma 2.1(1), µ = λ since

dimM(mµ) = dimM(mλ). This is a contradiction. Hence, ũ−p · |∅〉 = 0.
By (4.0.9),

b−mλ
∈ ũ−mλ

+
∑

p<∞

degmλ

v−1Z[v−1]ũ−p .

We conclude that b−mλ
· |∅〉 = ũ−mλ

· |∅〉 = |λ〉. �

As a consequence of the proposition above, we obtain [47, Prop. 5.1] as follows.

Corollary 5.4. The subspace I of U−
v (sl∞) spanned by b−m with m ∈ M − {mλ | λ ∈ Π} is a left

ideal of U−
v (sl∞). Moreover, the map

U−
v (sl∞)/I −→ ∧∞, b−mλ

+ I 7−→ |λ〉, ∀λ ∈ Π

is an isomorphism of U−
v (sl∞)-modules.

Proof. On the one hand, by [34, Th. 14.4.11], the set

{b−m · |∅〉 6= 0 | m ∈ M∞}
is a basis of

∧∞. On the other hand, there is a U−
v (sl∞)-module homomorphism

φ : U−
v (sl∞) −→ ∧∞, x 7−→ x · |∅〉.

It follows from Proposition 5.3(2) that I = Kerφ is a left ideal of U−
v (sl∞) and that φ induces the

desired isomorphism. �

Finally, for i ∈ Z and λ ∈ Π, put

n−i (λ) =
∑

j<i, j∈ī
nj(λ), n

+
i (λ) =

∑

j>i, j∈ī
nj(λ), and nī(λ) =

∑

j∈ī
nj(λ).
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By [17, 36], there is a Uv(ŝln)-module structure on
∧∞ defined by

Kī · |λ〉 = vnī(λ)|λ〉, Eī · |λ〉 =
∑

j∈ī
vn

−

j (λ)Ej · |λ〉, Fī · |λ〉 =
∑

j∈ī
v−n+

j (λ)Fj · |λ〉,
(5.4.1)

where ī ∈ In = Z/nZ.

6. The q-deformed Fock space II: D(n)-module

In this section we first recall the left D(n)60-module structure on the Fock space
∧∞ defined

by Varagnolo and Vasserot in [47] and then extend their construction to obtain a D(n)-module
structure on

∧∞.
For each x =

∑
m xmum ∈ H(∆) with ∆ = ∆n or ∆∞, we write

x± =
∑

m

xmu
±
m ∈ D(∆)±.

Then for each d ∈ NI∞, the map γd : H(∆n)d̄ → H(∆∞)d defined in Section 3 induces Q(v)-linear
maps

γ±
d
: D(n)±

d̄
−→ D(∞)±

d

such that γ±
d
(x±) = (γd(x))

± for each x ∈ H(∆∞).
Following [47, 6.2], for each ī ∈ In = Z/nZ, λ ∈ Mn and x ∈ D(n)−α , define

Kī · |λ〉 = vnī(λ)|λ〉 and x · |λ〉 =
∑

d

(
γ−
d
(x)K−d′

)
· |λ〉,(6.0.2)

where the sum is taken over all d ∈ NI∞ such that d̄ = α and d′ =
∑

i>j, ī=j̄ djεi. By [47, Cor. 6.2],

this defines a left D(n)60-module structure on
∧∞ which extends the Hayashi action of U60

v (ŝln)
on

∧∞ defined in (5.4.1).
Dually, for each λ ∈ Π and x ∈ D(n)+α , define

x · |λ〉 =
∑

d

(
γ+
d
(x)Kd′′

)
· |λ〉,(6.0.3)

where the sum is taken over all d ∈ NI∞ such that d̄ = α and d′′ =
∑

i<j, ī=j̄ djεi.

Proposition 6.1. The formula (6.0.3) defines a left D(n)>0-module structure on
∧∞

which extends

the Hayashi action of U>0
v (ŝln) on

∧∞
.

Proof. Let x ∈ D(n)+α and y ∈ D(n)+β , where α, β ∈ NIn. By the definition, we have, on the one

hand, that

(xy) · |λ〉 =
∑

d

(
γ+
d
(xy)Kd′′

)
· |λ〉

and, on the other hand, that

x · (y · |λ〉) =
∑

a,b

(
γ+a (x)Ka′′γ+

b
(y)Kb′′

)
· |λ〉,

where the sum is taken over all a,b ∈ NI∞ such that ā = α and b̄ = β.
Since Ka′′γ+

b
(y) = v(a

′′,b)γ+
b
(y)Ka′′ , we obtain that

x · (y · |λ〉) =
∑

d

∑

a+b=d

v(a
′′,b)

(
γ+a (x)γ

+
b
(y)Kd′′

)
· |λ〉.



20 BANGMING DENG AND JIE XIAO

By the definition,

(a′′,b) =
( ∑

i<j, ī=j̄

ajεi,
∑

i

biεi
)
=

∑

i<j, ī=j̄

bi(2aj − aj−1 − aj+1) = κ(a,b).

Applying Lemma 3.3(2) gives that

(xy) · |λ〉 = x · (y · |λ〉).
Hence,

∧∞ becomes a left D(n)>0-module.
For each ī ∈ In = Z/nZ and λ ∈ Π, we have

u+
ī
· |λ〉 =

∑

j∈ī
(u+j K−ε′′j

) · |λ〉.

Since ε′′j =
∑

l<j, l̄=j̄ εl for each j ∈ ī, it follows that

Kε′′j
· |λ〉 =

∏

l<j, l̄=j̄

Kεl · |λ〉 = v
∑

l<j,l̄=j̄ nl(λ)|λ〉 = vn
−

j (λ)|λ〉.

This implies that

u+
ī
· |λ〉 =

∑

j∈ī
vn

−

j (λ)u+j · |λ〉,

which coincides with the formula for Eī · |λ〉 in (5.4.1), as required. �

Remark 6.2. The proof of Proposition 6.1 is analogous to that of [47, Cor. 6.2]. However, it seems
to us that the D(n)+-module structure on

∧∞ can not be directly obtained form its D(n)−-module
structure via certain duality between D(n)− and D(n)+.

The main purpose of this section is to prove that formulas (6.0.2) and (6.0.3) indeed define a
D(n)-module structure on

∧∞. The strategy is to pass to the semi-infinite v-wedge spaces studied
in [44, 27].

Let Ω denote the Q(v)-vector space with basis {ωi | i ∈ Z}. By [6, Prop. 3.5], Ω admits a
D(n)-module structure defined by

u+i · ωs = δi+1,s̄ωs−1, u−i · ωs = δi,s̄ωs+1

K±1
i · ωs = v±δi,s̄∓δi+1,s̄ωs, z

±
m · ωs = ωs∓mn

(6.2.1)

for all i ∈ In and s,m ∈ Z with m > 1. In particular, K±1
δ · ωs = ωs for each s ∈ Z. This is an

extension of theU′
v(ŝln)-action on Ω defined in [27, 1.1] as well as an extension of theD(n)60-action

on Ω defined in [47, 8.1]; see [6, 3.5].
For a fixed positive integer r, consider the r-fold tensor product Ω⊗r which has a basis

{ωi = ωi1 ⊗ · · · ⊗ ωir | i = (i1, . . . , ir) ∈ Zr}.
The Hopf algebra structure of D(n) induces a D(n)-module structure on the r-fold tensor product
Ω⊗r. By (4.1.1), we have for each t > 1,

∆(r−1)(z+
t ) =

r−1∑

s=0

1⊗ · · · ⊗ 1︸ ︷︷ ︸
s

⊗z
+
t ⊗Ktδ ⊗ · · · ⊗Ktδ︸ ︷︷ ︸

r−s−1

and

∆(r−1)(z−
t ) =

r−1∑

s=0

K−tδ ⊗ · · · ⊗K−tδ︸ ︷︷ ︸
s

⊗z
−
t ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

r−s−1

.

(6.2.2)
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This implies particularly that for each t > 1 and ωi = ωi1 ⊗ · · · ⊗ ωir ∈ Ω⊗r,

z
±
t · ωi =

r∑

s=1

ωi1 ⊗ · · · ⊗ ωis−1 ⊗ ωis∓tn ⊗ ωis+1 ⊗ · · · ⊗ ωir .(6.2.3)

By (4.0.3) and (4.0.5), for each α ∈ NIn, we have

∆(r−1)(ũ+α ) =
∑

α=α(1)+···+α(r)

v
∑

s>t〈α(s),α(t)〉 ×

ũ+
α(1) ⊗ ũ+

α(2)Kα(1) ⊗ · · · ⊗ ũ+
α(r)K(α(1)+α(2)+···+α(r−1)),

∆(r−1)(ũ−α ) =
∑

α=α(1)+···+α(r)

v
∑

s>t〈α(s),α(t)〉 ×

ũ−
α(1)K−(α(2)+···+α(r)) ⊗ · · · ⊗ u−

α(r−1)K−α(r) ⊗ ũ−
α(r) .

(6.2.4)

This gives the the following lemma; see [47, Lem. 8.3] and [6, Cor. 3.5.8].

Lemma 6.3. Let α ∈ NIn and i = (i1, . . . , ir) ∈ Zr. Then

ũ+α · ωi =
∑

n

vc
+(i,i−n)ωi−n,(6.3.1)

where the sum is taken over the sequences n = (n1, . . . , nr) ∈ {0, 1}r satisfying α =
∑r

s=1 nsεis−1
and

c+(i, i− n) =
∑

16s<t6r

ns(nt − 1)〈ε̄it , ε̄is〉;

ũ−α · ωi =
∑

n

vc
−(i,i+n)ωi+n,(6.3.2)

where the sum is taken over the sequences n = (n1, . . . , nr) ∈ {0, 1}r satisfying α =
∑r

s=1 nsε̄is
and

c−(i, i+ n) =
∑

16s<t6r

nt(ns − 1)〈ε̄it , ε̄is〉.

On the other hand, let Ĥ(r) be the Hecke algebra of affine symmetric group of type A which
is by definition a Q(v)-algebra with generators Ti and X

±1
j for i = 1, . . . , r − 1, j = 1, . . . , r and

relations:
(Ti + 1)(Ti − v2) = 0,

TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi (|i− j| > 1),

XiX
−1
i = 1 = X−1

i Xi, XiXj = XjXi,

TiXiTi = v2Xi+1, XjTi = TiXj (j 6= i, i+ 1).

This is the so-called Bernstein presentation of Ĥ(r).

By [47, Sect. 8.2], there is a right Ĥ(r)-module structure on Ω⊗r defined by

ωi ·Xt = ωi1 · · ·ωit−1ωit−nωit+1 · · ·ωir ,

ωi · Tk =





v2ωi, if ik = ik+1;
vωisk , if −n < ik < ik+1 6 0;
vωisk + (v2 − 1)ωi, if −n < ik+1 < ik 6 0,

(6.3.3)

where i = (i1, . . . , ir) ∈ Zr, ωi = ωi1 ⊗ · · · ⊗ ωir and

ωisk = ωi1 ⊗ · · · ⊗ ωik+1
⊗ ωik ⊗ · · · ⊗ ωir .
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Following [6, Prop. 3.5.5], the tensor space Ω⊗r is indeed a D(n)-Ĥ(r)-bimodule. Set

Ξr =

r−1∑

i=1

Im (1 + Ti) ⊆ Ω⊗r,

which is clearly a D(n)-submodule of Ω⊗r. Thus, the quotient space Ω⊗r/Ξr becomes a D(n)-
module. For each i = (i1, . . . , ir) ∈ Zr, write

∧ωi = ωi1 ∧ . . . ∧ ωir = ωi + Ξr ∈ Ω⊗r/Ξr.

By [27, Prop. 1.3], the set

{∧ωi | i1 > · · · > ir}
forms a basis of Ω⊗r/Ξr.

For each m ∈ Z, let Bm denote the set of sequences i = (i1, i2, . . . ) ∈ Z∞ satisfying that
is = m− s+ 1 for s≫ 0, and set B∞ = ∪m∈ZBm. As in [47, Sect. 10.1], let Ω∞ denote the space
spanned by semi-infinite monomials

ωi = ωi1 ⊗ ωi2 ⊗ · · · , where i = (i1, i2, . . . ) ∈ B∞.

Then the affine Hecke algebra Ĥ(∞) acts on Ω∞ via the formulas in (6.3.3). Set

Ξ∞ =
∞∑

i=1

Im (1 + Ti) ⊆ Ω∞.

For each i = (i1, i2, . . . ) ∈ B∞ as above, write

∧ωi = ωi1 ∧ ωi2 ∧ · · · = ωi + Ξ∞ ∈ Ω∞/Ξ∞.

For each m ∈ Z, let F(m) be the subspace of Ω∞/Ξ∞ spanned by ∧ωi with i ∈ Bm. Then

Ω∞/Ξ∞ =
⊕

m∈Z
F(m).

By [27, 1.4], the U′
v(ŝln)-module structure on Ω⊗r/Ξr induces a U′

v(ŝln)-module structure on F(m)

for each m ∈ Z and, hence, a U′
v(ŝln)-module structure on Ω∞/Ξ∞ as well. Moreover, by [27,

Prop. 1.4], the injective map

κ :
∧∞ −→ Ω∞/Ξ∞, |λ〉 7−→ ∧ωiλ

is a homomorphism of U′
v(ŝln)-modules which induces an isomorphism

∧∞ ∼= F(0), where iλ =
(i1, i2, . . . ) with is = λs + 1− s, ∀ s > 1.

As in [27, (49)], for each m ∈ Z, write

|m〉 = ωm ∧ ωm−1 ∧ ωm−2 ∧ · · · .
Clearly, for each i = (i1, i2, . . . ) ∈ Bm, there exists a sufficiently large N such that

∧ωi = (ωi1 ∧ · · · ∧ ωiN ) ∧ |m−N〉.
By [27, Lem. 2.2] and (6.2.4), for given α ∈ NI and i ∈ Bm, there is t≫ 0 such that

u−α · (∧ωi) =
(
u−α · (ωi1 ∧ · · · ∧ ωit)

)
∧ |m− t〉.

Hence, the D(n)60-module structure on Ω⊗r/Ξr induces a D(n)60-module structure on Ω∞/Ξ∞;
see [47, Sect. 10.1]. Moreover, by [47, Lem. 10.1], the map κ :

∧∞ → Ω∞/Ξ∞ is a D(n)60-module
homomorphism.

Dually, for each given i ∈ Bm, there is t≫ 0 such that

u+α · (∧ωi) =
(
u+α · (ωi1 ∧ · · · ∧ ωit)

)
∧
(
Kα · |m− t〉

)
.



HALL ALGEBRAS AND q-DEFORMED FOCK SPACES 23

Thus, Ω∞/Ξ∞ becomes a left D(n)>0-module, too. We have the following result whose proof is
similar to that of [47, Lem. 10.1].

Proposition 6.4. The map κ is a D(n)>0-module homomorphism.

Proof. We need to show that for each λ ∈ Π and α ∈ NIn,

κ(ũ+α · |λ〉) = ũ+α (κ(|λ〉)).
For simplicity, write i := iλ = (i1, i2, . . . ). By (6.0.3),

ũ+α · |λ〉 =
∑

d

(γ+
d
(ũ+α )Kd′′) · |λ〉 =

∑

d

v−h(d)(ũ+
d
Kd′′) · |λ〉,

where the sum is taken over all d ∈ NI∞ such that d̄ = α and h(d) =
∑

i<j,̄i=j̄ di(dj+1 − dj).

For each fixed d = (di) ∈ NI∞ with d̄ = α, we have

ũ+
d
= · · · ũ+d1ε1ũ

+
d0ε0

ũ+d−1ε−1
· · · =

∏

i∈Z
ũ+diεi .

By the definition, ũ+
d
· |λ〉 6= 0 implies that

d =
∑

s>1

nsεis−1,

where ns ∈ {0, 1} for all s > 1. Moreover, if this is the case, then

ũ+
d
· |λ〉 = |µn〉,

where n = (n1, n2, . . . ) and µn = µ ∈ Π is determined by iµ = i− n. Therefore, for d ∈ NI∞ with
d =

∑
s>1 nsεis−1,

Kd′′ =
∏

īs=īt, is>it

Kns

it−1 and h(d) =
∑

is>it

−nsnt(δ̄is ,̄it − δ̄is,it+1) = −
∑

is>it

nsnt〈ε̄it , ε̄is〉.

A calculation together with (6.3.1) implies that

κ(ũ+α · |λ〉) = ũ+α (∧ωi) = ũ+α (κ(|λ〉)).
�

As a consequence of the results above, to prove that the formulas (6.0.2) and (6.0.3) define a
D(n)-module structure on

∧∞, it suffices to show that the D(n)60-module and D(n)>0-module
structures on Ω∞/Ξ∞ define a D(n)-module structure. In other words, we need to show that the
actions of K±1

i , u+i , u
−
i (i ∈ In) and z

+
s ,z

−
s (s > 1) on Ω∞/Ξ∞ satisfy the relations (DH1)–(DH5)

in Section 4.
Since, as discussed above, Ω∞/Ξ∞ is a U′

v(ŝln)-module, all the relations in (DH1)–(DH5) in
which the z

±
s are not involved are satisfied. In the following we are going to check the relations

[z+
t ,z

−
s ] = δt,s

t(v2tn − 1)

(vt − v−t)2
(Ktδ −K−tδ), ∀ s, t > 1.

By [27, §2], for each t > 1, there are Heisenberg operators

B±
t : Ω∞/Ξ∞ → Ω∞/Ξ∞, ∧ωi 7−→

∞∑

s=1

∧ωi∓tnes ,

where i ∈ B∞ and es = (δi,s)i>1 ∈ Z∞. Note that for each i ∈ B∞, ∧ωi∓tnes = 0 for s≫ 0.

Proposition 6.5. For each t > 1 and i ∈ B∞,

B+
t (∧ωi) = vtz+

t · (∧ωi) and B−
t (∧ωi) = z

−
t · (∧ωi).
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Proof. For each m ∈ Z, recall the element

|m〉 = ωm ∧ ωm−1 ∧ ωm−2 ∧ · · · ∈ Ω∞/Ξ∞.

Then z
+
t · |m〉 = 0 and Kδ · |m〉 = q|m〉. Write

∧ωi = ωi1 ∧ · · · ∧ ωiN ∧ |N −m〉.
Applying (6.2.2) gives that

z
+
t · (∧ωi)

=

N∑

s=0

ωi1 ∧ · · · ∧ ωis︸ ︷︷ ︸
s

∧z+
t · ωis+1 ∧Ktδ · ωis+2 ∧ · · · ∧Ktδ · ωiN︸ ︷︷ ︸

N−s−1

∧(Ktδ · |N −m〉)

=
N∑

s=0

vt ωi1 ∧ · · · ∧ ωis︸ ︷︷ ︸
s

∧ωis+1+tn ∧ ωis+2 ∧ · · · ∧ ωiN︸ ︷︷ ︸
N−s−1

∧|N −m〉

=vtB+
t (∧ωi) (since B+

t (|N −m〉) = 0),

that is, B+
t (∧ωi) = vtz+

t · (∧ωi). The second equality can be proved similarly. �

Corollary 6.6. Let t, s > 1. Then for each i ∈ B∞,

[z+
t ,z

−
s ] · (∧ωi) = δt,s

t(v2tn − 1)

(vt − v−t)2
(Ktδ −K−tδ) · (∧ωi).

Proof. By [27, Prop. 2.2 & 2.6] (with q = v),

[B+
t , B

−
s ] = δt,s

t(1− v2tn)

1− v2n
.

This together with Proposition 6.5 implies that for each i ∈ B∞,

[z+
t ,z

−
s ] · (∧ωi) = vt[B+

t , B
−
s ]δt,s · (∧ωi) = δt,s

tvt(1− v2tn)

1− v2n
(∧ωi).

On the other hand,

δt,s
t(v2tn − 1)

(vt − v−t)2
(Ktδ −K−tδ) · (∧ωi) = δt,s

t(v2tn − 1)

(vt − v−t)2
(vt − v−t)(∧ωi)

= δt,s
tvt(1− v2tn)

1− v2n
(∧ωi).

This gives the desired equality. �

By [27, Prop. 2.1] (or direct calculations), the actions of z±
t on Ω∞/Ξ∞ commutes with that of

U′
v(ŝln). In conclusion, the actions of K±1

i , u+i , u
−
i (i ∈ In) and z

+
s ,z

−
s (s > 1) on Ω∞/Ξ∞ satisfy

the relations (DH1)–(DH5). Therefore, the formulas (6.0.2) and (6.0.3) define a D(n)-module
structure on

∧∞.

7. An isomorphism from L(Λ0) to
∧∞

In this section we show that the Fock space
∧∞ as a D(n)-module is isomorphic to the basic rep-

resentation L(Λ0) defined in Section 4. As an application, the decomposition of L(Λ0) in Corollary
4.5 induces the Kashiwara–Miwa–Stern decomposition of

∧∞ in [27].

Proposition 7.1. For each m ∈ Mn, ũ
−
m · |∅〉 is a Z-linear combination of those |µ〉 satisfying

mµ 6deg m.
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Proof. By (6.0.2),

ũ−m · |∅〉 =
∑

d

(
γ−
d
(ũ−m)K−d′

)
· |∅〉, where d′ =

∑

i

( ∑

j<i, j̄=ī

dj
)
εi.

Since Ki · |∅〉 = vδi,0 |∅〉 for i ∈ Z, it follows that K−d′ · |∅〉 = v−
∑

j<0, j̄=0̄ dj |∅〉. By Proposition 3.4,

γ−
d
(ũ−m) ∈

∑

z

Zũ−z ,

where the sum is taken over z ∈ M∞ with F (z) 6∞
deg m. Further, by Proposition 5.3(1),

ũ−z · |∅〉 ∈ Z|µ〉
for some µ ∈ Π with m∞

µ 6∞
deg z. This implies that

mµ = F (m∞
µ ) 6deg F (z) 6deg m.

This finishes the proof. �

For each d = (di) ∈ NI∞, set

σ(d) = −
∑

i<0, ī=0̄

di.

For λ ∈ Π, we write σ(λ) = σ(dimM(m∞
λ )). The following result was proved in [47, 9.2& 10.1].

We provide here a direct proof for completeness.

Corollary 7.2. For each λ ∈ Π,

ũ−mλ
· |∅〉 ∈ |λ〉+

∑

µ�λ

Z|µ〉.

In particular, the D(n)-module
∧∞

is generated by |∅〉 and the set

{b−mλ
· |∅〉 | λ ∈ Π}

is a basis of
∧∞

.

Proof. Applying Corollary 3.5 gives that

ũ−mλ
· |∅〉 =

∑

d

(
γ−
d
(ũ−mλ

)K−d′

)
· |∅〉 =

∑

d

vσ(d)γ−
d
(ũ−mλ

) · |∅〉

=
∑

r∈Z
vθ(λ)+σ(λ)ũ−

τrm(m∞

λ
) · |∅〉+

∑

z∈M∞,F (z)<degmλ

fλ,z ũ
−
z · |∅〉,

where fλ,z ∈ Z. By Proposition 5.3 and its proof,

ũ−m∞

λ
· |∅〉 = |λ〉 and ũ−

τrm(m∞

λ
) · |∅〉 = 0 for r > 0.

Furthermore, for each r < 0, ũ−
τrm(m∞

λ
) · |∅〉 ∈ Z|µ〉 such that m∞

µ 6∞
deg τ

rm(m∞
λ ). Then mµ =

F (m∞
µ ) 6deg F (τ rm(m∞

λ )) = mλ, which implies that µ � λ. Since M(τ rm(m∞
λ )) does not have a

composition factor isomorphic to Sλ1−1, µ does not contain a box with color λ1 − 1. Thus, µ 6= λ
and µ� λ.

Finally, by Proposition 7.1, for each z ∈ M∞ with F (z) <deg mλ, ũ
−
z ·|∅〉 is a Z-linear combination

of |µ〉 satisfying mµ 6deg F (z). Thus, mµ 6deg F (z) <deg mλ, which by Lemma 2.1 implies that
µ� λ. Hence, each ũ−z · |∅〉 is a Z-linear combination of |µ〉 with µ� λ. Consequently,

ũ−mλ
· |∅〉 ∈ vθ(λ)+σ(λ)|λ〉+

∑

µ�λ

Z|µ〉.
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Therefore, it remains to show that

θ(λ) + σ(λ) = 0.

Write λ = (λ1, . . . , λm) with λ1 > · · · > λm > 1 and set |λ| = ∑m
s=1 λs. We proceed induction on

|λ| to show that θ(λ) + σ(λ) = 0. By the definition,

θ(λ) =
∑

s<t

κ(ds,dt)−
ℓ∑

s=1

h(ds),

where ℓ = λ1 is the Loewy length of M =M(m∞
λ ) and Sds

∼= rad s−1M/rad sM for 1 6 s 6 ℓ. Let
1 6 t 6 m be such that λ1 = · · · = λt > λt+1 and define

λ′ = (λ1, · · · , λt−1, λt − 1, λt+1, λm).

Then |λ′| = |λ| − 1. By the induction hypothesis, we have θ(λ′) + σ(λ′) = 0.
For each 1 6 s 6 ℓ, let d′

s ∈ NI∞ be defined by setting Sd′

i

∼= rad s−1M ′/rad sM ′, where

M ′ =M(m∞
λ′ ). Then

d′
ℓ = dℓ − εℓ−t and d′

s = ds for 1 6 s < ℓ.

This implies that
ℓ∑

s=1

h(ds)−
ℓ∑

s=1

h(d′
s) = h(dℓ)− h(d′

ℓ) = −δt̄,1̄ and

∑

s<t

κ(ds,dt)−
∑

s<t

κ(d′
s,d

′
t) =

∑

16s<ℓ

κ(ds, εℓ−t).

Hence,

θ(λ)− θ(λ′) =
∑

16s<ℓ

κ(ds, εℓ−t) + δt̄,1̄.

On the other hand, σ(λ) = σ(λ′) − 1 if ℓ− t < 0 and ℓ̄ = t̄, and σ(λ) = σ(λ′) otherwise. A direct
calculation shows that if ℓ− t > 0, then

∑

16s<ℓ

κ(ds, εℓ−t) = −δt̄,1̄,

and if ℓ− t < 0, then
∑

16s<ℓ

κ(ds, εℓ−t) =

{
δℓ̄,t̄ − 1, if t̄ = 1̄;

δℓ̄,t̄, if t̄ 6= 1̄.

We conclude that in all cases,

θ(λ) + σ(λ) = θ(λ′) + σ(λ′) = 0.

�

By the definition, for each i ∈ In = Z/nZ,

Ki|∅〉 = vδi,0 |∅〉.
This together with the corollary above implies that

∧∞ is a highest weight D(n)-module of highest
weight Λ0. Consequently, there is a unique surjective D(n)-module homomorphism

ϕ : D(n)− =M(Λ0) −→
∧∞, ηΛ0 7−→ |∅〉.

Theorem 7.3. The homomorphism ϕ induces an isomorphism of D(n)-modules

ϕ̄ : L(Λ0) −→
∧∞.
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Proof. By definition, we have

Fi · |∅〉 = 0 for i ∈ In\{0} and F 2
0 · |∅〉 = 0.

This together with Theorem 4.4 implies that ϕ induces a surjective homomorphism

ϕ̄ : L(Λ0) = D(n)−/
(∑

i∈In
D(n)−FΛ0(hi)+1

i

)
−→ ∧∞.

Since L(Λ0) is simple, we conclude that ϕ̄ is an isomorphism. �

Combining the theorem with Corollary 4.5 gives the decomposition of
∧∞ obtained by Kashi-

wara, Miwa and Stern in [27, Prop. 2.3].

Corollary 7.4. As a U′
v(ŝln)-module,

∧∞
has a decomposition

∧∞|
U′

v(ŝln)
∼=

⊕

m>0

L0(Λ0 −mδ∗)⊕p(m).

8. The canonical basis for
∧∞

In this section we show that the canonical basis of
∧∞ defined in [29] can be constructed by using

the monomial basis of the Ringel–Hall algebra of ∆n given in [8]. We also interpret the “ladder
method” in [28] in terms of generic extensions defined in Section 2.

Recall that there is a bar-involution a 7→ ι(a) = a on D(n)− which takes v 7→ v−1 and fixes
all ũ−α for α ∈ NIn. Then it induces a semilinear involution on the basic representation L(Λ0) by
setting

aηΛ0 = aηΛ0 for all a ∈ D(n)−.

On the other hand, by [29], there is a semilinear involution x 7→ x on
∧∞ which, by [47], satisfies

(i) |∅〉 = |∅〉,
(ii) ax = a x for all a ∈ D(n)− and x ∈ ∧∞.

Therefore, the isomorphism L(Λ0) → ∧∞ given in Theorem 7.3 is compatible with the bar-
involutions.

It is proved in [29, Th. 3.3] that for each λ ∈ Π,

|λ〉 = |λ〉+
∑

µ�λ

aµ,λ|µ〉, where aµ,λ ∈ Z.(8.0.1)

Then applying the standard linear algebra method to the basis {|λ〉 | λ ∈ Π} in [31] (or see [11] for
more details) gives rise to an “IC basis” {bλ | λ ∈ Π} which is characterized by

bλ = bλ and bλ ∈ |λ〉+
∑

µ�λ

v−1Z[v−1]|µ〉,

The basis {bλ | λ ∈ Π} is called the canonical basis of
∧∞. In other words, the basis elements bλ

are uniquely determined by the polynomials aµ,λ.

Remark 8.1. Varagnolo and Vasserot [47] have conjectured that

b−mλ
· |∅〉 = bλ for each λ ∈ Π.

This conjecture was proved by Schiffmann [41].

In the following we provide a way to deduce (8.0.1) by using the monomial basis of the Ringel–
Hall algebra of ∆n given in [8]. As in [8, Sect. 3], set

Ie = In ∪ {all sincere vectors in NIn}
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and consider the set Σ of all words on the alphabet Ie. Recall that a vector a = (ai) ∈ NIn is called
sincere if ai 6= 0 for all i ∈ In. Since D(n)− is isomorphic to the opposite Ringel–Hall algebra of
∆n, we define

M ∗′ N = N ∗M.

This gives the map

℘op : Σ −→ M, w = a1a2 · · · at 7−→ Sa1 ∗′ Sa2 ∗′ · · · ∗′ Sat.

By [8, Sect. 9], for each m ∈ M, there is a distinguished word wm ∈ (℘op)−1(m) which defines a

monomial m(wm) on ũ−a with a ∈ Ĩ such that

m(wm) = ũ−m +
∑

p<degm

θp,mũ
−
p for some θm,p ∈ Z;

see [8, (9.1.1)]. If m = mλ for some λ ∈ Π, we simply write wmλ
= wλ. Thus,

m(wλ) = ũ−mλ
+

∑

p<degmλ

θp,mλ
ũ−p .(8.1.1)

This together with Proposition 7.1 and Corollary 7.2 implies that

m(wλ)|∅〉 = |λ〉+
∑

µ�λ

τµ,λ|µ〉,(8.1.2)

where τµ,λ ∈ Z. Since the monomials m(wλ) are bar-invariant, we deduce that for each λ ∈ Π,

|λ〉 = |λ〉+
∑

µ�λ

a′µ,λ|µ〉 for some a′µ,λ ∈ Z.

Comparing with (8.0.1) gives that

aµ,λ = a′µ,λ for all µ� λ.

In case λ is n-regular, then mλ is aperiodic and the word wλ can be chosen in Ω, the subset of
all words on the alphabet In = Z/nZ; see [8, Sect. 4]. In other words, m(wλ) is a monomial of the

divided powers (u−i )
(t) = F

(t)
i for i ∈ In and t > 1. We now interpret the “ladder method” in [28,

Sect. 6] in terms of the generic extension map. Let λ = (λ1, . . . , λt) ∈ Π be n-regular. Recall the
corresponding nilpotent representation

M(mλ) =
t⊕

a=1

S1−a[λa],

where 1− a is viewed as an element in In. Take 1 6 s 6 t with λ1 = · · · = λs > λs+1 (λt+1 = 0 by
convention) and let k > 0 be maximal such that

λs+l(n−1)+1 = · · · = λs+(l+1)(n−1) and λs+l(n−1) = λs+l(n−1)+1 + 1 for 0 6 l 6 k − 1.

Let i1 ∈ I be such that soc (S1−s[λs]) = Si1 . Then for each a = s+ l(n− 1) with 0 6 l 6 k,

soc (S1−a[λa]) = Si1 .

Define µ = (µ1, . . . , µt) ∈ Π by setting

µa =

{
λa − 1, if a = s+ l(n− 1) for some 0 6 l 6 k;

λa, otherwise.

It is easy to see from the construction that µ is again n-regular. Moreover, by applying an argument
similar to that in the proof of [5, Prop. 3.7],

(k + 1)Si1 ∗′ M(mµ) =M(mµ) ∗ (k + 1)Si1 =M(mλ).
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Repeating the above process, we finally obtain a sequence i1, . . . , id in In and positive integers
k1 = k + 1, . . . , kd such that

(k1Si1) ∗′ · · · ∗′ (kdSid) =M(mλ).

In other word, the word wλ := ik11 · · · ikdd lies in (℘op)−1(mλ). It can be also checked that the word
wλ is distinguished. Thus, the corresponding monomial

m(wλ) = (u−i1)
(k1) · · · (u−id)

(kd) = F
(k1)
i1

· · ·F (kd)
id

gives rise to the equality (8.1.2) for the element m(wλ)|∅〉. We remark that m(wλ)|∅〉 coincides with
the element A(λ) constructed in [28, (8)] by using the “ladder method” of James and Kerber [22].
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