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Abstract. In this note we show that if a projective manifold admits a Kähler
metric with negative holomorphic sectional curvature then the canonical bundle of
the manifold is ample. This confirms a conjecture of the second author.

1. Introduction

A fundamental question regarding the geometry of a projective manifold, i.e., a
nonsingular complex projective variety, is to charaterize the positivity of its canonical
bundle. In algebraic geometry the abundance conjecture predicts that the canonical
bundle is semiample if it is nef [6]. In hyperbolic geometry a conjecture of Kobayashi
asserts that the canonical bundle is ample if the manifold is hyperbolic [7, p. 370],
while Lang conjectured that a projective manifold is hyperbolic if and only if every
submanifold has big canonical bundle [9, p. 190].

From the viewpoint of differential geometry, the canonical bundle can be repre-
sented by the Ricci curvature up to a sign. The hyperbolicity is assured by the
negativity of holomorphic sectional curvature. The conjectures in hyperbolic geom-
etry naturally connect to the very basic question in complex differential geometry,
that is, to understand the mysterious relation between the Ricci curvature and the
holomorphic sectional curvature (cf. [19, p. 181]).

A conjecture of the second author asserts that the holomorphic sectional curvature
determines the Ricci curvature, in the sense that if a projective manifold admits a
Kähler metric of negative holomorphic sectional curvature then it also admits a Kähler
metric of negative Ricci curvature. In view of his resolution of Calabi’s conjecture,
the second author’s conjecture can be stated as below (cf. [5, Conjecture 1.2])

Conjecture 1. If a projective manifold admits a Kähler metric with negative holo-
morphic sectional curvature then the canonical bundle of the manifold is ample.

In the present paper, we prove the full statement of Conjecture 1.

Theorem 2. Let X be an n-dimensional projective manifold. If X admits a Kähler
metric whose holomorphic sectional curvature is negative everywhere, then the canon-
ical bundle KX is ample.
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If the aforementioned Kobayashi conjecture [7, p. 370] were known to be true,
then Theorem 2 would follow immediately. On the other hand, if the Kobayashi
conjecture fails, then there will be a hyperbolic projective manifold which does not
admit any Kähler metric with negative holomorphic sectional curvature. This will
give a negative answer to the question asked by Kobayashi and Greene-Wu [3, p. 84]
in the Kähler setting.

Using the hyperbolicity, Theorem 2 is proved by B. Wong [13] (see also Cam-
pana [1]) for n = 2, and proved by Peternell [11] for n = 3 except possibly for the
Calabi–Yau threefolds without rational curves. In our early work [14] joint with P.
M. Wong, we establish Theorem 2 under an additional assumption that the Picard
number of the projective manifold is equal to 1. Our method is essentially the refined
Schwarz type lemma.

Recently, some important progress is made by Heier-Lu-Wong [4, 5], which com-
bines the algebraic-geometric method and the analytic method. Along with other
interesting results, they prove Theorem 2 by assuming the validity of the abundance
conjecture, which is known to hold for n ≤ 3. Therefore, they have in particular
proved Theorem 2 for n = 3.

Here is the outline of the proof of Theorem 2. Inspired by Heier-Lu-Wong [5],
we observe that it suffices to prove that KX is big. More precisely, the proof can
be reduced to show an integral inequality (see (2.1)) via the Cone Theorem and the
Basepoint-free Theorem in algebraic geometry. To get the inequality, a key step is
to induce a complex Monge-Ampère equation to construct a family of Kähler metrics
whose Ricci curvature has a uniform lower bound. Then the desired inequality follows
from extending the refined Schwarz lemma in our previous papers [15] with F. Zheng
and [14] with P. M. Wong.

We also provide an alternative proof that bypasses the Basepoint-free Theorem.
Instead, we apply the estimates of Monge-Ampère equation to show that the family
of Kähler metrics converges to a Kähler-Einstein metric of negative scalar curvature.
Then the ampleness of KX follows from the classical results of Chern and Kodaira.

The following corollary is an immediate consequence of Theorem 2 and the resolu-
tion of the Calabi conjecture (cf. [18, p. 383]).

Corollary 3. If a projective manifold X admits a Kähler metric whose holomorphic
sectional curvature is negative everywhere, then X has a Kähler-Einstein metric of
negative Ricci curvature.

It is well known that the converse of Theorem 2 and Corollary 3 does not hold. For
example, the Fermat hypersurface Fd in CPn+1 of degree d ≥ n+ 3 has ample canon-
ical bundle, and hence, Fd has a Kähler-Einstein metric of negative Ricci curvature.
However, Fd does not admit any Kähler metric with negative holomorphic sectional
curvature, since Fd contains complex lines.

The next corollary follows from Theorem 2 together with the decreasing property
of holomorphic sectional curvature on submanifolds (see for example [16, Lemma 1]).
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Corollary 4. If a nonsingular projective variety X has a Kähler metric whose holo-
morphic sectional curvature is negative everywhere, then the canonical bundle of every
nonsingular subvariety of X is ample.

In particular, Corollary 4 tells us that every nonsingular subvariety of a smooth
compact quotient of the unit ball in Cn has ample canonical bundle. Corollary 4
partially answers a question asked by Lang [9, p. 162].

Notation. For any smooth volume form V on Xn with V = γα
∏
i(
√
−1dziα ∧ dz̄iα)

in a local chart (Uα; z1
α, . . . , z

n
α), we denote

ddc log V = ddc log γα =

√
−1

2π
∂∂̄ log γα

where dc =
√
−1(∂̄ − ∂)/(4π). The (1, 1) form ddc log V is globally defined and

represents the first Chern class c1(KX). For a metric ω on X, its Ricci form is

Ric(ω) = −ddc logωn.

2. Reduction to bigness

The proof of Theorem 2 can be reduced to show that KX is big, i.e., X is of general
type. More precisely, we have the following result.

Lemma 5. Let X be a projective manifold X of complex dimension n, and let ω be a
Kähler metric on X whose holomorphic sectional curvature H is negative everywhere.
Then KX is nef. If in addition ˆ

X
c1(KX)n > 0, (2.1)

then KX is ample.

Proof. Since H < 0, there is no non-constant holomorphic map C → X, by the
general Schwarz lemma (see [12, Corollary 1]). In particular, this implies that X
does not contain any rational curves. Then KX is nef, by the Cone Theorem (see
[8, p. 22] for example). Condition (2.1) means that the top self-intersection of the
canonical divisor is positive. This together with the nefness of KX imply that KX

is big (see for example [10, p. 144, Theorem 2.2.16]). That is, X is of general type.
Since X contains no rational curve, we conclude that KX is ample (see [2, p. 219] for
example). �

3. Proof of ampleness

Theorem 2 follows immediately from Lemma 5 and the following result. All results
in this section hold for compact Kähler manifolds.
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Lemma 6. Let (X,ω) be an n-dimensional compact Kähler manifold with negative
holomorphic sectional curvature. If KX is nef, thenˆ

X
c1(KX)k ∧ ωn−k > 0 on X (3.1)

for all 1 ≤ k ≤ n. In particular, KX is big.

Lemma 6 can be strengthened below to directly obtain the ampleness of KX . This
gives an alternative proof of Theorem 2, using only the first statement of Lemma 5.

Theorem 7. Let (X,ω) be an n-dimensional compact Kähler manifold with negative
holomorphic sectional curvature. If KX is nef, then there exists a smooth function
u on X such that ddc logωn + ddcu is the Kähler-Einstein metric on X of negative
Ricci curvature equal to −1. As a consequence, KX is ample.

To show Lemma 6 and Theorem 7, we first consider the case that KX is nef, without
any assumption on the holomorphic sectional curvature.

Proposition 8. Let (X,ω) be an n-dimensional compact Kähler manifold. If KX is
nef, then the following properties hold:

(i) For every ε > 0 there exists a smooth function uε on X such that

ωε ≡ εω + ddc logωn + ddcuε > 0 on X,

and ωnε = euεωn on X. Furthermore,

Ric(ωε) = −ωε + εω ≥ −ωε, (3.2)

and

sup
X
uε ≤ C, (3.3)

where the constant C > 0 depends only on ω and n.
(ii) For each k = 1, . . . , n,ˆ

X
c1(KX)k ∧ ωn−k ≥ Ck/n−1

ˆ
X
c1(KX)n ≥ 0, ,

where the constant C is the same as that in (3.3).

Proof. First to show (i). Since KX is nef, for each ε > 0, there exists a smooth
function fε on X such that

ωfε ≡ εω + ddc logωn + ddcfε > 0 on X.

The lower bound of the Ricci curvature of ωfε may depend on ε. Fix an ε > 0. By
Theorem 4 [18, p. 383] there exists a vε ∈ C∞(X) satisfying the Monge-Ampère
equation

(ωfε + ddcvε)
n = ωnevε+fε (3.4)

with ωfε + ddcvε > 0 on X. Let

uε = fε + vε.
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Then ωε = ωfε + ddcvε satisfies ωnε = euεωn, and furthermore (3.2), for

Ric(ωfε + ddcvε) = −ddc log(ωfε + ddcvε)
n

= −ddc logωn − ddcfε − ddcvε
= −(ωfε + ddcvε) + εω.

Applying the maximum principle to uε = vε + fε in (3.4) yields

exp
(

sup
X
uε

)
≤ C ≡ sup

X

(ε0ω + ddc logωn)n

ωn
,

for all ε < ε0. This implies (3.3).

For (ii), the case k = n follows immediately from the nefness of KX . It suffices to
consider 1 ≤ k ≤ n− 1. Denote

σk =

(
n

k

)
ωkε ∧ ωn−k

ωn
, 0 ≤ k ≤ n.

By Newton-MacLaurin’s inequality

σ1/n
n ≥

[
σn

σk/
(
n
k

)]1/(n−k)

and (3.3) we obtain

ωkε ∧ ωn−k

ωnε
=
σk/
(
n
k

)
σn

≥ σk/n−1
n ≥ Ck/n−1.

Integrating against ωnε over X yieldsˆ
X
ωkε ∧ ωn−k ≥ Ck/n−1

ˆ
X
ωnε .

This implies thatˆ
X
c1(KX)k ∧ ωn−k ≥ Ck/n−1

ˆ
X
c1(KX)n +O(ε).

Letting ε→ 0+ yields the result. �

Next, we need the following inequality, which is implicitly contained in [14] and
[15, pp. 370–372].

Proposition 9. Let M be a Kähler manifold of complex dimension n, and let ω and
ω′ be two Kähler metrics on X. Suppose that the holomorphic sectional curvature of
ω satisfies

H(P ; η) ≡ RP (η, η̄, η, η̄) ≤ −κ(P )‖η‖4ω for all η ∈ TPX and all P ∈ X,

and that the Ricci curvature of ω′ satisfies

Ric(ω′) ≥ −λω′ + µω,
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where κ, µ, and λ are continuous functions with κ ≥ 0 and µ ≥ 0 on X. Let S be the
trace of ω with respect to ω′; that is,

S =
n(ω′)n−1 ∧ ω

(ω′)n
.

Then

∆′ logS ≥
[(n+ 1)κ

2n
+
µ

n

]
S − λ,

where ∆′ is the Laplacian of ω′.

Proof. We denote by gij̄ , Rij̄ , and Rij̄kl̄ the components of metric tensor, Ricci curva-

ture tensor, and the curvature tensor of ω, respectively; and similarly by g′
ij̄

, R′
ij̄

, and

R′
ij̄kl̄

the corresponding tensors of ω′. Choose a normal coordinate system (z1, . . . , zn)

near a point P of M such that

gij̄ = δij ,
∂

∂zk
gij̄ = 0, g′ij̄ = δijg

′
īi

at P . By [14, p. 623, (2.3)] we have

∆′S =
∑
i

R′
īi

(g′
īi

)2
+
∑
i,j,k

|∂g′
ij̄
/∂zk|2

g′
īi

(g′
jj̄

)2g′
kk̄

−
∑
i,k

Rīikk̄
g′
īi
g′
kk̄

at P . (3.5)

As in [15, p. 372] we apply the Cauchy-Schwarz inequality to obtain∑
i,j,k

|∂g′
ij̄
/∂zk|2

g′
īi

(g′
jj̄

)2g′
kk̄

≥
∑
i,k

|∂g′
īi
/∂zk|2

(g′
īi

)3g′
kk̄

≥ |∇
′S|2

S
. (3.6)

It follows from Royden’s lemma [14, p. 624] that

−
∑
i,k

Rīikk̄
g′
īi
g′
kk̄

≥ (n+ 1)κ

2n
S2. (3.7)

By the assumption on Ricci curvature we have∑
i

R′
īi

(g′
īi

)2
≥ −λS + µ

∑
i

1

(g′
īi

)2
≥ −λS +

µ

n
S2. (3.8)

Plugging (3.6), (3.7), and (3.8) into (3.5) yields the desired inequality. �

We are now ready to prove Lemma 6 and Theorem 7.

Proof of Lemma 6. Since KX is nef, by Proposition 8 (i) for each ε > 0 there exists
a Kähler metric ωε = εω + ddc logωn + ddcuε on X such that

Ric(ωε) ≥ −ωε and ωnε ≤ Cωn on X,

where C > 0 is a constant independent of ε. Let

Sε =
nωn−1

ε ∧ ω
ωnε

.
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By Proposition 9 we have

∆′ logSε ≥
(n+ 1)κ

2n
Sε − 1 on X. (3.9)

Here

κ(P ) = − sup
η∈TPX\{0}

R(η, η̄, η, η̄)

‖η‖4ω
> 0 for all P ∈ X.

Since X is compact, there exists a constant κ0 > 0 such that κ ≥ κ0 > 0. Applying
the maximum principle to Sε in (3.9) yields

Sε ≤
2n

(n+ 1)κ0
on X.

On the other hand, by Newton-MacLaurin’s inequality

Sε =
σn−1

σn
≥ nσ−1/n

n

where σk ≡
(
n
k

)
ωkε ∧ ωn−k/ωn for each 1 ≤ k ≤ n. It follows that

ˆ
X
ωnε =

ˆ
X
σnω

n ≥ (n+ 1)n

2n
κn0

ˆ
X
ωn > 0.

Note that ˆ
X
ωnε =

ˆ
X
c1(KX)n + εn

ˆ
X
c1(KX)n−1 ∧ ω +O(ε2).

Letting ε→ 0+ yields ˆ
X
c1(KX)n ≥ (n+ 1)n

2n
κn0

ˆ
X
ωn > 0.

This implies that KX is big. This and Proposition 8 (ii) imply (3.1). �

Proof of Theorem 7. As in the proof of Lemma 6, we have for each ε > 0 a Kähler
metric ωε = εω + ddc logωn + ddcuε satisfying ωnε = euεωn and

Ric(ωε) = −ωε + εω, max
X

uε ≤ C, C−1 ≤ Sε ≤ C.

We denote by C > 0 a generic constant depending only on ω and n. Since

Sn−1
ε ≥ σ1/σn,

We obtain σ1 ≤ C, and hence C−1ω ≤ ωε ≤ Cω and a uniform estimate for uε
up to the second order. Then, a standard process shows that ‖uε‖Ck,α(X) ≤ C for

any nonnegative integer k and 0 < α < 1 (see [18, pp. 360 and 363] for example).
Thus, there is a sequence {uεl} converges in the Ck,α(X)-norm to a solution u of the
equation

(ddc logωn + ddcu)n = euωn

with ωu ≡ ddc logωn + ddcu > 0 on X. This implies that ωu is the unique Kähler-
Einstein metric with Ric(ωu) = −ωu. �
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