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1. Introduction

Let M be compact Kähler manifold. Then, it is well known that M is
hyperbolic if and only if any holomorphic map f : C → M is a constant.
A conjecture of Kobayashi states that if a compact Kähler manifold M is
hyperbolic, then its canonical bundle KM is ample (see, for example, [3,
p. 370], [2], and [4]). This conjecture clearly holds when M is a compact
Riemann surface. For M being a Kähler surface, the conjecture follows
from Enriques–Kodaira classification [2]. Based on the results of Wilson [6],
Peternell [4] proved that a 3-dimensional projective hyperbolic manifold has
ample canonical bundle, possibly except for certain Calabi–Yau threefolds
whose Picard number are not greater than 19.

On the other hand, if a compact Kähler manifold M has strictly negative
holomorphic sectional curvature everywhere, then M is hyperbolic. Thus in
this note, we would like to study, under what condition would the negativity
of holomorphic sectional curvature imply the ampleness. As a first step, we
consider the manifolds with Picard number equal to 1.

For a Kähler manifold M , we say that the holomorphic sectional curvature
of M is quasi-negative, if the holomorphic sectional curvature is non-positive
everywhere and is strictly negative at one point of M . We denote by ρ(M)
the Picard number of M . Our result is as follows:

Theorem 1. Let M be an n-dimensional projective manifold with ρ(M) = 1.
If M admits a Kähler metric ω whose holomorphic sectional curvature is
quasi-negative, then KM is ample.

We remark that the curvature condition in Theorem 1 is sharp; namely,
the quasi-negativity cannot be replaced by non-positivity. Indeed, there
are 2-dimensional abelian varieites with Picard number equal to 1 ([1, p.
58–59]).

Our technique is essentially the third author’s Schwarz lemma [8] (see also
[7]). We incorporate here a trick of Royden [5], which converts the bound

1



2 PIT–MANN WONG, DAMIN WU, AND SHING–TUNG YAU

of holomorphic sectional curvature to the bound of holomorphic bisectional
curvature.

This note is based on the discussions of all the authors in the spring of
2010. The first author, Professor Wong, untimely passed away on July 03,
2010. The second and third authors therefore took up the task of writing the
manuscript. The second author would like to thank the warm hospitality of
University of Notre Dame, and the support of The Ohio State University.

2. Proof of the Theorem

Let us first prove the following lemma.

Lemma 2.1 (Royden). Let (V, ‖ · ‖) be a normed vector space over C, and
R(µ, ν̄, η, ξ̄) be a symmetric bihermitian form on V , i.e., for all µ, ν, η, ξ
in V ,

R(µ, ν̄, η, ξ̄) = R(η, ν̄, µ, ξ̄), R(ν, µ̄, ξ, η̄) = R̄(µ, ν̄, η, ξ̄).

Assume, in addition, that R satisfies that

R(η, η̄, η, η̄) ≤ b‖η‖4, for all η ∈ V ,

where b is a constant. Then, for any m orthogonal vectors α1, . . . , αm,

m∑
i,j=1

R(αi, ᾱi, αj , ᾱj) ≤
b

2

[( m∑
i=1

‖αi‖2
)2

+
m∑
i=1

‖αi‖4
]
.

Proof. We denote I = {1,−1,
√
−1,−

√
−1}. Let

ηε = ε1α1 + · · ·+ εmαm,

where ε = (ε1, . . . , εm) ∈ Im. Clearly, for each ε ∈ Im,

R(ηε, η̄ε, ηε, η̄ε) ≤ b
( m∑
i=1

‖αi‖2
)2
.

Thus,

1

4m

∑
ε∈Im

R(ηε, η̄ε, ηε, η̄ε) ≤ b
( m∑
i=1

‖αi‖2
)2
.
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On the other hand, we have, by the symmetry of R and
∑

δ∈I δ = 0 and∑
δ∈I δ

2 = 0, that

1

4m

∑
ε∈Im

R(ηε, η̄ε, ηε, η̄ε)

=
1

4m

∑
ε∈Im

m∑
i,j,k,l=1

εiε̄jεk ε̄lR(αi, ᾱj , αk, ᾱl)

=
m∑
i=1

R(αi, ᾱi, αi, ᾱi) +
∑
i 6=j

[
R(αi, ᾱi, αj , ᾱj) +R(αi, ᾱj , αj , ᾱi)

]
=

m∑
i=1

R(αi, ᾱi, αi, ᾱi) + 2
∑
i 6=j

R(αi, ᾱi, αj , ᾱj).

It follows that

2

m∑
i,j=1

R(αi, ᾱi, αj , ᾱj) ≤ b

[( m∑
i=1

‖αi‖2
)2

+

m∑
i=1

‖αi‖4
]
.

�

Proof of Theorem 1. Let D be a smooth, ample divisor in M . Then, there
exists an integer α such that

c1(KM ) = αc1([D]).

If KM is not ample, then α ≤ 0. It then follows from the third author’s solu-
tion of Calabi conjecture that, there exists a Kähler metric ω′ on M whose
Ricci curvature is nonnegative. We shall prove that ω′ is not compatible
with ω.

Let Rij̄ and Rij̄kl̄ denote, respectively, the Ricci curvature tensor and

curvature tensor of ω. Similarly, we denote by R′
ij̄

and R′
ij̄kl̄

for ω′. Let

S =
n(ω′)n−1 ∧ ω

(ω′)n
=

n∑
i,j=1

g′ij̄gij̄ .

Here we locally write

ω =

√
−1

2

∑
i,j

gij̄dz
i ∧ dz̄j , ω′ =

√
−1

2

∑
i,j

g′ij̄dz
i ∧ dz̄j ,

and (gij̄) denotes the transposed inverse of (gij̄), similarly for (g′ij̄).

Let us compute ∆′S, where ∆′ denotes the Laplacian associated with ω′.
For convenience, we choose a normal coordinate system {z1, . . . , zn} near a
point x ∈M such that

gij̄(x) = δij ,
∂gij̄
∂zk

(x) = 0, (2.1)
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and that

g′ij̄(x) = δijg
′
īi(x). (2.2)

Then, as in [7, p. 371] , we assert that

∆′S =
∑
i

R′
īi

(g′
īi

)2
+
∑
i,j,k

|∂g′
ij̄
/∂zk|2

g′
īi

(g′
jj̄

)2g′
kk̄

−
∑
i,k

Rīikk̄
g′
īi
g′
kk̄

at x. (2.3)

For completeness, this assertion will be proved at the end. The assertion
implies that

∆′S ≥ −
∑
i,k

Rīikk̄
g′
īi
g′
kk̄

.

Now we are in a position to apply Lemma 2.1. Let

αi = (g′īi)
−1/2 ∂

∂zi
, i = 1, . . . , n.

Then, α1, . . . , αn are orthogonal tangent vectors in TxM . It follows that∑
i,k

Rīikk̄
g′
īi
g′
kk̄

=
∑
i,k

R(αi, ᾱi, αk, ᾱk)

≤ −κ
2

[( m∑
i=1

‖αi‖2
)2

+
m∑
i=1

‖αi‖4
]

≤ −κ
2

(1 +
1

n
)
( m∑
i=1

‖αi‖2
)2

= −κ(n+ 1)

2n
S2,

where κ = κ(x) ≥ 0 is a constant depending only on the upper bound of the
holomorphic sectional curvature at x. Therefore, we obtain that

∆′S ≥ κ(n+ 1)

2n
S2 ≥ 0. (2.4)

By the maximum principle, the function S must be identically equal to a
(positive) constant. In particular, ∆′S ≡ 0 on M . Now suppose that the
holomorphic sectional curvature is strictly negative at a point x0. That is,

−κ(x0) ≡ sup
η∈Tx0M\{0}

R(η, η̄, η, η̄)

‖η‖4g
< 0.

Apply (2.3) to x0 and then combine Lemma 2.1 to obtain that

0 = ∆′S(x0) ≥ κ(x0)(n+ 1)

2n
S2(x0) ≥ 0.

This implies that S ≡ S(x0) = 0, which is a contradiction. This proves
Theorem 1, except for verifying the assertion (2.3).
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Let us now prove the assertion:

∆′S =
∑
i

R′
īi

(g′
īi

)2
+
∑
i,j,k

|∂g′
ij̄
/∂zk|2

g′
īi

(g′
jj̄

)2g′
kk̄

−
∑
i,k

Rīikk̄
g′
īi
g′
kk̄

,

in which we use the normal coordinate chart satisfying (2.1) and (2.2). For
simplicity, we denote

∂i =
∂

∂zi
, ∂j̄ =

∂

∂z̄j
, for all 1 ≤ i, j ≤ n;

and we shall use the summation convention, unless otherwise indicated. Note
that at the point x,

∆′S = g′kl̄∂k∂l̄(g
′ij̄gij̄)

= g′kl̄gij̄∂k∂l̄g
′ij̄ + g′kl̄g′ij̄∂k∂l̄gij̄ . (2.5)

Observe that, by using (2.1) we have

Rij̄kl̄(x) = −∂k∂l̄gij̄(x).

Then, the second term on the right of (2.5) is equal to

−
∑
i,k

Rīikk̄
g′
īi
g′
kk̄

,

in which (2.2) is used. It remains to show that

g′kl̄gij̄∂k∂l̄g
′ij̄ =

∑
i

R′
īi

(g′
īi

)2
+
∑
i,j,k

|∂g′
ij̄
/∂zk|2

g′
īi

(g′
jj̄

)2g′
kk̄

. (2.6)

Notice that

g′kl̄gij̄∂k∂l̄g
′ij̄ = −g′kl̄gij̄∂k(g′iq̄g′pj̄∂l̄g′pq̄)

= g′kl̄gij̄(g
′ib̄g′aq̄g′pj̄∂kg

′
ab̄ + g′iq̄g′pb̄g′aj̄∂kg

′
ab̄)∂l̄g

′
pq̄

− g′kl̄gij̄g′iq̄g′pj̄∂k∂l̄g′pq̄. (2.7)

Let us first handle the last term in (2.7). Recall that

R′kl̄pq̄ = −∂k∂l̄g′pq̄ + g′ab̄∂kg
′
pb̄∂l̄g

′
aq̄.

It follows that

−g′kl̄∂k∂l̄g′pq̄ = R′pq̄ − g′kl̄g′ab̄∂kg′pb̄∂l̄g
′
aq̄.
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Substituting this into the last term in (2.7) yields that

g′kl̄gij̄∂k∂l̄g
′ij̄

= gij̄g
′kl̄g′ib̄g′aq̄g′pj̄∂kg

′
ab̄∂l̄g

′
pq̄ + gij̄g

′kl̄g′iq̄g′pb̄g′aj̄∂kg
′
ab̄∂l̄g

′
pq̄

+ gij̄g
′iq̄g′pj̄R′pq̄ − gij̄g′iq̄g′pj̄g′kl̄g′ab̄∂kg′pb̄∂l̄g

′
aq̄

= gij̄g
′kl̄g′ib̄g′aq̄g′pj̄∂kg

′
ab̄∂l̄g

′
pq̄ + gij̄g

′iq̄g′pj̄R′pq̄

=
∑
i,k,a

|∂kg′āi|
2

(g′
īi

)2g′
kk̄
g′aā

+
∑
i

R′
īi

(g′
īi

)2
.

This verifies (2.6). Hence, the assertion is proved. This finishes the proof of
Theorem 1.
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