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In this note we consider regularity theory for a fractional p-Laplace operator which arises
in the complex interpolation of the Sobolev spaces, the Hs,p-Laplacian. We obtain the

natural analogue to the classical p-Laplacian situation, namely Cs+αloc -regularity for the
homogeneous equation.

Keywords: fractional p-Laplacian; fractional gradient; regularity theory

Mathematics Subject Classification 2010: 35R11, 35B65

1



September 7, 2016 20:49 WSPC/INSTRUCTION FILE Schikorra-Shieh-
Spector-fractional-p-Laplace-CCM-revision

2

1. Introduction and main result

In recent years equations involving what we will call the distributional W s,p-

Laplacian, defined for test functions ϕ as

(−∆)spu[ϕ] :=

∫
Rd

∫
Rd

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|d+sp
dy dx,

have received a lot of attention, e.g. [3,6,7,13,15,16,21]. The W s,p-Laplacian (−∆)sp
appears when one computes the first variation of certain energies involving the W s,p

semi-norm

[u]W s,p(Rd) :=

(∫
Rd

∫
Rd

|u(x)− u(y)|p

|x− y|d+sp
dy dx

) 1
p

, (1.1)

which was introduced by Gagliardo [11] and independently by Slobodeckij [27] to

describe the trace spaces of Sobolev maps. We refer to [8] for a modern introduction

to the spaces W s,p.

Regularity theory for equations involving this fractional p-Laplace operator is a very

challenging open problem and only partial results are known: C0,α
loc -regularity for

suitable right-hand-side data was obtained by Di Castro, Kuusi and Palatucci [6,7];

A generalization of the Gehring lemma was proven by Kuusi, Mingione and Sire [15,

16]; A stability theorem similar to the Iwaniec stability result for the p−Laplacian

was established by the first-named author [23]. The current state-of-the art with

respect to regularity theory is higher Sobolev-regularity by Brasco and Lindgren [3].

Aside from their origins as trace spaces, the fractional Sobolev spaces

W s,p(Rd) :=
{
u ∈ Lp(Rd) : [u]W s,p(Rd) < +∞

}
also arise in the real interpolation of Lp and Ẇ 1,p, see [28]. If one alternatively

considers the complex interpolation method, one is naturally led to another kind of

fractional Sobolev space Hs,p(Rd), where taking the place of the differential energy

(1.1) one can utilize the semi-norm

[u]Hs,p(Rd) :=

(∫
Rd
|Dsu|p

) 1
p

. (1.2)

Here Ds = ( ∂s

∂xs1
, . . . , ∂

s

∂xsd
) is the fractional gradient for

∂su

∂xsi
(x) := cd,s p.v.

∫
Rd

u(x)− u(y)

|x− y|d+s

xi − yi
|x− y|

dy, i = 1, . . . , d.

Composition formulae for the fractional gradient have been studied in the classical

work [12], while more recently they have been considered by a number of authors

[1,4,5,22,24,26]. While it is common in the literature (for example in [18]) to see

Hs,p(Rd) equipped with the Lp-norm of the fractional Laplacian (−∆)
s
2 (see Sec-

tion 2 for a definition), we here utilize (1.2) because it preserves the structural
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properties of the spaces for s ∈ (0, 1) more appropriately. In particular, for s = 1 we

have D1 = D (the constant cd,s tends to zero as s tends to one), while for s ∈ (0, 1)

the fractional Sobolev spaces defined this way support a fractional Sobolev inequal-

ity in the case p = 1, see [25]. Let us also remark that for p = 2 these spaces are

the same, W s,2 = Hs,2, but for p 6= 2 this is not the case.a

Returning to the question of a fractional p-Laplacian, in the context of Hs,p(Rd)
computing the first variation of energies involving the Hs,p semi-norms (1.2) yields

an alternative fractional version of a p-Laplacian, we shall call it the Hs,p-Laplacian

divs(|Dsu|p−2Dsu) =
d∑
i=1

∂s

∂xsi
(|Dsu|p−2 ∂

su

∂xsi
).

Somewhat surprisingly while the regularity theory for the homogeneous equation of

the W s,p-Laplacian

(−∆)spu = 0

is far from being understood, the regularity for the Hs,p-Laplacian

divs(|Dsu|p−2Dsu) = 0 (1.3)

actually follows the classical theory, which is the main result we prove in this note:

Theorem 1.1. Let Ω ⊂ Rd be open, p ∈ (2 − 1
d ,∞) and s ∈ (0, 1]. Suppose

u ∈ Hs,p(Rd) is a distributional solution to (1.3), that is∫
Rd
|Dsu|p−2Dsu ·Dsϕ = 0 ∀ϕ ∈ C∞c (Ω). (1.4)

Then u ∈ Cs+αloc (Ω) for some α > 0 only depending on p.

The key observation for Theorem 1.1 is that v := I1−su, where I1−s denotes the

Riesz potential, actually solves an inhomogeneous classical p-Laplacian equation

with good right-hand side.

Proposition 1.1. Let u be as in Theorem 1.1. Then v := I1−su satisfies

−div(|Dv|p−2Dv) ∈ L∞loc(Ω).

Therefore, Theorem 1.1 follows from the regularity theory of the classical p-

Laplacian: By Proposition 1.1, v is a distributional solution to

div(|Dv|p−2Dv) = µ

aFor a complete picture of the Sobolev spaces W s,p and Hs,p and the relation between them we

refer to [20].
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and µ is sufficiently integrable whence v ∈ C1,α
loc (Ω) [9,10,29] (see also the excel-

lent survey paper by Mingione [19]). In particular, one can apply the potential

estimates by Kuusi and Mingione [14, Theorem 1.4, Theorem 1.6] to deduce that

Dv ∈ C0,α
loc (Ω), which implies that u ∈ Cs+αloc (Ω).

Let us also remark, that the reduction argument used for Proposition 1.1 extends

to the class of fractional partial differential equations introduced in [26], which will

be treated in a forthcoming work.

2. Proof of Proposition 1.1

With (−∆)
σ
2 we denote the fractional Laplacian

(−∆)
σ
2 f(x) := c̃d,σ p.v.

∫
Rd

f(x)− f(y)

|x− y|d+σ
dy,

and with Iσ its inverse, the Riesz potential. Let v := I1−su where u satisfies (1.4),

so that ∫
Rd
|Dv|p−2Dv ·Dsϕ = 0 for all ϕ ∈ C∞c (Ω). (2.1)

Now let Ω1 b Ω be an arbitrary open set compactly contained in Ω, and let φ be

a test function supported in Ω1. Pick an open set Ω2 so that Ω1 b Ω2 b Ω and a

cutoff function η, supported in Ω and constantly one in Ω2. Then in particular one

can take

ϕ := η(−∆)
1−s
2 φ

as a test function in (2.1) to obtain∫
Rd
|Dv|p−2Dv ·Ds(η(−∆)

1−s
2 φ) = 0.

That is, ∫
Rd
|Dv|p−2Dv ·Dφ =

∫
Rd
|Dv|p−2Dv ·Ds(ηc(−∆)

1−s
2 φ).

where ηc := (1− η). We set

T (φ) := Ds(ηc(−∆)
1−s
2 φ)

Now we show that by the disjoint support of ηc and φ we have

‖T (φ)‖Lp(Rd) ≤ CΩ1,Ω2,d,s,p ‖φ‖L1(Rd). (2.2)

Once we have this, the claim is proven as Hölder’s inequality and realizing the L∞

norm via duality implies

−div(|Dv|p−2Dv) ∈ L∞loc(Ω).
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To see (2.2), we use the disjoint support arguments as in [2, Lemma A.1] [17,

Lemma 3.6.]: First we see that since ηc(x)φ(x) ≡ 0,

T (φ) = c̃d,1−sD
s

∫
Rd

ηc(x)φ(y)

|x− y|N+1−s dy.

Now taking a cutoff-function ζ supported in Ω2, ζ ≡ 1 on Ω1 we have

T (φ) = c̃d,1−sD
s

∫
Rd

ηc(x)ζ(y)φ(y)

|x− y|N+1−s dy = c̃d,1−s

∫
Rd
k(x, y)φ(y) dy,

where

k(x, y) := Ds
xκ(x, y) := Ds

x

ηc(x) ζ(y)

|x− y|N+1−s .

The positive distance between the supports of ηc and ζ implies that these kernels k,

κ are a smooth, bounded, integrable (both, in x and in y), and thus by a Young-type

convolution argument we obtain (2.2). One can also argue by interpolation,∥∥∥∥∫
Rd
κ(x, y)φ(y)

∥∥∥∥
Lp(Rd)

. ‖φ‖L1(Rd),

as well as ∥∥∥∥∫
Rd
Dxκ(x, y)φ(y) dy

∥∥∥∥
Lp(Rd)

. ‖φ‖L1(Rd).

Interpolating this implies the desired result that∥∥∥∥∫
Rd
Ds
xκ(x, y)φ(y) dy

∥∥∥∥
Lp(Rd)

. ‖φ‖L1(Rd).

Thus (2.2) is established and the proof of Proposition 1.1 is finished. �
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