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H(div) conforming and DG methods for incompressible Euler’s equations
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H(div) conforming and discontinuous Galerkin (DG) methodsare designed for incompressible Euler’s
equation in two and three dimension. Error estimates are proved for both the semi-discrete method and
fully-discrete method using backward Euler time stepping.Numerical examples exhibiting the perfor-
mance of the methods are given.
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1. Introduction

In this paper we study H(div) conforming and DG finite elementmethods for the incompressible Euler
equations in both two and three dimensions. Our methods are based on the velocity-pressure formula-
tion. LetΩ be a bounded and simply connected polygonal domain inRd, d ∈ {2,3}, with boundaryΓ .
The velocityu ∈ H1

0(Ω) := [H1
0(Ω)]d, and the pressurep∈ L2

0(Ω) satisfy

ut + u ·∇u + ∇p= 0 in (0,T)×Ω , (1.1a)

div(u) = 0 in (0,T)×Ω , (1.1b)

u ·n = 0 on (0,T)×Γ , (1.1c)

u(0,x) = u0(x) in Ω , (1.1d)

whereut = ∂tu is the time derivative,∇u is the tensor gradient ofu, andT > 0.
The goal of this paper is to define methods that areL2 stable, and, for DG methods, are also locally

conservative. The methods are inspired by the work Cockburnet al. (2005) where they developed
locally conservative DG methods for the steady state Navier-Stokes equations. There they take Newton
iterations to solve numerically the equations and in each step they postprocess the DG approximation to
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get a new approximation that belongs to H(div) and is divergence-free. Here we apply this idea to DG
methods in each time step for Euler’s equations. However, wefirst consider H(div) conforming elements
as they seem natural for incompressible Euler’s equations and are easier to analyze. In order to make the
H(div) elementsL2 stable, one has to add numerical fluxes of the nonlinear term on the interfaces of the
triangulation. We start with the semi-discrete method, using both central and upwind fluxes, and then
analyze a backward Euler time stepping method. Once we have developed H(div) conforming methods,
we develop DG methods using the post-processing idea used inCockburnet al. (2005). In Cockburn
et al. (2005) upwind fluxes are used, but it is important to note thatcentral numerical fluxes can also
guaranteeL2 stability for Euler’s equations.

The development and study of finite element methods for incompressible flows have a long history;
see for example the books of Temam (see Temam (1984)) and Girault and Raviart (see Girault & Raviart
(1986)). More recently there has been an interest in using H(div) conforming methods for these prob-
lems (see, e.g., Cockburnet al.(2007)) since they produce divergence-free approximations. However, to
the best of our knowledge, an analysis of these methods for the inviscid problem (i.e. Euler’s equation)
has not been considered. On the other hand, there has been recent work on proving convergence rates
for other finite element methods for problems with arbitrarily low viscosity (see Burman & Fernández
(2007)).

We give an error analysis for both the semi-discrete methodsand the backward Euler time stepping
methods. The error estimate for the velocity in theL2 norm converges with rateO(hk) if the velocity
space contains the polynomials of degreek. Notice that this is sub-optimal by one order. However,
numerical experiments suggest that these results are not sharp for some polynomial orders and using
a central numerical flux. More specifically, when using even degree polynomial order for the velocity
it seems the methods with central flux converge optimally. Inparticular, the error estimate will not
give an error estimate for the lowest-order Raviart-Thomaselement. However, on structured grids our
numerical experiments show that the lowest-order Raviart-Thomas elements seem to be converging.
Moreover, when using the upwind numerical flux numerical experiments suggest that the method is
optimal. However, at the present time we are not able to provethis result. Our estimates assume that
the velocity belongs toW1,∞. Of course, these a-priori estimates are not known (and might not hold)
in three dimensions for general smooth initial data. However, in two dimensions the a-priori estimates
were proved by Kato (see Kato (1967)) for smooth initial data.

In addition to providing numerical experiments to check theorder of convergence of our methods, we
give numerical experiments to show how the methods behave inhigh gradient flows. We see that using
upwind flux the method seems to do very well and comparable to DG methods that use the vorticity-
potential formulation (see Liu & Shu (2000)).

One of the advantage of the H(div) conforming methods is thatit gives approximations that are
pointwise divergence-free. An advantage of the DG methods is that they give locally conservative
methods (see below). The other advantage for the upwind versions of both H(div) conforming and DG
methods is that numerically they converge optimally on structured meshes. Indeed, it is well known
that on general quasi-uniform mesh all the standard methods(Galerkin, streamline diffusion, DG) lose
at least a half-order accuracy for scalar problems. On the other hand, upwind DG methods can be
shown to convergence optimally (also assuming the correct regularity) for scalar problems on classes of
meshes (see Cockburnet al. (2010a), Cheng & Shu (2010)). In fact, as far as we know these are the
only methods that have been proving to have this property. Toextend these results to the current setting
seems non-trivial, but we will pursue this in the future. Moreover, DG methods can be stabilized by
adding consistent terms (i.e. jump terms) whereas methods like the streamline diffusion method add in-
consistent terms with parameter that need to be tuned to stabilize the method. The paper is organized as
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follows. In the next section we present the semi-discrete methods and prove error estimates. In section
3 we present the backward Euler methods. Finally, in section4 we provide some numerical examples.

2. Semi-discrete methods

We begin by introducing some preliminary notations. LetTh be a shape-regular and quasi-uniform
triangulation ofΩ without the presence of hanging nodes, and letEh be the set of edges/facesF of Th.
In addition, we denote byE i

h andE ∂
h the set of interior and boundary faces, respectively, ofEh, and we

set∂Th := ∪{∂K : K ∈ Th}.
Next, let (·, ·)U denote the usualL2 andL2 := [L2]d inner product over the domainU ⊂ Rd, and

similarly let 〈·, ·〉G be theL2 andL2 inner product over the surfaceG⊂ Rd−1. Then, we introduce the
inner products:

(·, ·)Th := ∑
K∈Th

(·, ·)K and 〈·, ·〉∂Th
:= ∑

K∈Th

〈·, ·〉∂K .

On the other hand, letn+ andn− be the outward unit normal vectors on the boundaries of two
neighboring elementsK+ andK−, respectively. We use(τ±,v±,q±) to denote the traces of(τ,v,q) on
F := K

+∩K
− from the interior ofK±, whereτ, v andq are second-order tensorial, vectorial and scalar

functions, respectively. Then, we define the means{{·}} and jumps[[ · ]] for F ∈ E i
h, as follows

{{τ}} :=
1
2

(
τ++ τ−

)
, {{v}} :=

1
2

(
v++ v−

)
, {{q}} :=

1
2

(
q++q−

)
,

[[τn]] := τ+n++ τ−n−, [[v ·n]] := v+ ·n++ v− ·n−, [[qn]] := q+n++q−n−.

The method is derived using the conservative or divergence form of the equation. To this end,
denoting⊗ as the usual dyadic or tensor product, that is,(u⊗ v)i j = (utv)i j = uiv j , we consider the
formula

div(u⊗ v) = v ·∇u + div(v)u, (2.1)

together with the divergence-free condition, to write the problem (1.1) in the form

ut + div(u⊗u) + ∇p = 0 in (0,T)×Ω , div(u) = 0 in (0,T)×Ω ,

u ·n = 0 on (0,T)×Γ , u(0,x) = u0(x) in Ω ,
(2.2)

wherediv denotes the usual divergence operator div acting along eachrow of the corresponding tensor.
Finally, given an integerℓ > 0 and a subsetU of Rd, we denote byPℓ(U) the space of polynomials

defined inU of total degree at mostℓ, with Pℓ(U) := [Pℓ(U)]d. Furthermore, for eachK ∈Th, we define
the local Raviart-Thomas space of orderℓ (see, e.g. Brezzi & Fortin (1991); Roberts & Thomas (1991))

RTℓ(K) := Pℓ(K) + Pℓ(K)x

wherex =

( x1
...

xd

)
is a generic vector ofRd. In addition, we set

NDℓ(K) := Pℓ(K) + Pℓ(K)× x

be the local Nédélec space of orderℓ onK ∈ Th.
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2.1 H(div) conforming methods

In this section, we define H(div) conforming finite element schemes associated with the model prob-
lem (2.2). We start by introducing the method using the central flux, but in a later section we present
the method using the upwind flux. For simplicity we only consider the Raviart-Thomas finite element
spaces, but we note that one can use instead the BDM finite elements (see, e.g. Brezzi & Fortin (1991);
Roberts & Thomas (1991)). The globally defined Raviart-Thomas spaces are given byVh for the veloc-
ity andQh for the pressure, given by

Vh :=
{

v ∈ H(div;Ω) : v|K ∈ RTk(K) ∀ K ∈ Th and v ·n = 0 on Γ
}
,

Qh :=
{

q∈ L2
0(Ω) : q|K ∈ Pk(K) ∀ K ∈ Th

}
.

Now, the finite element method is defined by: Find(uh, ph) ∈ Vh×Qh, such that

(∂tuh,vh)Th − (uh⊗uh,∇hvh)Th − (ph,div(vh))Th + 〈σ̂ (uh, ph)n,vh〉∂Th
= 0,

(qh,div(uh))Th = 0, (2.3)

uh(0,x) = uh,0(x) in Ω ,

for all (vh,qh) ∈ Vh×Qh, where∇h is the broken gradient,uh,0 is some projection ofu0 on Vh, and
σ̂(uh, ph) represents the numerical flux ofu⊗u+ pI on Eh. In particular, we takêσ(uh, ph) := uh⊗
uh+ phI onE ∂

h and forE i
h we define

σ̂(uh, ph) := {{uh}}⊗{{uh}} + {{ph}}I . (2.4)

This is the method using the central flux. In a later section weintroduce the method using the upwind
flux which seems to do better numerically.

Next, using the above definition for̂σ , together with the formula (2.1), the fact thatuh is divergence-
free (from the second equation in (2.3)), and integration byparts, we can rewrite (2.3) as: Find(uh, ph)∈
Vh×Qh, such that

(∂tuh,vh)Th + (uh ·∇huh,vh)Th − ∑
F∈E i

h

〈[[(uh⊗uh)n ]],{{vh}}〉F − (ph,div(vh))Th = 0,

(qh,div(uh))Th = 0, (2.5)

uh(0,x) = uh,0(x) in Ω ,

for all (vh,qh) ∈ Vh×Qh.
It will be useful to rewrite the[[(uh⊗uh)n]]|F . Let F = K

+∩K
−

. Then,

[[(uh⊗uh)n ]] = [[(uh ·n)uh ]] = (u+
h ·n+)u+

h + (u−
h ·n−)u−

h .

In addition, from the fact thatu+
h ·n+ = u−

h ·n+, sinceuh ∈ H(div;Ω), it follows that

[[(uh⊗uh)n ]] = (u+
h ·n+)u+

h − (u−
h ·n+)u−

h = (u+
h ·n+)(u+

h −u−
h ).

From now on we will use the notation (without loss of generality) [[[v ]]] := v+− v−. Also, we use the
notation(uh ·n)|F = (u+

h ·n+)|F . Hence, we write

[[(uh⊗uh)n ]] = (uh ·n)[[[uh ]]].

Now from this we see that the third term in the right-hand sideof first equation in (2.5) is consistent,
since[[[u]]] = 0 onE i

h whenu is smooth.
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LEMMA 2.1 (Conservation of energy) Givenuh ∈ Vh the solution of (2.5), we have

d
dt

‖uh‖2
L2(Ω) = 0.

Proof. Takingvh := uh in the first equation of (2.5) and using thatuh is divergence-free, it follows that

1
2

d
dt

‖uh‖2
L2(Ω) + (uh ·∇huh,uh)Th − ∑

F∈E i
h

〈(uh ·n)[[[uh ]]],{{uh}}〉F = 0. (2.6)

Thus, note that

(uh ·∇huh,uh)Th =
1
2 ∑

K∈Th

∫

K
uh ·∇(|uh|2) =

1
2 ∑

K∈Th

{
−
∫

K
div(uh)|uh|2 +

∫

∂K
(uh ·n)|uh|2

}

=
1
2 ∑

K∈Th

∫

∂K
(uh ·n)|uh|2 =

1
2 ∑

F∈E i
h

∫

F
{{uh}} · [[ |uh|2n]]

= ∑
F∈E i

h

∫

F
(uh ·n)[[[uh]]] · {{uh}}, (2.7)

which, together with (2.6) complete the proof. �

We remark here that, from the previous lemma, integrating intime over(0, t), we can deduce that
‖uh(t, ·)‖L2(Ω) = ‖uh,0‖L2(Ω) for eacht ∈ (0,T). That is, we proved that the scheme (2.5) is stable.

2.1.1 Error estimates. Our next goal is to obtain error estimates for the scheme (2.5). In order to do
that, we now introduce the Raviart-Thomas interpolation operator (see Brezzi & Fortin (1991); Roberts
& Thomas (1991))Π k

h : H1(Ω)→ Vh, which satisfies the following approximation properties: for each
v ∈ Hm(Ω), with 16 m6 k+1, there holds

‖v−Πk
h(v)‖L2(K)+hK‖∇(v−Πk

h(v))‖L2(K) 6 Chm
K |v|m,K ∀ K ∈ Th. (2.8)

Moreover, we also have the following bounds

‖v−Π k
h(v)‖L∞(K)+hK‖∇(v−Πk

h(v))‖L∞(K) 6 ChK‖∇v‖L∞(K) ∀ K ∈ Th. (2.9)

In addition, letPk
h : L2(Ω)→ Qh be theL2-orthogonal projector. Hence, for eachq∈ Hm(Ω), with

06 m6 k+1, there holds (see, e.g. Ciarlet (1978))

‖q−P
k
h(q)‖L2(K) 6 Chm

K |q|Hm(K) ∀ K ∈ Th. (2.10)

We now aim to derive thea priori error estimates for the scheme (2.5). To this end, thanks to
the triangle inequality, we only need to provide estimates for the approximation errors, namely, Eu :=
Π k

h(u)− uh and Ep := Pk
h(p)− ph. To do this, we use the fact that the exact solution satisfies the

approximation method (2.5), in order to obtain the error equations:

(∂t(u−uh),vh)Th + (u ·∇hu−uh ·∇huh,vh)Th

− ∑
F∈E i

h

〈(uh ·n)[[[u−uh ]]],{{vh}}〉F − (p− ph,div(vh))Th = 0,

(qh,div(u−uh))Th = 0,
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for all (vh,qh) ∈ Vh×Qh. In addition, from the property div(Π k
h(u)) =Pk

h(div(u)) = 0, we can rewrite
the error equations in the form

(∂tEu,vh)Th + (u ·∇hu−uh ·∇huh,vh)Th − ∑
F∈E i

h

〈(uh ·n)[[[Eu ]]],{{vh}}〉F − (Ep,div(vh))Th

= (∂t(Π k
h(u)−u),vh)Th − ∑

F∈E i
h

〈(uh ·n)[[[Π k
h(u)−u]]],{{vh}}〉F − (Pk

h(p)− p,div(vh))Th, (2.11)

(qh,div(Eu))Th = 0,

for all (vh,qh) ∈ Vh×Qh, where it is important to remark here that Eu is divergence-free.

THEOREM 2.1 Assume thatu ∈W1,∞([0,T]×Ω)d is uniformly bounded. In addition, given an integer
k > 1, suppose thatu0 ∈ Hk+1(Ω), u ∈ L2(0,T;Hk+1(Ω)), andut ∈ L2(0,T;Hk+1(Ω)). Then, there
existsC> 0, independent ofh, such that

‖(u−uh)(T, ·)‖L2(Ω) 6 C(u)hk B(u),

where

C(u) := (1+C(1+Cu))exp(C(1+Cu)T),

with Cu := ‖u‖W1,∞([0,T]×Ω). Also,

B(u) := h‖u0‖Hk+1(Ω)+ ‖u‖L2(0,T;Hk+1(Ω))+h‖ut‖L2(0,T;Hk+1(Ω)) .

Proof. We begin by choosingvh := Eu in (2.11). Thus, we have

1
2

d
dt

‖Eu‖2
L2(Ω) = −(u ·∇hu−uh ·∇huh,E

u)Th︸ ︷︷ ︸
I1

+ ∑
F∈E i

h

〈(uh ·n)[[[Eu ]]],{{Eu
h}}〉F

︸ ︷︷ ︸
I2

+ (Π k
h(ut)−ut ,E

u)Th − ∑
F∈E i

h

〈(uh ·n)[[[Π k
h(u)−u]]],{{Eu}}〉F

︸ ︷︷ ︸
I3

, (2.12)

where we have used the fact that∂tΠ k
h(u) = Π k

h(ut). Next, note that

I1 = −(u ·∇h{u−Πk
h(u)},Eu)Th − ((u−uh) ·∇hΠ k

h(u),E
u)Th − (uh ·∇hEu,Eu)Th,

= −(u ·∇h{u−Πk
h(u)},Eu)Th − ((u−uh) ·∇hΠ k

h(u),E
u)Th − I2,

where in the last term, we apply the same arguments of (2.7) byusing Eu instead ofuh in the last two
functions. Furthermore, using (2.9) we deduce that

I1 + I2 6 Cu‖∇h{Π k
h(u)−u}‖L2(Ω)‖Eu‖L2(Ω) + CCu‖u−uh‖L2(Ω)‖Eu‖L2(Ω)

6 Cu‖∇h{Π k
h(u)−u}‖L2(Ω)‖Eu‖L2(Ω) + CCu

{
‖Π k

h(u)−u‖L2(Ω)+ ‖Eu‖L2(Ω)

}
‖Eu‖L2(Ω)

6 CCu‖Eu‖2
L2(Ω) + CCu

{
‖Π k

h(u)−u‖2
L2(Ω) + ‖∇h{Π k

h(u)−u}‖2
L2(Ω)

}
. (2.13)
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On the other hand, forI3 it follows

I3 = − ∑
F∈E i

h

〈(Eu ·n)[[[Π k
h(u)−u]]],{{Eu}}〉F + ∑

F∈E i
h

〈(Π k
h(u) ·n)[[[Π k

h(u)−u]]],{{Eu}}〉F

6 Ch−1‖Π k
h(u)−u‖L∞(Ω) ∑

F∈E i
h

hF‖{{Eu}}‖2
L2(F)

+ C‖Π k
h(u)‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖[[[Πk

h(u)−u]]]‖2
L2(F)




1/2
 ∑

F∈E i
h

hF‖{{Eu}}‖2
L2(F)




1/2

. (2.14)

In addition, givenv ∈ H1(Th) and applying a discrete trace inequality, we note that thereexistsĈ> 0,
independent ofh, such that

∑
F∈E i

h

h−1
F ‖[[[v]]]‖2

L2(F) 6 Ĉ
{

h−2‖v‖2
L2(Ω) + ‖∇hv‖2

L2(Ω)

}
, (2.15)

and, in the same way together with an inverse inequality we obtain

∑
F∈E i

h

hF‖{{Eu}}‖2
L2(F) 6 Ĉ‖Eu‖2

L2(Ω). (2.16)

Hence, replacing (2.15) and (2.16) in (2.14) and using (2.9)we deduce that

I3 6 CCu‖Eu‖2
L2(Ω) + CCu

{
h−2‖Πk

h(u)−u‖2
L2(Ω) + ‖∇h{Π k

h(u)−u}‖2
L2(Ω)

}
. (2.17)

Now, we return to (2.12), which satisfies that

1
2

d
dt

‖Eu‖2
L2(Ω) 6

1
2
‖Eu‖2

L2(Ω) +
1
2
‖Π k

h(ut)−ut‖2
L2(Ω) + (I1+ I2) + I3,

where, replacing (2.13) and (2.17), we obtain that

d
dt

‖Eu‖2
L2(Ω) 6 C(1+Cu)‖Eu‖2

L2(Ω) + C‖Π k
h(ut)−ut‖2

L2(Ω)

+CCu

{
h−2‖Π k

h(u)−u‖2
L2(Ω)

+ ‖∇h{Π k
h(u)−u}‖2

L2(Ω)

}
. (2.18)

Hence, applying (2.8) we get

d
dt

‖Eu‖2
L2(Ω) 6 C(1+Cu)‖Eu‖2

L2(Ω) + C(1+Cu)h2k
(

h2‖ut‖2
Hk+1(Ω)

+ ‖u‖2
Hk+1(Ω)

)
.

which, applying the Gronwall’s inequality (see, e.g. Evans(2010)), yields

‖Eu(T, ·)‖2
L2(Ω) 6 exp(C(1+Cu)T)

{
‖Eu(0, ·)‖2

L2(Ω)

+ C(1+Cu)
(

h2‖ut‖2
L2(0,T;Hk+1(Ω))

+ ‖u‖2
L2(0,T;Hk+1(Ω))

)}
.

Finally, we use that‖Eu(0, ·)‖2
L2(Ω)

6Ch2(k+1)‖u0‖2
Hk+1(Ω)

to complete the proof. �

The next goal is to establish error estimates for the pressure variable. To do this, we first obtain an
estimate for∂t(u−uh), which is the subject of the next result.
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LEMMA 2.2 Assume the same hypotheses of Theorem 2.1. Then, there existsC> 0, independent ofh,
such that

‖∂tE
u(T, ·)‖L2(Ω) 6 (C(u)hk−d/2B(u)+Cu)h

k−1
{

C(u)B(u)+ ‖u(T, ·)‖Hk+1(Ω)

}

+ Chk+1‖ut(T, ·)‖Hk+1(Ω) .

Proof. First, we takevh := ∂tEu in (2.11) and using that div(∂tEu) = ∂tdiv(Eu) = 0, we obtain

‖∂tEu‖2
L2(Ω)

= −(u ·∇hu−uh ·∇huh,∂tEu)Th + ∑
F∈E i

h

〈(uh ·n)[[[Eu ]]],{{∂tEu}}〉F

+ (Π k
h(ut)−ut ,∂tE

u)Th − ∑
F∈E i

h

〈(uh ·n)[[[Π k
h(u)−u]]],{{∂tE

u}}〉F

6 ‖u ·∇hu−uh ·∇huh‖L2(Ω)‖∂tE
u‖L2(Ω) + ‖Π k

h(ut)−ut‖L2(Ω)‖∂tE
u‖L2(Ω)

+ C‖uh‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖[[[Eu ]]]‖2

L2(F)




1/2
 ∑

F∈E i
h

hF‖{{∂tEu}}‖2
L2(F)




1/2

+ C‖uh‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖[[[Πk

h(u)−u]]]‖2
L2(F)




1/2
 ∑

F∈E i
h

hF‖{{∂tE
u}}‖2

L2(F)




1/2

.

Next, using (2.15) and (2.16), we deduce after some algebraic manipulation that

‖∂tE
u‖L2(Ω) 6 C

{
h−1‖uh‖L∞(Ω)‖Eu‖L2(Ω) + ‖u ·∇hu−uh ·∇huh‖L2(Ω)

+ ‖Πk
h(ut)−ut‖L2(Ω) + ‖uh‖L∞(Ω)(h−1‖Πk

h(u)−u‖L2(Ω)+ ‖∇h(Π k
h(u)−u)‖L2(Ω))

}
. (2.19)

To bound the nonlinear term we add and subtract terms to get

‖u ·∇hu−uh ·∇huh‖L2(Ω) = ‖(u−uh) ·∇hu+uh ·∇h(u−uh)‖L2(Ω)

6 Cu‖u−uh‖L2(Ω)+ ‖uh‖L∞(Ω)‖∇h(u−uh)‖L2(Ω)

6 Cu‖u−uh‖L2(Ω)+ ‖uh‖L∞(Ω)(‖∇h(u−Πk
hu)‖L2(Ω)+Ch−1‖Eu‖L2(Ω))

6 Cu‖Eu‖L2(Ω)+Cu‖Π k
h(u)−u‖L2(Ω)

+ ‖uh‖L∞(Ω)(‖∇h(u−Π k
hu)‖L2(Ω)+Ch−1‖Eu‖L2(Ω)),

where we have used an inverse estimate. Therefore,

‖∂tEu‖L2(Ω) 6 C
{
(h−1‖uh‖L∞(Ω)+Cu)‖Eu‖L2(Ω) + ‖Π k

h(ut)−ut‖L2(Ω)

+ ‖uh‖L∞(Ω) ‖∇h(Π k
h(u)−u)‖L2(Ω) + (h−1‖uh‖L∞(Ω)+Cu)‖Π k

h(u)−u‖L2(Ω)

}
.

We can bound‖uh‖L∞(Ω) using an inverse estimate

‖uh‖L∞(Ω) 6 ‖Eu‖L∞(Ω) + ‖Πk
h(u)‖L∞(Ω) 6 C h−d/2‖Eu‖L2(Ω) + CCu. (2.20)
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Hence,

‖∂tEu(t)‖L2(Ω) 6 C
{

h−1(h−d/2‖Eu‖L2(Ω)+Cu)‖Eu‖L2(Ω) + ‖Π k
h(ut)−ut‖L2(Ω)

+ (h−d/2‖Eu‖L2(Ω)+Cu)
(
‖∇h(Π k

h(u)−u)‖L2(Ω) +h−1‖Π k
h(u)−u‖L2(Ω)

)}
.

Finally, using Theorem 2.1 and (2.8) establishes the result. �

Note that in the above proof we have also proved

‖(u ·∇hu−uh ·∇huh)(T, ·)‖L2(Ω) 6 (C(u)hk−d/2B(u)+Cu)h
k−1

{
C(u)B(u)+ ‖u(T, ·)‖Hk+1(Ω)

}

+ Chk+1‖∂tu(T, ·)‖Hk+1(Ω) . (2.21)

We end this section with the a-priori error estimate for the pressure, which is established next.

THEOREM 2.2 Assume the hypothesis of Theorem 2.1. Also, suppose thatp ∈ L2(0,T;Hk+1(Ω)).
Then, there existsC> 0, independent ofh, such that

‖(p− ph)(T, ·)‖L2(Ω) 6 (C(u)hk−d/2B(u)+Cu+Ch)hk−1
{

C(u)B(u)+ ‖u(T, ·)‖Hk+1(Ω)

}

+ Chk+1
{
‖ut(T, ·)‖Hk+1(Ω) + ‖p(T, ·)‖Hk+1(Ω)

}
.

Proof. We begin by recalling here the discrete inf-sup given by

β ‖qh‖L2(Ω) 6 sup
vh∈Vh
vh 6=0

(qh,div(vh))Th

‖vh‖H(div;Ω)
∀ qh ∈ Qh, (2.22)

which, in particular forqh := Ep, it follows

‖Ep‖L2(Ω) 6
1
β

sup
vh∈Vh
vh 6=0

(Ep,div(vh))Th

‖vh‖H(div;Ω)
. (2.23)

Now, from the error equation (2.11) and proceeding as in the proof of Lemma 2.2, we have

(Ep,div(vh))Th = (∂tEu,vh)Th + (u ·∇hu−uh ·∇huh,vh)Th − ∑
F∈E i

h

〈(uh ·n)[[[Eu ]]],{{vh}}〉F

− (Π k
h(ut)−ut ,vh)Th + ∑

F∈E i
h

〈(uh ·n)[[[Π k
h(u)−u]]],{{vh}}〉F + (Pk

h(p)− p,div(vh))Th

6 ‖∂tEu‖L2(Ω)‖vh‖L2(Ω) + ‖u ·∇hu−uh ·∇huh‖L2(Ω)‖vh‖L2(Ω) + Ch−1‖Eu‖L2(Ω)‖vh‖L2(Ω)

+ C
{

h−1‖Π k
h(u)−u‖L2(Ω) + ‖∇h(Π k

h(u)−u)|L2(Ω)

}
‖vh‖L2(Ω)

+ ‖Πk
h(ut)−ut‖L2(Ω)‖vh‖L2(Ω) + ‖Pk

h(p)− p‖L2(Ω)‖div(vh)‖L2(Ω).

The above result together with (2.23) establishes

‖Ep‖L2(Ω) 6 C
{
‖∂tEu‖L2(Ω) + ‖u ·∇hu−uh ·∇huh‖L2(Ω) + h−1‖Eu‖L2(Ω)

+ h−1‖Πk
h(u)−u‖L2(Ω) + ‖∇h(Π k

h(u)−u)‖L2(Ω) + ‖Πk
h(ut)−ut‖L2(Ω) + ‖Pk

h(p)− p‖L2(Ω)

}
.
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Therefore, thanks to‖p− ph‖L2(Ω) 6 ‖Ep‖L2(Ω) + ‖Pk
h(p)− p‖L2(Ω), (2.21), Lemma 2.2 and the ap-

proximation properties (2.8) and (2.10), we can easily complete the proof. �

Notice the the error estimate for the pressure predictsO(hk−1) (for k > 2) in two and three dimen-
sions.

2.1.2 Using an upwind flux. Here, we introduce an alternative version of the conformingmethod
(2.5), analyzed in previous sections. In order to do that, webegin by redefining the numerical flux̂σ
(cf. (2.4)) in a new general form, given by:

σ̂(uh, ph) := ûw
h ⊗{{uh}} + {{ph}}I ,

whereûw
h is a new numerical trace foruh related with the convective term. In particular, takingûw

h :=
{{uh}} = 1

2

(
uint

h +uext
h

)
we arrive exactly to the scheme (2.5). That is, the method (2.5) correspond to a

central scheme.
On the other hand, for some problems with high gradients, it is more natural to use anupwind

scheme, in order to get better accuracy and order of convergence. InSection 4 we will present some
examples of this. In fact, we see numerically that using upwind flux gives optimal convergence rates for
both the velocity and pressure variables.

According to above, we consider the following upwind flux

ûw
h :=

{
uint

h if uh ·n > 0,

uext
h if uh ·n < 0.

This definition is given in the same way of that presented in Liu & Shu (2000) for the vorticity, and it is
not difficult to check that we can obtain again the method (2.5), with an extra term given by a weighted
full jumps ontoE i

h. That is, we seekuh ∈ Vh andph ∈ Qh, such that

(∂tuh,vh)Th + (uh ·∇huh,vh)Th − ∑
F∈E i

h

〈(uh ·n) [[[uh ]]],{{vh}}〉F

+ ∑
F∈E i

h

〈 |uh ·n| [[[uh ]]], [[[vh ]]]〉F − (ph,div(vh))Th = 0 ∀ vh ∈ Vh, (2.24)

(qh,div(uh))Th = 0 ∀ qh ∈ Qh,

uh(0,x) = uh,0(x) in Ω .

It is important to remark here, that the introduction of thisnew term does not pose any difficulty
in order to prove stability and convergence. In fact, both follow the same arguments, using that when
vh = uh this term is positive. In particular, the error estimates are basically the same and the stability, see
remark after the proof of Lemma 2.1, now is given by‖uh(t, ·)‖L2(Ω) 6 ‖uh,0‖L2(Ω) for eacht ∈ (0,T).

2.2 DG schemes

In this section, we introduce a discontinuous Galerkin method for the model problem (2.2). The velocity
space will consist of polynomials of degreek+1 for the fully discontinuous subspace

Vdg
h :=

{
v ∈ L2(Ω) : v|K ∈ Pk+1(K) ∀ K ∈ Th and v ·n = 0 on Γ

}
,
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whereas, the pressure space remains unchanged. That is,

Qh :=
{

q∈ L2
0(Ω) : q|K ∈ Pk(K) ∀ K ∈ Th

}
.

In the previous section we only defined the jumps and averageson the interior faces/edges. Here we
also define them on boundary faces. That is, forF ∈ E ∂

h , as is usual, we set

{{v}} := v, [[v ·n]] := v ·n and {{q}} := q.

Thus, in order to define the approximation scheme, we first introduce a postprocessed flux. For each
v ∈ H1(Th), we findv⋆ ∈ Pk+1(Th) such that

∫

F
(v⋆ ·n)q =

∫

F
({{v}} ·n)q ∀ q∈ Pk+1(F), ∀ F ∈ ∂K, (2.25)

∫

K
v⋆ ·p =

∫

K
v ·p ∀ p ∈ NDk−1(K), (2.26)

for eachK ∈ Th. Note that ifvh ∈ Vdg
h thenv⋆h ∈ BDM0

k+1(Ω) where,

BDMk+1(Ω) := {v ∈ H(div;Ω) : v|K ∈ Pk+1(K) ∀ K ∈ Th}
BDM0

k+1(Ω) := {v ∈ BDMk+1(Ω) : v ·n = 0 on Γ }.

For this postprocessed flux, we have the following result.

LEMMA 2.3 GivenK ∈Th andvh ∈ Pk+1(K), there is exists a constantsC⋆ > 0, independent ofK, such
that

‖v⋆h− vh‖L2(K) 6 C⋆ h1/2
K ∑

F∈∂K

‖[[vh ·n]]‖L2(F) .

Proof. We proceed as in (Cockburnet al., 2010b, Lemma 4.2). Indeed, if we setδ := v⋆h−vh ∈ Pk+1(K)
we have thatδ satisfying the equations

∫

F
(δ ·n)q =

∫

F
({{vh}}− vh) ·nq ∀ q∈ Pk+1(F), ∀ F ∈ ∂K,

∫

K
δ ·p = 0 ∀ p ∈ NDk−1(K).

The result together with a scaling argument (see Brezzi & Fortin (1991)), imply that

‖δ‖L2(K) 6 Ch1/2
K ‖({{vh}}− vh) ·n‖0,∂K ,

which, using the fact that({{vh}}− vh) ·n =±[[vh ·n]], we complete the proof. �

Now, similar as in (2.3), we consider the Galerkin scheme: Find (uh, ph) ∈ Vdg
h ×Qh, such that

(∂tuh,vh)Th − (uh⊗u⋆
h,∇hvh)Th − (ph,divh(vh))Th + 〈σ̂(uh, ph)n,vh〉∂Th

= 0,

−(∇hqh,uh)Th + 〈ûh ·n,qh〉∂Th
= 0, (2.27)

uh(0,x) = uh,0(x) in Ω ,
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for all (vh,qh) ∈ Vdg
h ×Qh, where

σ̂(uh, ph) := {{uh}}⊗{{u⋆h}} + {{ph}}I + α h−1
F [[uh ·n]]I, (2.28)

andα > 0 is stabilization parameter. In addition, we define the numerical flux ûh as

ûh := {{uh}} onEh.

Thus, from the second equation of (2.27) and the definition ofu⋆
h (cf. (2.25) and (2.26)), we note

that

0 = −(∇hqh,uh)Th + 〈ûh ·n,qh〉∂Th
= −(∇hqh,u

⋆
h)Th + 〈u⋆

h ·n,qh〉∂Th
= (qh,div(u⋆

h))Th

for all qh ∈ Qh. The above identity and the fact that div(u⋆
h)|K ∈ Pk(K) for eachK ∈ Th, imply thatu⋆

h is
divergence-free. This conclusion and the fact thatu⋆

h has a continuous normal component are the main
reasons that while we consideru⋆

h instead ofuh in the method (2.27).
Then, using integration by parts, the fact thatdiv(uh⊗u⋆

h) = u⋆
h ·∇uh (cf. (2.1)), and the definition

of the numerical fluxes, it is not difficult to check that the above DG scheme is as follows: Finduh ∈ Vdg
h

andph ∈ Qh such that

(∂tuh,vh)Th + (u⋆
h ·∇huh,vh)Th + α ∑

F∈E i
h

h−1
F 〈[[uh ·n]], [[vh ·n]]〉F

− ∑
F∈E i

h

〈(u⋆
h ·n)[[[uh ]]],{{vh}}〉F − (ph,divh(vh))Th + ∑

F∈E i
h

〈[[vh ·n]],{{ph}}〉F = 0, (2.29)

(qh,divh(uh))Th − ∑
F∈E i

h

〈[[uh ·n]],{{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω ,

for all (vh,qh) ∈ Vdg
h ×Qh. It is important to note here, thatuh is not necessarily divergence-free as

in the method of Section 2.1. In addition, unlike the methodsin the previous section, the DG method
(2.29) is locally conservative. Indeed, givenK ∈ Th we takevh ∈ Vdg

h such thatvh|K = ei is a 1 in the
i-th coordinate and 0’s elsewhere. Also,vh vanishes in the exterior ofK, it means in particular thatvh

not belong toVh. Then, replacingvh in the first equation of (2.27) we obtain
∫

K
∂t(uh)i +

∫

∂K
(σ̂(uh, ph)n)i = 0 ∀ i ∈ {1,2, . . . ,d} ,

and hence ∫

K
∂tuh +

∫

∂K
σ̂(uh, ph)n = 0 .

The foregoing equation establishes that the DG method (2.29) is in fact locally conservative.
On the other hand, note that the conditionuh ·n = 0 onΓ was imposed in the spaceVdg

h . We em-
phasize, however, that the reason of this is just for theoretical purposes and by no means for the explicit
computation of the solution of (2.29), which is solved as usual by imposing the boundary condition as a
penalization term in (2.29).

LEMMA 2.4 (Stability) Givenuh ∈ Vdg
h the solution of (2.29). Then, we have

d
dt

‖uh‖2
L2(Ω) 6 0.
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Proof. We takevh := uh andqh := ph in (2.29), and then we deduce

1
2

d
dt

‖uh‖2
L2(Ω) + (u⋆

h ·∇huh,uh)Th + α ∑
F∈E i

h

h−1
F ‖[[uh ·n]]‖2

L2(F) − ∑
F∈E i

h

〈(u⋆
h ·n)[[[uh ]]],{{uh}}〉F = 0.

Next, with that same arguments of (2.7), we have

(u⋆
h ·∇huh,uh)Th − ∑

F∈E i
h

〈(u⋆
h ·n)[[[uh ]]],{{uh}}〉F = 0,

which establish that

1
2

d
dt

‖uh‖2
L2(Ω) + α ∑

F∈E i
h

h−1
F ‖[[uh ·n]]‖2

L2(F) = 0.

Finally, from the fact thatα > 0, we complete the proof. �

2.2.1 Error estimates for DG method.Now we are ready to provide error estimates for the DG
scheme (2.29). We will need to define the BDM/Nédélec projection.

∫

F
((ΠBDM

h v− v) ·n)q = 0 ∀ q∈ Pk+1(F), ∀ F ∈ ∂K, (2.30)

∫

K
(ΠBDM

h (v)− v) ·p = 0 ∀ p ∈ NDk−1(K) . (2.31)

We have the following approximation results for 16 m6 k+2.

‖v−ΠBDM
h (v)‖L2(K)+hK‖∇(v−ΠBDM

h (v))‖L2(K) 6 Chm
K |v|m,K ∀ K ∈ Th. (2.32)

Moreover, we also have the following bounds

‖v−ΠBDM
h (v)‖L∞(K)+hK‖∇(v−ΠBDM

h (v))‖L∞(K) 6 ChK‖∇v‖L∞(K) ∀ K ∈ Th. (2.33)

Let now Eu = ΠBDM
h (u)−uh and Ep = Pk

h(p)− ph. Then, we follow (2.11) and consider the error
equations:

(∂tEu,vh)Th + (u ·∇hu−u⋆
h ·∇huh,vh)Th + α ∑

F∈E i
h

h−1
F 〈[[Eu ·n]], [[vh ·n]]〉F

− ∑
F∈E i

h

〈(u⋆
h ·n)[[[Eu ]]],{{vh}}〉F − (Ep,divh(vh))Th + ∑

F∈E i
h

〈[[vh ·n]],{{Ep}}〉F

= (∂t (ΠBDM
h (u)−u),vh)Th + α ∑

F∈E i
h

h−1
F 〈[[(ΠBDM

h (u)−u) ·n]], [[vh ·n]]〉F

− ∑
F∈E i

h

〈(u⋆
h ·n)[[[ΠBDM

h (u)−u]]],{{vh}}〉F − (Pk
h(p)− p,divh(vh))Th

+ ∑
F∈E i

h

〈[[vh ·n]],{{Pk
h(p)− p}}〉F , (2.34)

(qh,divh(E
u))Th − ∑

F∈E i
h

〈[[Eu ·n]],{{qh}}〉F = 0,

for all (vh,qh) ∈ Vdg
h ×Qh.
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THEOREM 2.3 Assume thatu ∈ W1,∞([0,T]×Ω)d. Also, given an integerk > 1, suppose thatu0 ∈
Hk+2(Ω), u ∈ L2(0,T;Hk+2(Ω)), ut ∈ L2(0,T;Hk+2(Ω)), and p ∈ L2(0,T;Hk+1(Ω)). Then, there
existsC> 0, independent ofh, such that

‖(u−uh)(T, ·)‖L2(Ω) 6 C(u)hk+1B(u)

where
C(u) := (1+C(1+Cu))exp(C(1+Cu)T),

with Cu := ‖u‖W1,∞([0,T]×Ω). Also,

B(u) := h‖u0‖Hk+2(Ω)+ ‖u‖L2(0,T;Hk+2(Ω))+h‖ut‖L2(0,T;Hk+2(Ω))+ ‖p‖L2(0,T;Hk+1(Ω)) .

Proof. We begin by choosingvh := Eu andqh := Ep in the error equations (2.34). Then, we have that

1
2

d
dt

‖Eu‖2
L2(Ω)+α ∑

F∈E i
h

h−1
F ‖[[Eu ·n]]‖2

L2(F) = −(u ·∇hu−u⋆
h ·∇huh,E

u)Th︸ ︷︷ ︸
I1

+ ∑
F∈E i

h

〈(u⋆
h ·n)[[[Eu ]]],{{Eu}}〉F

︸ ︷︷ ︸
I2

+ (ΠBDM
h (ut)−ut ,Eu)Th

+ α ∑
F∈E i

h

h−1
F 〈[[(Π BDM

h (u)−u) ·n]], [[Eu ·n]]〉F

︸ ︷︷ ︸
I3

− ∑
F∈E i

h

〈(u⋆
h ·n)[[[ΠBDM

h (u)−u]]],{{Eu}}〉F

︸ ︷︷ ︸
I4

− (Pk
h(p)− p,divh(E

u))Th︸ ︷︷ ︸
I5

+ ∑
F∈E i

h

〈[[Eu ·n]],{{Pk
h(p)− p}}〉F

︸ ︷︷ ︸
I6

. (2.35)

Next, we want to find bounds forIi , i = 1, . . . ,6. First since divh(Eu) is a piecewise polynomial of
degreek we haveI5 = 0. Also, note that by (2.30)I3 = 0. Before we bound the rest of the terms. We
note that by Lemma 2.3 and[[ΠBDM

h (u) ·n]] = 0, we know

‖uh−u⋆
h‖2

L2(Ω) 6 C ∑
F∈Eh

hF‖[[uh ·n]]‖2
L2(F) = C ∑

F∈Eh

hF‖[[Eu ·n]]‖2
L2(F) 6 C‖Eu‖2

L2(Ω). (2.36)

Now we boundI1, using that

I1 = −(u ·∇h
{

u−ΠBDM
h (u)

}
,Eu)Th − ((u−u⋆

h) ·∇hΠBDM
h (u),Eu)Th − (u⋆

h ·∇hEu,Eu)Th,

= −(u ·∇h
{

u−ΠBDM
h (u)

}
,Eu)Th − ((u−u⋆

h) ·∇hΠBDM
h (u),Eu)Th − I2,

where in last term, we apply the same argument of (2.7) as in the proof of Theorem 2.1. Furthermore,
using that‖u‖L∞(Ω) 6Cu and‖∇hΠBDM

h (u)‖L∞(Ω) 6CCu (see (2.33)), we deduce that

I1 + I2 6 Cu‖∇h{ΠBDM
h (u)−u}‖L2(Ω)‖Eu‖L2(Ω) + CCu‖u−u⋆

h‖L2(Ω)‖Eu‖L2(Ω)

6 CCu

{
‖∇h{ΠBDM

h (u)−u}‖L2(Ω)+ ‖ΠBDM
h (u)−u‖L2(Ω)+ ‖Eu‖L2(Ω)

}
‖Eu‖L2(Ω)

+ CCu‖uh−u⋆
h‖L2(Ω)‖Eu‖L2(Ω)

6 CCu‖Eu‖2
L2(Ω) + CCu‖ΠBDM

h (u)−u‖2
L2(Ω) + CCu‖∇h{ΠBDM

h (u)−u}‖2
L2(Ω), (2.37)
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where we also used (2.36).
In the case ofI4, from‖ΠBDM

h (u)‖L∞(Ω) 6Cu, note that

I4 = ∑
F∈E i

h

〈({{u⋆
h}} ·n)[[[ΠBDM

h (u)−u]]],{{Eu}}〉F

= ∑
F∈E i

h

〈({{u⋆
h−uh}} ·n)[[[ΠBDM

h (u)−u]]],{{Eu}}〉F − ∑
F∈E i

h

〈({{Eu}} ·n)[[[ΠBDM
h (u)−u]]],{{Eu}}〉F

+ ∑
F∈E i

h

〈({{ΠBDM
h (u)}} ·n)[[[ΠBDM

h (u)−u]]],{{Eu}}〉F

6 ‖ΠBDM
h (u)−u‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖{{u⋆

h−uh}}‖2
L2(F)




1/2
 ∑

F∈E i
h

hF‖{{Eu}}‖2
L2(F)




1/2

+ ‖ΠBDM
h (u)−u‖L∞(Ω) ∑

F∈E i
h

‖{{Eu}}‖2
L2(F)

+ Cu


 ∑

F∈E i
h

h−1
F ‖[[[ΠBDM

h (u)−u]]]‖2
L2(F)




1/2
 ∑

F∈E i
h

hF‖{{Eu}}‖2
L2(F)




1/2

,

and from (2.15), (2.16), and (2.36) with an inverse inequality, we deduce that

I4 6 ‖uh−u⋆
h‖L2(Ω)

(
Ch−1‖ΠBDM

h (u)−u‖L∞(Ω)

)
‖Eu‖L2(Ω)

+
(
Ch−1‖ΠBDM

h (u)−u‖L∞(Ω)

)
‖Eu‖2

L2(Ω) + CCu

{
h−2‖ΠBDM

h (u)−u‖2
L2(Ω)

+ ‖∇h{ΠBDM
h (u)−u}‖2

L2(Ω)

}
+ CCu‖Eu‖2

L2(Ω)

6 C
(
1+h−1‖ΠBDM

h (u)−u‖L∞(Ω)

)
‖Eu‖2

L2(Ω)

+ Ch−2‖ΠBDM
h (u)−u‖2

L2(Ω) + C‖∇h{ΠBDM
h (u)−u}‖2

L2(Ω).

In addition, applying (2.33), we conclude that

I4 6 CCu‖Eu‖2
L2(Ω) + CCu

{
h−2‖ΠBDM

h (u)−u‖2
L2(Ω) + ‖∇h{ΠBDM

h (u)−u}‖2
L2(Ω)

}
. (2.38)

Now, in similar way to (2.15), givenq∈ H1(Th) we have that

∑
F∈E i

h

hF‖{{q}}‖2
L2(F) 6 Ĉ

{
‖q‖2

L2(Ω) + h2‖∇hq‖2
L2(Ω)

}
,

which allows us to deduce

I6 = ∑
F∈Eh

〈h−1/2
F [[Eu ·n]],h1/2

F {{Pk
h(p)− p}}〉F 6

α
2 ∑

F∈Eh

h−1
F ‖[[Eu ·n]]‖2

L2(F)

+ C ∑
F∈E i

h

hF‖{{Pk
h(p)− p}}‖2

L2(F)

6
α
2 ∑

F∈Eh

h−1
F ‖[[Eu ·n]]‖2

L2(F) + C‖Pk
h(p)− p‖2

L2(Ω) + Ch2‖∇h{Pk
h(p)− p}‖2

L2(Ω). (2.39)
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On the other hand, replacing (2.37)−(2.39) in (2.35), we obtain that

1
2

d
dt

‖Eu‖2
L2(Ω) +

α
2 ∑

F∈E i
h

h−1
F ‖[[Eu ·n]]‖2

L2(F) 6 CCu‖Eu‖2
L2(Ω) +

1
2
‖ΠBDM

h (ut)−ut‖2
L2(Ω)

+ CCu

{
h−2‖ΠBDM

h (u)−u‖2
L2(Ω) + ‖∇h{ΠBDM

h u−u}‖2
L2(Ω)

}
+ C‖Pk

h(p)− p‖2
L2(Ω)

+ Ch2‖∇h{Pk
h(p)− p}‖2

L2(Ω).

Hence, using (2.32) we have

d
dt

‖Eu‖2
L2(Ω) 6 C(1+Cu)‖Eu‖2

L2(Ω)

+ C(1+Cu)h2(k+1)
{

h2‖ut‖2
Hk+2(Ω)

+ ‖u‖2
Hk+2(Ω)

+ ‖p‖Hk+1(Ω)

}
.

Finally, applying Gronwall’s inequality gives the result. �

THEOREM 2.4 Assuming the hypothesis of the previous theorem we have the existence of aC > 0,
independent ofh, such that

‖(p− ph)(T, ·)‖L2(Ω) 6 (C(u)hk+1−d/2B(u)+Cu+C)hk
{

C(u)B(u)+ ‖u(T, ·)‖Hk+2(Ω)

}

+ Chk+1
{

h‖ut(T, ·)‖Hk+2(Ω)+ ‖p(T, ·)‖Hk+1(Ω)

}
.

Proof. Similar to the proof of Theorem 2.2. �

2.2.2 Upwind flux for DG method. Similarly as Section 2.1.2, we now introduce a DG method using
an upwind flux. Indeed, as before, we redefine the numerical flux σ̂ (see (2.28)) in the form

σ̂(uh, ph) := ûw
h ⊗{{u⋆

h}} + {{ph}}I + α h−1
F [[uh ·n]]I,

where we takêuw
h as

ûw
h :=

{
uint

h if u⋆
h ·n > 0,

uext
h if u⋆

h ·n < 0.

Once again, with this definition we can obtain again the method (2.29), with an extra consistent term
given by

∑
F∈E i

h

〈 |u⋆
h ·n| [[[uh ]]], [[[vh ]]]〉F ,

which, allow us to prove stability and convergence in the same way of before, using the fact that when
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vh = uh the above term is positive. Summarizing, we finduh ∈ Vdg
h andph ∈ Qh such that

(∂tuh,vh)Th + (u⋆
h ·∇huh,vh)Th + α ∑

F∈E i
h

h−1
F 〈[[uh ·n]], [[vh ·n]]〉F

− ∑
F∈E i

h

〈(u⋆
h ·n) [[[uh ]]],{{vh}}〉F + ∑

F∈E i
h

〈 |u⋆
h ·n| [[[uh ]]], [[[vh ]]]〉F

− (ph,divh(vh))Th + ∑
F∈E i

h

〈[[vh ·n]],{{ph}}〉F = 0, (2.40)

(qh,divh(uh))Th − ∑
F∈E i

h

〈[[uh ·n]],{{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω ,

for all (vh,qh) ∈ Vdg
h ×Qh.

3. Fully-discrete methods

In this section we define fully-discrete versions of both approaches introduced in Section 2. In order to
do that, for the time discretization we consider the backward Euler method, that is, we write

ut(tn+1, ·) =
1

∆ t

{
u(tn+1, ·) − u(tn, ·)

}
+ E0(tn+1), (3.1)

where∆ t > 0 is the time step,tn := n∆ t, 06 n6 N, andE0(tn+1) is the truncation error. We know that

‖E0(tn+1)‖L2(Ω) 6 C
∫ tn+1

tn
‖utt (s, ·)‖L2(Ω)ds. (3.2)

For simplicity of the following analysis we denoteun := u(tn, ·) for the exact value andun
h :=

uh(tn, ·) for the approximation. Also, givenΠ k
h the corresponding projection used before in each case,

respectively, we defineen
u := Π k

h(u
n)− un

h as the discrete error. Similar convention is used for the
pressure variable.

On the other hand, using (3.1) we have that the exact solutionof (1.1) satisfies that

(un+1,vh)Th + ∆ t(un+1 ·∇un+1,vh)Th − ∆ t(pn+1,div(vh))Th = (un,vh)Th − ∆ t(E0(tn+1),vh)Th,

(qh,div(un+1))Th = 0,

or equivalently,

(un+1,vh)Th + ∆ t(un ·∇un+1,vh)Th − ∆ t(pn+1,div(vh))Th = (un,vh)Th

+ ∆ t((un−un+1) ·∇un+1,vh)Th − ∆ t(E0(tn+1),vh)Th, (3.3)

(qh,div(un+1))Th = 0,

for all (vh,qh) ∈ Vdg
h ×Qh. We recall here thatVh ⊂ Vdg

h .
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3.1 H(div) conforming methods

Next, using (3.1) in the semi-discrete method (2.5), we introduce the fully-discrete approximation as:
Find (un+1

h , pn+1
h ) ∈ Vh×Qh such that

(un+1
h ,vh)Th + ∆ t(un

h ·∇hun+1
h ,vh)Th − ∆ t ∑

F∈E i
h

〈(un
h ·n)[[[un+1

h ]]],{{vh}}〉F

− ∆ t(pn+1
h ,div(vh))Th = (un

h,vh)Th, (3.4)

(qh,div(un+1
h ))Th = 0,

for all (vh,qh) ∈ Vh×Qh. Note that we eliminated the nonlinearity of the problem using the previous
approximation. Also, it follows from the proof of Lemma 2.1 that when we takevh := un+1

h in (3.4), we
have

‖un+1
h ‖2

L2(Ω) = (un
h,u

n+1
h )Th,

which establish that‖un+1
h ‖L2(Ω) 6 ‖un

h‖L2(Ω), that is, the method (3.4) is stable.
Our next goal is establish an error estimate for the velocity.

THEOREM 3.1 Assume thatu ∈W1,∞([0,T]×Ω)d is uniformly bounded. Also, given an integerk> 1,
suppose thatu0 ∈ Hk+1(Ω), ut ∈ L2(0,T;Hk+1(Ω)), andutt ∈ L2(0,T;L2(Ω)). Then, there exists
C> 0, independent ofh, such that

‖un−un
h‖L2(Ω) 6 C exp(CCu T)(hk+∆ t)A(u), for all 0 6 n 6 N ,

with Cu := ‖u‖W1,∞([0,T]×Ω). Also, where

A(u) := (h
√

T +CuT3/2)‖ut‖L2(0,T;Hk+1(Ω)) + Cu

√
T‖ut‖L2(0,T;L2(Ω)) +

√
T‖utt‖L2(0,T;L2(Ω))

+ (CuT +h)‖u0‖Hk+1(Ω) .

Proof. We begin by subtracting equation (3.3) from equation (3.4) together with the fact that[[[un+1]]] =
0 onE i

h, in order to obtain the error equation

(en+1
u ,vh)Th + ∆ t(un ·∇hun+1−un

h ·∇hun+1
h ,vh)Th − ∆ t ∑

F∈E i
h

〈(un
h ·n)[[[en+1

u ]]],{{vh}}〉F

− ∆ t(pn+1− pn+1
h ,div(vh))Th = (un−un

h,vh)Th + (Π k
h(u

n+1)−un+1,vh)Th

+ ∆ t((un−un+1) ·∇un+1,vh)Th −∆ t ∑
F∈E i

h

〈(un
h ·n)[[[Π k

h(u
n+1)−un+1 ]]],{{vh}}〉F

− ∆ t(E0(tn+1),vh)Th. (3.5)
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Now, we takevh := en+1
u and using that div(en+1

u ) = 0 in Ω , it follows that

‖en+1
u ‖2

L2(Ω) = −∆ t(un ·∇hun+1−un
h ·∇hun+1

h ,en+1
u )Th︸ ︷︷ ︸

I1

+ ∆ t ∑
F∈E i

h

〈(un
h ·n)[[[en+1

u ]]],{{en+1
u }}〉F

︸ ︷︷ ︸
I2

+ (un−un
h,e

n+1
u )Th + (Π k

h(u
n+1)−un+1,en+1

u )Th + ∆ t((un−un+1) ·∇un+1,en+1
u )Th

− ∆ t ∑
F∈E i

h

〈(un
h ·n)[[[Π k

h(u
n+1)−un+1]]],{{en+1

u }}〉F

︸ ︷︷ ︸
I3

− ∆ t(E0(tn+1),en+1
u )Th, (3.6)

which, in similar way to (2.13), we note that

I1 + I2 = −∆ t(un ·∇h{un+1−Πk
h(u

n+1)},en+1
u )Th − ∆ t((un−un

h) ·∇hΠ k
h(u

n+1),en+1
u )Th

6 ∆ t
{

Cu‖∇h{Π k
h(u

n+1)−un+1}‖L2(Ω)+CCu‖Π k
h(u

n)−un‖L2(Ω)

+ CCu‖en
u‖L2(Ω)

}
‖en+1

u ‖L2(Ω), (3.7)

where, we used that‖un‖L∞(Ω) 6 Cu and‖∇hΠ k
h(u

n+1)‖L∞(Ω) 6 CCu. Also, follows (2.14) and using
(2.15), (2.16) and (2.9), we have

I3 6 C∆ t





h−1‖Πk
h(u

n+1)−un+1‖L∞(Ω)


 ∑

F∈E i
h

hF‖{{en
u}}‖2

L2(F)




1
2

+ ‖Π k
h(u

n)‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖[[[Π k

h(u
n+1)−un+1 ]]]‖2

L2(F)




1
2






 ∑

F∈E i
h

hF‖{{en+1
u }}‖2

L2(F)




1
2

6 CCu∆ t
{
‖en

u‖L2(Ω)+h−1‖Πk
h(u

n+1)−un+1‖L2(Ω)

+ ‖∇h{Π k
h(u

n+1)−un+1}‖L2(Ω)

}
‖en+1

u ‖L2(Ω). (3.8)

On the other hand, we return to (3.6), and observe

‖en+1
u ‖2

L2(Ω) 6

{
‖en

u‖L2(Ω) + ‖Πk
h(u

n+1−un)− (un+1−un)‖L2(Ω) + Cu∆ t‖un+1−un‖L2(Ω)

+ ∆ t‖E0(tn+1)‖L2(Ω)

}
‖en+1

u ‖L2(Ω) + (I1+ I2) + I3,

which, replacing (3.7) and (3.8), we deduce that

‖en+1
u ‖L2(Ω) 6 (1+CCu∆ t)‖en

u‖L2(Ω) + ‖Πk
h(u

n+1−un)− (un+1−un)‖L2(Ω)

+ CCu ∆ t
{
‖Π k

h(u
n)−un‖L2(Ω) + h−1‖Πk

h(u
n+1)−un+1‖L2(Ω).

+ ‖∇h{Πk
h(u

n+1)−un+1}‖L2(Ω)

}
+ ∆ t

{
Cu‖un+1−un‖L2(Ω) + ‖E0(tn+1)‖L2(Ω)

}
.
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Next, using that

(un+1−un)(x) =
∫ tn+1

tn
ut(s,x)ds, (3.9)

together with (2.8), it follows that

‖Πk
h(u

n+1−un)− (un+1−un)‖L2(Ω) 6 Chk+1
∫ tn+1

tn
‖ut(s, ·)‖Hk+1(Ω) ds.

Similarly, we can show

∆ tCu‖un+1−un‖L2(Ω) 6 ∆ tCCu

∫ tn+1

tn
‖ut(s, ·)‖L2(Ω) ds

and, from (3.2),

∆ t ‖E0(tn+1)‖L2(Ω) 6 C∆ t
∫ tn+1

tn
‖utt (s, ·)‖L2(Ω) ds.

In addition, using that

un+1(x) = u0(x) +

∫ tn+1

0
ut(s,x)ds, (3.10)

and (2.8), we have

h−1‖Πk
h(u

n+1)−un+1‖L2(Ω) 6 Chk
{
‖u0‖Hk+1(Ω) +

∫ tn+1

0
‖ut(s, ·)‖Hk+1(Ω)ds

}
.

Analogously, we can show

CCu ∆ t
{
‖Π k

h(u
n)−un‖L2(Ω) + h−1‖Πk

h(u
n+1)−un+1‖L2(Ω)+ ‖∇h{Π k

h(u
n+1)−un+1}‖L2(Ω)

}

6 CCu ∆ t hk
{
‖u0‖Hk+1(Ω) +

∫ tn+1

0
‖ut(s, ·)‖Hk+1(Ω)ds

}
.

Therefore, gathering together all the above equations, we deduce that

‖en+1
u ‖L2(Ω) 6 (1+CCu∆ t)‖en

u‖L2(Ω) + C(∆ t +hk)B(u,n) , (3.11)

where

B(u,n) := h
∫ tn+1

tn
‖ut(s, ·)‖Hk+1(Ω) ds+ Cu

∫ tn+1

tn
‖ut(s, ·)‖L2(Ω) ds+

∫ tn+1

tn
‖utt(s, ·)‖L2(Ω)ds

+ ∆ tCu

{
‖u0‖Hk+1(Ω)+

∫ tn+1

0
‖ut(s, ·)‖Hk+1(Ω) ds

}
.

Now, from the recurrence relation (3.11), we obtain that

‖en
u‖L2(Ω) 6 (1+CCu∆ t)n‖e0

u‖L2(Ω) + C

{
n−1

∑
i=0

(1+Cu∆ t)iB(u,n−1− i)

}
(hk+∆ t)

6 C(1+CCu∆ t)n (hk+∆ t)

{
h‖u0‖Hk+1(Ω) +

n−1

∑
i=0

B(u,n−1− i)

}

= C

(
1+C

CuT
n

)n

(hk+∆ t)

{
h‖u0‖Hk+1(Ω) +

n−1

∑
i=0

B(u,n−1− i)

}
.
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Finally, noting that

n−1

∑
i=0

B(u,n−1− i) 6 h
∫ tn

0
‖ut(s, ·)‖Hk+1(Ω) ds+ Cu

∫ tn

0
‖ut(s, ·)‖L2(Ω)ds

+

∫ tn

0
‖utt (s, ·)‖L2(Ω) ds+ Cutn

{
‖u0‖Hk+1(Ω) +

∫ tn

0
‖ut(s, ·)‖Hk+1(Ω)ds

}
,

the result now follows by using Cauchy-Schwarz inequality. �

Now, we establish the a-priori error estimate for the pressure, and for that we first consider the next
result.

LEMMA 3.1 Assuming the hypothesis of the previous theorem we have the existence of aC> 0, inde-
pendent ofh, such that for all 06 n6 N

∥∥∥∥∥
un+1−un+1

h

∆ t
− un−un

h

∆ t

∥∥∥∥∥
L2(Ω)

6 CCh,∆ t(u)exp(CCu T)

(
hk−1+

∆ t
h

)
A(u)

+ C
{

1+Ch,∆ t(u)
}
(hk+∆ t)Dn(u) ,

where
Ch,∆ t(u) := exp(CCu T)h−d/2 (hk+∆ t)A(u) + Cu

and

Dn(u) := h‖ut‖L∞(tn,tn+1;Hk+1(Ω)) + ‖ut‖L∞(tn,tn+1;L2(Ω)) + ‖utt‖L∞(tn,tn+1;L2(Ω))

+ ‖u‖L∞(tn,tn+1;Hk+1(Ω)) .

Proof. From the error equation (3.5) we have

(δh,vh)Th = −(un ·∇hun+1−un
h ·∇hun+1

h ,vh)Th + ∑
F∈E i

h

〈(un
h ·n)[[[un+1−un+1

h ]]],{{vh}}〉F

+ (pn+1− pn+1
h ,div(vh))Th +

1
∆ t

(Π k
h(u

n+1−un)− (un+1−un),vh)Th

+ ((un−un+1) ·∇un+1,vh)Th − (E0(tn+1),vh)Th ∀ vh ∈ Vh ,

whereδ h := 1
∆ t (e

n+1
u − en

u). Then, takingvh := δ h and using that div(δ h) = 0, we deduce that

‖δh‖2
L2(Ω) 6 ‖un ·∇hun+1−un

h ·∇hun+1
h ‖L2(Ω)‖δ h‖L2(Ω)

+ C‖un
h‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖[[[un+1−un+1

h ]]]‖2
L2(F)




1/2
 ∑

F∈E i
h

hF‖{{δh}}‖2
L2(F)




1/2

+

∥∥∥∥Π k
h

(
un+1−un

∆ t

)
−
(

un+1−un

∆ t

)∥∥∥∥
L2(Ω)

‖δ h‖L2(Ω)

+ Cu‖un+1−un‖L2(Ω)‖δ h‖L2(Ω) + ‖E0(tn+1)‖L2(Ω)‖δ h‖L2(Ω) .
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Now, we follow the proof of Lemma 2.2, to obtain that

‖un ·∇hun+1−un
h ·∇hun+1

h ‖L2(Ω) 6 Cu‖un−un
h‖L2(Ω)

+ C(h−d/2‖en
u‖L2(Ω)+Cu)

{
h−1‖en+1

u ‖L2(Ω) + ‖∇h{Π k
h(u

n+1)−un+1}‖L2(Ω)

}
, (3.12)

and from (2.15) and (2.20) we have

‖un
h‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖[[[un+1−un+1

h ]]]‖2
L2(F)




1
2

6 C(h−d/2‖en
u‖L2(Ω)+Cu)

{
h−1‖un+1−un+1

h ‖L2(Ω)

+ h−1‖Π k
h(u

n+1)−un+1‖L2(Ω)+ ‖∇h{Π k
h(u

n+1)−un+1}‖L2(Ω)

}
. (3.13)

Next, applying (3.12) and (3.13), together with (2.16), it follows that

‖δh‖L2(Ω) 6 Cu‖un−un
h‖L2(Ω) + Ch−1(h−d/2‖en

u‖L2(Ω)+Cu)‖un+1−un+1
h ‖L2(Ω)

+ C(h−d/2‖en
u‖L2(Ω)+Cu)

{
h−1‖Πk

h(u
n+1)−un+1‖L2(Ω)

+ ‖∇h{Πk
h(u

n+1)−un+1}‖L2(Ω)

}
+

∥∥∥∥Π k
h

(
un+1−un

∆ t

)
−
(

un+1−un

∆ t

)∥∥∥∥
L2(Ω)

+ Cu‖un+1−un‖L2(Ω) + ‖E0(tn+1)‖L2(Ω) .

On the other hand, using the fact that

∥∥∥∥∥
un+1−un+1

h

∆ t
− un−un

h

∆ t

∥∥∥∥∥
L2(Ω)

6

∥∥∥∥Π k
h

(
un+1−un

∆ t

)
−
(

un+1−un

∆ t

)∥∥∥∥
L2(Ω)

+ ‖δ h‖L2(Ω) ,

we have
∥∥∥∥∥

un+1−un+1
h

∆ t
− un−un

h

∆ t

∥∥∥∥∥
L2(Ω)

6 Cu‖un−un
h‖L2(Ω)

+ Ch−1(h−d/2‖en
u‖L2(Ω)+Cu)‖un+1−un+1

h ‖L2(Ω)

+ C(h−d/2‖en
u‖L2(Ω)+Cu)

{
h−1‖Π k

h(u
n+1)−un+1‖L2(Ω)

+ ‖∇h{Π k
h(u

n+1)−un+1}‖L2(Ω)

}
+ 2

∥∥∥∥Π k
h

(
un+1−un

∆ t

)
−
(

un+1−un

∆ t

)∥∥∥∥
L2(Ω)

+ Cu‖un+1−un‖L2(Ω) + ‖E0(tn+1)‖L2(Ω) . (3.14)

Next, we proceed as in the last part of the proof of Theorem 3.1. Indeed, from (2.8), we obtain that

h−1‖Π k
h(u

n+1)−un+1‖L2(Ω)+ ‖∇h{Πk
h(u

n+1)−un+1}‖L2(Ω)

6 Chk‖un+1‖Hk+1(Ω) 6 Chk‖u‖L∞(tn,tn+1;Hk+1(Ω))
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Similarly, from (3.9) and (2.8), we have

∥∥∥∥Π k
h

(
un+1−un

∆ t

)
−
(

un+1−un

∆ t

)∥∥∥∥
L2(Ω)

6 Chk+1
{

1
∆ t

∫ tn+1

tn
‖ut(s, ·)‖Hk+1(Ω)ds

}

6 Chk+1‖ut‖L∞(tn,tn+1;Hk+1(Ω)) .

In addition, using again (3.9) and (3.2), we deduce, respectively, that

‖un+1−un‖L2(Ω) 6

∫ tn+1

tn
‖ut(s, ·)‖L2(Ω)ds 6 ∆ t ‖ut‖L∞(tn,tn+1;L2(Ω)) ,

and

‖E0(tn+1)‖L2(Ω) 6 C
∫ tn+1

tn
‖utt(s, ·)‖L2(Ω)ds 6 C∆ t ‖utt‖L∞(tn,tn+1;L2(Ω)) .

The result now follows after applying the previous theorem and the last four estimates into (3.14).�

THEOREM3.2 Assume the hypothesis of Theorem 3.1. In addition, suppose thatp∈L2(0,T;Hk+1(Ω)).
Then, there existsC> 0, independent ofh, such that for all 06 n6 N the following estimate holds

‖pn− pn
h‖L2(Ω) 6 CCh,∆ t(u)exp(CCu T)

(
hk−1+

∆ t
h

)
A(u)

+ C
{

1+Ch,∆ t(u)
}
(hk+∆ t)Dn(u) ,

+ Chk+1‖p(tn, ·)‖Hk+1(Ω).

Proof. We proceed as in the proof of Theorem 2.2. Indeed, from error equation (3.5), we deduce that

(en+1
p ,div(vh))Th = ∆ t−1((un+1−un+1

h )− (un−un
h),vh)Th + (un ·∇hun+1−un

h ·∇hun+1
h ,vh)Th

− ((un−un+1) ·∇un+1,vh)Th − ∑
F∈E i

h

〈(un
h ·n)[[[un+1−un+1

h ]]],{{vh}}〉F

+ (Pk
h(p

n+1)− pn+1,div(vh))Th + (E0(tn+1),vh)Th

6

∥∥∥∥∥
un+1−un+1

h

∆ t
− un−un

h

∆ t

∥∥∥∥∥
L2(Ω)

‖vh‖L2(Ω) + ‖un ·∇hun+1−un
h ·∇hun+1

h ‖L2(Ω)‖vh‖L2(Ω)

+ C‖un
h‖L∞(Ω)


 ∑

F∈E i
h

h−1
F ‖[[[un+1−un+1

h ]]]‖2
L2(F)




1/2
 ∑

F∈E i
h

hF‖{{vh}}‖2
L2(F)




1/2

+ Cu‖un+1−un‖L2(Ω)‖vh‖L2(Ω) + ‖Pk
h(p

n+1)− pn+1‖L2(Ω)‖div(vh)‖L2(Ω)

+ ‖E0(tn+1)‖L2(Ω)‖vh‖L2(Ω) .
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Thus, using (3.12), (3.13) and (2.16), we obtain that

(en+1
p ,div(vh))Th 6 C

{∥∥∥∥∥
un+1−un+1

h

∆ t
− un−un

h

∆ t

∥∥∥∥∥
L2(Ω)

+ Cu‖un−un
h‖L2(Ω)

+ Ch−1(h−d/2‖en
u‖L2(Ω)+Cu)‖un+1−un+1

h ‖L2(Ω)

+ C(h−d/2‖en
u‖L2(Ω)+Cu)

{
h−1‖Πk

h(u
n+1)−un+1‖L2(Ω)

+ ‖∇h{Π k
h(u

n+1)−un+1}‖L2(Ω)

}

+ Cu‖∇h{Π k
h(u

n+1)−un+1}‖L2(Ω) + Cu‖un+1−un‖L2(Ω)

+ ‖Pk
h(p

n+1)− pn+1‖L2(Ω) + ‖E0(tn+1)‖L2(Ω)

}
‖vh‖H(div;Ω) ,

which, together with the inf-sup condition (2.22), Lemma 3.1, Theorem 3.1, (2.10), and the last esti-
mates obtained in the proof of Lemma 3.1, we can complete the proof. �

We end this section by remarking that we can extend the previous analysis for the upwind version
of the method (cf. (2.24)) given by: Find(un+1

h , pn+1
h ) ∈ Vh×Qh such that

(un+1
h ,vh)Th + ∆ t(un

h ·∇hun+1
h ,vh)Th − ∆ t ∑

F∈E i
h

〈(un
h ·n) [[[un+1

h ]]],{{vh}}〉F

+ ∆ t ∑
F∈E i

h

〈 |un
h ·n| [[[un+1

h ]]], [[[vh ]]]〉F − ∆ t(pn+1
h ,div(vh))Th = (un

h,vh)Th, (3.15)

(qh,div(un+1
h ))Th = 0,

for all (vh,qh) ∈ Vh×Qh.

3.2 DG schemes

Here we only mention that when we combine the techniques usedin sections 2.2 and 3.1 we can also
obtain the same error estimates for DG schemes (2.29) and (2.40). The fully-discrete versions of both
methods, using (3.1), are given by: Finduh ∈ Vdg

h andph ∈ Qh such that

(un+1
h ,vh)Th + ∆ t((u⋆

h)
n ·∇hun+1

h ,vh)Th + α∆ t ∑
F∈E i

h

h−1
F 〈[[un+1

h ·n]], [[vh ·n]]〉F

−∆ t ∑
F∈E i

h

〈((u⋆
h)

n ·n) [[[un+1
h ]]],{{vh}}〉F − ∆ t(pn+1

h ,divh(vh))Th

+ ∆ t ∑
F∈E i

h

〈[[vh ·n]],{{pn+1
h }}〉F = (un

h,vh)Th,

(qh,divh(u
n+1
h ))Th − ∑

F∈E i
h

〈[[un+1
h ·n]],{{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω , (3.16)
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for all (vh,qh) ∈ Vdg
h ×Qh for the central flux, and: Finduh ∈ Vdg

h andph ∈ Qh such that

(un+1
h ,vh)Th + ∆ t((u⋆

h)
n ·∇hun+1

h ,vh)Th + α∆ t ∑
F∈E i

h

h−1
F 〈[[un+1

h ·n]], [[vh ·n]]〉F

− ∆ t ∑
F∈E i

h

〈((u⋆
h)

n ·n) [[[un+1
h ]]],{{vh}}〉F + ∆ t ∑

F∈E i
h

〈 |(u⋆
h)

n ·n| [[[un+1
h ]]], [[[vh ]]]〉F

− ∆ t(pn+1
h ,divh(vh))Th + ∆ t ∑

F∈E i
h

〈[[vh ·n]],{{pn+1
h }}〉F = (un

h,vh)Th,

(qh,divh(u
n+1
h ))Th − ∑

F∈E i
h

〈[[un+1
h ·n]],{{qh}}〉F = 0,

uh(0,x) = uh,0(x) in Ω , (3.17)

for all (vh,qh) ∈ Vdg
h ×Qh for the upwind flux.

THEOREM 3.3 Assume thatu ∈W1,∞([0,T]×Ω)d is uniformly bounded. Also, given an integerk> 1,
suppose thatu0 ∈Hk+2(Ω), ut ∈L2(0,T;Hk+2(Ω)), utt ∈L2(0,T;L2(Ω)), andp∈ L∞(0,T;Hk+1(Ω)).
Then, there existsC> 0, independent ofh, such that

‖un−un
h‖L2(Ω) 6 C exp(CCu T)(hk+1+∆ t)A(u, p), for all 0 6 n 6 N ,

whereCu := ‖u‖W1,∞([0,T]×Ω) and

A(u, p) := (h
√

T +CuT3/2)‖ut‖L2(0,T;Hk+2(Ω)) + Cu

√
T‖ut‖L2(0,T;L2(Ω)) +

√
T‖utt‖L2(0,T;L2(Ω))

+ (CuT +h)‖u0‖Hk+2(Ω) +
√

T‖p‖L∞(0,T;Hk+1(Ω)) .

Proof. It follows straightforwardly from the proof of Theorems 2.3and 3.1. �

THEOREM 3.4 Assume the hypothesis of Theorem 3.3. In addition, assume that the parameterα lies in
(0,α0∆ t), for someα0 > 0 independent ofh. Then, there existsC > 0, independent ofh, such that for
all 06 n6 N the following estimate holds

‖pn− pn
h‖L2(Ω) 6 CCh,∆ t(u, p)exp(CCu T)

(
hk+

∆ t
h

)
A(u, p)

+ C
{

1+Ch,∆ t(u, p)
}
(hk+∆ t)Dn(u, p) ,

+ Chk+1‖p(tn, ·)‖Hk+1(Ω)

where
Ch,∆ t(u, p) := exp(CCu T)h−d/2 (hk+1+∆ t)A(u, p) + Cu

and

Dn(u, p) := h2‖ut‖L∞(tn,tn+1;Hk+2(Ω)) + ‖ut‖L∞(tn,tn+1;L2(Ω)) + ‖utt‖L∞(tn,tn+1;L2(Ω))

+ ‖u‖L∞(tn,tn+1;Hk+2(Ω)) + ‖p‖L∞(tn,tn+1;Hk+1(Ω)) .

Proof. Similar as the proof of Theorem 3.2. �



26 of 35 J. GUZMÁN, F.A. SEQUEIRA, C-W. SHU

4. Numerical results

In this section, we present some numerical results for two dimensional problem (i.e.d = 2), illustrating
the performance of the fully discrete schemes analyzed in Sections 3.1 and 3.2. In all the computations
we consider four uniform meshes that are Cartesian refinements of a domain defined in terms of squares,
and then we split each square into two congruent triangles. Also, we consider polynomial degreek ∈
{0,1,2} and for the DG schemes, we use onlyα = 1. In addition, the numerical results presented
below were obtained using a MATLAB code, where the zero integral mean condition for the pressure is
imposed via a real Lagrange multiplier.

In Example 1 we follow Liu & Shu (2000) and consider the Taylor-Green vortex (see Chorin (1968)).
That is, we setΩ := [0,2π ]2, and the exact solution is given by

u(t,x) =
(

sin(x1)cos(x2)e
−2t/λ , −cos(x1)sin(x2)e

−2t/λ
)
t

,

p(t,x) =
1
4

(
cos(2x1) + cos(2x2)

)
e−4t/λ ,

for all x := (x1,x2)
t ∈ Ω andt ∈ (0,1), whereλ = 100. It is easy to check thatu is divergence-free and∫

Ω p= 0. Here, we compute the approximation ofu at t = 1, where we consider∆ t = 1/160= 0.00625.
In Table 1 we present the results obtained for Raviart-Thomas schemes (3.4) and (3.15), whereas in Table
2 we use DG schemes (3.16) and (3.17). For the theory presented in previous sections we assume that
k > 1, however here we also usek = 0 in order to appreciate the behavior of the proposed schemesin
practice.

We see that the estimates we obtained using the Raviart-Thomas spaces and the central flux are
sharp for the velocity whenk = 1. However, fork = 0, k = 2 the convergence rates are higher than
predicted theoretically. In particular, we could not proveconvergence fork = 0, however numerically
the method seems to be converging with order 1. Similarly, for DG method using the central flux the
estimate we gave seem to be sharp for the velocity fork = 0 andk = 2 (notice that the velocity space
contains polynomials of degreek+ 1 for the DG space), but numerically the casek = 1 does better
than the theory predicts. Finally, using the upwind flux for both the Raviart-Thomas method or the
DG method one observes, as expected, numerically optimal convergence rates for both the velocity and
pressure variables. Unfortunately, we cannot prove these optimal error estimates.

For Example 2 we consider the double shear layer problem taken from Bell et al. (1989) (see also
Liu & Shu (2000)). We solve the Euler equation (1.1) in the domain Ω := [0,2π ]2 with a periodic
boundary condition and an initial data given byu0(x) = (u0

1(x),u
0
2(x))

t, with

u0
1(x) =

{
tanh((x2−π/2)/ρ) x2 6 π

tanh((3π/2− x2)/ρ) x2 > π
, and u0

2(x) = δ sin(x1),

for all x := (x1,x2)
t ∈ Ω , where we takeρ = π/15 andδ = 0.05.

In Figures 1−6, we present some contours of the vorticityωh := curl(uh) = ∂x1u2− ∂x2u1 at t = 6
andt = 8 to show the resolution. We use 99 contours between−4.9 and 4.9, using the previous four
meshes, whereh∈ {0.7405,0.3702,0.2468,0.1851}. For this Figures, we use the DG scheme with the
central flux (cf. (3.16)). Analogously, in Figures 7−12 we use the DG scheme with the upwind flux
(cf. (3.17)). In all this figures, we take∆ t = 8/200= 0.04. In order to save space, we not report here
the results using the divergence conforming methods. However, we remark that the Raviart-Thomas
schemes (3.4) and (3.15) behave very similarly as the DG methods for this example.
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TABLE 1. History of convergence for Example 1, Raviart-Thomas scheme with t= 1.

k h d.o.f
Central flux Upwind flux

‖u−uh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u−uh‖L2(Ω) ‖p− ph‖L2(Ω)

error order error order error order error order

0

0.7405 745 1.14e-0 −− 4.69e-1 −− 1.50e-0 −− 8.69e-1 −−
0.3702 2929 5.70e-1 1.00 2.08e-1 1.17 8.82e-1 0.76 5.17e-1 0.75
0.2468 6553 3.80e-1 1.00 1.35e-1 1.07 6.29e-1 0.83 3.68e-1 0.84
0.1851 11617 2.85e-1 1.00 1.00e-1 1.04 4.90e-1 0.87 2.86e-1 0.88

1

0.7405 2353 5.84e-1 −− 1.48e-1 −− 1.75e-1 −− 9.86e-2 −−
0.3702 9313 2.97e-1 0.98 6.65e-2 1.15 4.40e-2 2.00 2.68e-2 1.88
0.2468 20881 1.98e-1 1.00 4.32e-2 1.07 1.94e-2 2.01 1.22e-2 1.94
0.1851 37057 1.49e-1 1.00 3.22e-2 1.02 1.09e-2 2.01 6.91e-3 1.96

2

0.7405 4825 2.15e-2 −− 6.53e-3 −− 1.28e-2 −− 5.19e-3 −−
0.3702 19153 3.31e-3 2.70 9.53e-4 2.78 1.53e-3 3.06 6.80e-4 2.93
0.2468 42985 8.61e-4 3.32 3.09e-4 2.78 4.36e-4 3.09 2.13e-4 2.87
0.1851 76321 3.52e-4 3.11 1.39e-4 2.78 1.79e-4 3.08 9.49e-5 2.81

TABLE 2. History of convergence for Example 1, DG scheme with t= 1.

k h d.o.f
Central flux Upwind flux

‖u−uh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u−uh‖L2(Ω) ‖p− ph‖L2(Ω)

error order error order error order error order

0

0.7405 2017 5.13e-1 −− 3.83e-1 −− 2.85e-1 −− 3.81e-1 −−
0.3702 8065 2.39e-1 1.10 1.89e-1 1.02 8.17e-2 1.80 1.88e-1 1.02
0.2468 18145 1.57e-1 1.03 1.25e-1 1.01 3.85e-2 1.85 1.25e-1 1.01
0.1851 32257 1.18e-1 1.01 9.39e-2 1.01 2.24e-2 1.89 9.34e-2 1.01

1

0.7405 4321 4.48e-2 −− 4.83e-2 −− 3.41e-2 −− 4.80e-2 −−
0.3702 17281 6.48e-3 2.79 1.20e-2 2.01 4.60e-3 2.89 1.20e-2 2.00
0.2468 38881 2.01e-3 2.89 5.32e-3 2.00 1.37e-3 2.99 5.32e-3 2.00
0.1851 69121 8.72e-4 2.90 3.00e-3 2.00 5.75e-4 3.01 2.99e-3 2.00

2

0.7405 7489 4.83e-3 −− 4.14e-3 −− 2.23e-3 −− 4.12e-3 −−
0.3702 29953 5.89e-4 3.03 5.52e-4 2.91 1.49e-4 3.90 5.50e-4 2.91
0.2468 67393 1.74e-4 3.00 1.76e-4 2.82 3.10e-5 3.88 1.71e-4 2.89
0.1851 119809 7.36e-5 3.00 8.31e-5 2.61 1.03e-5 3.83 7.82e-5 2.71

We see that the method using the upwind flux seems to do much better than the method using the
central flux. In particular, when usingk= 2 and using the upwind flux the method seems to do quite well.
In fact, the method seems to be comparable to DG methods usingthe vorticity-potential formulation and
high-order time integrators developed by Liu and Shu in Liu &Shu (2000).
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FIG. 1. Example 2 (DG + central flux), contours for the vorticity with k= 0 andt = 6.

FIG. 2. Example 2 (DG + central flux), contours for the vorticity with k= 1 andt = 6.
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FIG. 3. Example 2 (DG + central flux), contours for the vorticity with k= 2 andt = 6.

FIG. 4. Example 2 (DG + central flux), contours for the vorticity with k= 0 andt = 8.
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FIG. 5. Example 2 (DG + central flux), contours for the vorticity with k= 1 andt = 8.

FIG. 6. Example 2 (DG + central flux), contours for the vorticity with k= 2 andt = 8.
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FIG. 7. Example 2 (DG + upwind flux), contours for the vorticity with k= 0 andt = 6.

FIG. 8. Example 2 (DG + upwind flux), contours for the vorticity with k= 1 andt = 6.
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FIG. 9. Example 2 (DG + upwind flux), contours for the vorticity with k= 2 andt = 6.

5. Conclusions and future directions

In this paper we have developed finite element methods for incompressible Euler equations. We prove
error estimates, however, numerical experiments suggest that our analysis is not sharp, at least for the
upwind methods. It would be interesting to see if a new analysis can prove the optimal estimates for
the upwind schemes. Our fully discrete methods are implicit. In the future we would like to consider
numerical methods that treat the nonlinear part explicitlyin order to make the method more efficient.
In addition, in this work we used only zero boundary conditions in order to perform the analysis in a
cleaner way. However, the results presented here can be extended to the case of nonzero velocity on the
boundary.
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FIG. 10. Example 2 (DG + upwind flux), contours for the vorticity with k= 0 andt = 8.

FIG. 11. Example 2 (DG + upwind flux), contours for the vorticity with k= 1 andt = 8.
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FIG. 12. Example 2 (DG + upwind flux), contours for the vorticity with k= 2 andt = 8.
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