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H(div) conforming and discontinuous Galerkin (DG) methads designed for incompressible Euler’s
equation in two and three dimension. Error estimates argepréor both the semi-discrete method and
fully-discrete method using backward Euler time steppiNgimerical examples exhibiting the perfor-
mance of the methods are given.
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1. Introduction

In this paper we study H(div) conforming and DG finite elemeethods for the incompressible Euler
equations in both two and three dimensions. Our methodseamedon the velocity-pressure formula-
tion. LetQ be a bounded and simply connected polygonal domaRfjrl € {2, 3}, with boundary™.
The velocityu € H}(Q) := [H3(Q)]¢, and the pressunec L3(Q) satisfy

U +u-Ou+Op=0 in  (0,T)x Q, (1.1a)
div(u) =0 in (0,T)xQ, (1.1b)

u-n=0 on (0,T)xTrI, (1.1c)

u(0,x) =up(x) in Q, (1.1d)

whereu; = du is the time derivativellu is the tensor gradient af, andT > 0.

The goal of this paper is to define methods thatl#retable, and, for DG methods, are also locally
conservative. The methods are inspired by the work Cockbuiral. (2005) where they developed
locally conservative DG methods for the steady state Neviekes equations. There they take Newton
iterations to solve numerically the equations and in eagh ttey postprocess the DG approximation to
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get a new approximation that belongs to H(div) and is divecgefree. Here we apply this idea to DG
methods in each time step for Euler’s equations. Howevefirateconsider H(div) conforming elements
as they seem natural for incompressible Euler’s equatiotdsiee easier to analyze. In order to make the
H(div) elementd ? stable, one has to add numerical fluxes of the nonlinear tertheinterfaces of the
triangulation. We start with the semi-discrete methodpgdioth central and upwind fluxes, and then
analyze a backward Euler time stepping method. Once we texgdaped H(div) conforming methods,
we develop DG methods using the post-processing idea uséddkburnet al. (2005). In Cockburn

et al. (2005) upwind fluxes are used, but it is important to note deaitral numerical fluxes can also
guaranted.? stability for Euler’s equations.

The development and study of finite element methods for inwessible flows have a long history;
see for example the books of Temam (see Temam (1984)) andlGiral Raviart (see Girault & Raviart
(1986)). More recently there has been an interest in usimiH¢onforming methods for these prob-
lems (see, e.g., Cockbuenal.(2007)) since they produce divergence-free approximatiblowever, to
the best of our knowledge, an analysis of these methodsédntiiscid problem (i.e. Euler’s equation)
has not been considered. On the other hand, there has bes wexrk on proving convergence rates
for other finite element methods for problems with arbityalow viscosity (see Burman & Fernandez
(2007)).

We give an error analysis for both the semi-discrete methadshe backward Euler time stepping
methods. The error estimate for the velocity in tffenorm converges with raté (hK) if the velocity
space contains the polynomials of degkeeNotice that this is sub-optimal by one order. However,
numerical experiments suggest that these results are agi &r some polynomial orders and using
a central numerical flux. More specifically, when using evegrde polynomial order for the velocity
it seems the methods with central flux converge optimallypanticular, the error estimate will not
give an error estimate for the lowest-order Raviart-Thosleament. However, on structured grids our
numerical experiments show that the lowest-order Ravihdmas elements seem to be converging.
Moreover, when using the upwind numerical flux numericaleskpents suggest that the method is
optimal. However, at the present time we are not able to ptlogeresult. Our estimates assume that
the velocity belongs tov1>. Of course, these a-priori estimates are not known (and tnmighhold)
in three dimensions for general smooth initial data. Howgwetwo dimensions the a-priori estimates
were proved by Kato (see Kato (1967)) for smooth initial data

In addition to providing numerical experiments to checkdhder of convergence of our methods, we
give numerical experiments to show how the methods behavigingradient flows. We see that using
upwind flux the method seems to do very well and comparableGaonizthods that use the vorticity-
potential formulation (see Liu & Shu (2000)).

One of the advantage of the H(div) conforming methods is ithgives approximations that are
pointwise divergence-free. An advantage of the DG methedbat they give locally conservative
methods (see below). The other advantage for the upwinibvsrsf both H(div) conforming and DG
methods is that numerically they converge optimally onctrted meshes. Indeed, it is well known
that on general quasi-uniform mesh all the standard met{@alerkin, streamline diffusion, DG) lose
at least a half-order accuracy for scalar problems. On therdtand, upwind DG methods can be
shown to convergence optimally (also assuming the coregetlarity) for scalar problems on classes of
meshes (see Cockbuet al. (2010a), Cheng & Shu (2010)). In fact, as far as we know theséhe
only methods that have been proving to have this propertgxiend these results to the current setting
seems non-trivial, but we will pursue this in the future. Maover, DG methods can be stabilized by
adding consistent terms (i.e. jump terms) whereas metligelthle streamline diffusion method add in-
consistent terms with parameter that need to be tuned tdiztehe method. The paper is organized as
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follows. In the next section we present the semi-discretiats and prove error estimates. In section
3 we present the backward Euler methods. Finally, in sedtiame provide some numerical examples.

2. Semi-discrete methods

We begin by introducing some preliminary notations. L%tbe a shape-regular and quasi-uniform
triangulation ofQ without the presence of hanging nodes, andjgbe the set of edges/facEsof .%,.
In addition, we denote byﬂ] andafha the set of interior and boundary faces, respectivelyipfand we
setd J, :=U{dK : Ke F}.

Next, let(-,-)y denote the usudl?> andL? := [L?]¢ inner product over the domald ¢ RY, and
similarly let (-, -)g be theL? andL? inner product over the surfa@ c R%~1. Then, we introduce the

inner products:
('a')yh = Z ('7')K and <"'>09h = Z <'a'>dK'
Ke Keh
On the other hand, let™ andn~ be the outward unit normal vectors on the boundaries of two
neighboring elements* andK —, respectively. We user®,v*,q*) to denote the traces ¢f,v,q) on
F: =K' 'nK" from the interior ofK*, wherert, v andq are second-order tensorial, vectorial and scalar
functions, respectively. Then, we define the mefsjsand jumpsg]- | for F € &}, as follows

{t} = %(r*Jrr*), {v} = %(v++V’), fa} = %(q++q,)’
[tn] = tinf+1n", [vin]:=vinT+v .n", [an] :=g'nf+qgn.

The method is derived using the conservative or divergeaom bf the equation. To this end,
denoting® as the usual dyadic or tensor product, thatisp v)ij = (u*v)i; = uvj, we consider the
formula

diviu®v) = v-0Ou + div(v)u, (2.1)
together with the divergence-free condition, to write thelgbem (1.1) in the form

U +diviueu)+0p =0 in (0,T)xQ, diviuy =0 in (0,T)xQ,
(2.2)
u-n=0 on (0,T)xI, u(0,x) = up(x) in Q,

wherediv denotes the usual divergence operator div acting alongreachf the corresponding tensor.
Finally, given an integef > 0 and a subsét of RY, we denote by, (U) the space of polynomials

defined inU of total degree at mogt with P,(U) := [P,(U)]%. Furthermore, for eack € .7, we define

the local Raviart-Thomas space of ord€see, e.g. Brezzi & Fortin (1991); Roberts & Thomas (1991))

RT@(K) = Pg(K) + PZ(K)X

X1
wherex = ( : > is a generic vector d®%. In addition, we set
Xd

NDg(K) = P[(K) + P[(K) X X

be the local Nédélec space of ordenK € %,.
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2.1 H(div) conforming methods

In this section, we define H(div) conforming finite elemerttemes associated with the model prob-
lem (2.2). We start by introducing the method using the @ffifux, but in a later section we present
the method using the upwind flux. For simplicity we only calesithe Raviart-Thomas finite element
spaces, but we note that one can use instead the BDM finiteeatsr(see, e.g. Brezzi & Fortin (1991);

Roberts & Thomas (1991)). The globally defined Raviart-Thespaces are given by, for the veloc-

ity and Qy, for the pressure, given by

Vi = {veH(div;Q) : vk e RT((K) VKe Z and v.n=0onT},
Qn = {9el3(Q) : gk eR(K) YKe T}
Now, the finite element method is defined by: Fing, pn) € Vi, x Qp, such that
(GtUn,Vh) 7, — (Un®@Un, OnVh) 5 — (Ph.div(Vvh)) 7, + (G (Un, Pr)N,Vh)az = O,
(Oh,div(un))z = 0,  (2.3)

un(0,x) = Uno(x) inQ,

for all (vh,0n) € Vh x Qn, Wherel, is the broken gradient), o is some projection ofig on V, and
0 (up, pn) represents the numerical flux of2 u+ pl on &,. In particular, we takes (Un, pn) '= Up ®
up+ prl on &2 and for&;! we define

O (Un, pn) = fun} @ {un} + {pn}l. (2.4)

This is the method using the central flux. In a later sectionnt@duce the method using the upwind
flux which seems to do better numerically.

Next, using the above definition far, together with the formula (2.1), the fact thatis divergence-
free (from the second equation in (2.3)), and integratiopdnys, we can rewrite (2.3) as: Fia}, pp) €
Vi x Qp, such that

(GtUn, V)7, + (Un-Onun, ), = > ([(Uh@up)n] fval)e — (pn.div(vn)) 5 = O,
Fed)

(Oh,div(un))z = 0, (2.5)
un(0,X) = uno(x) inQ,

for all (vh,qh) € Vh x Qp.
It will be useful to rewrite thd (up @ up)n]|. LetF =K NK . Then,

[(Un@unn] = [(un-Mun] = (U -n)u + (uy -n )y
In addition, from the fact that, -n*™ = u,, -n™, sinceu, € H(div; Q), it follows that
[Un@unn] = (g -no)ug — (U nu, = (o) —uy).

From now on we will use the notation (without loss of gengyal[v] := v —v~. Also, we use the
notation(u, - n)|r = (uy -n™)|r. Hence, we write

[(uh®@up)n] = (up-n)Jun]-

Now from this we see that the third term in the right-hand sifiéirst equation in (2.5) is consistent,
sincefu]] = 0 on &}, whenu is smooth.



H(DIV) CONFORMING AND DG METHODS FOR INCOMPRESSIBLE EULER'EQUATIONS 50f 35
LEMMA 2.1 (Conservation of energy) Giver € Vy, the solution of (2.5), we have

d 2
at Huh|||_2(g) = 0.
Proof. Takingvy := up in the first equation of (2.5) and using thatis divergence-free, it follows that
1d

> gt 1UnllEe @) + (un+ Ontn,un) 5 = 3 ((un-m[unll, {unp)e = 0. (2.6)
Fed
Thus, note that
O D), = 5 5 [ D) = 5 3 {= [ dviuiun? + [ o niw?]
h ZKE%.K ZKE% K Jok
1 / 2 1 2
= 53 [ Wnnlun? =35 [ {un}-[unPn]
ZKEZ% K ZFGZé”ri] F
= ) /(Uh'n)muh]ﬂ'{uh}a (2.7)
Fegi’F
which, together with (2.6) complete the proof. O

We remark here that, from the previous lemma, integratininie over(0,t), we can deduce that
[un(t, - )llL2(0) = [lunollLz(q) for eacht € (0,T). Thatis, we proved that the scheme (2.5) is stable.

2.1.1 Error estimates. Our next goal is to obtain error estimates for the schemg.(li®rder to do
that, we now introduce the Raviart-Thomas interpolatioarajor (see Brezzi & Fortin (1991); Roberts
& Thomas (1991))‘Iﬁ :H(Q) — Vj, which satisfies the following approximation properties: éach
veHM™Q), with 1< m< k+ 1, there holds

IV = ITK(V) Iz + il O = TTEW)) ey < CHEVImk VK € . (2.8)
Moreover, we also have the following bounds
IV = T§(V) |y + il BV = FTE(V)) 1) < Chi[|DV]fuee) VK € Fh. (2.9)

In addition, let# : L2(Q) — Qx, be theL.2-orthogonal projector. Hence, for eagle H™(Q), with
0 < m< k+1, there holds (see, e.g. Ciarlet (1978))

la— ZK@llewy < CHlAlmy) VK€ (2.10)

We now aim to derive the priori error estimates for the scheme (2.5). To this end, thanks to
the triangle inequality, we only need to provide estimateslie approximation errors, namely! E=
Mk(u) —up and B := Z¥(p) — pn. To do this, we use the fact that the exact solution satisfies t
approximation method (2.5), in order to obtain the erroragiguns:

(G (u—un),Vn) gz + (U-Opu —Up - Opun, V) 7,

— > ((un-m[u—un], fva})r — (p—pn,div(vh)) 5 = 0,

Fesl
(Gh,div(u—up)) 5 = 0,
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for all (Vn,0h) € Vi x Qn. In addition, from the property divT{(u)) = 22K(div(u)) = 0, we can rewrite
the error equations in the form

(AE",vn) 7, + (U~ Ot —Un - Ontn, Vi) 7, — 3 ((un-n)[E'], fva})e — (EP,div(vn)) 4,
Fed&)

= (@A) =uw.vh)z — 3 ((un-mIAKW) —ul. fvab)r = (Z5(p) - p.div(vn)) 5, (2.11)
Fed

(h, div(E")) 5 = O,
for all (vh,qn) € Vh x Qn, Where it is important to remark here that i divergence-free.

THEOREM2.1 Assume that € W-([0,T] x Q)¢ is uniformly bounded. In addition, given an integer
k> 1, suppose thaig € H**1(Q), u € L?(0, T;H*"1(Q)), andu € L?(0, T;H**1(Q)). Then, there
existsC > 0, independent dfi, such that

[(u=un)(T, )l 20) < C(u)h*B(u),
where
C(u) = (14+C(1+Cy))expC(1+Cy)T),
with Cy 1= [[Uflwi=(01)x ) AlsO,
B(u) = hl[uollykirq) +IIUllziornxi(a) + DUl 2o mke ) -

Proof. We begin by choosingy, := E" in (2.11). Thus, we have

I oy = —(u- o= Do B+ 3 {(un-W)E] ERD)r

2 dt Fe&

I1

I2

+ (M) = UL EN g = 5 (un-m[T5(u) —u {E"De,  (2.12)
Fed)

where we have used the fact tlfl(u) = 1K (ur). Next, note that
li = —(u-On{u— KW }HLE") 5 — ((u—un)- OnTH(u),EY) 4 — (un- OhE",EY) 4,
= —(u-Onfu—MRW}EY) 7, — (U= un) - OnIR(W),EY) 7 — 2,

where in the last term, we apply the same arguments of (2.1slmg B instead ofuy, in the last two
functions. Furthermore, using (2.9) we deduce that

i+l < Cull T () — bl IEllz@) + CCullu — Uiz 1B 2y
< GullOn{ () — b2 IEVllzg@) + CCu] I177K(U) — Ullzqay + I EVll 2y I ey

< CGIE" 2y + CCu{ (W) — liZ ) + ITn{T(U) — U g } (2.13)
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On the other hand, fdrg it follows

= = 3 (- m[AKW -ul B e + 3 (W) AW - ul {E e
Feé" Feé"
< ChYasw) —ule@) 3 el {E M
Fed

1/2 1/2
+ClITE(W)ll=(a (z he | [ K(u )—ulunﬁzm) (z he | {EV} 12, ) . (214)
Fedl Fedl

In addition, giverv € H(.%,) and applying a discrete trace inequality, we note that theistsC > 0,
independent off, such that

S heIIVIIZ e < C{h2IVIE g + Tl g b (2.15)

Feé"
and, in the same way together with an inverse inequality waiob

S e {E e < CIEZq, (2.16)
Feéa'

Hence, replacing (2.15) and (2.16) in (2.14) and using (@®yeduce that
ls < CCE IR +CC{h 2i(u) — U2z ) + ITR{MTh(W — u}iZq } - (2:27)

Now, we return to (2.12), which satisfies that

1 1
LIy < 2IERaig + () gy + (1) + 13

where, replacmg (2.13) and (2.17), we obtain that

HE“HLzm < C(1+C)[E 1% g, + ClIMK(U) — willZe g
+cq{h*2||nh<u>—u||fz(g)+Hmh{nmu)—u}nﬁz(m}. (2.18)

Hence, applying (2.8) we get

Y
dt
which, applying the Gronwall’s inequality (see, e.g. EvVE2®10)), yields

IE (T )2 < expC+C)T){IE(0, )2 g

+ C(1+C‘J) (thut”Lz 0,T;Hk+1(Q)) + HUHEZ(O,T;HKH(Q))) }

E1Z

@ < CL+CIE o) + Ca+C) i (Wuli g + Ul )

Finally, we use thatfEY(0, )|| )< C h(k+1) HU0||H|<+1 o) 1o complete the proof. O

The next goal is to estabhsh error estimates for the presgniable. To do this, we first obtain an
estimate fow (u — uy), which is the subject of the next result.
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LEMMA 2.2 Assume the same hypotheses of Theorem 2.1. Then, thsete@x 0, independent df,
such that

IGE" (T, )2 < (C(U)hkfd/zB(U)+Cu)hk71{C(U)B(U)+HU(Tv')HHkH(Q)}
+ CH U (T, )l ) -

Proof. First, we takevy := &E" in (2.11) and using that di¢.E") = d.div(E") = 0, we obtain

IAE P2 ) = —(u-DOpu—un-Onun, dEY) 5 + 5 {(un-n)[E"]. {&E"})r
Fedl
+ (MH(up) — u, GEY) 5, — > ((un-n)[m hu) —ul, {aE"})r
Feé,
< [|u- Onu— un- Onunlliz(o) 1GE" [ 2() + I1TT(U) — Utll2o) | GE" I 20)

1/2 1/2
+ Cllun|lL=(a) ( thlllﬂlE“]ﬂllfz(F)) ( S el {aE HiZz, )

Fed) Fesl
1/2 1/2
+Clunlloge) [ 5 hetITAK(U) —ullliZze, > helfaE itz | -
Feé" Feé"

Next, using (2.15) and (2.16), we deduce after some algebranipulation that
[&E"|| 2q) < C{ ™ Un (@) [E%ll2(q) + U~ Onu — un - Onun|| 20
+ [11TK(ue) = Ul 2y + [1unlleqe) (™ HITTS(U) — ullzgg) + | On(MTiS(U) — U)HLZ(Q))}' (2.19)
To bound the nonlinear term we add and subtract terms to get

[[u-Opu —un - Onun[l 2(0) = [[(U—Un) - Ont+ Un - On(U = un) [l 2(0)
< Gul[u—unlli2(q) + [UnllLe(@)[On(u = un)lL2(0)
< Gullu—unl|i2(q) + [[UnllLe (@) (1 Bn(u— 11 hU)|||_2 +Ch Bl 2(0))
< Gul|E"[lL2(q) +Cull TH(U) — Ull 20
+ [[Unle (@) (I On(u — MKWl 2(q) +Ch YEY20)s

where we have used an inverse estimate. Therefore,
16l 2(q) < C{ (™ [unllLo (@) +Cu) [E 2oy + 75U — tell2(q)
+ [|unl=() IBA(TK(U) = U)oy + (W H|Un][L=(o) +Cu)ITK(u) _UHLZ(Q)}'
We can bounduy .= (o) using an inverse estimate

[unlle@) < IE%lo@) + IR =) < Ch 2% 2(q) + CCu. (2.20)
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Hence,
|AE Oz < C{N N2 2 + )l EV iz + 1 TK(u) — ez
+ (2B 2(g) + Co) (ITR(TE(W) = Wiz + 0 HITT(W) — Ul z(g)) }-

Finally, using Theorem 2.1 and (2.8) establishes the result O
Note that in the above proof we have also proved

(U Oh = tn- Onn) (T, )l 2oy < (G /2B() + G2 {C(0) BU) + (T, s o) }
+ CH|RU(T, ) [l o) - (2.21)

We end this section with the a-priori error estimate for thespure, which is established next.
THEOREM 2.2 Assume the hypothesis of Theorem 2.1. Also, supposeptkalt?(0, T;H*1(Q)).
Then, there exist€ > 0, independent dfi, such that

I(P= (T )lz@) < (CWHY2B(u) +Cy CHNA{C() BU) + U(T, ) llers o) }

+ (T, s ) + IRl | -

Proof. We begin by recalling here the discrete inf-sup given by

Ch, div(Vh)) %
Bllonllzo) < sup % V¥ 0h € Qn, (2.22)
VhEV, HVhHH(dlv;Q)
Vh#0
which, in particular fogy, := EP, it follows
EP, di g
1 sup M (2.23)
Bvwevy  IVhllHdiv:o)
Vh#0
Now, from the error equation (2.11) and proceeding as in thefpf Lemma 2.2, we have
(EP.div(vh)) g, = (AE",Vh) 7 + (U-On—Un-Ontn,Vn) o, — 5 ((un-n)[E']. {va})e
Fed

— (MK(ue) =t vn) 7, + 3 ((un-n) (W) = ull. fvab)e + (Z5(p) — p.div(vh))
Fedl

< 1B 2(0) IVnllL2(q) + [1U - Ont = Un - Ontnl 2(0) IVhll 20y + ChHIEY [z Valliz o)
+C{n k(W) - Ulzg) + ITn(TE(W) — Wliz(o) | IVhllizoy
+ ||”E(Ut) - utHLZ(Q)”Vh”LZ(Q) + |\9rf(p) - DHLZ(Q)||diV(Vh)||L2(Q)-

The above result together with (2.23) establishes

IEPll20) <

IEPll2(0) < C{HatEuHLZ(Q) + [|u- Onu — Un - Ontin | 20y + ™ HIEY |20

+h I ITK(U) = ull 2y + IITR(MTR(U) = W)l 2eq) + IITTR(U) — Uellzi) + 126(P) — p|||_2(g)}-
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Therefore, thanks tdp — pnll 2oy < [[EP[l2(0) + | ZK(p) — Pl 2(g) (2.21), Lemma 2.2 and the ap-
proximation properties (2.8) and (2.10), we can easily deteghe proof. O

Notice the the error estimate for the pressure preditts!) (for k > 2) in two and three dimen-
sions.

2.1.2 Using an upwind flux. Here, we introduce an alternative version of the confornmreghod
(2.5), analyzed in previous sections. In order to do thatpagin by redefining the numerical flux
(cf. (2.4)) in a new general form, given by:

G(Un,pn) == Uh @ fun} + {pn}1,

wherey) is a new numerical trace far, related with the convective term. In particular, takifg:=
{unl} = % (u‘g“+ ueX') we arrive exactly to the scheme (2.5). That is, the methds) (@rrespond to a
central scheme

On the other hand, for some problems with high gradients ihore natural to use ampwind
schemein order to get better accuracy and order of convergenc&etriion 4 we will present some
examples of this. In fact, we see numerically that using mohMiux gives optimal convergence rates for
both the velocity and pressure variables.

According to above, we consider the following upwind flux

oW

uit if up-n >0,
ay =

uPt if up-n<o.
This definition is given in the same way of that presented in&iShu (2000) for the vorticity, and it is

not difficult to check that we can obtain again the method)(2vEh an extra term given by a weighted
full jumps ontoé}.. That is, we seeki, € Vi, andpy, € Qp, such that

(GtUn,Vn)7, + (Un-Ontn,Vn)., — > ((Un-n) [un]l, fva})r
Feé,

+ Y (un-n[[unl,[IveF = (pn.div(vn)) 5, = O VvheVn,  (2.24)
Fed),

(G, div(Un))z = 0 Van€Qn,
un(0,X) = uno(x) in Q.
It is important to remark here, that the introduction of thewv term does not pose any difficulty
in order to prove stability and convergence. In fact, botlofe the same arguments, using that when

Vh = U, this term is positive. In particular, the error estimatesizasically the same and the stability, see
remark after the proof of Lemma 2.1, now is given|(t, - )|l 2o) < [[Unoll 2(q) for eacht € (0, T).

2.2 DG schemes

In this section, we introduce a discontinuous Galerkin méflor the model problem (2.2). The velocity
space will consist of polynomials of degrkee- 1 for the fully discontinuous subspace

V9 = {vel?(Q):vVkePui(K) YKeZ and v.n=0onTr},
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whereas, the pressure space remains unchanged. That is,
Q= {del§(Q) : dkeR(K) VKe %}

In the previous section we only defined the jumps and aver@yé#se interior faces/edges. Here we
also define them on boundary faces. That isHar £, as is usual, we set

{v} = v, [v-n] :=v-n and {q} :=q.

Thus, in order to define the approximation scheme, we firsidluice a postprocessed flux. For each
v e HY(%), we findv* € Py, 1(.%) such that

L

/Kv*-p - /Kv-p ¥ p e NDy_1(K), (2.26)

'/F'({V}-n)q VqeRqa(F), VFedkK, (2.25)

for eachK € . Note that ifv, € Vﬂg thenv, € BDM{ ,(Q) where,
BDM;+1(Q) := {veH(div;Q) : vk € Prs1(K) VKe %}
BDM?, ;(Q) = {vEBDMy;1(Q) :v-n=0 onr}.

For this postprocessed flux, we have the following result.

LEMMA 2.3 GiverK € %, andvy, € Py 1(K), there is exists a constar@$ > 0, independent df, such
that

ok k- 1 2
V= Vallzgy < CZ S vhenlllize) -
FeoK

Proof. We proceed as in (Cockbuetal, 2010b, Lemma 4.2). Indeed, if we et= v}, — v € Px;1(K)
we have thabd satisfying the equations

[ ma = [@wh-w)na VaeRu(F), VFeoK,
/Ka-p — 0 ¥peND4(K).
The result together with a scaling argument (see Brezzi &f¢1991)), imply that

1/2
18012y < Che 2 (fvn} — Vi) nllo.ax

which, using the fact that{v,} — vi,) - n = +[ v - n], we complete the proof. O
Now, similar as in (2.3), we consider the Galerkin schemad[Fu, py) € Vﬂg x Qp, such that
(un,Vh) 7, — (Un®@Uh, OnVh) 2, — (Pn, divh(Vh)) 2, 4 (G (Un, Pr)N,Vh)os, = O,

—(OnOh,Un) 7, + (Un-N,Gh)oz = 0, (2.27)

Un(0,X) = ung(x) inQ,
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for all (vy,q) € Vﬂg x Qn, where

G(unpr) = fun} @ {ui} + fen} I+ ahz*[un-n]l, (2.28)
anda > 0 is stabilization parameter. In addition, we define the mira&flux Uy, as
= {{Uh} on&,.

Thus, from the second equation of (2.27) and the definition;afcf. (2.25) and (2.26)), we note
that

0 = —(0OnGh,Un) 7 + (Un-N,Gh)g5 = —(OnGh,Up) 7 + (U -N,Gh)ag = (Gh,div(ug)) 4

for all g, € Qn. The above identity and the fact that di) |k € R(K) for eachK € %, imply thatuy, is
divergence-free. This conclusion and the fact tifahas a continuous normal component are the main
reasons that while we considgf instead oluy, in the method (2.27).

Then, using integration by parts, the fact that(un ® uj,) = uj; - Oup (cf. (2.1)), and the definition
of the numerical fluxes, it is not difficult to check that thevak DG scheme is as follows: Fing € Vﬂg
andpy, € Qp such that

(Gun, Vi), + (Uf- Onun, Vi) 5, + @ S he*([un-n, [va-nD)r

Fed)
— > (UM [unl. fvn})r — (pn.diva(vn)) 7 + > (Iva-n[.{pnhr = 0, (2.29)
Fedl Fed
(Gn,divn(un)) — > ([un-n].fan})r = 0O,

Fesl
Up(0,X) = uno(X) in Q,

for all (vh,0n) € Vgg x Qp. It is important to note here, thag, is not necessarily divergence-free as
in the method of Section 2.1. In addition, unlike the methiodthe previous section, the DG method
(2.29) is locally conservative. Indeed, givkne %, we takevy, € Vgg such thaty|x = g isa 1 in the
i-th coordinate and O’s elsewhere. Alsg,vanishes in the exterior @€, it means in particular that,
not belong tovy,. Then, replacingy, in the first equation of (2.27) we obtain

/(9[ Up)i +/ uh,ph )i =0 ViE{l,Z,...7d},

/duh +/ d(unp, pp)n = 0.
K oK

The foregoing equation establishes that the DG method \&29 fact locally conservative.
On the other hand, note that the condition n = 0 onl™ was imposed in the spa(sqﬂg. We em-
phasize, however, that the reason of this is just for themlgiurposes and by no means for the explicit

computation of the solution of (2.29), which is solved asalsy imposing the boundary condition as a
penalization term in (2.29).

and hence

LEMMA 2.4 (Stability) Giveruy, € th the solution of (2.29). Then, we have

at ”UhHEZ(Q) <0
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Proof. We takevy, := un andgy, := py in (2.29), and then we deduce
1d N . *
5 gt lUnllEegq) + (uh- Onn un) 5+ a Y heflun-nlligae) = 3 ((uy-m[unll. {unh)e = 0.
Feé) Fed
Next, with that same arguments of (2.7), we have
(Up - Onun,un) gz, — 5 ((up-n)[un], funh)r = 0,
Fesl

which establish that

1d _

Ea”uh”é(m +a z‘hFlH[[uh'n]]”é(F) = 0.

Fed&l

Finally, from the fact thatr > 0, we complete the proof. O

2.2.1 Error estimates for DG method.Now we are ready to provide error estimates for the DG
scheme (2.29). We will need to define the BDM/Nédélec mtme.

L((HEDMV—V)-n)q 0 VgeRui(F), YFedK, (2.30)

/K(/'IEDM (V)—Vv)-p = 0 VpeNDea(K). (2.31)
We have the following approximation results fodm < k+ 2.
V=R (W) ) + iD= TR (V) fl2) < CHIVImk VK€ (2.32)
Moreover, we also have the following bounds
Iv=mEPM (W) o) + |0 = IR (V) o) < Chl|OV]|i=) YK € Fh. (2.33)

Let now B' = MMEPM(u) — up and B® = Z2¢(p) — pn. Then, we follow (2.11) and consider the error
equations:

(GE",Vn) 7, + (U- Ot — Ui - Ontn, Vi) 7, + a5 he([EY-n], [va-n])r

SPACIC OIS (Ep,divh;vejhm © 3 (ol e
= <d<ﬁ%DM<u>—u>,vh>% vay h;1<[[<nﬁDM<u>—J>-n]1,[[vh-nn>p
- Féﬂ«“ﬁ”)ﬂl”ﬁw(u) —U]]]a{\h/h}}# — (2§(p) — p,divn(vn)) 5
+ Féahid[vh-n]],{g”ﬁ(p)— Phr, (2.34)
(Qhadth(E”h))?h - > (IE"n].{an})r = O,

Feé)

for all (vh,0n) € Vﬂg x Qh.
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THEOREM 2.3 Assume thati € W3*([0,T] x Q)9. Also, given an integek > 1, suppose thaig €
H2(Q), u e L2(0, T;H*2(Q)), u; € L2(0, T;H*"2(Q)), andp € L%(0, T;H**1(Q)). Then, there
existsC > 0, independent dfi, such that

(U= un)(T, )20y < CU)h**B(u)

where
C(u) := (1+C(1+Cy))expC(1+Cy)T),
with Cy 1= [[Uflwi=(0,11x0)- AlsO,
B(u) = hluollykiz(q) +I[Ullzio1hrr2(0)) + NlIUkllzorHer2(0) + [Pl2oTHK1(0)) -

Proof. We begin by choosing, := EY andq;, := EP in the error equations (2.34). Then, we have that

LB ey a3 NEHIES N1y = (- v D, %) 5
Fed) |
1
+ 3 ((upmIE'D B He + (MRPM (u) - u. BY) o,
Fesl

I2

+a 3 MM W) -l [EY nle — F ((uhmITE )~ ul {E*D)e

Fesl Fesl

I3 I

— (Z8(p) = p.diva(E") 5, + 5 ([E*-n]. { Z(p) — P)F - (2.35)
Fesl

Is

13

Next, we want to find bounds fdy, i = 1,...,6. First since diy(E") is a piecewise polynomial of
degreek we havels = 0. Also, note that by (2.30y = 0. Before we bound the rest of the terms. We
note that by Lemma 2.3 arfd71EPM (u) - n] = 0, we know

Jun— UiliZ2) < C 5 helltnn]log, = C 5 el [E-nllZsg, < CIE[Zg). (230
Fed, Fed,

Now we bound;, using that
i = —(u-On{u—mEP"(W)},EY) 5 — (u—uf) - OnTRPM (u),EY) 5, — (uf- OnEY,EY) 4,
= - U-Dh{u—”EDM(U)}aEU).% — ((u—up) - OnIEPM (u), EY) 4, — 12,

where in last term, we apply the same argument of (2.7) aseiptbof of Theorem 2.1. Furthermore,
using that|u||»(q) < Cy and||OnTEPM (u)|| = (o) < CCy (see (2.33)), we deduce that

I3+ 12 < CollOn{MTEPM (u) — Ul 2 ) IEV L2 + CCullu = Uiz | EV 2o
< CG{ I MM (W) — U} z(g) + IFTEPM (1) = Ullz() + I iz I iz

+ CCullun — Uz E 20y
< CGlE +CQ||HBDM<>—u|\ o)+ CGllTR{MTEM () ~u}[% ). (2.37)
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where we also used (2.36).
In the case ofy, from [|[15PM (u)|| = (o) < Cy, Note that

la =Y (({up} - MR (w) —ul {E" br

Fesl
= Y (fur—un}- IR (W) —ul {E e — 3 ({E"}-mIARPM (w) —ull, {E" })r
Feé) Fed)
+ 3 ((EARPM W)} IR (u) —ull {E e
Fesl

N

1/2 1/2
1B (W) — Ul (o) (z e uf, uh}||Lz<F) (z th{{E“}nLZ(F)

Feéah Feﬁh

AR (W) —ulle@) Y IHE HIF2
Feﬁ'

1/2 1/2
Cu( > hF1|||]I”EDM(U)—U]]]|EZ(F>) ( > hell{E HiTz, ) ;
Fesl Fesl

and from (2.15), (2.16), and (2.36) with an inverse inedyale deduce that
ls < lun—Ugllizgq) (ChHIITRPM (U) = UllLogo)) 1EYIL2(a)
+ (Ch | IRPY () — ulli=() ) BV 17, +CCu{ 2rRPM (u) — Ul g
+ (IO {ITEPM (U) — U} 22 } + CCUIE 22
< C(L+hHIRPM () —ullie(e)) B2 0

+Ch 2|18 (u) — u|Z, +cumh{nBDM< u)— U2 g,

In addition, applying (2.33), we conclude that

i < CClE"Zq) + CCu{ N 2IMEPM () — uliZ o) + IDR{TTEM (W) ~ U} 220} (2:38)

Now, in similar way to (2.15), giveq € H'(.%,) we have that

Y hellfabize < Sl + MPI0nalZg, ).
Fesl

which allows us to deduce

_ a
lo = 3 (1B nLh {2 - phr < 5 3 hetlIIEY - n]Eag
FEéah FEéah
Fed&)

< 5 3 MeMIE N1, + CIZAP) - Pl + CHPICH(ZK(P) - Pz (2:39)
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On the other hand, replacing (2.37R.39) in (2.35), we obtain that

a _ 1

5 z‘hFl”[[Eu'n]]”Ez(F) < CQJHEUHEZ(_Q> + EH”EDM(UO—UtHEz(Q)
Fedl

+ cqj{hfzunﬁDM(u) — Ul + 1Tn{TRPMu - U}||Ez(g)} +ClIZK(P) - Pl

EU
I

Hence, using (2.32) we have

d
L IE g < CUACIE g
+C(1+Cu) h2(k+D) {thutHHk+2 +||UHHk+2 +||p||Hk+1(Q)}'

Finally, applying Gronwall’s inequality gives the result. O

THEOREM 2.4 Assuming the hypothesis of the previous theorem we Hawexistence of & > 0,
independent off, such that

1o (T llziey < (CON 2B +Co+- OO CLu) BU) + (T, )y}
+ CH L ue(T, ) 2y + DT oo |-

Proof. Similar to the proof of Theorem 2.2. O

2.2.2 Upwind flux for DG method. Similarly as Section 2.1.2, we now introduce a DG methodgisin
an upwind flux. Indeed, as before, we redefine the numericabfl(see (2.28)) in the form

G(Un pn) = Un @ {up} + {pn}I + ahefun-n]L,

where we takai as
s ut if upon >0,
h = .
uPt if uf-n<o.
Once again, with this definition we can obtain again the n@{Bd29), with an extra consistent term

given by
> (lup-n[[un], [val)e

Fe&

which, allow us to prove stability and convergence in theesaray of before, using the fact that when
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Vh = Up the above term is positive. Summarizing, we fingde Vﬂg andpy, € Qp, such that

(Gtun,Vh) 7, + (Uh- Onn,Vh) 7, + 0 he([un-n], [vn-n])e

Fesl
— > (up-mun, fvab)e + > (Jui-nlTunl, [val)e
Fed Fed&)
= (pn,divn(vn)) 7, + Y ([va-n].{pn}r = 0O, (2.40)
Feﬁh
(Gn,divn(un)) g, — > ([un-n].fan})r = O,
Fed)

un(0,X) = uno(x) in Q,

for all (Vn,gn) € V29 x Qp.

3. Fully-discrete methods

In this section we define fully-discrete versions of bothraghes introduced in Section 2. In order to
do that, for the time discretization we consider the backiiarler method, that is, we write

Ut(this, o) = A—lt{u(tmrl, ©) = U(ta,-)} + Eo(tnya), (3.1)

whereAt > 0 is the time stefty := nAt, 0< n < N, andEp(tn;1) is the truncation error. We know that

otz < € [ Tun(s )iz ds (32)

For simplicity of the following analysis we denoté' := u(t,, -) for the exact value andj :=
Un(tn, -) for the approximation. AIso g|veﬁk the corresponding projection used before in each case,
respectively, we define]] := T§(u") — up as the discrete error. Similar convention is used for the
pressure variable.

On the other hand, using (3.1) we have that the exact solafi¢h 1) satisfies that

(U™ Vh) g, + At O™ vy) 7 — At div(vi)) g, = (U Vi) — At(Eo(tni1), Vi) 7.
(ah,div(u™) 5 = 0,

or equivalently,

(UM Vi) 7+ At Ou™ 2 vp) 7 — At(p" L div(ve)) g, = (U, Vi) 4
+ At((U"—u™ ). Ou™ ™ vp) 2 — At(Eo(thia),Vh) %, (3.3)
(ch, div(u™™h)) 5 = 0,

for all (vh,qn) € Vﬂg x Q. We recall here tha¥y, Vﬂg
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3.1 H(div) conforming methods

Next, using (3.1) in the semi-discrete method (2.5), weothtice the fully-discrete approximation as:
Find (ul™, phtt) € Vi x Qp such that

(U vh) 7, + At(UR- Onup ™ vh) 7, — At S ((uf-m)[up™ T, fvab)r
Fesl
—At(pythdiviv) g, = (URvhg.  (34)
(an div(up™™)) 5 = O,

for all (vi,0h) € Vi x Qn. Note that we eliminated the nonlinearity of the problenngghe previous
approximation. Also, it follows from the proof of Lemma 2Hat when we takgy, := uﬂ“ in (3.4), we
have

12 1
HUR+ |||_2(Q) = (UR’UE+ )e7h7

which establish thatul || 2 o) < [[uplliz(q), thatis, the method (3.4) is stable.
Our next goal is establish an error estimate for the velocity

THEOREM3.1 Assume that € W3*([0,T] x Q)9 is uniformly bounded. Also, given an integel: 1,
suppose thatlp € H*(Q), uy € L?(0, T;H*}(Q)), anduy € L?(0,T;L%(Q)). Then, there exists
C > 0, independent dfi, such that

[u" = Upll2(0) < CexpCCyT) (W +At)Au), forall 0<n<N,

with Cy == [|ullwi=(j07]x)- AlsO, where

AU = (WT +GT¥2)|uell 2 rmkai0)) + CaVTIIU 20Tz + VTl 20 7:2(0))
+ (GuT + h)[uol| ki1 -

Proof. We begin by subtracting equation (3.3) from equation (3dgther with the fact thdtu" 1] =
Ooné&},, in order to obtain the error equation

(€57, Vh) g5 + At(u" Opu™* — up- Dhug ™, vi) 7, — At S ((uR-m[el™ 1 {vn})e
Fed

— At = pit L div(ve)) 5 = (U= Ufvh) g, + (TRUM Y —u™ L vh) 5
+ AU = U DU ) g, — A S (U n) DR = u™ L fvn e
Fesl
— At(Eo(thi1), Vn) 7, (3.5)
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Now, we takev, := €l and using that ditg]*1) = 0 in Q, it follows that

el P ) = —AtU-Oau™* —up- Ohup ™ el ) 4 + At 5 (up-n)[ef 1. {el* h)r

Feﬂ
I1
I2
+ (un_ uﬂaelr}+l)% + (,—lﬁ(umrl) _ un+1 n+1)j + At(( n+1) Du”*l,e{]“)gh
(T AU — UM {el e — At(Eo(tni1), €)Y 4, (3.6)
Feﬁ
I3
which, in similar way to (2.13), we note that
|1+ |2 _ _At(un.Dh{unJrl n+1 e{]“rl _ u _uh) D ” ( n+l) eun+l)%

< At{CulIOn{ KUY = U™ z1g) + CCall MKW = Wl 2
+ CGillelllza) el ey (37)

where, we used thau"|| o) < Cy and ||On/Tg (u“+1)|||_m < CG,. Also, follows (2.14) and using
(2.15), (2.16) and (2.9), we have

2
ls < CAt ¢ hY|TKu™) —u™ oo ( > hF”{eﬂ}HLZ(F)
Feé

+ 7" e (zhpﬂum ”+1>_un+11u||fz<F>> (zhpu{ﬁ“}m )
Feé&) Fe&l

< CCuAt{ €l z(q) +hHITRU™Y) — U™ | 20
+ IO K™Y = 0™ 2 }Ih 20 (3.8)
On the other hand, we return to (3.6), and observe
HeEHHEz(Q) < {Heun|||_2(g) + [T =) — (U - U")[li2(q) + CuAt[[u™* —u"| 2(q)
+ At Eoltn-1) |z 1€} 2y + (12+12) +
which, replacing (3.7) and (3.8), we deduce that

el 20y < (1+CCuAY) [l€]llizq) + ||/7k(un+1—un)—(Un+1—un)||L2(Q)
+ CCut{ MU — 07 z(g) + UMK = U™ 2 g

+ (O™ - u““}HLz(Q)} + At Gyl = ) + [Eolts) iz |-
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Next, using that
W oW (x) = Xwﬂuamdg (3.9)
together with (2.8), it follows that n
AW ) - @ ) < O [ k() sy B

n

Similarly, we can show
ALC U™ " 2y < Ath/ lue(s. )l 2o ds
and, from (3.2),
BtEa(tn o, < €At [ Jun(s) iz ds.
In addition, using that
umix) = uo(x)+/0tn+lut(s,x)ds, (3.10)
and (2.8), we have
N - gy < ol + [ (s e 8]

Analogously, we can show

CCuat { T = ") + M MKW = U™ Yo+ [On{ KU — 0™ 2 |

< Cuat{ Juglheray + [ 1t(s o s}
Therefore, gathering together all the above equations,eseck that

el 2@ < (1+CCuat)||elllzq) + C(At+h)B(u,n), (3.11)

where

Bun::tv lue(s, umwgm+g/ lue(s )z m+/ (5,2 2(0) A

+ oG { Jualesiay + [ I sy 85}

Now, from the recurrence relation (3.11), we obtain that
n-1

He{]HLzm) < (1+Ccga)” ||eu|||_2 +C{Z)(l—I—CuAt)iB(u,n—l—i)}(hk—i—At)

n—-1
< C(14+CGAt)"(hk+At) {h||uo||Hk+1(Q) + Z} B(un—1— i)}
i=

CuT\" & nt :
C<1+CT) (h —l—At) hHUoHHk+1(9>+ %B(U,n—l—l) .
i=
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Finally, noting that

n—1

3 Bun-1-1 h/ lue(s ) lgeerca ds+Cu/ lue(s, )l 2 ds

[ (s )l @y s+ Gt { ol osiay + [ T sy d

the result now follows by using Cauchy-Schwarz inequality. O
Now, we establish the a-priori error estimate for the pressand for that we first consider the next
result.

LEmMMA 3.1 Assuming the hypothesis of the previous theorem we Hevestistence of & > 0, inde-
pendent oh, such that forall G n < N

n+1_ n+1 n n
u up'™  u"—up

< CGyat(u)expCCyT) (hk1+ ﬂ) A(u)

At h
L2(Q)
+ C{1+Chat(u)} (h+ At) Dn(u),
where
Chat(u) := exp(CCT)h™ 92 (h*+ At)A(u) + Cy
and
Dn(u) = Ut e, 1. 1x1@)) + 16t Lot g0 22(0)) T Ut g g0, 1:02(0))

+ ||U|\L°°(tn,tn+1:Hk+1(Q))'

Proof. From the error equation (3.5) we have

(GnVn)g, = —(U"-Opu™ —ul-Onup ™ vi) 5 + 5 ((UR-m U™t —up™ T, {va})e
Feé"

1
(”E(unJrl _ Un) _ (un+1 _ un)7vh)yh

n+1 n+1
+ (P =Py div(vi)) 4, + 2

+ ((U"—u™) - 0u™ ™ vn) 2 — (Bo(thi1), V), ¥ Vh € Vi,
wheredy, ;= A (el"* — €]). Then, takings, := &, and using that dig,) = 0, we deduce that

2 1
10nl1Z2gy < I1U Oh™ — Ul Onl 4| 2 g IBnl 20

1/2 1/2
+Clluflli=(a (thlun[u"H ug+1]]]||ﬁZ<F)) (thI{éhHI )

Feé) Feé
N /']k un+l_un B un+1_un
h At At

+ Cyfu™t — U™l 20y l10nllL2(q) + [[Eo(tn+1) 20y [|Onlliz o)

[nll2(0)
L2(Q)
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Now, we follow the proof of Lemma 2.2, to obtain that
Ju™- Opu™t — up - DhUEHHLZ(Q) < Gyfju Uﬂ|||_2(g)
+ C (2 eflee) +Co) N HIE 2y + IO ThWU™ D) — U™ 2}, (3:12)

and from (2.15) and (2.20) we have

2
uflle ) ( thHqu““—uR“mEz(F)) < C(h /216 | 2() + Cu){ N U™ = U2 o
Feé)

+h KU — a2 gy + |OR{ TR(UM) — un+l}HL2(Q)} : (3.13)
Next, applying (3.12) and (3.13), together with (2.16)pitdws that

10nllL2(q) < Cu|\Un—Uﬂ||L2(Q)+Ch71(h7d/2|\eﬂ||L2(g)+Cu)||un+l—uﬂ+1||L2(Q)
+C(hfd/2||eﬂ|\|_2(9)+CU){h71H”E(Un+1)—Un+l|\|_2(9)

1 n n+1 n
K¢ n+l n+1 k utt—u u —u
+||Dh{nh(u )—u }||L2(Q>}+th (T) —<T)

L2(Q)
+ Gyl U™ =" 200y + [Eo(tnra) I 2(0) -

On the other hand, using the fact that

un+1 _ UR+1 u" — uﬂ H un+1 —_un un+1 —un
_ < |ms( )-( ).+ 18,

At

L2(Q)
we have

n+1 n+1 n n
u — Uh B u — Uh
At At

< Cullu" = uill2(g
L2(Q)

+ Ch Y (Y2} 2 ) + Cu) U™ = Ul 20
+C(h™ 2|} 2(q) +Cu){h71||”ﬁ(un+l) —u" 20

Koo nbly o ndl k M _ M
+ | Op{ 3™ —u }|L2(Q)}+2th( At At L2(Q)

+ Gyl U™ =" 2(0) + [[Eo(tnra) [l L2q) - (3.14)

Next, we proceed as in the last part of the proof of Theoreml8deed, from (2.8), we obtain that

TR ) — U™ 2 g) + I Bn{ FTRU™Y) — U™} 2 )

< Chk|\u“+1||Hk+1(Q) < ChkHu||L°°(tn,tn+1;Hk+1(Q))
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Similarly, from (3.9) and (2.8), we have
K un+:L_ un B un+1_ un
th < At At

In addition, using again (3.9) and (3.2), we deduce, respygtthat

tn 1
< Chk“{ / ue (s, - ds}
o A [ue (s, ) [lkr1(q)

1
< CHY ||Ut|\Lw(tn,tn+1;Hk+1(Q))'

ntl_ n 1
W=z, <[ s i) 85 <€ At etz
and
[Ealtrliz@, < € [ lun(s)liziayds € CAMeloqygy a2y
The result now follows after applying the previous theorerd the last four estimates into (3.14).0]

THEOREM3.2 Assume the hypothesis of Theorem 3.1. In addition, ssefiatp € L2(0, T; H*1(Q)).
Then, there exist€ > 0, independent dfi, such that for all < n < N the following estimate holds

A
[P"—Phllze) < CChat(u)expCGT) (h“+Ft> A(u)
+ C{1+Chat(u)} (h+ At) Dn(u),
+CHYp(ta. ) |y o)

Proof. We proceed as in the proof of Theorem 2.2. Indeed, from eqoaton (3.5), we deduce that

(ep",div(vh) 5, = At (UM —upth) — (U= ), Vi) g, + (U Ohu™ ™ = ufl- Onup ™, vi) 4,
(U O v — S (R [ ] b
Fed

+ (Z5(P™) = P div(v) 4, + (Eoltns 1), Vn) 4

T Vi N T T L
< At [IVhllL2(@) + [[u"- Opu™* —ug- Opup ™ 20 IVhllLz @)
L2(Q)
1/2 1/2
+Clluglle=@) | Y hElﬂﬂluMl—UﬂHﬂ]HEz(F) > hF“{VhH’HEz(F)
Fedl Fedl

+ Cylju™t — Ul 2(0) IVnlliz(@) + | 2K (™) - pn+l|\|_2(g) [div(vh)|| 2(0)

+ [Bo(ths1)ll2(0) IVhlL2 o)
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Thus, using (3.12), (3.13) and (2.16), we obtain that

n+1_ ,n+1 n_ n
u Up _u up

At At

+ Cylju" - URHLZ(Q)

(eht divivh) s < C {
L2(Q)

+ Ch Y V2|l 2q) + Cu) U™ = uf 20
+ C(hid/ZHeGHLZ(Q) +CU){h71H U™t — un+1HL2(Q)
+ RS = U™ 2(g) |

+ Cul| Or{ ITRU™) — U™ 2y + Cullu™ = U™ 2
+ | 2" - anHLZ(Q) + ||E0(tn+l)||L2(Q)}”Vh”H(div;Q)a

which, together with the inf-sup condition (2.22), Lemma,3Theorem 3.1, (2.10), and the last esti-
mates obtained in the proof of Lemma 3.1, we can completertef p O

We end this section by remarking that we can extend the pue\aoalysis for the upwind version
of the method (cf. (2.24)) given by: Fin@) ™, pi'™*) € Vi, x Q, such that

(UR"EVh) 7, + At(UR - Onup ™ vh) 5 — At S ((uf-n) [up ™1, fvn})r
Fesl

+4t Y (Jup-n[[up™ 1. Ival)e — At(py . div(vn)) 5 = (Ufvn)z,  (3.15)
Fed)

(ah, div(uy™) 5 = O,

for all (vh,qh) € Vh x Qp.

3.2 DG schemes

Here we only mention that when we combine the techniques insgekctions 2.2 and 3.1 we can also
obtain the same error estimates for DG schemes (2.29) a#@d) (2Che fully-discrete versions of both
methods, using (3.1), are given by: Fingle Vﬂg andpp € Qp, such that

(U™ vh) 7, + AL((UR)"- Onup ™, vi) 4, + @At Y heH(upt-n], [va-n])e

Fesl
=AY (((up)"-m) [up™ T, fvnh)e — At(py™, diva(vn)) 4
Fed),
+ At z'<[[Vh'”]]7{pﬂ+1}>F = (up,vh) 4,
Fed
(an, diva(uy ™), — 3 (Tup™ nl{anhe = O,
Fed)

un(0,X) = uno(x) in Q, (3.16)
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for all (vy,0pn) € Vﬂg x Qp, for the central flux, and: Findj, € Vﬂg andpp € Qn such that

(UR™.vn) 7, + At((UR)"- Ohup ™ vn) 7, + @At 3 he([up™-n], [va-n])e

Feé"
—AUY (U™ ) [UR T v h)e + At S ()"0l [ur 1, [v D
Fegl Feé"
AR divn(vh)) 4, + At Y (ve-n] AP HE = (URvh) %,
Fes)
(an, diva(uy™), — 3 (lup™-nl.{anb)r = O,
Fed)
un(0,X) = Uno(x) in Q, (3.17)

for all (v, ) € V29 x Qy for the upwind flux.

THEOREM3.3 Assume that € W3*([0,T] x Q)9 is uniformly bounded. Also, given an intede 1,
suppose thatp € H*2(Q), uy € L2(0, T; HK2(Q)), uy € L?(0, T;L?(Q)), andp € L®(0, T; HK1(Q)).
Then, there exist€ > 0, independent dfi, such that

Hu”—uﬂHLz(Q) < CexpCC,T) (1 At)A(u,p), forall 0 < n <N,

whereCy = [[U[lw1e (0 1]« o) @Nd

Au,p) = (WT+CT¥?)|ull 20 mme2(0) + CuVT Uz T2() + VT UtllizoT2(0)
+ (CuT +h) [Uoller2(0) + VTIIPllL=(o:mk2(q) -
Proof. It follows straightforwardly from the proof of Theorems Z8d 3.1. O

THEOREM 3.4 Assume the hypothesis of Theorem 3.3. In addition, asghat the parameter lies in
(0, apAt), for someap > 0 independent oifi. Then, there exist€ > 0, independent df, such that for
all 0 < n< N the following estimate holds

At
97~ Mz < COnaluplexCaT) (H+ 4 ) Aup)
+C{1+Chat(u,p) } (H+ At) Dn(u, p),
+ CHY p(tn, ) [l )

where
Chat(u, p) = expCCyT)h ¥ (h*+ At) A(u, p) + Cy
and
Dn(u,p) = h2”ut||L°°(tn,tn+1;Hk+2(Q)) + Ut b 0, 020 T Yttt 0, 1:02(0))
+ Ul ot s 15155 2(2)) F IPlLo(t g 231K+ Q)) -

Proof. Similar as the proof of Theorem 3.2. O
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4. Numerical results

In this section, we present some numerical results for tweedisional problem (i.ed = 2), illustrating
the performance of the fully discrete schemes analyzeddtid®es 3.1 and 3.2. In all the computations
we consider four uniform meshes that are Cartesian refinesoéa domain defined in terms of squares,
and then we split each square into two congruent triangléso, Ave consider polynomial degr&es
{0,1,2} and for the DG schemes, we use omly= 1. In addition, the numerical results presented
below were obtained using a MATLAB code, where the zero irtbgean condition for the pressure is
imposed via a real Lagrange multiplier.

In Example 1 we follow Liu & Shu (2000) and consider the TayGneen vortex (see Chorin (1968)).
That is, we sef2 := [0, 271, and the exact solution is given by

u(t,x) = (Si“(xl) cosxp)e /A, —Cos(xl)sin(xz)e*Z‘/A)t7

p(t,x) = %(cos(le)mos(zxz))e*“*“,

for all x 1= (x1,%2)* € Q andt € (0,1), whereA = 100. It is easy to check thatis divergence-free and
Jo p=0. Here, we compute the approximatioruadtt = 1, where we considett = 1/160= 0.00625.

In Table 1 we present the results obtained for Raviart-Thesnhemes (3.4) and (3.15), whereas in Table
2 we use DG schemes (3.16) and (3.17). For the theory presenpeevious sections we assume that
k > 1, however here we also uke= 0 in order to appreciate the behavior of the proposed schames
practice.

We see that the estimates we obtained using the Raviart-ahapaces and the central flux are
sharp for the velocity whek = 1. However, fork = 0, k = 2 the convergence rates are higher than
predicted theoretically. In particular, we could not preemvergence fok = 0, however numerically
the method seems to be converging with order 1. SimilarlyDiG method using the central flux the
estimate we gave seem to be sharp for the velocitkfer0 andk = 2 (notice that the velocity space
contains polynomials of degrde+ 1 for the DG space), but numerically the cdse- 1 does better
than the theory predicts. Finally, using the upwind flux fotlbthe Raviart-Thomas method or the
DG method one observes, as expected, numerically optinmakcgence rates for both the velocity and
pressure variables. Unfortunately, we cannot prove thpgmal error estimates.

For Example 2 we consider the double shear layer problenmtiiken Bell et al. (1989) (see also
Liu & Shu (2000)). We solve the Euler equation (1.1) in the dam@ := [0,2r1? with a periodic
boundary condition and an initial data givenimy(x) = (u9(x),u3(x))*, with

00 — { tanh((x; — 11/2)/p)  Xp < T

O .
uz (x anh(37/2—x3)/p) o> 7T and uy(x) = dsin(xy),
for all X 1= (x1,X%2)* € Q, where we takg = 11/15 andd = 0.05.

In Figures 16, we present some contours of the vortiaiy := curl(up) = dy, U — dx,U1 att =6
andt = 8 to show the resolution. We use 99 contours betweér® and 49, using the previous four
meshes, wherk € {0.74050.3702 0.2468 0.1851}. For this Figures, we use the DG scheme with the
central flux (cf. (3.16)). Analogously, in Figures-12 we use the DG scheme with the upwind flux
(cf. (3.17)). In all this figures, we takét = 8/200= 0.04. In order to save space, we not report here
the results using the divergence conforming methods. Heweve remark that the Raviart-Thomas
schemes (3.4) and (3.15) behave very similarly as the DG adstfor this example.
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TABLE 1. History of convergence for Example 1, Raviart-Thomas sehwith t= 1.

Central flux Upwind flux

k|l h do.tf | u=unlliz) | TP=phllze) || Tu—unllzi@) | [1P—Pnllza)
error order| error order| error order| error order

0.7405| 745 1.14e-0 —— | 4.69e-1 —— 1.50e-0 —— | 8.69e-1 ——

0 0.3702| 2929 5.70e-1 1.00| 2.08e-1 1.17 || 8.82e-1 0.76| 5.17e-1 0.75
0.2468| 6553 3.80e-1 1.00| 1.35e-1 1.07 || 6.29e-1 0.83| 3.68e-1 0.84
0.1851| 11617 2.85e-1 1.00| 1.00e-1 1.04 || 4.90e-1 0.87| 2.86e-1 0.88
0.7405| 2353 5.84e-1 —— | 1.48e-1 —— 1.75e-1 —— | 9.86e-2 ——

1 0.3702| 9313 2.97e-1 0.98| 6.65e-2 1.15| 4.40e-2 2.00| 2.68e-2 1.88
0.2468| 20881 1.98e-1 1.00| 4.32e-2 1.07|| 1.94e-2 2.01| 1.22e-2 1.94
0.1851| 37057 1.49e-1 1.00| 3.22e-2 1.02|| 1.09e-2 2.01| 6.91e-3 1.96
0.7405| 4825 2.15e-2 —— | 6.53e-3 —— 1.28e-2 —— |5.19e-3 ——

2 0.3702| 19153 3.31e-3 2.70| 9.53e-4 2.78|| 1.53e-3 3.06| 6.80e-4 2.93
0.2468| 42985 8.61e-4 3.32| 3.09e-4 2.78|| 4.36e-4 3.09| 2.13e-4 2.87
0.1851| 76321 3.52e-4 3.11| 1.39e-4 2.78 || 1.79e-4 3.08| 9.49e-5 2.81

TABLE 2. History of convergence for Example 1, DG scheme withit

Central flux Upwind flux
ki h d.o.f Tu—Unl[ 2(0) TP—pnllizo) || Tu=Unllizio) [ TP—PnllLz(o)
error order| error order| error order| error order
0.7405| 2017 5.13e-1 —— | 3.83e-1 2.85e-1 3.81le-1 ——

0.3702| 8065 2.3%9e-1 1.10 1.8%e-1 1.02 | 8.17e-2 1.80| 1.88e-1 1.02
0.2468| 18145 1.57e-1 1.03] 1.25e-1 1.01|| 3.85e-2 1.85| 1.25e-1 1.01
0.1851| 32257 1.18e-1 1.01] 9.39e-2 1.01|| 2.24e-2 1.89| 9.34e-2 1.01
0.7405| 4321 4.48e-2 —— | 4.83e-2 —— 3.41e-2 — | 4.80e-2 ——
0.3702| 17281 6.48e-3 2.79| 1.20e-2 2.01 || 4.60e-3 2.89| 1.20e-2 2.00
0.2468| 38881 2.01e-3 2.89| 5.32e-3 2.00 || 1.37e-3 2.99| 5.32e-3 2.00
0.1851| 69121 8.72e-4 2.90| 3.00e-3 2.00 || 5.75e-4 3.01| 2.99e-3 2.00
0.7405| 7489 4.83e-3 —— | 4.14e-3 —— 2.23e-3 —— | 4.12e-3 ——
0.3702| 29953 5.89e-4 3.03| 5.52e-4 2.91 | 1.49e-4 3.90| 5.50e-4 2.91
0.2468| 67393 1.74e-4 3.00| 1.76e-4 2.82| 3.10e-5 3.88| 1.71e-4 2.89
0.1851| 119809 7.36e-5 3.00| 8.31e-5 2.61| 1.03e-5 3.83|7.82e-5 2.71

We see that the method using the upwind flux seems to do mutdr liedin the method using the
central flux. In particular, when usirig= 2 and using the upwind flux the method seems to do quite well.
In fact, the method seems to be comparable to DG methods tigngrticity-potential formulation and
high-order time integrators developed by Liu and Shu in Li&l&u (2000).
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FiG. 2. Example 2 (DG + central flux), contours for the vorticititwk = 1 andt = 6.
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FIG. 4. Example 2 (DG + central flux), contours for the vorticititwk = 0 andt = 8.
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FiG. 6. Example 2 (DG + central flux), contours for the vorticititwk = 2 andt = 8.
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FiG. 8. Example 2 (DG + upwind flux), contours for the vorticitytivk = 1 andt = 6.



32 0f 35 J. GUZMAN, F.A. SEQUEIRA, C-W. SHU

FiG. 9. Example 2 (DG + upwind flux), contours for the vorticitytivk = 2 andt = 6.

5. Conclusions and futuredirections

In this paper we have developed finite element methods fenipeessible Euler equations. We prove
error estimates, however, numerical experiments suglgasbur analysis is not sharp, at least for the
upwind methods. It would be interesting to see if a new amslyan prove the optimal estimates for
the upwind schemes. Our fully discrete methods are impllaithe future we would like to consider
numerical methods that treat the nonlinear part expliéitlprder to make the method more efficient.
In addition, in this work we used only zero boundary conditsidan order to perform the analysis in a
cleaner way. However, the results presented here can hedextéo the case of nonzero velocity on the
boundary.
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FiG. 11. Example 2 (DG + upwind flux), contours for the vorticitjthwk = 1 andt = 8.
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FiG. 12. Example 2 (DG + upwind flux), contours for the vorticitjthvk = 2 andt = 8.
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