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Abstract

In this paper, we focus on error estimates to smooth solutions of semi-discrete discontin-

uous Galerkin (DG) methods with quadrature rules for scalar conservation laws. The main

techniques we use are energy estimate and Taylor expansion first introduced by Zhang and

Shu in [25]. We show that, with P k (piecewise polynomials of degree k) finite elements in

1D problems, if the quadrature over elements is exact for polynomials of degree (2k), er-

ror estimates of O(hk+1/2) are obtained for general monotone fluxes, and optimal estimates

of O(hk+1) are obtained for upwind fluxes. For multidimensional problems, if in addition

quadrature over edges is exact for polynomials of degree (2k + 1), error estimates of O(hk)

are obtained for general monotone fluxes, and O(hk+1/2) are obtained for monotone and

sufficiently smooth numerical fluxes. Numerical results validate our analysis.
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1 Introduction

In this paper, we present error estimates for the semi-discrete discontinuous Galerkin (DG)

methods with quadrature rules for scalar conservation laws in multidimensional case:

∂tu+ ∇ · f(u) = 0, (x, t) ∈ Ω × (0, T ], (1.1a)

u(t = 0) = u0, x ∈ Ω; (1.1b)

here x ∈ Ω ⊂ Rd and f(u) = (f1(u), f2(u), · · · , fd(u)). We do not pay attention to boundary

conditions in this paper: thus the solution is considered to be either periodic or compactly

supported. The analysis in this paper is for smooth solutions of (1.1). Discontinuous solutions

with shocks are not considered.

The first discontinuous Galerkin method was proposed by Reed and Hill [17] in the

framework of neutron transport. It was then developed for conservation laws by Cockburn

et al. in a series of papers [6, 5, 4, 3, 8], which use DG discretization in space and explicit

total variation diminishing (TVD) Runge-Kutta (RK) discretization in time [19, 20, 21]. For

the detailed description of this method, we refer readers to the lecture notes [2] and the

review paper [9].

We now make a brief review on related error estimate results of the DG methods in the

literature. For smooth solutions to linear conservation laws, error estimates have been given

in [15, 13, 18, 16] for full DG discretization of steady problems or by using space-time finite

element spaces for time dependent problems, and for the semi-discrete version of the DG

method for time dependent problems in [7]. The first result for error estimates to smooth

solutions of fully discrete RKDG methods for nonlinear scalar conservation laws was obtained

by Zhang and Shu in [25] where the second-order Runge-Kutta time discretization is used.

The main techniques are Taylor expansion and energy estimate. With careful treatment to

boundary terms, a priori error estimates of O(hk+1/2+τ 2) are obtained for general monotone

fluxes, and optimal error estimates of O(hk+1 + τ 2) are obtained for upwind fluxes for the

P k finite element spaces, under standard CFL condition for k = 1 and more restrictive
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CFL conditions for k > 1. Later, the same authors presented a priori error estimates for

symmetrizable systems and the third-order Runge-Kutta time discretization under standard

CFL conditions in [26] and [27]. For more details, please refer to [27].

In practical computations, one has to replace the integrals over elements and (in multi-

dimensional cases) edges by quadrature rules in the DG scheme. However, there exists very

limited work discussing the effects of quadrature rules. In [3], the truncation error of nu-

merical integrations is analyzed for the semi-discrete DG method for nonlinear conservation

laws with sufficiently smooth u and f , under the assumption that the quadrature rules over

the elements and edges are exact for polynomials of degree (2k) and (2k + 1), respectively.

Recently, in [23, 22], the authors discussed the effects of quadratures in DG method for non-

linear convection-diffusion equations in 2D and 3D cases. We remark that the estimates in

[23, 22] could not be applied to the pure convection case (i.e., nonlinear conservation laws),

since the constant in their estimates would blow up as the diffusion coefficient tends to zero.

In this paper, we perform a priori error estimate to smooth solutions of semi-discrete DG

methods with the P k finite element space of piecewise kth degree polynomials and quadrature

rules for scalar conservation laws (1.1). The main techniques we use in this paper are Taylor

expansion and energy estimate first introduced by Zhang and Shu in [25]. We first establish

an energy equality as is customary in error analysis in finite element methods, and then split

the equality into several parts. The first part only involves error with exact integrals and

has been treated in [25]. The second term is somewhat like “truncation error” and has been

estimated in Lemma 2.2 in [3]. Our main contribution is the careful treatment to terms on

quadrature errors in elements and edges. For the terms on quadrature errors in elements,

we perform the Taylor expansion and split into several parts and then estimate them one

by one using a key lemma which characterizes error of numerical integrations. The same

technique could also be applied to the terms on quadrature errors in edges, provided that

the numerical flux is sufficiently smooth (e.g. Lax-Friedrichs flux). However, most numerical

fluxes are not smooth enough but only locally Lipschitz continuous (e.g. Godunov flux) or
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only have up to first-order derivative (e.g. Engquist-Osher flux). Thus, the same technique

could not be applied here. To fix this problem, we borrow some terms from the first part

on the error with exact integrals to eliminate some “trouble” terms here. Finally, under the

assumptions that u and f are sufficiently smooth, and the quadrature over elements is exact

for polynomials of degree (2k) and the one over edges is exact for polynomials of degree

(2k + 1) (in multidimensional case), the L2-norm error estimate is established.

The paper is organized as follows. In Section 2, we introduce some basic notations, the

semi-discrete DG method with quadrature rules, and some useful lemmas. In Section 3, we

derive the error equations and some key lemmas for the error estimate, while the detailed

proofs of some lemmas are left in the appendix. Numerical results are reported in Section 4.

Some concluding remarks are given in Section 5.

2 Preliminaries

2.1 Basic notations

Let us assume that the domain Ω is polygonal, and let Th for h > 0 be a family of quasi-

uniform triangulations of Ω with shape-regular elements K. Let Eh denote the union of edges

(called points in 1D and faces in 3D) of elements K ∈ Th, i.e., Eh = ∪K∈Eh
∂K.

Noticing the periodic or zero (compactly supported) boundary conditions, we ignore the

boundaries and assume that every Γ ∈ Eh is shared by two elements from Th for convenience.

Following the notations in [24], we could choose a fixed vector β, which is not parallel with

any edge Γ ∈ Eh, and then for each Γ, define a fixed unit normal vector nΓ which satisfies

nΓ · β > 0, and designate the “plus” side to be the side that nΓ is the inner normal vector

and the “minus” one to be the opposite side. For piecewise smooth function v ∈ L2(Ω), we

denote trace of v|K−

Γ

and v|K+

Γ

on Γ by v|−Γ and v|+Γ , respectively. We introduce the jump on

the edge Γ

[v]Γ = v|+Γ − v|−Γ ,
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and the average

v̄Γ =
1

2
(v|+Γ + v|−Γ ).

In what follows the standard notations in Sobolev spaces W k,p(Ω) and Hk(Ω) are used.

The notation ‖·‖X and |·|X denote a norm and a semi-norm in the space X, respectively.

For simplicity, we use ‖·‖p denote the norm in Lp(Ω) for 1 ≤ p ≤ ∞. Specifically for p = 2,

we let ‖·‖ and (·, ·) denote the norm and inner product in the space L2(Ω). We shall often

use the following broken Sobolev spaces with respect to the triangulation Th,

W k,p(Th) = {v ∈ L1(Ω) : v|K ∈ W k,p(K), ∀K ∈ Th},

equipped with the norm

‖v‖W k,p(Th) =

(∑

K∈Th

‖v‖p
W k,p(K)

)1/p

,

and the semi-norm

|v|W k,p(Th) =

(∑

K∈Th

|v|pW k,p(K)

)1/p

,

for 1 ≤ p <∞, and

‖v‖W k,∞(Th) = max
K∈Th

‖v‖W k,∞(K) ,

|v|W k,∞(Th) = max
K∈Th

|v|W k,∞(K) .

For the piecewise smooth function v ∈ L2(Ω), we define the Lp-norm on the edge Γ ∈ Eh

for 1 ≤ p <∞:

‖v‖Lp(Γ) =
(∥∥v−

∥∥p

Lp(Γ)
+
∥∥v+

∥∥p

Lp(Γ)

)1/p

,

and

‖v‖Lp(Eh) =

(∑

Γ∈Eh

‖v‖p
Lp(Γ)

)1/p

.

The finite element space is defined by

V k
h = {v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Th},

where P k(K) denotes the space of polynomials in K of degree at most k ≥ 0.
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For v ∈ L2(Ω), we denote by Pv ∈ V k
h the L2-projection of v on V k

h which satisfies

(Pv − v, ϕh) = 0, ∀ϕh ∈ V k
h . (2.2)

2.2 Semi-discrete discontinuous Galerkin methods

In this part, we follow [3] and define the semi-discrete DG methods for (1.1). The approxi-

mation solution of (1.1) for t > 0 is determined by,

∫

K

(uh)tvhdx−

∫

K

f(uh) · ∇vhdx+

∫

∂K

f̂ · nK(uh)vhds = 0, ∀vh ∈ V k
h , ∀K ∈ Th, (2.3)

where nK is the outward unit normal vector to ∂K, the boundary of K. The numerical flux

f̂ · nK(uh) depends on the normal vector nK and traces uint
h and uext

h which are evaluated

from the inside and outside (inside the neighboring element) of the element K, respectively,

i.e.,

f̂ · nK(uh) ≡ f̂ · nK(uint
h , uext

h ).

The function f̂ · n(u, v) satisfies the following conditions:

1. It is locally Lipschitz continuous with respect to u and v.

2. It is consistent with the flux f(u), i.e.

f̂ · n(v, v) = f(v) · n.

3. It is nondecreasing with respect to u and nonincreasing with respect to v.

4. It is conservative, i.e.,

f̂ · n(u, v) + ̂f · (−n)(v, u) = 0.

In practical computation for multidimensional problems, the integrals in (2.3) often have

to be approximated by quadrature rules

∫

K

Fdx ≈

M∑

j=1

ωjF (xKj) |K| , (2.4a)
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∫

Γ

Gds ≈
L∑

j=1

ωjG(xΓj) |Γ| , (2.4b)

for F ∈ C(K) and G ∈ C(Γ). Here ωj, ωj are integration weights and xKj ∈ K, xΓj ∈ Γ

are integration points. Finally, the semi-discrete DG scheme with numerical integrations is

obtained

∫

K

(uh)tvhdx−

M∑

j=1

ωjf(uh(t, xKj)) · ∇vh(xKj) |K| (2.5)

+
∑

Γ∈∂K

L∑

j=1

ωj f̂ · nK(uh(t, xΓj))vh(xΓj) |Γ| = 0, ∀vh ∈ V k
h , ∀K ∈ Th.

We remark that the quadrature in edges is not needed in the 1D case. As usual, the initial

value of uh is taken as the L2-projection of u0, i.e., uh = Pu0.

2.3 Some auxiliary results

Some useful lemmas are listed in this part. The L2 norm in the boundary ∂K of a function

could be bounded by some norm in K with the following multiplicative trace inequality:

Lemma 2.1 (Multiplicative trace inequality). There exists a constant C > 0, independent

of v, h and K, such that for all K ∈ Th, v ∈ H1(K) and h ∈ (0, h0),

‖v‖2
L2(∂K) ≤ C(‖v‖L2(K) |v|H1(K) + h−1 ‖v‖2

L2(K)).

Cf. Ref. [10] Lemma 3.1 for a detailed proof.

For the L2-projection P defined in (2.2), it is easy to show (cf. Theorem 3.1.4 in [1])

Lemma 2.2 (Interpolation inequalities). Given an integer 0 ≤ m ≤ k + 1, there exists a

constant C > 0, independent of h, such that for any v ∈W k+1,∞(Ω),

‖v − Pv‖ ≤Chk+1 |v|Hk+1(Ω) , (2.6a)

|v − Pv|W m,∞(Ω) ≤Ch
k−m+1 |v|W k+1,∞(Ω) . (2.6b)

We also present some inverse properties of the finite element space V k
h that will be used

in our analysis. For more details, we refer reader to Theorem 3.2.6 in [1].

7



Lemma 2.3 (Inverse inequalities). There exists a constant C > 0, independent of h, such

that for any vh ∈ V k
h ,

|vh|H1(Th) ≤Ch
−1 ‖vh‖ , (2.7a)

‖vh‖L2(Eh) ≤Ch
−1/2 ‖vh‖ , (2.7b)

‖vh‖∞ ≤Ch−d/2 ‖vh‖ . (2.7c)

Here d is the dimension of the space Ω ⊂ Rd.

For convenience, some notations denoting the error of quadrature (2.4) are introduced

EK(F ) =

∫

K

Fdx−

M∑

j=1

ωjF (xKj) |K| , (2.8a)

EΓ(G) =

∫

Γ

Gds−
L∑

j=1

ωjG(xΓj) |Γ| , (2.8b)

for F ∈ C(K) and G ∈ C(Γ). With the aid of the Bramble-Hilbert lemma (cf. Theorem

4.1.3 in [1]), it is easy to obtain the following lemma which is useful for estimating the error

of numerical integration (cf. Lemma 4.7 in [22]).

Lemma 2.4 (Error of numerical integration). Let s ≥ 1, p ≥ 0 be integers, and 1 ≤ q ≤ ∞.

(i) Assume that the quadrature over element (2.4a) is exact for P s+p−1(K). Then there

exists a constant C > 0, such that for any Q ∈W s,∞(K) and v ∈ P p(K),

|EK(Qv)| ≤ Chs+d(1− 1

q
) |Q|W s,∞(K) ‖v‖Lq(K) . (2.9)

Here h denotes the diameter of K.

(ii) Assume that the quadrature over edge (2.4b) is exact for P s+p−1(Γ). Then there exists

a constant C > 0, such that for any G ∈W s,∞(Γ) and w ∈ P p(Γ),

|EΓ(Gw)| ≤ Chs+(d−1)(1− 1

q
) |G|W s,∞(Γ) ‖w‖Lq(Γ) . (2.10)

Here h denotes the diameter of Γ.
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3 Error estimates of the semi-discrete DG methods

with quadrature rules

In this section, we present the main theorem and give the detailed proof.

Theorem 3.1 (the main results). Let u be the exact solution of problem (1.1) and uh be the

numerical solution of the semi-discrete DG scheme (2.5) with the piecewise polynomial finite

element space of degree k ≥ 1 and quadrature rules. Assume that u and the physical flux f

are both sufficiently smooth that u ∈ Ck+2(Ω) and f ∈ Ck+3(R). Denote the corresponding

numerical error by e(x, t) = u(x, t)−uh(x, t). For regular triangulations of polygonal domain

Ω ⊂ Rd, if the quadrature over the elements is exact for polynomials of degree (2k), and that

over the edges is exact for (2k+1) (in multidimensional case), and all the quadrature weights

are non-negative, then for small enough h, there holds the following error estimates:

(1) For the 1D problem,

a) For general monotone numerical flux and k ≥ 1,

max
0≤t≤T

‖e(t, ·)‖L2(Ω) ≤ Chk+ 1

2 . (3.11)

b) For upwind numerical flux and k ≥ 1,

max
0≤t≤T

‖e(t, ·)‖L2(Ω) ≤ Chk+1. (3.12)

(2) For 2D and 3D problems,

a) For general monotone numerical flux and k ≥ 3,

max
0≤t≤T

‖e(t, ·)‖L2(Ω) ≤ Chk. (3.13)

b) For monotone and sufficiently smooth numerical flux and k ≥ 2,

max
0≤t≤T

‖e(t, ·)‖L2(Ω) ≤ Chk+ 1

2 . (3.14)
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Here the positive constant C is independent of h and the approximation solution uh.

Remark 3.1. For 2D and 3D problems, the estimate of O(k+ 1
2
) order holds for “sufficiently

smooth” numerical flux, in the sense that f̂ · n
′

(u, u) ∈ Ck+2(Eh), f̂ · n
′′

(u, u) ∈ C2(Eh) and

f̂ · n
′′′

∈ C(R2). Note that f̂ · n = f̂ · n(v, w) is a function of two variables and thus the

derivatives should be interpreted as the usual multiindex notation (see Lemma 3.4 for details).

Under our assumption on the smoothness of u and f in Theorem 3.1, the local Lax-Friedrichs

flux with the constant α uniform in each edge and the global Lax-Friedrichs flux meet this

condition.

Remark 3.2. Our proof does not work for the finite element spaces of low order degrees

for multidimensional problems (we need k ≥ 3 for general monotone flux with d = 2, 3 and

k ≥ 2 for monotone and sufficiently smooth numerical flux with d = 2, 3). Such restrictive

assumptions are purely needed for the a priori assumption. In practice, it does not seem

necessary as the numerical results in Section 4 show.

Now we give the detailed proof of Theorem 3.1. At the beginning of the proof, we make

the following customary modification on the flux f(u). Suppose the initial solution u0(x)

lies in [m0,M0]. Then, the exact solution u(x, t) is also in this range by the maximum

principle. Thus, with no harm, we could choose the modified flux function f̃ , which is equal

to f on [m0,M0], vanishes outside [m0 − 1,M0 + 1] and belongs to C3(R). For notation

convenience, throughout this paper, we will still denote this modified flux by f and assume

that f ∈ C3
b (R) ≡ C3(R) ∩W 3,∞(R).

Following [25], the following notations for piecewise smooth functions p, q ∈ L2(Ω) are

introduced,

HK(p, q) =

∫

K

f(p(x)) · ∇q(x)dx−
∑

Γ∈∂K

∫

Γ

f̂ · nK(p(x))q(x)ds,

and

H̃K(p, q) =

M∑

j=1

ωjf(p(xKj)) · ∇q(xKj) |K| −
∑

Γ∈∂K

L∑

j=1

ωj f̂ · nK(p(xΓj))q(xΓj) |Γ| .
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Then the semi-discrete DG scheme with numerical integration (2.5) can be rewritten as

∫

K

(uh)tvhdx = H̃K(uh, vh), ∀vh ∈ V k
h , (3.15)

and the sufficiently smooth exact solution u = u(t, x) satisfies

∫

K

utvhdx = HK(u, vh), ∀vh ∈ V k
h . (3.16)

We would like to estimate the error e = u−uh. As is customary in error analysis of finite

element methods, we denote η := Pu − u and ξ := Pu − uh where P is the L2-projection

defined in (2.2). By taking the difference of (3.15) and (3.16), taking the test function vh = ξ

and making summation over all triangulations of Th, we obtain the energy equality

1

2

d

dt
‖ξ(t, ·)‖2 =

∑

K∈Th

(HK(u, ξ)− H̃K(uh, ξ)). (3.17)

With periodic or zero boundary conditions and the conservation of numerical flux, it is easy

to obtain

∑

K∈Th

(HK(p, q) − H̃K(p, q)) =
∑

K∈Th

EK(f(p) · ∇q) +
∑

Γ∈Eh

EΓ(f̂ · nΓ(p−, p+)[q]).

Thus the terms in the RHS of (3.17) could be split into

1

2

d

dt
‖ξ(t, ·)‖2 =

∑

K∈Th

(HK(u, ξ) −HK(uh, ξ)) +
∑

K∈Th

(HK(uh, ξ) − H̃K(uh, ξ)),

=
∑

K∈Th

(HK(u, ξ) −HK(uh, ξ)) +
∑

K∈Th

EK(f(uh) · ∇ξ) +
∑

Γ∈Eh

EΓ(f̂ · nΓ(u−h , u
+
h )[ξ]),

=
∑

K∈Th

(HK(u, ξ) −HK(uh, ξ)) +

(∑

K∈Th

EK(f(u) · ∇ξ) +
∑

Γ∈Eh

EΓ(f(u) · nΓ[ξ])

)

+
∑

K∈Th

EK((f(uh) − f(u)) · ∇ξ) +
∑

Γ∈Eh

EΓ((f̂ · nΓ(u−h , u
+
h ) − f(u) · nΓ)[ξ]),

,S1 + S2 + S3 + S4.

The first term S1 only involves the error with exact integral and has been well treated

in [25]. The main technique is the Taylor expansion with careful treatment to the boundary

terms. We summarize the results in the following lemma (cf. Lemma 5.4 in [25] and Lemma

5.6 in [14] for the multidimensional case).
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Lemma 3.1. Assume f and u are sufficiently smooth functions that f ∈ C3
b (R) and u ∈

Hk+1(Ω). Then there exists a constant C > 0, independent of h, t, and uh, such that

∑

K∈Th

(HK(u, ξ) −HK(uh, ξ)) ≤ C(1 + h−1 ‖e‖2
∞

)(h2k+1 + ‖ξ‖2). (3.18)

The second term S2 is somewhat like the “truncation error” and has been analyzed in

Proposition 2.1 in [3]. We list the results in the following lemma.

Lemma 3.2. Assume f and u are sufficiently smooth functions that f(u) ∈ W k+2,∞(Ω).

If the quadrature rule over the element (2.4a) is exact for polynomials of degree (2k), and

the one over the edge (2.4b) is exact for polynomials of degree (2k + 1), then there exists a

constant C > 0, independent of h, t and ξ, such that,
∣∣∣∣∣
∑

K∈Th

EK(f(u) · ∇ξ)

∣∣∣∣∣+
∣∣∣∣∣
∑

Γ∈Eh

EΓ(f(u) · nΓ[ξ])

∣∣∣∣∣ ≤ C(h2k+2 + ‖ξ‖2). (3.19)

The main technique used in the estimate of the third term S3 is Taylor expansion. By

using Taylor expansion on f(uh) up to second order and (2.9) in Lemma 2.4, we can prove

the following lemma. The details of the technical proof are left for the appendix.

Lemma 3.3. Assume f and u are sufficiently smooth functions that f ′(u) ∈ W k+2,∞(Ω),

f ′′(u) ∈ W 2,∞(Ω), f ′′′ ∈ Cb(R) and u ∈ W k+1,∞(Ω). If the quadrature rule over the ele-

ment (2.4a) is exact for polynomials of degree (2k) and the integration weights in (2.4a) are

nonnegative, then there exists a constant C > 0, independent of h, t and uh, such that, for

k = 1, ∣∣∣∣∣
∑

K∈Th

EK((f(uh) − f(u)) · ∇ξ)

∣∣∣∣∣ ≤ C(1 + h−1 ‖e‖2
∞

)(h2k+2 + ‖ξ‖2), (3.20)

and for k ≥ 2,
∣∣∣∣∣
∑

K∈Th

EK((f(uh) − f(u)) · ∇ξ)

∣∣∣∣∣ ≤ C(1 + h−1 ‖e‖
∞

)(h2k+2 + ‖ξ‖2). (3.21)

As for the estimate of the fourth term S4, if the numerical flux is sufficiently smooth, the

same technique in the proof of Lemma 3.3 could be applied. With the aid of the multiplicative

trace inequality in Lemma 2.1 and (2.10) in Lemma 2.4, we obtain the following result and

the proof is presented in the appendix.
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Lemma 3.4. Assume the numerical flux f̂ · n = f̂ · n(v, w) and u are sufficiently smooth

functions that f̂ · n
′

(u, u) ∈ W k+2,∞(Eh), f̂ · n
′′

(u, u) ∈ W 2,∞(Eh), f̂ · n
′′′

∈ Cb(R
2) and u ∈

W k+1,∞(Ω). If the quadrature rule over the edge (2.4b) is exact for polynomials of degree

(2k + 1) and the integration weights in (2.4b) are nonnegative, then there exists a constant

C > 0, independent of h, t and uh, such that, for k = 1,∣∣∣∣∣
∑

Γ∈Eh

EΓ((f̂ · nΓ(u−h , u
+
h ) − f(u) · nΓ)[ξ])

∣∣∣∣∣ ≤ C(1 + h−1 ‖e‖2
∞

)(h2k+2 + ‖ξ‖2), (3.22)

and for k ≥ 2,∣∣∣∣∣
∑

Γ∈Eh

EΓ((f̂ · nΓ(u−h , u
+
h ) − f(u) · nΓ)[ξ])

∣∣∣∣∣ ≤ C(1 + h−1 ‖e‖
∞

)(h2k+2 + ‖ξ‖2). (3.23)

However, most numerical fluxes are not smooth enough. They are only locally Lipschitz

continuous (e.g. Godunov flux) or only have up to first-order derivative (e.g. Engquist-Osher

flux). Thus, the Taylor expansion technique could not be used in the estimate of the fourth

term S4. In this case, we would put the terms S1 and S4 together and split them as follows:

S1 + S4 =
∑

K∈Th

∫

K

((f(u) − f(uh)) · ∇ξ) +
∑

Γ∈Eh

∫

Γ

((f(u) − f(ūh)) · nΓ[ξ])

+
∑

Γ∈Eh

∫

Γ

((f(ūh) − f̂ · nΓ(u−h , u
+
h )) · nΓ[ξ])

+
∑

Γ∈Eh

EΓ((f(ūh) − f(u)) · nΓ)[ξ]) +
∑

Γ∈Eh

∫

Γ

((f̂ · nΓ(u−h , u
+
h ) − f(ūh) · nΓ)[ξ])

−
∑

Γ∈Eh

∑

j

ωj((f̂ · nΓ(u−h , u
+
h ) − f(ūh) · nΓ)[ξ])(xΓj) |Γ|

=
∑

K∈Th

∫

K

((f(u) − f(uh)) · ∇ξ) +
∑

Γ∈Eh

∫

Γ

((f(u) − f(ūh)) · nΓ[ξ])

+
∑

Γ∈Eh

EΓ((f(ūh) − f(u)) · nΓ)[ξ]) −
∑

Γ∈Eh

∑

j

ωj((f̂ · nΓ(u−h , u
+
h ) − f(ūh) · nΓ)[ξ])(xΓj) |Γ| ,

,W1 + W2 + W3 + W4.

Note that here S1 is split into three terms, and the third one balances the second “trouble”

term of S4. Under the assumption that f ∈ C3
b (R) and u ∈ Hk+1(Ω), we have the estimate

of W1 and W2 with similar approach in the proof of Lemma 5.4 and Lemma 5.7 in [25]:

W1 + W2 ≤ C(1 + h−1 ‖e‖
∞

)(h2k + ‖ξ‖2). (3.24)
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For the third term W3, with Taylor expansion technique in the proof of Lemma 3.4, the

smoothness assumption f ′(u) ∈ W k+2,∞(Ω), f ′′(u) ∈ W 2,∞(Ω), f ′′′ ∈ Cb(R) and u ∈

W k+1,∞(Ω), and assuming that the quadrature rule over the edge (2.4b) is exact for poly-

nomials of degree (2k + 1) and quadrature weights in (2.4b) are non-negative, the similar

result is obtained:

|W3| ≤ C(1 + h−1 ‖e‖
∞

)(h2k+2 + ‖ξ‖2). (3.25)

For the estimate of W4, on each edge Γ, we define (cf. [12])

α(uh)Γ =





[uh]
−1(f(ūh) · nΓ − f̂ · nΓ(u−h , u

+
h )), if [uh] 6= 0,

|f ′(ūh) · nΓ| , if [uh] = 0.

The monotonicity and the Lipschitz continuity of the numerical flux imply the nonnegative

and the bounded property of α(uh)Γ (cf. Lemma 3.1 in [25]). With this notation and

remembering that [uh] = −[e] = [η] − [ξ], we have that

W4 =
∑

Γ∈Eh

∑

j

ωjα(uh)Γ([η][ξ] − [ξ]2)(xΓj) |Γ| ,

≤
∑

Γ∈Eh

∑

j

ωjα(uh)Γ
1

4
[η]2(xΓj) |Γ| ,

≤C ‖η‖2
∞

∑

Γ∈Eh

|Γ| ≤ Ch2k+1.

Here in the first inequality, the assumption is made that the integration weights in (2.4b)

are all nonnegative. We summarize the above results in the following lemma.

Lemma 3.5. Assume f and u are sufficiently smooth functions that f ′(u) ∈ W k+2,∞(Ω),

f ′′(u) ∈ W 2,∞(Ω), f ∈ C3
b (R) and u ∈ W k+1,∞(Ω). If the quadrature rule over the edge

(2.4b) is exact for polynomials of degree (2k + 1) and the integration weights in (2.4b) are

nonnegative, then there exists a constant C > 0, independent of h, t and uh, such that,

∑

K∈Th

(HK(u, ξ)−HK(uh, ξ)) +
∑

Γ∈Eh

EΓ((f̂ · nΓ(u−h , u
+
h ) − f(u) · nΓ)[ξ])

≤ C(1 + h−1 ‖e‖
∞

)(h2k + ‖ξ‖2).

14



In the last lemma, we list the estimate of S1 for the upwind flux in the 1D case in [25].

If we replace the L2-projection by the Gauss-Radau projection, then we have the following

lemma (cf. Lemma 5.7 in [25]). Moreover, we would like to mention that, the interpolation

inequalities in Lemma 2.2 also hold for the Gauss-Radau projection. Hence, we could also

prove Lemma 3.3 with the Gauss-Radau projection with the same token.

Lemma 3.6. Assume f and u are sufficiently smooth functions that f ∈ C3
b (R) and u ∈

Hk+1(Ω) and the numerical flux is upwind in the 1D case. If the Gauss-Radau projection is

used, there exists a constant C > 0, independent of h, t, and uh, such that

∑

K∈Th

(HK(u, ξ) −HK(uh, ξ)) ≤ C(1 + h−1 ‖e‖
∞

)(h2k+2 + ‖ξ‖2). (3.26)

Now we are going to prove our main theorem 3.1. For simplicity, we will only give the

detailed proof for one case in Theorem 3.1, namely d = 3 and k ≥ 3 with general monotone

flux, as other cases follow along the same lines. Following [25], we first make an a priori

assumption that, for small enough h, there holds the inequality:

‖e(t, ·)‖ ≤ h5/2, (3.27)

for 0 ≤ t ≤ T . Then by the triangle inequality, the interpolation property (2.6a)-(2.6b) and

the inverse property (2.7c), we have that

‖e(t, ·)‖
∞

≤ Ch, (3.28)

for 0 ≤ t ≤ T . From Lemma 3.2, Lemma 3.3 and Lemma 3.5, an estimate on the RHS of

(3.17) is obtained

1

2

d

dt
‖ξ(t, ·)‖2 ≤C ‖ξ(t, ·)‖2 + Ch2k.

Thus it follows that

‖e‖L∞(0,T ;L2(Ω)) ≤ Chk. (3.29)

To complete the proof, let us verify the a priori assumption (3.27). For fixed k ≥ 3, we

consider h small enough such that Chk < 1
2
h5/2 with the constant C in (3.29). Then, define
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t∗ := sup{t : ‖e(t, ·)‖ ≤ h5/2}, and immediately we get ‖e(t∗, ·)‖ = h5/2 by continuity if t∗

is finite. On the other hand, our proof shows that ‖e(t, ·)‖ ≤ Chk for t ≤ t∗, in particular

‖e(t∗, ·)‖ ≤ Chk < 1
2
h5/2. This reaches a contradiction if t∗ < T . Hence t∗ ≥ T and our a

priori assumption (3.27) is justified.

4 Numerical results

In this section, we display some numerical results to validate our error estimate in section 3.

The TVD Runge-Kutta time discretization [20] is used here: second-order RK method for

the piecewise linear finite element space (k = 1) and third-order RK method for the piecewise

quadratic finite element space (k = 2). For two-dimensional problems, the triangular meshes

are used and the triangulation is constructed by adding diagonals linking the left-bottom

and right-top vertexes in a uniform square mesh.

Consider the two-dimensional Burgers’ equation with periodic boundary conditions:




∂tu+ ∂x

(
u2

2

)
+ ∂y

(
u2

2

)
= 0, (x, y, t) ∈ Ω × (0, T ),

u(t = 0, x, y) =
1

2
sin(x+ y), (x, y) ∈ Ω,

where the domain Ω is the square [0, 2π]× [0, 2π]. The mesh size is chosen as h = π/N with

N the number of elements. We compute up to time T = 0.8 with time step τ = 0.2h.

To validate our analysis, we use quadrature rules to approximate integrals over elements

and edges which are exact for polynomials of degree (2k) and (2k + 1), respectively. To be

more precise, for k = 1, we use the Gaussian quadrature of degree 2 for the standard triangle

Tst := {(ξ, η) : 0 ≤ ξ, η, ξ + η ≤ 1}:

∫∫

Tst

g(ξ, η)dξdη =
1

6

(
g(

1

6
,
1

6
) + g(

2

3
,
1

6
) + g(

1

6
,
2

3
)

)
,

which is accurate for g(ξ, η) = ξiηj with 0 ≤ i, j, i + j ≤ 2. For k = 2, we use the Gaussian

quadrature of degree 4 which is exact for g(ξ, η) = ξiηj with 0 ≤ i, j, i+ j ≤ 4; see e.g. [11].

For integrals over edges, we use the Gauss-Legendre quadrature rules with 2 points and 3

points for k = 1 and k = 2, respectively. In Table 4.1 and Table 4.2, the L1, L2 and L∞ errors

16



are displayed for k = 1 and k = 2 with quadrature rules over elements and edges of degree

(2k) and (2k+ 1). From Table 4.1, we observe that, the schemes with k = 1 behaves a clear

second-order accuracy in L1- and L2-error with different types of numerical fluxes, but not

very clean in L∞-norm. For k = 2, the convergence orders are almost three, except that for

the global Lax-Friedrichs flux, the order is around 2.7 in average. To figure out the reason for

this order reduction phenomenon, we perform tests with the same computational parameters

but with the quadrature rules over elements and edges replaced by exact integrals (namely

we use the original DG method). The convergence order with the global Lax-Friedrichs flux

and exact integrals is still around 2.7 as the mesh is refined. This indicates that the order

reduction phenomenon is not caused by the quadrature rules. A detailed study to pin down

the root of this phenomenon is left for the future.

We have also performed numerical experiments with lower order quadrature rules. The

errors with the Godunov flux and k = 2 are reported in Table 4.3. As before, we use Gaussian

quadrature rules over both elements and edges. In the table, “Elements 4 and edges 5” means

that we have used the quadrature rules which are exact for polynomials of degree up to 4

and 5 over elements and edges, respectively. In the first three cases, the accuracy over edges

is 5, which is high enough to keep accuracy according to our main theorem. In the last case,

we use quadrature rules which is accurate enough over elements but not accurate enough

over edges. From these cases, we observe loss of accuracy if the integration is not accurate

enough. Moreover, we have performed numerical tests with quadrature rules over elements

and edges which are exact for polynomials of degree up to 4 and 1, respectively. In that

case, the numerical solution actually blows up, indicating an instability of the algorithm. It

seems that the DG methods is more sensitive to the quality of the quadrature rules used

over edges than to that used in the elements.
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Table 4.1: 2D Burgers’ equation at T = 0.8, k = 1.
numerical flux N L1-error order L2-error order L∞-error order

Godunov
flux

10 × 10 7.34e-01 - 2.10e-01 - 2.61e-01 -
20 × 20 2.31e-01 1.67 8.15e-02 1.37 1.32e-01 0.98
40 × 40 6.79e-02 1.77 2.86e-02 1.51 5.01e-02 1.40
80 × 80 1.90e-02 1.84 8.85e-03 1.69 1.98e-02 1.34

160 × 160 5.02e-03 1.92 2.48e-03 1.83 6.29e-03 1.65
320 × 320 1.29e-03 1.96 6.69e-04 1.89 1.83e-03 1.79

Global
Lax-
Friedrichs
flux

10 × 10 8.23e-01 - 2.30e-01 - 2.66e-01 -
20 × 20 2.52e-01 1.71 9.03e-02 1.35 1.29e-01 1.05
40 × 40 7.15e-02 1.82 3.13e-02 1.53 4.96e-02 1.37
80 × 80 1.94e-02 1.88 9.25e-03 1.76 1.98e-02 1.33

160 × 160 5.11e-03 1.93 2.46e-03 1.91 4.96e-03 1.99
320 × 320 1.30e-03 1.98 6.31e-04 1.96 1.25e-03 1.99

Local
Lax-
Friedrichs
flux

10 × 10 8.07e-01 - 2.29e-01 - 2.57e-01 -
20 × 20 2.43e-01 1.73 8.71e-02 1.39 1.33e-01 0.95
40 × 40 6.90e-02 1.82 2.96e-02 1.56 5.08e-02 1.38
80 × 80 1.89e-02 1.87 8.92e-03 1.73 2.06e-02 1.30

160 × 160 5.00e-03 1.92 2.48e-03 1.85 6.30e-03 1.71
320 × 320 1.29e-03 1.96 6.65e-04 1.90 1.81e-03 1.80

Enquist-
Osher
flux

10 × 10 7.34e-01 - 2.10e-01 - 2.61e-01 -
20 × 20 2.31e-01 1.67 8.15e-02 1.37 1.32e-01 0.98
40 × 40 6.79e-02 1.77 2.86e-02 1.51 5.01e-02 1.40
80 × 80 1.90e-02 1.84 8.85e-03 1.69 1.98e-02 1.34

160 × 160 5.02e-03 1.92 2.48e-03 1.83 6.29e-03 1.65
320 × 320 1.29e-03 1.96 6.69e-04 1.89 1.83e-03 1.79
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Table 4.2: 2D Burgers’ equation at T = 0.8, k = 2.
numerical flux N L1-error order L2-error order L∞-error order

Godunov
flux

10 × 10 2.93e-01 - 1.28e-01 - 1.21e-01 -
20 × 20 6.43e-02 2.19 3.97e-02 1.69 5.87e-02 1.05
40 × 40 1.03e-02 2.64 8.36e-03 2.25 2.25e-02 1.38
80 × 80 1.33e-03 2.96 1.17e-03 2.83 5.33e-03 2.08

160 × 160 1.87e-04 2.82 1.54e-04 2.93 8.14e-04 2.71
320 × 320 2.51e-05 2.90 2.09e-05 2.89 1.02e-04 3.00

Global
Lax-
Friedrichs
flux

10 × 10 3.11e-01 - 1.30e-01 - 1.20e-01 -
20 × 20 6.87e-02 2.18 4.02e-02 1.69 5.63e-02 1.10
40 × 40 1.17e-02 2.55 8.58e-03 2.23 1.95e-02 1.53
80 × 80 1.66e-03 2.82 1.29e-03 2.73 4.11e-03 2.25

160 × 160 2.62e-04 2.66 1.98e-04 2.71 5.99e-04 2.78
320 × 320 3.84e-05 2.77 3.09e-05 2.68 9.17e-05 2.71

Local
Lax-
Friedrichs
flux

10 × 10 3.11e-01 - 1.30e-01 - 1.22e-01 -
20 × 20 6.66e-02 2.22 4.00e-02 1.70 5.80e-02 1.07
40 × 40 1.04e-02 2.68 8.35e-03 2.26 2.25e-02 1.37
80 × 80 1.37e-03 2.92 1.19e-03 2.81 5.41e-03 2.05

160 × 160 1.95e-04 2.82 1.60e-04 2.89 8.39e-04 2.69
320 × 320 2.57e-05 2.92 2.15e-05 2.89 1.06e-04 2.99

Enquist-
Osher
flux

10 × 10 2.93e-01 - 1.28e-01 - 1.21e-01 -
20 × 20 6.43e-02 2.19 3.97e-02 1.69 5.87e-02 1.05
40 × 40 1.03e-02 2.64 8.36e-03 2.25 2.25e-02 1.38
80 × 80 1.33e-03 2.96 1.17e-03 2.83 5.33e-03 2.08

160 × 160 1.87e-04 2.82 1.54e-04 2.93 8.14e-04 2.71
320 × 320 2.51e-05 2.90 2.09e-05 2.89 1.02e-04 3.00
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Table 4.3: Comparison for lower quadrature rules. 2D Burgers’ equation with Godunov flux
and k = 2.

Accuracy
of

quadrature rules
N L1-error order L2-error order L∞-error order

Elements 4
and

edges 5

10 × 10 2.93e-01 - 1.28e-01 - 1.21e-01 -
20 × 20 6.43e-02 2.19 3.97e-02 1.69 5.87e-02 1.05
40 × 40 1.03e-02 2.64 8.36e-03 2.25 2.25e-02 1.38
80 × 80 1.33e-03 2.96 1.17e-03 2.83 5.33e-03 2.08

160 × 160 1.87e-04 2.82 1.54e-04 2.93 8.14e-04 2.71
320 × 320 2.51e-05 2.90 2.09e-05 2.89 1.02e-04 3.00

Elements 3
and

edges 5

10 × 10 4.63e-01 - 1.65e-01 - 1.29e-01 -
20 × 20 1.33e-01 1.80 6.72e-02 1.29 9.49e-02 0.45
40 × 40 3.08e-02 2.11 2.09e-02 1.69 4.69e-02 1.02
80 × 80 5.35e-03 2.52 4.51e-03 2.21 1.38e-02 1.76

160 × 160 7.83e-04 2.77 7.25e-04 2.64 3.09e-03 2.16
320 × 320 1.03e-04 2.92 1.02e-04 2.83 4.93e-04 2.65

Elements 2
and

edges 5

10 × 10 4.94e-01 - 1.82e-01 - 1.83e-01 -
20 × 20 1.30e-01 1.93 6.13e-02 1.57 8.10e-02 1.18
40 × 40 2.68e-02 2.28 1.53e-02 2.00 2.83e-02 1.51
80 × 80 5.95e-03 2.17 3.86e-03 1.99 9.76e-03 1.54

160 × 160 1.73e-03 1.78 1.44e-03 1.42 4.99e-03 0.97
320 × 320 5.12e-04 1.76 5.56e-04 1.38 3.37e-03 0.57

Elements 4
and

edges 3

10 × 10 4.81e-01 - 1.41e-01 - 1.26e-01 -
20 × 20 1.55e-01 1.64 5.26e-02 1.43 7.86e-02 0.69
40 × 40 5.08e-02 1.61 1.94e-02 1.44 3.65e-02 1.11
80 × 80 1.59e-02 1.68 7.52e-03 1.36 1.53e-02 1.26

160 × 160 4.95e-03 1.68 2.94e-03 1.36 9.36e-03 0.70
320 × 320 1.53e-03 1.69 1.12e-03 1.39 5.33e-03 0.81
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5 Concluding remarks

In this work, we perform error estimates to smooth solutions of semi-discrete discontinuous

Galerkin (DG) methods with the P k finite element space of piecewise kth degree polynomials

and quadrature rules for scalar conservation laws (1.1). Assuming that the exact solution

u and the physical flux f are sufficiently smooth, we show that, in 1D problems, if the

quadrature over elements is exact for polynomials of degree (2k), error estimates of O(hk+1/2)

are obtained for general monotone fluxes, while optimal estimates of O(hk+1) are obtained

for upwind fluxes. For multidimensional problems, if we further assume that quadrature

over edges is exact for polynomials of degree (2k + 1), error estimates of O(hk+1/2) are

obtained for sufficiently smooth numerical fluxes. For the general monotone fluxes in the

multidimensional case, error estimate of O(hk) are proved if we further assume that the

quadrature weights are non-negative.

Even though we have considered only semi-discrete schemes for scalar conservation laws in

this paper, the analysis can be generalized to Runge-Kutta DG schemes and to symmetrizable

systems of conservation laws following the ideas in [26, 27]. We hope to report our progress

in the near future.

A Proof of Lemma 3.3

In this appendix, we give the proof of Lemma 3.3. We would like to use the following Taylor

expansion:

f(uh) − f(u) =ηf ′(u) − ξf ′(u) +
1

2
η2f ′′(u) − ηξf ′′(u) +

1

2
ξ2f ′′(u) −

1

6
e3f ′′′u ,

,φ1 + φ2 + · · · + φ6,

where f ′′′u is the mean value. The linearity of integrals and quadrature rules leads to the

representation:
∑

K∈Th

EK((f(uh) − f(u)) · ∇ξ) = X1 +X2 + · · ·+X6,
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where Xi given by

Xi =
∑

K∈Th

EK(φi · ∇ξ), i = 1, 2, · · · , 6,

will be estimated one by one later.

By taking q = 2, p = k − 1, s = k + 2, Q = ηf ′(u) and v = ∇ξ in (2.9) in Lemma 2.4

and remembering that the quadrature over element K is exact for P 2k(K), together with

interpolation property (2.6b), the inverse property (2.7a) and Cauchy’s inequality, we have

the following estimate:

|X1| ≤
∑

K∈Th

|EK(φ1 · ∇ξ)|,

≤
∑

K∈Th

Chk+2+d/2 |ηf ′(u)|W k+2,∞(K) ‖∇ξ‖L2(K) ,

≤
∑

K∈Th

Chk+2+d/2 ‖η‖W k+2,∞(K) ‖f
′(u)‖W k+2,∞(K) ‖∇ξ‖L2(K) ,

≤C |u|W k+1,∞(Ω) ‖f
′(u)‖W k+2,∞(Ω) h

k+2+d/2
∑

K∈Th

‖∇ξ‖L2(K) ,

≤C |u|W k+1,∞(Ω) ‖f
′(u)‖W k+2,∞(Ω) (h2k+2 + ‖ξ‖2).

Here in the fourth inequality we use the relation

‖η‖W k+2,∞(K) ≤ |η|W 0,∞(K) + |η|W 1,∞(K) + · · ·+ |η|W k+1,∞(K) + |η|W k+2,∞(K) ,

≤C |u|W k+1,∞(Ω) (hk+1 + hk + · · ·+ 1) + |u|W k+1,∞(Ω) ≤ C |u|W k+1,∞(Ω) .

In the similar approach, by taking q = 1, p = 2k − 1, s = 1, Q = f ′(u) and v = ξ∇ξ

in (2.9) in Lemma 2.4, Hölder’s inequality and the inverse property (2.7a), it can be easily

shown that

|X2| ≤
∑

K∈Th

|EK(φ2 · ∇ξ)| ≤ Ch
∑

K∈Th

|f ′(u)|W 1,∞(K) ‖ξ∇ξ‖L1(K) ≤ C |f ′(u)|W 1,∞(Ω) ‖ξ‖
2 .

(A.30)

Similarly as the estimate of X1 and X2, for X3 and X4, we have

|X3| ≤
∑

K∈Th

|EK(φ3 · ∇ξ)|,
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≤
∑

K∈Th

Ch1+d/2
∣∣η2f ′′(u)

∣∣
W 1,∞(K)

‖∇ξ‖L2(K) ,

≤Ch1+d/2
∥∥η2
∥∥

W 1,∞(Ω)
‖f ′′(u)‖W 1,∞(Ω)

∑

K∈Th

‖∇ξ‖L2(K) ,

≤Ch1+d/2(‖η‖2
L∞(Ω) + |η|W 1,∞(Ω) ‖η‖L∞(Ω)) ‖f

′′(u)‖W 1,∞(Ω)

∑

K∈Th

‖∇ξ‖L2(K) ,

≤Ch2k+2+d/2 |u|2W k+1,∞(Ω) ‖f
′′(u)‖W 1,∞(Ω)

∑

K∈Th

‖∇ξ‖L2(K) ,

≤C |u|2W k+1,∞(Ω) ‖f
′′(u)‖W 1,∞(Ω) (h4k+2 + ‖ξ‖2),

and

|X4| ≤
∑

K∈Th

|EK(φ4 · ∇ξ)|,

≤
∑

K∈Th

Ch |ηf ′′(u)|W 1,∞(K) ‖ξ∇ξ‖L1(K) ,

≤Ch ‖η‖W 1,∞(Ω) ‖f
′′(u)‖W 1,∞(Ω)

∑

K∈Th

‖ξ‖L2(K) ‖∇ξ‖L2(K) ,

≤Chk |u|W k+1,∞(Ω) ‖f
′′(u)‖W 1,∞(Ω) ‖ξ‖

2 .

As for the estimate of X5, setting q = 1, p = 2k − 1, s = 2, Q = ξf ′′(u) and v = ξ∇ξ in

(2.9) in Lemma 2.4, we find that

|X5| ≤
∑

K∈Th

|EK(φ5 · ∇ξ)| ≤ Ch2 ‖f ′′(u)‖W 2,∞(Ω)

∑

K∈Th

‖ξ‖W 2,∞(K) ‖ξ‖L2(K) ‖∇ξ‖L2(K) .

For a more careful estimate, we make the discussion in two cases:

(a) For k = 1, i.e., the P 1 finite element space, we have |ξ|W 2,∞(K) = 0. By virtue of

Cauchy’s inequality and inverse property (2.7a), we deduce that

|X5| ≤Ch
2 ‖f ′′(u)‖W 2,∞(Ω)

∑

K∈Th

‖ξ‖W 1,∞(K) ‖ξ‖L2(K) ‖∇ξ‖L2(K) ,

≤Ch2 ‖f ′′(u)‖W 2,∞(Ω)

∑

K∈Th

h−1 ‖ξ‖L∞(K) ‖ξ‖L2(K) ‖∇ξ‖L2(K) ,

≤Ch ‖f ′′(u)‖W 2,∞(Ω) ‖ξ‖∞ ‖ξ‖ ‖∇ξ‖ ,

≤C ‖f ′′(u)‖W 2,∞(Ω) (‖e‖
∞

+ hk+1 |u|W k+1,∞(Ω)) ‖ξ‖
2 .
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Here in the first inequality we use the generalized inverse property (cf. Theorem 3.2.6

in [1]):

|ξ|W 1,∞(K) ≤ Ch−1 ‖ξ‖L∞(K) .

(b) For k ≥ 2, in the same approach, we get the estimate

|X5| ≤Ch
2 ‖f ′′(u)‖W 2,∞(Ω)

∑

K∈Th

‖ξ‖W 2,∞(K) ‖ξ‖L2(K) ‖∇ξ‖L2(K) ,

≤Ch2 ‖f ′′(u)‖W 2,∞(Ω)

∑

K∈Th

h−2 ‖ξ‖L∞(K) ‖ξ‖L2(K) ‖∇ξ‖L2(K) ,

≤C ‖f ′′(u)‖W 2,∞(Ω) ‖ξ‖∞ ‖ξ‖ ‖∇ξ‖ ,

≤Ch−1 ‖f ′′(u)‖W 2,∞(Ω) (‖e‖
∞

+ hk+1 |u|W k+1,∞(Ω)) ‖ξ‖
2 .

The last term X6 is divided into two parts and will be estimated separately:

|X6| ≤
∑

K∈Th

|EK(φ6 · ∇ξ)| ≤
∑

K∈Th

∣∣∣∣
∫

K

1

6
e3f ′′′u · ∇ξdx

∣∣∣∣ +
∑

K∈Th

∣∣∣∣∣
M∑

j=1

ωj(
1

6
e3f ′′′u · ∇ξ)(xKj)

∣∣∣∣∣ |K| .

For the first integral term, by Cauchy’s inequality, inverse property (2.7a) and interpolation

property (2.6a), we can easily show that

∑

K∈Th

∣∣∣∣
∫

K

1

6
e3f ′′′u · ∇ξdx

∣∣∣∣ ≤Ch−1 ‖f ′′′u ‖
∞
‖e‖2

∞
(h2k+2 |u|2Hk+1(Ω) + ‖ξ‖2).

Due to the facts that the quadrature over the element K is exact for polynomials of degree

(2k) and the quadrature weights are non-negative, the second term can be estimated:

∑

K∈Th

∣∣∣∣∣
M∑

j=1

ωj(
1

6
e3f ′′′u · ∇ξ)(xKj)

∣∣∣∣∣ |K|

≤
∑

K∈Th

(
(

M∑

j=1

|ωj|

∣∣∣∣(
1

6
e3f ′′′u )(xKj)

∣∣∣∣
2

|K|)1/2(

M∑

j=1

|ωj | |∇ξ(xKj)|
2 |K|)1/2

)
,

=
∑

K∈Th

(
(

M∑

j=1

|ωj|

∣∣∣∣(
1

6
e3f ′′′u )(xKj)

∣∣∣∣
2

|K|)1/2 ‖∇ξ‖L2(K)

)
,

≤C ‖f ′′′u ‖
∞
‖e‖2

∞

∑

K∈Th

‖e‖L∞(K) |K|1/2 ‖∇ξ‖L2(K) ,

≤C ‖f ′′′u ‖
∞
‖e‖2

∞

∑

K∈Th

(‖ξ‖L∞(K) + ‖η‖L∞(K))h
d/2h−1 ‖ξ‖L2(K) ,
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≤Chd/2−1 ‖f ′′′u ‖
∞
‖e‖2

∞
(
∑

K∈Th

h−d/2 ‖ξ‖L2(K) ‖ξ‖L2(K) + hk+1 |u|W k+1,∞(Ω)

∑

K∈Th

‖ξ‖L2(K)),

≤Ch−1 ‖f ′′′u ‖
∞
‖e‖2

∞
(1 + hk+1 |u|W k+1,∞(Ω)) ‖ξ‖

2 .

Hence, we have that

|X6| ≤Ch
−1 ‖f ′′′u ‖

∞
‖e‖2

∞

(
h2k+2 |u|2Hk+1(Ω) + (1 + hk+1 |u|W k+1,∞(Ω)) ‖ξ‖

2
)
,

≤Ch−1 ‖f ′′′u ‖
∞
‖e‖2

∞
(1 + h2k+2 |u|2W k+1,∞(Ω)) ‖ξ‖

2 .

Finally, we collect the above estimates aboutX1, X2, · · · , X6 to complete the proof of Lemma

3.3.

B Proof of Lemma 3.4

By Taylor expansion at (u, u) for the numerical flux f̂ · nΓ(u−h , u
+
h ), we have

f̂ · nΓ(u−h , u
+
h ) − f(u) · nΓ =η−f̂ ′1 − ξ−f̂ ′1 +

1

2
(η−)2f̂ ′′11 − η−ξ−f̂ ′′11 +

1

2
(ξ−)2f̂ ′′11 −

1

6
(e−)3f̂ ′′′111

+ η+f̂ ′2 − ξ+f̂ ′2 +
1

2
(η+)2f̂ ′′22 − η+ξ+f̂ ′′22 +

1

2
(ξ+)2f̂ ′′22 −

1

6
(e+)3f̂ ′′′222

+ (η− − ξ−)(η+ − ξ+)f̂ ′′12 −
1

2
(e−)2e+f̂ ′′′112 −

1

2
e−(e+)2f̂ ′′′122,

where f̂ ≡ f̂ · nΓ for short. The subscripts 1 and 2 denote the partial derivative with respect

to the first and the second argument of f̂ . The omitted argument in the first-order and

second-order derivatives is (u, u). For instance, f̂ ′′12 ≡
∂2

f̂

∂u∂v
(u, u). The third-order derivatives

are the mean values.

Notice that the L2 norm of v− or v+ (v = η, ξ) on the edge will be controlled by the

norm of v in L2(Eh). Thus, for notation convenience, in the following estimate, we will not

distinguish v− or v+ and write it as v in a uniformly way. That is, we will perform the

estimate for

Yi :=
∑

Γ∈Eh

|EΓ(ψi[ξ])| , i = 1, 2, · · · , 6,

with

ηf̂ ′ + ξ f̂ ′ + η2f̂ ′′ + ηξ f̂ ′′ + ξ2f̂ ′′ + e3f̂ ′′′ , ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6. (B.31)
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By taking q = 2, p = k, s = k + 2, G = ηf̂ ′ and w = [ξ] in (2.10) in Lemma 2.4, and

remembering that the quadrature over edges is exact for polynomials of degree (2k + 1), we

obtain the estimate of Y1:

Y1 ≤
∑

Γ∈Eh

Chk+2+(d−1)/2
∣∣∣ηf̂ ′
∣∣∣
W k+2,∞(Γ)

‖[ξ]‖L2(Γ) ,

≤Chk+d/2+3/2 ‖η‖W k+2,∞(Eh)

∥∥∥f̂ ′
∥∥∥

W k+2,∞(Eh)

∑

Γ∈Eh

‖ξ‖L2(Γ) ,

≤Chk+3/2 |u|W k+1,∞(Ω)

∥∥∥f̂ ′
∥∥∥

W k+2,∞(Eh)
‖ξ‖L2(Eh) ,

≤C |u|W k+1,∞(Ω)

∥∥∥f̂ ′
∥∥∥

W k+2,∞(Eh)
(h2k+2 + ‖ξ‖2),

where we use Lemma 2.1 and the inverse property (2.7a) in the last inequality.

Now we proceed to the estimate of term Y2. Taking q = 1, p = 2k, s = 1, G = f̂ ′ and

w = ξ[ξ] in (2.10) in Lemma 2.4 obtains

Y2 ≤
∑

Γ∈Eh

Ch
∣∣∣f̂ ′
∣∣∣
W 1,∞(K)

∥∥ξ2
∥∥

L1(Γ)
,

≤Ch
∣∣∣f̂ ′
∣∣∣
W 1,∞(Eh)

∑

Γ∈Eh

‖ξ‖2
L2(Γ) ≤ C

∣∣∣f̂ ′
∣∣∣
W 1,∞(Eh)

‖ξ‖2 .

Similar to the estimate of Y1 and Y2, it can be easily shown that

Y3 ≤C |u|2W k+1,∞(Ω)

∥∥∥f̂ ′′
∥∥∥

W 1,∞(Eh)
(h4k+2 + ‖ξ‖2), (B.32)

Y4 ≤Ch
k |u|W k+1,∞(Ω)

∥∥∥f̂ ′′
∥∥∥

W 1,∞(Eh)
‖ξ‖2 , (B.33)

Y5 ≤





C
∥∥∥f̂ ′′
∥∥∥

W 2,∞(Eh)
(‖e‖

∞
+ hk+1 |u|W k+1,∞(Ω)) ‖ξ‖

2 , k = 1,

Ch−1
∥∥∥f̂ ′′
∥∥∥

W 2,∞(Eh)
(‖e‖

∞
+ hk+1 |u|W k+1,∞(Ω)) ‖ξ‖

2 . k ≥ 2.
(B.34)

Note that some careful treatment should be used in the estimate of Y5, which is similar to

that of X5 in the proof of Lemma 3.3.

The last term Y6 is divided into two part and the first integral term is estimated as

follows:

∑

Γ∈Eh

∣∣∣∣
∫

Γ

e3f̂ ′′′[ξ]dx

∣∣∣∣ ≤C ‖e‖2
∞

∥∥∥f̂ ′′′
∥∥∥
∞

∑

Γ∈Eh

∣∣∣∣
∫

Γ

|e| |ξ| dx

∣∣∣∣ ,
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≤C ‖e‖2
∞

∥∥∥f̂ ′′′
∥∥∥
∞
‖e‖L2(Eh) ‖ξ‖L2(Eh) ,

≤Ch−1
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞
(h2k+2 |u|2Hk+1(Ω) + ‖ξ‖2),

where we use Lemma 2.1, the interpolation inequality (2.6a) and the inverse property (2.7a)

in the last step. The second quadrature term could be bounded by

∑

Γ∈Eh

∣∣∣∣∣
L∑

j=1

ωj(e
3f̂ ′′′[ξ])(xΓj)

∣∣∣∣∣ |Γ|

≤
∑

Γ∈Eh

(
(

L∑

j=1

∣∣ωj

∣∣
∣∣∣(e3f̂ ′′′)(xΓj)

∣∣∣
2

|Γ|)1/2(

L∑

j=1

∣∣ωj

∣∣ |[ξ](xΓj)|
2 |Γ|)1/2

)
,

=
∑

Γ∈Eh

(
(

L∑

j=1

∣∣ωj

∣∣
∣∣∣(e3f̂ ′′′)(xΓj)

∣∣∣
2

|Γ|)1/2 ‖[ξ]‖L2(Γ)

)
,

≤C
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞

∑

Γ∈Eh

‖e‖L∞(Γ) |Γ|
1/2 ‖[ξ]‖L2(Γ) ,

≤C
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞

∑

K∈Th

‖e‖L∞(K) |∂K|1/2 ‖ξ‖L2(∂K) ,

≤C
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞

∑

K∈Th

‖e‖L∞(K) (hd−1)1/2h−1/2 ‖ξ‖L2(K) ,

≤C
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞

∑

K∈Th

(‖ξ‖L∞(K) + ‖η‖L∞(K))h
d/2−1 ‖ξ‖L2(K) ,

≤Chd/2−1
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞
(
∑

K∈Th

h−d/2 ‖ξ‖L2(K) ‖ξ‖L2(K) + hk+1 |u|W k+1,∞(Ω)

∑

K∈Th

‖ξ‖L2(K)),

≤Ch−1
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞
(1 + hk+1 |u|W k+1,∞(Ω)) ‖ξ‖

2 .

In the equality, we use the fact that the quadrature weights ωj ≥ 0 and the quadrature rule

over edges is exact for polynomials of degree (2k + 1). Hence, we have

Y6 ≤ Ch−1
∥∥∥f̂ ′′′

∥∥∥
∞
‖e‖2

∞
(1 + h2k+2 |u|2W k+1,∞(Ω)) ‖ξ‖

2 . (B.35)

Combining the estimate of Y1, Y2, · · · , Y6 completes the proof of Lemma 3.4.
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