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Abstract. The positivity-preserving property is an important and challenging issue for the
numerical solution of radiative transfer equations. In the past few decades, different numerical
techniques have been proposed to guarantee positivity of the radiative intensity in several schemes,
however it is difficult to maintain both high order accuracy and positivity. The discontinuous Galerkin
(DG) finite element method is a high order numerical method which is widely used to solve the
neutron/photon transfer equations, due to its distinguished advantages such as high order accuracy,
geometric flexibility, suitability for h- and p-adaptivity, parallel efficiency, and a good theoretical
foundation for stability and error estimates. In this paper, we construct arbitrarily high order
accurate DG schemes which preserve positivity of the radiative intensity in the simulation of both
steady and unsteady radiative transfer equations in one- and two-dimensional geometry by using a
combined technique of the scaling positivity-preserving limiter in [33] and a new rotational positivity-
preserving limiter. This combined limiter is simple to implement and we prove the properties of
positivity-preserving and high order accuracy rigorously. One- and two-dimensional numerical results
are provided to verify the good properties of the positivity-preserving DG schemes.
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1. Introduction. The radiative transfer equation describes the interaction of
photons with a scattering and absorbing background medium, which has wide ap-
plications in many areas such as astrophysics, inertial confinement fusion, optical
molecular imaging, shielding, infrared and visible light in space and the atmosphere,
just to name a few.

The radiative transfer equation is an integro-differential equation with six inde-
pendent variables for a three spatial dimensional and time dependent problem. The
high dimensionality and the presence of integral coupling terms bring a serious chal-
lenge to solve the equation numerically. Over the past few decades, several techniques
for solving this kind of equations have been introduced, which include the Monte Carlo
method, the discrete-ordinate method (DOM), the spherical harmonics method, the
spectral method, the finite difference method, the finite volume method and the finite
element method. Among these methods, the discrete-ordinate method has received
particular attention in the literature due to its relatively high accuracy, flexibility,
and relatively low computational cost. The discrete-ordinate method discretizes the
solid angle with a set of ordinate directions. The integration over the solid angle
that appears in the radiative transfer equation is evaluated by means of a weighted
summation over the ordinate directions (numerical quadrature), where the specified
weights are determined through algebraic and geometrical relationships [1, 8]. In this
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paper, we focus on the discrete-ordinate discontinuous Galerkin method for solving
the radiative transfer equation, which is among the most flexible numerical methods
in discrete-ordinate formulations for the radiative transfer equation.

The discontinuous Galerkin (DG) finite element method was first introduced by
Reed and Hill [27] in 1973 to solve the steady linear neutron transport (radiative
transfer) equation, in which the numerical solution is allowed to be discontinuous
across the cell boundaries. This feature makes the DG finite element method a local
method, that is, it is possible to construct a set of small linear systems approximating
the governing equation in each cell to avoid assembling and solving a large, global
linear system. Soon after, in [15], theoretical properties of the DG method includ-
ing stability and error estimates were provided. Later, Cockburn et al. [5, 4, 3, 6]
established a framework to easily solve nonlinear time dependent problems, such as
the compressible Euler equations of gas dynamics, using explicit, nonlinearly stable
high order Runge-Kutta time discretizations [29] and DG discretization in space with
exact or approximate Riemann solvers as interface fluxes and total variation bounded
(TVB) nonlinear limiters [28] to achieve non-oscillatory properties for strong shocks.
The DG method has many advantages such as high order accuracy, geometric flexi-
bility, suitability for h- and p-adaptivity, extremely local data structure, high parallel
efficiency and a good theoretical foundation for stability and error estimates. It is
particularly powerful for convection-dominated problems, in which the solutions de-
velop discontinuities or sharp fronts. The DG method has been widely used in many
convection-dominated equations such as neutron/photon (radiative) transfer equa-
tion studied in this paper, Euler and Navier-Stokes equations for compressible gas
dynamics, shallow water equations, KDV equations and so on.

In the transport community, second order DG method using piecewise linear
polynomials has been employed predominantly to solve the discrete-ordinate trans-
fer equation. Starting from the pioneering work [27] mentioned above, a piecewise
linear function representation was used for three-dimensional unstructured tetrahe-
dral meshes in [32, 24] and a trilinear representation was used for three-dimensional
hexahedral meshes in [32]. In the neutron/photon transport area, limited research
has been carried out using elements of higher polynomial degree, which include DG
method up to order 4 developed for the steady transport equation by using hierar-
chical basis functions in [30, 21] and the quadratic DG method used for the neutron
transport in spherical geometry [17, 23].

Robustness of numerical methods has attracted an increasing interest in the com-
munity of computational science. One mathematical aspect of robustness for numer-
ical methods is the positivity-preserving property. It is known that under certain
conditions, which are satisfied by almost all physical problems, the discrete-ordinate
radiative transfer equations have nonnegative solutions whenever the source terms
and the boundary conditions (and, for time-dependent problems, also the initial con-
ditions) are nonnegative [7, 18]. For a good numerical method, it should ideally also
yield a nonnegative solution. Especially in multidimensional problems, the appear-
ance of negative solution could slow the convergence rate of the iterative processes,
and sometimes may also cause a complete failure of convergence of the acceleration
procedure. For time dependent problems, negative solution may lead to numerical
instabilities. Furthermore, negative radiative intensity is a physically unrealistic so-
lution which is difficult to be accepted by physicists.

A scheme for the radiative transfer equation is called positivity-preserving if it
can always produce nonnegative solution for nonnegative source term and boundary
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condition (and, for time dependent problems, also nonnegative initial condition). In
this paper we use the word “positivity” loosely which is the same as nonnegativeness.
Several studies exist in the literature on this issue, with various ways of ensuring
positive intensities being proposed. The step scheme, which is the counterpart of the
upwind scheme in computational fluid dynamics, is proved to be positivity-preserving
but is only first order accurate and introduces excessive numerical smearing [2]. The
diamond scheme reduces the numerical smearing, but negative intensities may ap-
pear. These negative intensities may be eliminated by using the negative intensity
fix-up procedure, that is, setting them to zero. However, spatial oscillation and phys-
ically unrealistic intensities may still occur. The other existing positivity-preserving
schemes include the variable-weight scheme which combines the step and the dia-
mond schemes by a variable weight [10, 19], the linear exponential discontinuous
finite-element method [31], the step and linear adaptive methods [22], the step char-
acteristic scheme [12] and the linear characteristic scheme [11] which is nonnegative
as long as the projected scattering source and projected outflow boundary fluxes re-
main positive which can be guaranteed by a rotational fix-up procedure. The positive
intensities criteria for purely absorbing media is proposed by Fiveland in [9]. The
linear discontinuous Galerkin finite-element method with the set-to-zero fix-up tech-
nique is proposed more recently in [20]. The procedures mentioned above are either
only first or second order accurate, or use non-polynomial nonlinear procedures which
require iterative procedures to obtain the solution even for the system inside each
cell, or rely on the characteristic procedure and hence are difficult to be generalized
to multi-dimensions.

For solving convection-dominated equations, such as Euler equations of compress-
ible gas dynamics, recently Zhang and Shu developed a general framework which
relies on a simple scaling limiter and can be applied to Runge-Kutta discontinuous
Galerkin (RKDG) method and weighted essentially non-oscillatory (WENO) finite
volume schemes of arbitrary order of accuracy on arbitrary meshes to ensure the
positivity-preserving property without affecting the originally designed high order
accuracy [33, 34, 35].

In this paper, we focus on designing a high order positivity-preserving DG method
for solving the steady and unsteady discrete-ordinate radiative transfer equations in
Cartesian coordinates. Differently from the explicit schemes for Euler equations and
other convection dominated equations, the scheme we consider here is an implicit or
iterative type, thus the above mentioned methodology of positivity-preserving scaling
limiter proposed by Zhang and Shu can not be applied directly. In fact, if we adopt
a similar positivity-preserving scaling limiter in the DG method for these radiative
transfer equations, degeneracy of accuracy may happen for third and higher order
schemes (see the Appendix of this paper). Here, instead, we develop a combined tech-
nique of the scaling positivity-preserving limiter and a rotational positivity-preserving
limiter which can be used to solve the radiative transfer equations by implicit or itera-
tive DG methods. This new limiter is simple to implement, does not affect convergence
to weak solutions (Lax-Wendroff theorem), and can be theoretically proved to pre-
serve positivity and to maintain the originally designed high order accuracy both in
one and two spatial dimensions. One- and two-dimensional numerical tests for these
positivity-preserving DG schemes are provided to demonstrate their effectiveness.

An outline of the rest of this paper is as follows. In Section 2, we describe
the radiative transfer equation and its DG discretization for the steady and unsteady
discrete-ordinate radiative transfer equation. In Section 3, we discuss the methodology
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to construct positivity-preserving DG schemes for the radiative transfer equation in
one spatial dimension. In Section 4, we present a positivity-preserving DG scheme in
two spatial dimensions. In Section 5, numerical examples are given to demonstrate
the good performance of these DG schemes. We give concluding remarks in Section
6.

2. The radiative transfer equation and its DG discretization.

2.1. The radiative transfer equation. The radiative transfer equation is the
mathematical statement of the conservation of photons. The Eulerian derivation leads
to the so-called integro-differential form of the radiative transfer equation. More
details can be found in [25].

We first consider a steady-state, one-group, isotropically-scattering transfer equa-
tion

(2.1) Ω · ∇rI(r,Ω) + σtI(r,Ω) =
σs

4π

∫

S

I(r,Ω)dΩ + q(r,Ω)

where I(r,Ω) is the radiative intensity in the direction Ω and the spatial position
r, S is the unit sphere, σs ≥ 0 is the scattering coefficient of the medium, σt is the
extinction coefficient of the medium due to both absorption and scattering (that is,
σt ≥ σs), and q(r,Ω) is a given source term. For two spatial dimensional problems,
the position vector r = (x, y) ∈ D ⊂ R

2 and the vector Ω is usually described by
a polar angle β measured with respect to a fixed axis in space and a corresponding
azimuthal angle ϕ. If we introduce µ = cosβ, we may denote

dr = dxdy, dΩ = sinβdβdϕ = −dµdϕ.

To solve the radiative transfer equation numerically, we must discretize the spatial
variables and the angular variables to obtain a system of simultaneous equations. In
the discrete-ordinate method (DOM), the radiative transfer equation (2.1) is solved for
a finite number of directions spanning the total solid angles of the unit sphere around
a point in space, and integrals over solid angles are replaced by a numerical quadra-
ture. For each discrete direction Ωm,l = (ζm, ηl), m = 1, ...,M, l = 1, ..., L where
M,L are the numbers of directions in ζ and η respectively where ζ = sinβ cosϕ =
√

1 − µ2 cosϕ, η = sinβ sinϕ =
√

1 − µ2 sinϕ. The equation (2.1) becomes a spatial
differential equation which is written in Cartesian coordinates as

(2.2) ζm
∂Im,l(r)

∂x
+ ηl

∂Im,l(r)

∂y
+ σtIm,l(r) =

σs

4π

∑

m′,l′

ωm′,l′Im′,l′(r) + q(r, ζm, ηl),

where Im,l(r) = I(r, ζm, ηl) is the radiative intensity in the direction (ζm, ηl), ωm,l is
the quadrature weight with

∑

m′,l′ ωm′,l′ = 4π (in this paper we assume ωm,l > 0 for
all m, l, which is correct for all the quadratures that we use in the numerical tests),
and

∫

S
I(r, ζ, η)dζdη ≈

∑

m′,l′ ωm′,l′I(r, ζm′ , ηl′). In most applications of the DOM,
SN or TN quadratures are used [13]. More details can be found in Section 5 when we
give numerical examples.

2.1.1. The one-dimensional steady radiative transfer equation. The steady
transfer equation in one-dimensional planar geometry can be described as follows,

(2.3) µ
∂I(x, µ)

∂x
+σtI(x, µ) =

σs

2

∫ +1

−1

I(x, µ)dµ+q(x, µ), a ≤ x ≤ b, −1 ≤ µ ≤ 1,
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where I(x, µ) is the radiative intensity in the direction µ and the spatial position x.
The boundary condition for the equation (2.3) is specified as

(2.4) I(a, µ) = I l(µ), 0 < µ ≤ 1; I(b, µ) = Ir(µ), − 1 ≤ µ < 0

where I l and Ir are the prescribed radiative intensity on the left and the right bound-
aries, respectively.

For each discrete directionm, one obtains a spatial differential equation as follows,

(2.5) µm
∂Im(x)

∂x
+ σtIm(x) =

σs

2

M
∑

m′=1

ωm′Im′(x) + qm(x), m = 1, ...,M

whereM is the number of directions, µm is the direction cosines along the x-coordinate
of the direction m, ωm > 0 is the quadrature weight with

∑

m ωm = 2 and Im(x) =

I(x, µm) is the radiative intensity in the directionm.
∫ +1

−1
I(x, µ)dµ ≈

∑M
m′=1 ωm′Im′(x).

2.1.2. The one-dimensional unsteady radiative transfer equation. We
assume the range of the time variable as 0 < t ≤ T , then the unsteady isotropically-
scattering transport problem in planar geometry is described as follows,

1

c

∂I(x, µ, t)

∂t
+ µ

∂I(x, µ, t)

∂x
+ σtI(x, µ, t) =

σs

2

∫ +1

−1

I(x, µ, t)dµ+ q(x, µ, t),

a ≤ x ≤ b, − 1 ≤ µ ≤ 1, 0 < t ≤ T,(2.6)

where c is the speed of photon.
For the above unsteady radiative transfer equation, we need to specify the bound-

ary condition as
(2.7)
I(a, µ, t) = I l(µ, t), 0 < µ ≤ 1, 0 ≤ t ≤ T ; I(b, µ, t) = Ir(µ, t), −1 ≤ µ < 0, 0 ≤ t ≤ T

and the initial condition as

(2.8) I(x, µ, 0) = I0(x, µ).

Similarly, the discrete-ordinate approximation for the unsteady radiative transfer
equation in planar geometry can be written as
(2.9)

1

c

∂Im(x, t)

∂t
+µm

∂Im(x, t)

∂x
+σtIm(x, t) =

σs

2

M
∑

m′=1

ωm′Im′(x, t)+qm(x, t), m = 1, ...,M.

2.2. The DG method for the discrete-ordinate radiative transfer equa-

tion. In this paper, we employ the DG method to discretize the spatial variables of the
discrete-ordinate radiative transfer equations. Here we first take the one-dimensional
radiative transfer equation as an example to show the form of the DG discretization
for this kind of equations. The specific form of the DG scheme for the two-dimensional
radiative transfer equation will be given in Section 4.

Without loss of generality, we denote Si = [xi−1/2, xi+1/2] (i = 1, · · · , Nx) as a
subdivision of [a, b] with a = x1/2 < x3/2 < · · · < xNx+1/2 = b, ∆xi = xi+1/2 − xi−1/2

and h = max1≤i≤Nx(∆xi).
We define the finite-element space consisting of the following piecewise polyno-

mials

V k
h = {Ih

m(x) ∈ L2(a, b) : Ih
m(x)|Si = Im,i(x) ∈ P k(Si), ∀Si, i = 1, · · · , Nx}
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where P k(Si) denotes the set of polynomials of degree up to k defined in the cell Si.
It is noted that functions in V k

h may be discontinuous across cell boundaries.

Due to the discontinuous nature of the spatial approximation, functions Ih
m(x) ∈

V k
h are double-valued at interior nodes (cell boundaries) xi+1/2 for i = 2, · · · , Nx − 1.

Consider a node xi+1/2 separating two cells Si and Si+1. For the convenience of
the following discussion, we will use the notation Im,i(x) to denote the polynomial
solution of Ih

m inside the cell Si. The left and right values of Ih
m(x) at the node xi+1/2

are therefore given by

(2.10) Ih
m(x−i+1/2) = Im,i(xi+1/2), Ih

m(x+
i+1/2) = Im,i+1(xi+1/2),

respectively.

2.2.1. The DG method for the one-dimensional steady radiative trans-

fer equation. We consider a given direction µm, and only illustrate the case of
µm > 0, as a similar procedure can be repeated for µm < 0. By applying the upwind
principle to determine the numerical flux at the cell boundaries, the DG method for
solving (2.5) is defined as follows: find the unique function Ih

m(x) ∈ V k
h such that, for

all the test functions bh(x) ∈ V k
h where bh(x)|Si = bi(x) ∈ P k(Si), ∀Si, i = 1, · · · , Nx,

we have

∫

Si
(−µmI

h
m(x)(bh)′(x) + σtI

h
m(x)bh(x))dx + µmI

h
m(x−i+1/2)b

h(x−i+1/2) =
∫

Si

σs

2 φi(x)b
h(x)dx +

∫

Si
qm(x)bh(x)dx + µmI

h
m(x−i−1/2)b

h(x+
i−1/2),

i.e.

(2.11)

∫

Si
(−µmIm,i(x)b

′

i(x) + σtIm,i(x)bi(x))dx + µmIm,i(xi+1/2)bi(xi+1/2) =
∫

Si

σs

2 φi(x)bi(x)dx +
∫

Si
qm(x)bi(x)dx + µmIm,i−1(xi−1/2)bi(xi−1/2)

where

(2.12) φi(x) =

M
∑

m′=1

ωm′Im′,i(x).

2.2.2. The DG method for the unsteady radiative transfer equation.

The DG method, with backward Euler time discretization, for solving the unsteady
DOM transfer equation (2.9) is similar to the steady state scheme (2.11). When
the n-th time step solution In

m,i(x) (for all m = 1, · · · ,M and i = 1, · · · , Nx) is

known, we would like to find polynomials In+1
m,i (x) ∈ P k(Si), for all m = 1, · · · ,M

and i = 1, · · · , Nx, such that
(2.13)

∫

Si
(−µmI

n+1
m,i (x)b

′

i(x) + σ̃tI
n+1
m,i (x)bi(x))dx + µmI

n+1
m,i (xi+1/2)bi(xi+1/2) =

∫

Si

σs

2 φ
n+1
i (x)bi(x)dx +

∫

Si
q̃m,i(x)bi(x)dx + µmI

n+1
m,i−1(xi−1/2)bi(xi−1/2)

where σ̃t = σt +
1

c∆tn , q̃m,i(x) = qm(x, tn+1)+ 1
c∆tn I

n
m,i(x), and ∆tn = tn+1− tn is the

time step size. We use backward Euler in order to avoid the extreme constraint on the
time step for explicit time stepping due to the high speed c. Of course, higher order
implicit time stepping methods can also be used, but our discussion in this paper is
restricted to first order backward Euler time stepping.
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2.3. The solution algorithm for the DG method. The discrete set of alge-
braic equations in the DOM-DG schemes such as (2.11) and (2.13) is usually solved
by an iteration method in an optimal sweeping order. This is usually referred to as
the grid sweeping algorithm. For a specific discrete direction, the optimal marching
procedure starts from a cell located at a corner of the computational domain. We de-
termine the corner where the calculation begins for each specific discrete direction by
the sign of the direction cosines such as µm for one-dimensional problems and (ζm, ηl)
for two-dimensional problems under consideration in a way that the upstream cell
boundaries lie on the boundary of the domain. For example, when ζm > 0, ηl > 0,
the sweeping starts from the bottom-left corner cell, whose left and bottom cell bound-
aries coincide with the inflow boundary of the domain where the intensity function is
prescribed. The discrete equations for all the remaining cells are solved successively
in the direction of the orientation of the direction cosines, so that the intensities at
the upstream boundaries of the cell we are computing can be obtained either from the
boundary conditions or from the calculations performed in the previously computed
cells. Without the coupling integral terms, this marching procedure provides the DG
solution in all cells just in one sweep, which is a major advantage of the DG methods.
For iterative methods used to solve the discretized transfer equation with the cou-
pling integral terms, one of the widely used methods is the so-called source iteration
(SI) method [16], which is defined for solving the DG scheme (2.11)-(2.12) as follows:

When the ℓ-th iteration solution I
(ℓ)
m,i (for all m = 1, · · · ,M and i = 1, · · · , Nx) is

known, we compute I
(ℓ+1)
m,i , for i = 1, · · · , Nx (in this order when µ > 0), and for each

fixed i, running through m = 1, · · · ,M to solve
(2.14)

∫

Si
(−µmI

(ℓ+1)
m,i (x)b

′

i(x) + σtI
(ℓ+1)
m,i (x)bi(x))dx + µmI

(ℓ+1)
m,i (xi+1/2)bi(xi+1/2)

=
∫

Si

σs

2 φ
(∗)
i (x)bi(x)dx +

∫

Si
qm(x)bi(x)dx + µmI

(ℓ+1)
m,i−1(xi−1/2)bi(xi−1/2)

with

(2.15) φ
(∗)
i (x) =

∑

m′=1,··· ,M

ωm′I
(∗)
m′,i(x)

where I
(∗)
m′,i(x) is taken as I

(ℓ+1)
m′,i (x) if it is already available, otherwise it is taken

as I
(ℓ)
m′,i(x). Since I

(ℓ+1)
m,i−1(xi−1/2) (for i = 1 this is taken as the given boundary

condition) and the other (ℓ + 1)-th iteration solution needed on the right hand side
of (2.14) have already been computed in the sweep, the SI solver (2.14) is completely

local in cell Si, thus can be very efficiently computed. The initial iteration values I
(0)
m,i

can be determined arbitrarily (e.g. by the boundary conditions). The source iteration
process continues until a prescribed convergence criterion is satisfied, in our numerical
experiments this is taken as when the maximum residue is less than 10−14. In the SI
method, each ordinate is solved independently while the couplings between different

ordinates are deferred to the integral term involving φ
(∗)
i (x), which uses a mixture of

information from both (ℓ + 1)-th (when available) and ℓ-th iterations.
Similarly, the SI method solving the DG scheme for the unsteady radiative transfer

equation (2.13) can be described as follows
(2.16)
∫

Si
(−µmI

n+1,(ℓ+1)
m,i (x)b

′

i(x) + σ̃tI
n+1,(ℓ+1)
m,i (x)bi(x))dx + µmI

n+1,(ℓ+1)
m,i (xi+1/2)bi(xi+1/2)

=
∫

Si

σs

2 φ
n+1,(∗)
i (x)bi(x)dx +

∫

Si
q̃m,i(x)bi(x)dx + µmI

n+1,(ℓ+1)
m,i−1 (xi−1/2)bi(xi−1/2).



8 D. Yuan, J. Cheng, and C.-W. SHU

3. High order positivity-preserving DG scheme for the discrete-ordinate

radiative transfer equation in one spatial dimension. Generally, higher order
approximations for radiative intensity may provide more accurate solutions but ar-
tifacts might appear such as negativeness of the solutions. In this section, we first
discuss how to design a high order positivity-preserving DG scheme for both the steady
radiative transfer equation and the unsteady radiative transfer equation in one spatial
dimension. In the next section, we will propose a high order positivity-preserving DG
scheme for the two-dimensional radiative transfer equation.

3.1. High order positivity-preserving DG scheme for the one-dimensional

steady discrete-ordinate radiative transfer equation. We denote

Gi = {xi−1/2 = x̂1
i , x̂

2
i , · · · , x̂

N−1
i , x̂N

i = xi+1/2}

as the N -point Gauss-Lobatto quadrature points in the cell Si and ŵα > 0 (α =
1, 2, · · · , N) as the corresponding quadrature weights, where N could be chosen as
the smallest integer satisfying 2N − 3 ≥ k. However, in this paper, in order to
make the rotational limiter simpler, we choose N = k + 1 so that the k-th degree
polynomial solution can be completely and uniquely determined by its values at these
Gauss-Lobatto points. For a polynomial Im,i(x), denote by Īm,i its cell average in Si

(from now on, we denote by f̄ the cell average of the function f), then we have

Īm,i =
1

∆xi

∫

Si

Im,i(x)dx =
N
∑

α=1

ŵαIm,i(x̂
α
i ).

We aim to develop a high order positivity-preserving DG scheme for solving
the discrete-ordinate steady radiative transfer equation (2.5). That is, if we know

the source term, the values of I at the domain boundary, {I
(ℓ)
m,i′(x̂

α
i′ ), ∀α,m, i

′} and

{I
(ℓ+1)
m,i′ (x̂α

i′ ), α = 1, · · · , N} in all the upstream cells of the cell Si are nonnegative,

then we would like to “limit” the DG solution I
(ℓ+1)
m,i (x) computed by (2.14) to obtain

a new polynomial Î
(ℓ+1)
m,i (x) such that Î

(ℓ+1)
m,i (x̂α

i ) are nonnegative for all α = 1, · · · , N .

This of course also implies that the cell average of Îm,i(x) is nonnegative. Fur-
thermore, the limiting procedure should not affect the accuracy of the scheme, i.e.,

|Î
(ℓ+1)
m,i (x)− I

(ℓ+1)
m,i (x)| ≤ Chk+1 when the exact solution is smooth. Here and below, C

is a constant independent of h, which may take different values in different locations.

After the limited polynomial Îm,i(x) is obtained, it will be relabeled as I
(ℓ+1)
m,i (x) be-

fore moving to the next direction m + 1 or to the next cell, i.e. Si+1 for the case
µm > 0.

Consider again the case of µm > 0. If we take the test function bi(x) = 1 in
(2.14), then we obtain

σt

∫

Si

I
(ℓ+1)
m,i (x)dx+µmI

(ℓ+1)
m,i (xi+1/2) =

σs

2

∫

Si

φ
(∗)
i (x)dx+

∫

Si

qm(x)dx+µmI
(ℓ+1)
m,i−1(xi−1/2),

i.e.,

(3.1) σtĪ
(ℓ+1)
m,i ∆xi + µmI

(ℓ+1)
m,i (xi+1/2) =

σs

2
φ̄

(∗)
i ∆xi + q̄m,i∆xi + µmI

(ℓ+1)
m,i−1(xi−1/2).

From the above assumption, we know q̄m,i ≥ 0, φ̄
(∗)
i ≥ 0 and I

(ℓ+1)
m,i−1(xi−1/2) ≥ 0,

then by (3.1) and the mean value theorem, there exists ξ ∈ [xi− 1
2
, xi+ 1

2
] so that the
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following inequality is satisfied,

(3.2) I
(ℓ+1)
m,i (ξ) =

µm

µm + σt∆xi
I
(ℓ+1)
m,i (xi+ 1

2
) +

σt∆xi

µm + σt∆xi
Ī
(ℓ+1)
m,i ≥ 0.

Thus it is also easy to see that at least one of I
(ℓ+1)
m,i (xi+ 1

2
) and Ī

(ℓ+1)
m,i is nonnegative.

We remark that (3.2) states that the original DG solution obtained by (2.14),
without being limited yet, is nonnegative at least at one point in the cell. This is
crucial for the success of the limiter to be introduced later. In the work of Zhang
and Shu [33, 35], the original DG solution has a nonnegative cell average, then a
simple scaling limiter can be applied to bring the whole polynomial at the desired
Gauss-Lobatto points to be nonnegative, without sacrificing the original high order
accuracy. An obvious idea here would be to adopt a similar scaling limiter, which can
be described as follows,

(3.3) Î
(ℓ+1)
m,i (x) = λ(I

(ℓ+1)
m,i (x) − I

(ℓ+1)
m,i (ξ)) + I

(ℓ+1)
m,i (ξ),

where

λ = min

{∣

∣

∣

∣

∣

I
(ℓ+1)
m,i (ξ)

I
(ℓ+1)
m,i (ξ) − zi

∣

∣

∣

∣

∣

, 1

}

, zi = min
α=1,...,N

(0, I
(ℓ+1)
m,i (x̂α

i )).

Then we can easily verify that Î
(ℓ+1)
m,i (x̂α

i ) ≥ 0, α = 1, · · · , N and therefore also
¯̂
I
(ℓ+1)
m,i = 1

∆xi

∫

Si
Î
(ℓ+1)
m,i (x)dx =

∑N
α=1 ŵαÎ

(ℓ+1)
m,i (x̂α

i ) ≥ 0. This is exactly the scal-

ing limiter used in Zhang and Shu [33, 35], with the cell average Ī
(ℓ+1)
m,i replaced by

I
(ℓ+1)
m,i (ξ). This appears to be just a small change, as both Ī

(ℓ+1)
m,i and I

(ℓ+1)
m,i (ξ) are

particular point values of the DG polynomial solution I
(ℓ+1)
m,i (x) at different points

inside the cell Si. It is proved in [33, 35] that the scaling limiter with Ī
(ℓ+1)
m,i maintains

the original high order accuracy. Unfortunately, the same scaling limiter (3.3) with

I
(ℓ+1)
m,i (ξ) defined by (3.2) can only guarantee the original second order accuracy for

the piecewise linear k = 1 case, but may lead to possible degeneracy of the original
high order accuracy for k ≥ 2. For a more detailed discussion on this issue, we refer
to the appendix of this paper.

In order to keep the high order accuracy of the method as well as the positivity-
preserving property of the radiative intensity, we adopt an alternative positivity-
preserving limiter which will be illustrated in the following subsections. As shown

above, at least one of Ī
(ℓ+1)
m,i and I

(ℓ+1)
m,i (xi+ 1

2
) is non-negative. The limiting strategy

depends on which one is non-negative. If Ī
(ℓ+1)
m,i ≥ 0, then the same scaling limiter

as introduced in [33, 35] is employed which will be introduced in subsection 3.1.1,
otherwise a rotational limiter is applied which will be described in subsection 3.1.2.

3.1.1. The scaling limiter. If Ī
(ℓ+1)
m,i ≥ 0, we apply the scaling limiter [33] to

modify I
(ℓ+1)
m,i (x) as follows

(3.4) Î
(ℓ+1)
m,i (x) = λ(I

(ℓ+1)
m,i (x) − Ī

(ℓ+1)
m,i ) + Ī

(ℓ+1)
m,i

with

(3.5) λ = min

{
∣

∣

∣

∣

∣

Ī
(ℓ+1)
m,i

Ī
(ℓ+1)
m,i − zi

∣

∣

∣

∣

∣

, 1

}

, zi = min
α=1,...,N

(0, I
(ℓ+1)
m,i (x̂α

i )).
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P

Q

Cθ

← Before rotating

After rotating → 

P

Q

C

R

A BO

(x,I)

(x,,0)

(x
c
,I

c
)

Fig. 3.1. Left: The rotational transformation; Right: Sketch for the rotation.

This scaling limiter can keep the original high order of accuracy of the unlimited
polynomial, as proved in [33]. Here we only state the conclusion in the following
proposition.

Proposition 1. (Zhang and Shu [33]) Assume I
(ℓ+1)
m,i (x) is a k-th degree polyno-

mial defined on cell Si which approximates a smooth function I(x) ≥ 0 to (k + 1)-th

order accuracy, and Ī
(ℓ+1)
m,i ≥ 0, then the limited polynomial Î

(ℓ+1)
m,i (x) defined by (3.4)

and (3.5) achieves positivity Î
(ℓ+1)
m,i (x̂α

i ) ≥ 0 for α = 1, ..., N and maintains the same
(k + 1)-th order accuracy for approximating I(x).

3.1.2. The rotational limiter. First, we recall a few notations about the ro-
tational transformation. For simplicity of notations, we denote the end point xi+1/2

as xc and Im,i(xi+1/2) as Ic. Similarly, for any points x, x
′

∈ Si, the values of the
radiative intensity at these points are denoted as I and I ′ respectively. As shown in
Figure 3.1 (left), let the point P (x, I) be rotated clockwise for an angle θ around the
point C(xc, Ic), which is called the center of rotation, and reach the point Q(x

′

, I ′).
We also denote AB as the line segment between the points A and B and |AB| as the
Euclidean length of AB, respectively.

The rotational transformation can be written as a vector multiplied by a matrix
calculated from the angle θ as follows,

(3.6)

[

I ′

x
′

]

= M

[

I − Ic
x− xc

]

+

[

Ic
xc

]

where the rotational matrix M is defined as

[

cos θ sin θ
− sin θ cos θ

]

.

Suppose I ′ = 0, then it is easy to verify that the value of θ can be computed by
the following formula

(3.7) θ = arccos
2a2 − b2

2a2
,

where a2 = (xc − x)2 + (Ic − I)2 and

b2 = (xc −
√

a2 − I2
c − x)2 + I2.

Now, just like in the scaling limiter case, we assume Im,i(x) is a k-th degree
polynomial defined in the cell Si which approximates a smooth function I(x) ≥ 0 to
(k + 1)-th order accuracy, and Im,i(xi+1/2) ≥ 0. We would like to obtain a limited
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polynomial Îm,i(x) with rotation, such that Îm,i(x̂
α
i ) ≥ 0 for α = 1, ..., N , while main-

taining the same (k+1)-th order accuracy for approximating I(x). For the convenience
of description, we call x̂α

i to be a negative Gauss-Lobatto point if Im,i(x̂
α
i ) < 0.

The rotational limiter algorithm:

1. For each negative Gauss-Lobatto point x̂α
i in the cell Si, compute the rota-

tional angle θα
m,i by (3.7) so that the point (x̂α

i , Im,i(x̂
α
i )) is rotated around

(x̂N
i , Im,i(x̂

N
i )) clockwise to reach the new point (x̂

′α
i , 0). If a particular x̂α

i is
not a negative Gauss-Lobatto point, then we set θα

m,i = 0.
2. Taking θm,i = maxα=1,··· ,N−1 θ

α
m,i, we rotate the polynomial Im,i(x) to obtain

Ǐm,i(x) by the rotational transformation (3.6) with θ = θm,i. Then it is easy

to see that Ǐm,i(x̂
′α
i ) ≥ 0 for all α = 1, ..., N − 1.

3. The final modified polynomial Îm,i(x) is the interpolation polynomial at all

the N = k + 1 Gauss-Lobatto points which are determined by Îm,i(x̂
α
i ) =

Ǐm,i(x̂
′α
i ), α = 1, · · · , N − 1 and Îm,i(x̂

N
i ) = Im,i(x̂

N
i ).

From the definition of the rotational limiter, we can clearly see that Îm,i(x̂
α
i ) ≥ 0

for all α = 1, ..., N . That is,

Proposition 2. Îm,i(x̂
α
i ) is nonnegative for all α = 1, · · · , N , i.e., the rotational

limiter is positivity-preserving.

Next we will show that the above described rotational limiter can maintain the
original high order accuracy. First we introduce the following lemma.

Lemma 1. Suppose the k-th degree polynomial Ih(x) is a (k + 1)-order accurate
approximation of the smooth function I(x) in the cell Si. As shown in Figure 3.1
(right), assume the Gauss-Lobatto point P (x, I) with I < 0 (here I = Ih(x) is a short
notation) in the interval AB rotates clockwise by angle θ (∠PCQ = θ), around the
point C(xc, Ic) with Ic > 0 to reach the point Q(x

′

, 0). Suppose |AB| = h (A = xi−1/2,
B = xi+1/2), then we have

(3.8) tan
θ

2
≤ Chk

Proof: Suppose the point O is the foot of the perpendicular projection of P to AB.
We first show that |OQ| ≤ Chk+1. Let x = x̂α

i be one of the Gauss-Lobatto points in
the interval AB, then |OB| = |xc − x| ≥ C1h, for example C1 ≈ 0.35 if N = 5.

An essential observation is that

|BQ| =
√

|CQ|2 − |CB|2 =
√

|CP |2 − |CB|2 =
√

(xc − x)2 + (Ic − I)2 − I2
c

and |OQ| = |BQ| − |OB|, then

(3.9) |OQ| = |I|
|I − 2Ic|

√

(xc − x)2 + (Ic − I)2 − I2
c + (xc − x)

.

Since Ic > 0, I < 0, we have, for constants C0, C2 > 0,

Ic ≤ |Ic − I| = |Ih(xc) − Ih(x)|

≤ |Ih(xc) − I(xc)| + |I(xc) − I(x)| + |I(x) − Ih(x)|

≤ C0h
k+1 +

dI

dx
(ξ)(xc − x) ≤ C2h
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where ξ ∈ [x, xc]. Also, since I = Ih(x) < 0 and I(x) ≥ 0, we have |I| ≤ |I −
I(x)| = |Ih(x) − I(x)| ≤ C3h

k+1 for some constant C3. Therefore, the numerator of
the coefficient to I on the right side of (3.9) satisfies

|I − 2Ic| ≤ |I| + 2|Ic| ≤ C4h

and the denominator of the coefficient to I on the right side of (3.9) satisfies

√

(xc − x)2 + (Ic − I)2 − I2
c + (xc − x) ≥ xc − x ≥ C1h

Hence the coefficient itself is bounded by a constant C5, which, by (3.9), implies

|OQ| ≤ C6h
k+1

where C6 = C3C5.
It remains to show that tan θ

2 ≤ Chk. Let the point R be the midpoint of PQ as
shown in Figure 3.1 (right). Since |OQ| ≤ C6h

k+1 and |PO| = |I| ≤ C3h
k+1, we have

|PR| ≤ C7h
k+1 where C7 = 1

2

√

(C3)2 + (C6)2. Then

tan
θ

2
=

|PR|

|RC|
<

|PR|

|OB|
≤

C7h
k+1

C1h
≤ Chk,

where C = C7/C1.
This completes the proof.
Theorem 1. Assume Im,i(x) is a k-th degree polynomial defined in the cell

Si which approximates a smooth function I(x) ≥ 0 to (k + 1)-th order accuracy,
and Im,i(xi+1/2) ≥ 0, then the limited polynomial Îm,i(x) defined through Ǐm,i(x)

by the procedure above, where Ǐm,i(x) is obtained by rotating the polynomial Im,i(x)
around the point C(x̂N

i , Im,i(x̂
N
i )) clockwise by the angle θm,i described above, achieves

positivity Îm,i(x̂
α
i ) ≥ 0 for α = 1, ..., N and maintains the same (k + 1)-th order

accuracy for approximating I(x).
Proof: In the transformation (3.6), we take x = x̂α

i , x
′ = x̂

′α
i , xc = x̂N

i and get,

[

Ǐm,i(x̂
′α
i )

x̂
′α
i

]

=

[

cos θm,i sin θm,i

− sin θm,i cos θm,i

] [

Im,i(x̂
α
i ) − Im,i(x̂

N
i )

x̂α
i − x̂N

i

]

+

[

Im,i(x̂
N
i )

x̂N
i

]

.

After a simple manipulation, the above equation can be rewritten as follows

(3.10)
Ǐm,i(x̂

′α
i ) − I(x̂α

i ) = cos θm,i(Im,i(x̂
α
i ) − I(x̂α

i ))
+(cos θm,i − 1)(I(x̂α

i ) − Im,i(x̂
N
i )) + sin θm,i(x̂

α
i − x̂N

i ) ,

(3.11)

x̂
′α
i −x̂α

i = − sin θm,i(Im,i(x̂
α
i )−I(x̂α

i ))−sin θm,i(I(x̂
α
i )−Im,i(x̂

N
i ))+(cos θm,i−1)(x̂α

i −x̂
N
i ).

From the equality (3.11), we can obtain

I(x̂α
i )− Im,i(x̂

N
i ) = −

1

sin θm,i
(x̂

′α
i − x̂α

i )− (Im,i(x̂
α
i )− I(x̂α

i ))+
cos θm,i − 1

sin θm,i
(x̂α

i − x̂N
i ).

Substituting the above expression of I(x̂α
i ) − Im,i(x̂

N
i ) into the equality (3.10), we

obtain

(3.12) Ǐm,i(x̂
′α
i )−I(x̂α

i ) = Im,i(x̂
α
i )−I(x̂α

i )+2 tan
θm,i

2
(x̂α

i −x̂
N
i )+tan

θm,i

2
(x̂

′α
i −x̂α

i ).
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By using the result of Lemma 1, it is straightforward to prove that

|Ǐm,i(x̂
′α
i ) − Im(x̂α

i )| ≤ Chk+1.

Since Îm,i(x̂
α
i ) = Ǐm,i(x̂

′α
i ), we also have |Îm,i(x̂

α
i ) − I(x̂α

i )| ≤ Chk+1 for all α =

1, ..., N , which implies that Îm,i(x) approximates the function I(x) with (k + 1)-th
order accuracy in Si.

This completes the proof.

The easiest way to implement the rotational limiter is through the values of the
limited polynomial Îm,i(x) at the N = k+1 Gauss-Lobatto points, as described above.
This would involve a Lagrangian basis set (consisting of basis functions which achieve
the value 1 at one Gauss-Lobatto point and 0 at other Gauss-Lobatto points). If other
basis functions are used, a change of coefficients under different basis sets is needed.
We emphasize that neither the DG method itself nor the rotational limiter depends
on the particular choice of basis functions for the implementation.

We now summarize the limiting procedure to obtain a high order positivity-
preserving scheme for solving (2.14) as follows. Here we assume that the values of
radiative intensity at the boundary and the cell average of the extra source term q̄i
are all positive.

If I
(ℓ)
m,i′(x̂

α
i′ ) ≥ 0, ∀α, i′,m and I

(ℓ+1)
m,i′ (x̂α

i′ ) ≥ 0 for all α, i′,m in the upstream

cells, then we have φ̄
(∗)
m,i ≥ 0 and from (3.1)-(3.2) we know at least one of Ī

(ℓ+1)
m,i and

I
(ℓ+1)
m,i (xi+1/2) is nonnegative. Then,

• If Ī
(ℓ+1)
m,i ≥ 0, the scaling limiter (3.4)-(3.5) is employed to modify the DG

polynomial I
(ℓ+1)
m,i (x) to obtain Î

(ℓ+1)
m,i (x);

• Otherwise, we must have I
(ℓ+1)
m,i (xi+1/2) ≥ 0, then the rotational limiter algo-

rithm is applied on I
(ℓ+1)
m,i (x) to obtain Î

(ℓ+1)
m,i (x).

Remark 1. The procedure for the case of µm < 0 can be obtained symmetrically.

Remark 2. Clearly, if the scaling limiter is used, the cell average of the DG
polynomial is not changed, hence conservation is automatic. If the rotational limiter
is used, the cell average is changed (in fact, the rotational limiter is used only if

Ī
(ℓ+1)
m,i < 0, while the cell average after limiting is nonnegative, hence the cell average

must have changed). This would appear to be a problem to conservation. However,

the crucial property which helps us is that the limited polynomial Î
(ℓ+1)
m,i (x) and the

original polynomial I
(ℓ+1)
m,i (x) share the same value at xi+1/2 (or at xi−1/2 for the

µm < 0 case). Therefore, the difference between the two Riemann sums approximating
the weak formulation −

∫

Si
I(x)ψx(x)dx with a smooth function ψ(x):

Dm =
∑

i

¯̂
I
(ℓ+1)
m,i ψx(xi)∆xi −

∑

i

Ī
(ℓ+1)
m,i ψx(xi)∆xi,
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is bounded by

|Dm| = |
∑

i∈A

(
¯̂
I
(ℓ+1)
m,i − Ī

(ℓ+1)
m,i )ψx(xi)∆xi|

≤ Ch
∑

i∈A

|
¯̂
I
(ℓ+1)
m,i − Î

(ℓ+1)
m,i (xi+1/2) + I

(ℓ+1)
m,i (xi+1/2) − Ī

(ℓ+1)
m,i |

≤ Ch

(

∑

i∈A

|
¯̂
I
(ℓ+1)
m,i − Î

(ℓ+1)
m,i (xi+1/2)| +

∑

i∈A

|I
(ℓ+1)
m,i (xi+1/2) − Ī

(ℓ+1)
m,i |

)

≤ Ch
(

TV (Î
(ℓ+1)
m,i ) + TV (I

(ℓ+1)
m,i )

)

,

where A is the set of cells in which the rotational limiter is applied. Therefore, this

difference goes to zero when the mesh size h→ 0, provided both I
(ℓ+1)
m,i and Î

(ℓ+1)
m,i have

bounded total variation. That is, if the numerical solution converges with bounded
total variation towards a function I, then I is a weak solution of the original equation
and will thus have the correct discontinuity location and strength. This is to say that
our limited scheme satisfies the classical Lax-Wendroff theorem [14], which is the main
purpose of using conservative schemes.

Remark 3. We could actually also take the number of Gauss-Lobatto points N <
k+ 1 as long as 2N − 3 ≥ k (this is possible when k ≥ 3) to save cost for the limiter.
Positivity can still be achieved. The order of accuracy can be maintained when we take
the limited polynomial Îm,i(x) to interpolate Îm,i(x̂

α
i ) = Ǐm,i(x̂

′α
i ), α = 1, ..., N−1 and

Îm,i(x̂
N
i ) = Im,i(x̂

N
i ), and to be closest to the original Im,i(x) in the L2-norm (least

square) subject to such interpolation properties. For simplicity of presentation we do
not pursue this route further in this paper.

3.2. High order positivity-preserving DG scheme for the unsteady ra-

diative transfer equation. The high order positivity-preserving DG scheme pro-
posed in the previous subsection for the steady radiative transfer equation can be
easily extended to the fully discrete unsteady radiative transfer equation with back-
ward Euler time discretization. In fact, comparing equation (2.14) with equation

(2.16), we find that they are the same except that σt, qm,i(x) and I
(ℓ+1)
m,i (x) are re-

placed by σ̃t, q̃m,i(x) and I
n+1,(ℓ+1)
m,i (x), respectively. Thus the same procedure can

be applied, and we do not repeat the details.

4. High order positivity-preserving DG scheme for solving the radia-

tive transfer equation in two spatial dimensions.

4.1. The DG method for the steady radiative transfer equation in two

spatial dimensions. Consider the steady radiative transfer equation in two spatial
dimensions (2.2) with the domain D = [a, b] × [c, d] and the rectangular mesh of
D = ∪i=1,··· ,Nx,j=1,··· ,NySi,j with Si,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] as shown
in Figure 4.1 (left). For simplicity, we only illustrate how to implement the limiter
in the direction (ζm, ηl) with ζm > 0 and ηl > 0, that is, its outflow boundary
∂S+

i,j = Γout1 ∪ Γout2 and inflow boundary ∂S−
i,j = Γin1 ∪ Γin2 (see Figure 4.1 (left))

can be written as follows,

Γin1 = xi−1/2 × [yj−1/2, yj+1/2], Γin2 = [xi−1/2, xi+1/2] × yj−1/2,
Γout1 = [xi−1/2, xi+1/2] × yj+1/2, Γout2 = xi+1/2 × [yj−1/2, yj+1/2].

The implementation for the other three cases can be obtained symmetrically.
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Fig. 4.1. Left:The inflow and outflow boundaries for the direction Ωm,l = (ζm, ηl) with ζm > 0
and ηl > 0 in the rectangular cell Si,j; Right: The radiative intensity for the purely absorbing model
simulated by the Q1 DG scheme with the positivity-preserving limiter on a 40 × 40 uniform grid.
The white points represent the cells where the positivity-preserving limiter has been enacted during
the computation.

The DOM equation of (2.2) solved by the source iteration method can be written
as

(4.1) ζm
∂I

(ℓ+1)
m,l (r)

∂x
+ ηl

∂I
(ℓ+1)
m,l (r)

∂y
+ σtI

(ℓ+1)
m,l (r) =

σs

4π
φ(∗)(r) + q(r, ζm, ηl)

where

φ(∗)(r) =

M,L
∑

m′,l′=1

ωm′,l′I
(∗)
m′,l′(r).

Similarly as the case in one spatial dimension, I
(∗)
m′,l′(r) is taken as I

(ℓ+1)
m′,l′ (r) if it has

already been obtained, otherwise, it is taken as I
(ℓ)
m′,l′(r).

The DG method for the equation (4.1) in a rectangular cell Si,j can be written as
(4.2)
∫

Si,j
(−ζmI

(ℓ+1)
m,l;i,j(x, y)

∂bi,j(x,y)
∂x − ηlI

(ℓ+1)
m,l;i,j(x, y)

∂bi,j(x,y)
∂y + σtI

(ℓ+1)
m,l;i,j(x, y)bi,j(x, y))dxdy

+ηl

∫

Γout1
I
(ℓ+1)
m,l;i,j(x, y)bi,j(x, y)dx + ζm

∫

Γout2
I
(ℓ+1)
m,l;i,j(x, y)bi,j(x, y)dy

=
∫

Si,j

σs

4πφ
(∗)
i,j (x, y)bi,j(x, y)dxdy +

∫

Si,j
qm,l(x, y)bi,j(x, y)dxdy+

ζm
∫

Γin1
I
(ℓ+1)
m,l;i−1,j(x, y)bi,j(x, y)dy + ηl

∫

Γin2
I
(ℓ+1)
m,l;i,j−1(x, y)bi,j(x, y)dx

where Im,l;i,j(x, y) is the DG solution polynomial in the cell Si,j , and bi,j(x, y) is a
test function. Both Im,l;i,j(x, y) and bi,j(x, y) are polynomials of degree at most k in
each variable (tensor-product polynomials, denoted by Qk).

4.2. The high order positivity-preserving DG scheme for the two-dimensional

steady radiative transfer equation. Taking bi,j(x, y) = 1, the DG method (4.2)
gives
(4.3)

σt∆xj∆yj
˜̄I
(ℓ+1)
m,l;i,j + ηl∆xi Ī

(ℓ+1)
m,l;i,j(yj+1/2) + ζm∆yj Ĩ

(ℓ+1)
m,l;i,j(xi+1/2) =

σs

4π ∆xi∆yj
˜̄φ
(∗)
i,j + ∆xi∆yj ˜̄qm,l;i,j + ζm∆yj Ĩ

(ℓ+1)
m,l;i−1,j(xi−1/2) + ηl∆xiĪ

(ℓ+1)
m,l;i,j−1(yj−1/2)

where, for any function p, we denote

˜̄pi,j = 1
∆xi∆yj

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2
pi,j(x, y)dxdy,

p̄i,j′(yj′+1/2) = 1
∆xi

∫ xi+1/2

xi−1/2
pi,j′(x, yj′+1/2)dx, j′ = j − 1, j,

p̃i′,j(xi′+1/2) = 1
∆yj

∫ yj+1/2

yj−1/2
pi′,j(xi′+1/2, y)dy, i′ = i− 1, i.
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That is, we use (̄·) to denote the cell averaging operator in the x-direction, (̃·) to denote

the cell averaging operator in the y-direction, and ˜̄(·) to denote the two dimensional
cell averaging operator in the cell Si,j .

In the cell Si,j , by the mean value theorem, there exists (ξ, ν) ∈ Si,j such that
(4.4)

I
(ℓ+1)
m,l;i,j(ξ, ν) =

σt∆xi∆yj
˜̄I
(ℓ+1)
m,l;i,j + ηl∆xiĪ

(ℓ+1)
m,l;i,j(yj+1/2) + ζm∆yj Ĩ

(ℓ+1)
m,l;i,j(xi+1/2)

σt∆xi∆yj + ηl∆xi + ζm∆yj
.

Suppose the source term qm,l(x, y) and I
(ℓ+1)
m,l;i,j(x, y) at the domain boundary are

nonnegative, and the values of the DG polynomials I
(ℓ)
m,l;i′,j′(x, y) and I

(ℓ+1)
m,l;i′,j′(x, y)

in the upstream cells (which have already been updated) at the Gauss-Lobatto points
are also nonnegative (which is achieved by using the positivity-preserving limiter de-

scribed below in the upstream cells), then we know that ˜̄φ
(∗)
i,j , ˜̄qm,l;i,j , Ĩ

(ℓ+1)
m,l;i−1,j(xi−1/2),

Ī
(ℓ+1)
m,l;i,j−1(yj−1/2) are all nonnegative, thus we can see that I

(ℓ+1)
m,l;i,j(ξ, ν) defined by

(4.4) is nonnegative by (4.3), i.e., at least one term among ˜̄I
(ℓ+1)
m,l;i,j , Ĩ

(ℓ+1)
m,l;i,j(xi+1/2) and

Ī
(ℓ+1)
m,l;i,j(yj+1/2) is nonnegative. Again, we emphasize that this nonnegative result is a

property of the DG scheme which is valid before the limiter is applied in the current
cell Si,j .

We denote the Gauss-Lobatto points in the cell Si,j as Gi,j = Gi×Gj , where Gi =
{xi−1/2 = x̂1

i , x̂
2
i , · · · , x̂

N−1
i , x̂N

i = xi+1/2}, Gj = {yj−1/2 = ŷ1
j , ŷ

2
j , · · · , ŷ

N−1
j , ŷN

j =
yj+1/2}. For convenience, we denote the Gauss-Lobatto points in Gi,j as r̂

α1,α2

i,j =
(x̂α1

i , ŷα2

j ).
Next, in order to obtain a nonnegative solution, we will perform either the

positivity-preserving scaling limiter or the positivity-preserving rotational limiter on

Im,l;i,j(x, y), depending on which is nonnegative among ˜̄I
(ℓ+1)
m,l;i,j , Ĩ

(ℓ+1)
m,l;i,j(xi+1/2) and

Ī
(ℓ+1)
m,l;i,j(yj+1/2).

4.2.1. The positivity-preserving scaling limiter in two spatial dimen-

sions. If ˜̄Im,l;i,j is nonnegative, we will employ the scaling limiter proposed in [33],
which can be described as

(4.5) Î
(ℓ+1)
m,l;i,j(x, y) = λ(I

(ℓ+1)
m,l;i,j(x, y) −

˜̄I
(ℓ+1)
m,l;i,j) + ˜̄I

(ℓ+1)
m,l;i,j

with

(4.6) λ = min

{∣

∣

∣

∣

∣

˜̄I
(ℓ+1)
m,l;i,j

˜̄I
(ℓ+1)
m,l;i,j − zi,j

∣

∣

∣

∣

∣

, 1

}

, zi,j = min
r̂

α1,α2
i,j ∈Gi,j

(I
(ℓ+1)
m,l;i,j(r̂

α1,α2

i,j ), 0).

Then for all r̂
α1,α2

i,j , α1, α2 = 1, .., N , it is easy to check that Îm,l;i,j(r̂
α1,α2

i,j ) is
nonnegative. This scaling limiter maintains the original (k + 1)-th order accuracy, as
proved in [33].

4.2.2. The positivity-preserving rotational limiter in two spatial dimen-

sions. If ˜̄Im,l;i,j is negative, then at least one of Ĩ
(ℓ+1)
m,l;i,j(xi+1/2) and Ī

(ℓ+1)
m,l;i,j(yj+1/2)

should be nonnegative by (4.3). In this case, the limiting procedure consists of a
one-dimensional scaling limiter on the relevant cell boundary followed by a two-
dimensional rotational limiter around this cell boundary. For simplicity, we only

illustrate how to implement the limiting procedure when Ĩ
(ℓ+1)
m,l;i,j(xi+1/2) ≥ 0.
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First we modify the polynomial Im,l;i,j(x, y) ∈ V k
h (Si,j) as follows. At the right

boundary of the cell x = xi+1/2, we apply the one dimensional scaling limiter to
obtain

(4.7) Ǐ
(ℓ+1)
m,l;i,j(xi+1/2, y) = λ(I

(ℓ+1)
m,l;i,j(xi+1/2, y) − Ĩ

(ℓ+1)
m,l;i,j(xi+1/2)) + Ĩ

(ℓ+1)
m,l;i,j(xi+1/2)

where the parameter λ is determined as
(4.8)

λ = min

{∣

∣

∣

∣

∣

Ĩ
(ℓ+1)
m,l;i,j(xi+1/2)

Ĩ
(ℓ+1)
m,l;i,j(xi+1/2) − zi,j

∣

∣

∣

∣

∣

, 1

}

, zi,j = min
ŷ

α2
j ∈Gj

(Im,l;i,j(xi+1/2, ŷ
α2

j ), 0).

This determines the modified polynomial Ǐ
(ℓ+1)
m,l;i,j(x, y) at the right boundary of the

cell x = xi+1/2, which is positive at the Gauss-Lobatto points along this cell boundary

(4.9) Ǐ
(ℓ+1)
m,l;i,j(xi+1/2, ŷ

α2

j ) ≥ 0, α2 = 1, 2, · · · , N.

We then take the difference of Ǐ
(ℓ+1)
m,l;i,j(x, y) and I

(ℓ+1)
m,l;i,j(x, y) at the Gauss-Lobatto

points along the right boundary of the cell x = xi+1/2:

dα2
= Ǐ

(ℓ+1)
m,l;i,j(xi+1/2, ŷ

α2

j ) − I
(ℓ+1)
m,l;i,j(xi+1/2, ŷ

α2

j ), α2 = 1, 2, ..., N.

Clearly, we have

(4.10) dα2
= O(hk+1), α2 = 1, 2, ..., N,

since the one-dimensional scaling limiter does not affect the order of accuracy [33].

We now modify the values of I
(ℓ+1)
m,l;i,j at the other Gauss-Lobatto points as

(4.11) Ǐ
(ℓ+1)
m,l;i,j(x̂

α1

i , ŷα2

j ) = I
(ℓ+1)
m,l;i,j(x̂

α1

i , ŷα2

j ) + dα2
, α1 = 1, ..., N ; α2 = 1, ..., N.

Finally, the modified polynomial Ǐ
(ℓ+1)
m,l;i,j(x, y) is determined by the unique interpola-

tion polynomial in Qk satisfying (4.11). Clearly, the modified polynomial Ǐ
(ℓ+1)
m,l;i,j(x, y)

satisfies positivity at the Gauss-Lobatto points along the right boundary of the cell

x = xi+1/2 (see (4.9)), and is O(hk+1) close to the original polynomial I
(ℓ+1)
m,l;i,j(x, y)

(see (4.10)).
To guarantee the positivity-preserving of the radiative intensity at all Gauss-

Lobatto points r̂
α1,α2
i,j ∈ Gi,j , we need to further apply the one-dimensional rotational

limiter algorithm defined in subsection 3.1.2 to Ǐ
(ℓ+1)
m,l;i,j(x, y), along each line y = ŷα2

j ,
as follows.
The two-dimensional rotational limiter algorithm:

1. Take each point (x̂N
i , ŷ

α2

j ), for α2 = 1, · · · , N , which lies on Γout2, as the
rotational center, and apply the one-dimensional rotational limiter algorithm
along the line y = ŷα2

j , with rotational angle θα2

m,l;i,j , to obtain the modified
values at all the Gauss-Lobatto points along this line and the modified one-

dimensional polynomial Î
(ℓ+1)
m,l;i,j(x, ŷ

α2

j ). We then have

Î
(ℓ+1)
m,l;i,j(x̂

α1

i , ŷα2

j ) ≥ 0, α1 = 1, · · · , N.
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2. The final limited polynomial Î
(ℓ+1)
m,l;i,j(x, y) is the unique interpolation poly-

nomial in Qk with the values at all Gauss-Lobatto points (x̂α1

i , ŷα2

j ) with
α1 = 1, · · · , N, α2 = 1, · · · , N , as obtained in Step 1 above.

Remark 4. It is straightforward to prove that this limiter maintains the original
high order accuracy, since we are only applying the one-dimensional rotational limiter
along each line.

The implementation of the positivity-preserving limiter is simple. Specifically the
flowchart for the 2D positivity-preserving limiter is as follows. Again, we list the
algorithm flowchart only for the case of ζm > 0, ηl > 0, as the other three cases can
be obtained symmetrically.

1. If ˜̄Im,l;i,j ≥ 0 then

perform the scaling limiter (4.5)-(4.6) on Im,l;i,j(x, y) to obtain Îm,l;i,j(x, y);

2. else if Ĩm,l;i,j(xi+1/2) ≥ 0 then

perform (4.7)-(4.8) and (4.11) on Im,l;i,j(x, y) to obtain Ǐm,l;i,j(x, y) first,
and then perform the two-dimensional rotational limiter algorithm to obtain
Îm,l;i,j(x, y);

3. else if Īm,l;i,j(yj+1/2) ≥ 0 then
perform the similar procedure as the second case above with the role of

x and y switched to obtain Îm,l;i,j(x, y).

Finally the polynomial Î
(ℓ+1)
m,l;i,j(x, y) is nonnegative at all Gauss-Lobatto points

in the cell Si,j and hence the cell-average of Îm,l;i,j(x, y) is also nonnegative. The
original high order accuracy is maintained.

Remark 5. Similarly as for the one-dimensional high order positivity-preserving
DG scheme, the two-dimensional high order positivity-preserving DG scheme proposed
for the steady radiative transfer equation can also be easily extended to the unsteady
radiative transfer equation. We do not repeat the details here.

5. Numerical results. In this section, we perform numerical experiments in
one- and two-dimensions to validate the properties of high order accuracy and positivity-
preserving of our DG schemes. Regarding the discrete-ordinate quadrature rule, we
adopt the Legendre-Chebyshev PN -TN quadrature [13] in which the µ-levels are equal
to the roots of the Gauss-Legendre quadrature, and the azimuthal angles are deter-
mined from the roots of the orthogonal Chebyshev (TN ) polynomials. To be more
specific, S8 and P8-T8 are used for all the following one-dimensional and the two-
dimensional tests with non-zero scattering terms respectively, unless otherwise stated.
The figures and tables involved in the DG scheme with the positivity preserving lim-
iter are given by the limiting procedures described in the previous sections, unless
otherwise stated.

Example 1. (The accuracy test of the DG schemes for the one-dimensional
steady radiative transfer equation)

In this test, we solve the absorbing-scattering radiative transfer problem described
by the equation (2.3) with σt = 22000, σs = 1, q(x, µ) = −4πµ3 cos3 πx sinπx +

σt(µ
2 cos4 πx+a)−σs(a+ cos4 πx

3 ). Here a = 10−14 is a small positive constant which
is used to ensure the source term to be nonnegative. The computational domain is
D = [0, 1]. The boundary condition is given as follows

{

I(0, µ) = µ2 + a, if µ > 0,
I(1, µ) = µ2 + a, if µ < 0.

For this problem, we have the exact solution given as I(x, µ) = µ2 cos4 πx + a.
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We perform the test on the DG scheme without and with the positivity-preserving
limiter respectively. For the DG scheme with the positivity-preserving limiter, we test

the following two types: 1) Judge if Ī
(ℓ+1)
m,i ≥ 0 first. If yes, then the scaling limiter

is employed; if not, then the rotational limiter is applied. This is the algorithm that
we presented in the previous sections and we name it as “scaling limiter preferred”.
It should be used in practical computations since it has smaller conservation error
by preferring the scaling limiter which does not change cell averages; 2) Judge if

I
(ℓ+1)
m,i (xi+1/2) ≥ 0 first. If yes, then the rotational limiter is applied; if not, then

the scaling limiter is used. We name this procedure as “rotational limiter preferred”.
This option is tested simply to see how much conservation error will incur when
the rotational limiter is applied to the maximum extent. In order to estimate the
conservation error incurred by the implementation of the rotational limiter, we define

it by 1
(b−a)M

∑

m,i(
¯̂
Im,i − Īm,i)∆xi in the final iteration step, where Īm,i and

¯̂
Im,i are

the cell averages of the polynomials for the cell Si in the m-th direction before and
after the positivity-preserving limiter is employed respectively.

The left two figures in Fig. 5.1 show the comparison of I simulated by the P 1

DG scheme without and with the positivity-preserving limiter (type 1 above) using
40 uniform cells. From the figures, we can observe that negative values do occur in
the solution of the P 1 DG scheme without the positivity-preserving limiter, while the
P 1 DG scheme with the positivity-preserving limiter produces nonnegative results.
The errors and orders of accuracy for the {P 1, P 2, P 3, P 4} DG schemes without the
positivity-preserving limiter and with the positivity-preserving limiter (both rota-
tional limiter preferred and scaling limiter preferred procedures) are shown in Tables
5.1-5.4 respectively. In these tables, we also list the percentage of the cells where
the rotational positivity-preserving limiter (denoted as “rot” in the tables) and either
type of positivity-preserving limiters (denoted as “tol” in the tables) are enacted dur-
ing the computation respectively. The conservation errors (denoted as “c err ” in the
tables) produced by the positivity-preserving limiters are also shown in the tables. We
can clearly see from these tables that the DG schemes with the above mentioned two
types of the positivity-preserving limiting procedures can achieve the same designed
order of accuracy as the DG schemes without the positivity-preserving limiter both
in the L2 and L∞ norms, while the DG schemes with the positivity-preserving limiter
can also keep the positivity of the radiative intensity. We also notice that the scaling
limiter does not incur any conservation error as expected, while the conservation error
produced by the rotational limiter converges to 0 asymptotically with the refinement
of the grid, and higher order DG schemes generate smaller conservation errors. We
also notice that, for the type 1 limiting procedure preferring the scaling limiter, the
rotational limiter is never enacted in this test case, indicating that the cell averages
stay non-negative for the unlimited DG solution.

Example 2. (The accuracy test of the DG schemes for the one-dimensional
unsteady radiative transfer equation)

To simulate the one-dimensional unsteady transfer equation (2.9), the same do-
main and parameters σt, σs and a are taken as those in the previous example. The
source term is given as q(x, µ, t) = −4πµ2 cos3 π(x+t) sin π(x+t)(1

c+µ)+σt(µ
2 cos4 π(x+

t) + a) − σs(a + cos4 π(x+t)
3 ). c = 3.0 × 108. The initial condition is I(x, µ, 0) =

µ2 cos4 πx + a. The boundary conditions are given as

{

I(0, µ, t) = µ2 cos4 πt+ a, if µ > 0,
I(1, µ, t) = µ2 cos4 π(1 + t) + a, if µ < 0.
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Fig. 5.1. The comparison of the radiative intensity simulated by the P 1 DG scheme without
and with the (type 1) positivity-preserving limiter on a 40 uniform grid. The left two figures are the
radiative intensity for the 1D steady radiative transfer equation in the whole domain and directions
and in the zoomed region at the direction µ = −0.9603 respectively; The right two figures are the
radiative intensity for the 1D unsteady radiative transfer equation in the whole domain and directions
and in the zoomed region at the direction µ = −0.7967 respectively.

Table 5.1

Errors of the P 1 DG scheme for the 1D steady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.293E-02 0.275E-01 - - -
20 0.740E-03 1.98 0.741E-02 1.89 - - -
40 0.186E-03 2.00 0.189E-02 1.97 - - -
80 0.464E-04 2.00 0.482E-03 1.97 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.296E-02 0.275E-01 20.0 40.0 0.143E-03
20 0.741E-03 2.00 0.741E-02 1.89 10.0 20.0 0.743E-05
40 0.186E-03 2.00 0.189E-02 1.97 5.0 10.0 0.260E-06
80 0.464E-04 2.00 0.483E-03 1.97 2.5 5.0 0.842E-08

with positivity-preserving limiter (scaling limiter preferred)

10 0.297E-02 0.275E-01 0.0 40.0 0.0
20 0.741E-03 2.00 0.741E-02 1.89 0.0 20.0 0.0
40 0.186E-03 2.00 0.189E-02 1.97 0.0 10.0 0.0
80 0.464E-04 2.00 0.482E-03 1.97 0.0 5.0 0.0

The exact solution for this model is I(x, µ, t) = µ2 cos4 π(x+ t) + a.

The final computational time is t = 0.1. Since our DG schemes are designed
implicitly, there is no limitation on the time step for the stability requirement. But as
the time derivatives are discretized by the Euler backward time stepping in our DG
schemes, the schemes are high order accurate in space and but only first order accurate
in time. In order to verify the spatial accuracy of the DG schemes with our limiter, we
choose a small time step ∆t = 10−3 in order to make the spatial error dominate. For
this problem, the DG schemes without the positivity-preserving limiter do produce
negative results. The right two figures in Fig. 5.1 show the comparison of I simulated
by the P 1 DG scheme without and with the (type 1) positivity-preserving limiter us-
ing 40 uniform cells. The errors and orders of accuracy for the {P 1, P 2, P 3, P 4} DG
schemes without and with the positivity-preserving limiter are shown in Tables 5.5-5.8
respectively. The conservation error and the percentage of the cells where the rota-
tional positivity-preserving limiter and either of the two types of positivity-preserving
limiting procedures are performed during the computation are also listed in the tables
respectively. Since the performance of the algorithm “scaling limiter preferred” in this
example is much similar to that in the previous example, we don’t show their results
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Table 5.2

Errors of the P 2 DG scheme for the 1D steady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.259E-03 0.255E-02 - - -
20 0.328E-04 2.98 0.321E-03 2.99 - - -
40 0.411E-05 3.00 0.403E-04 2.99 - - -
80 0.513E-06 3.00 0.498E-05 3.02 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.259E-03 0.255E-02 0.0 0.0 0.0
20 0.328E-04 2.98 0.321E-03 2.99 0.0 0.0 0.0
40 0.411E-05 3.00 0.403E-04 2.99 0.0 0.0 0.0
80 0.513E-06 3.00 0.498E-05 3.02 0.0 0.0 0.0

with positivity-preserving limiter (scaling limiter preferred)

10 0.259E-03 0.255E-02 0.0 0.0 0.0
20 0.328E-04 2.98 0.321E-03 2.99 0.0 0.0 0.0
40 0.411E-05 3.00 0.403E-04 2.99 0.0 0.0 0.0
80 0.513E-06 3.00 0.498E-05 3.02 0.0 0.0 0.0

Table 5.3

Errors of the P 3 DG scheme for the 1D steady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.201E-04 0.184E-03 - - -
20 0.128E-05 3.98 0.129E-04 3.83 - - -
40 0.800E-07 3.99 0.850E-06 3.93 - - -
80 0.501E-08 4.00 0.553E-07 3.94 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.277E-04 0.455E-03 10.0 20.0 0.257E-05
20 0.162E-05 4.09 0.348E-04 3.71 5.0 10.0 0.963E-07
40 0.922E-07 4.14 0.226E-05 3.95 2.5 5.0 0.315E-08
80 0.540E-08 4.10 0.140E-06 4.01 1.3 2.5 0.100E-09

with positivity-preserving limiter (scaling limiter preferred)

10 0.323E-04 0.457E-03 0.0 20.0 0.0
20 0.185E-05 4.13 0.351E-04 3.70 0.0 10.0 0.0
40 0.101E-06 4.20 0.230E-05 3.93 0.0 5.0 0.0
80 0.570E-08 4.15 0.146E-06 3.98 0.0 2.5 0.0

here to save space. We observe that the order of accuracy is maintained for the DG
schemes after the application of the positivity-preserving limiter, as expected. The
conservation error and the percentage of the limited cells of DG schemes for the 1D
unsteady radiative transfer equation have a similar convergent behavior as that in
DG schemes for 1D steady radiative transfer equation shown in the last example.

Example 3. (The accuracy test of the DG schemes for the two-dimensional
steady radiative transfer equation simulating the purely absorbing model)

In this test, we solve the two-dimensional steady radiative transfer equation (2.2)
with σt = 1, σs = 0, q = 0. The computational domain is [0, 1]×[0, 1]. ζ = 0.5, η = 0.1.
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Table 5.4

Errors of the P 4 DG scheme for the 1D steady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.133E-05 0.125E-04 - - -
20 0.418E-07 4.99 0.399E-06 4.97 - - -
40 0.130E-08 5.01 0.122E-07 5.03 - - -
80 0.403E-10 5.02 0.373E-09 5.03 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.169E-05 0.181E-04 10.0 20.0 0.150E-06
20 0.436E-07 5.28 0.399E-06 5.51 5.0 10.0 0.125E-08
40 0.131E-08 5.06 0.122E-07 5.03 2.5 5.0 0.993E-11
80 0.402E-10 5.02 0.371E-09 5.04 1.3 2.5 0.785E-13

with positivity-preserving limiter (scaling limiter preferred)

10 0.191E-05 0.183E-04 0.0 20.0 0.0
20 0.449E-07 5.41 0.399E-06 5.52 0.0 10.0 0.0
40 0.132E-08 5.09 0.122E-07 5.03 0.0 5.0 0.0
80 0.403E-10 5.03 0.373E-09 5.03 0.0 2.5 0.0

Table 5.5

Errors of the P 1 DG scheme for the 1D unsteady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.293E-02 0.275E-01 - - -
20 0.740E-03 1.98 0.744E-02 1.89 - - -
40 0.186E-03 2.00 0.190E-02 1.97 - - -
80 0.464E-04 2.00 0.483E-03 1.98 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.295E-02 0.275E-01 20.0 40.0 0.713E-04
20 0.741E-03 1.99 0.744E-02 1.89 10.0 20.0 0.372E-05
40 0.186E-03 2.00 0.190E-02 1.97 5.0 10.0 0.130E-06
80 0.464E-04 2.00 0.483E-03 1.98 2.5 5.0 0.420E-08

The boundary condition is

I(x, 0) = 0, I(0, y) = sin6(πy).

In this case, the problem has the exact solution given as follows,

(5.1) I(x, y) =

{

0, y < η
ζ x,

sin6(π(y − η
ζ x))e

−
σt
ζ x, else.

For this problem, numerically negative radiative intensity appears if the positivity-
preserving limiter is not used in the high order DG schemes. Figure 4.1 (right) shows
the contours of the radiative intensity simulated by the Q1 DG scheme using 40× 40
uniform cells and the cells where the positivity-preserving limiter has been enacted
during the simulation. The errors and orders of accuracy for the {Q1, Q2, Q3, Q4} DG
schemes without and with the positivity-preserving limiter are listed in Tables 5.9-
5.12 respectively. The conservation error and the percentage of the cells that require
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Table 5.6

Errors of the P 2 DG scheme for the 1D unsteady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.259E-03 0.256E-02 - - -
20 0.328E-04 2.98 0.321E-03 2.99 - - -
40 0.411E-05 3.00 0.403E-04 2.99 - - -
80 0.513E-06 3.00 0.498E-05 3.02 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.259E-03 0.256E-02 0.0 0.0 0.0
20 0.328E-04 2.98 0.321E-03 2.99 0.0 0.0 0.0
40 0.411E-05 3.00 0.403E-04 2.99 0.0 0.0 0.0
80 0.513E-06 3.00 0.498E-05 3.02 0.0 0.0 0.0

Table 5.7

Errors of the P 3 DG scheme for the 1D unsteady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.202E-04 0.185E-03 - - -
20 0.128E-05 3.98 0.131E-04 3.82 - - -
40 0.800E-07 3.99 0.855E-06 3.94 - - -
80 0.501E-08 4.00 0.555E-07 3.95 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.273E-04 0.455E-03 10.0 20.0 0.128E-05
20 0.161E-05 4.09 0.348E-04 3.71 5.0 10.0 0.481E-07
40 0.916E-07 4.13 0.226E-05 3.94 2.5 5.0 0.157E-08
80 0.537E-08 4.09 0.140E-06 4.01 1.3 2.5 0.500E-10

the usage of the two types of positivity-preserving limiters are listed in these tables
as well. From these tables, we can see that the expected order of accuracy for the
positivity-preserving DG schemes has been achieved, both in L2-norm and L∞-norm,
as expected from our theoretical results. Also we can notice that the conservation error
goes to 0 with grid refinement and higher order schemes incur smaller conservation
errors.

Example 4. (The positivity-preserving test of the DG schemes for the two-
dimensional steady radiative transfer equation simulating the transparent model)

This problem is a two-dimensional unity square enclosure with a transparent
medium which is described by the equation (2.2) with σt = 0, σs = 0, q = 0. ζ =
0.7, η = 0.7. The computational domain is [0, 1] × [0, 1]. A 40 × 40 uniform grid is
used in the computation. The boundary condition is

I(x, 0) = 0, I(0, y) = 1.

For this problem, it has the exact solution given as follows,

(5.2) I(x, y) =

{

0, y < η
ζ x,

1, else.

In this test, negative solution will appear if we do not adopt the positivity-preserving
limiter in the DG schemes with higher than first order, while the DG schemes with
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Table 5.8

Errors of the P 4 DG scheme for the 1D unsteady radiative transfer equation

without positivity-preserving limiter

Nx L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.133E-05 0.126E-04 - - -
20 0.418E-07 4.99 0.406E-06 4.95 - - -
40 0.130E-08 5.01 0.125E-07 5.02 - - -
80 0.403E-10 5.02 0.388E-09 5.01 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.167E-05 0.181E-04 10.0 20.0 0.753E-07
20 0.435E-07 5.26 0.406E-06 5.48 5.0 10.0 0.623E-09
40 0.131E-08 5.05 0.125E-07 5.02 2.5 5.0 0.496E-11
80 0.403E-10 5.02 0.388E-09 5.01 1.3 2.5 0.392E-13

Table 5.9

Errors of the Q1 DG scheme for the 2D steady radiative transfer equation simulating
the purely absorbing model

without positivity-preserving limiter

Nx = Ny L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.431E-03 0.835E-01 - - -
20 0.118E-03 1.86 0.245E-01 1.77 - - -
40 0.311E-04 1.93 0.673E-02 1.87 - - -
80 0.795E-05 1.97 0.179E-02 1.91 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.465E-03 0.833E-01 50.0 50.0 0.249E-04
20 0.120E-03 1.96 0.245E-01 1.76 32.3 32.3 0.274E-06
40 0.311E-04 1.95 0.673E-02 1.87 21.8 21.8 0.152E-08
80 0.795E-05 1.97 0.179E-02 1.91 16.3 16.3 0.674E-11

with positivity-preserving limiter (scaling limiter preferred)

10 0.453E-03 0.833E-01 0.0 48.0 0.0
20 0.119E-03 1.93 0.245E-01 1.76 0.0 31.5 0.0
40 0.311E-04 1.94 0.673E-02 1.87 0.0 21.1 0.0
80 0.795E-05 1.97 0.179E-02 1.91 0.0 15.8 0.0

the positivity-preserving limiter can always maintain the nonnegative solution. Fig-
ure 5.2 plots the contours of the radiative intensity simulated by the {Q1, Q2, Q3, Q4}
DG schemes with the (type 1) positivity-preserving limiter respectively. In the pic-
tures, we mark the cells where the positivity-preserving has been enacted by discrete
white points as well. Figures 5.3-5.4 show the comparison of the radiative intensity
cut along the line y = 0.5 and x = 0.5 simulated by the DG schemes without and
with the positivity-preserving limiter respectively. We can clearly see that the DG
schemes without the positivity-preserving limiter produce negative solutions while
the positivity of the radiative intensity can be kept well for the DG schemes with the
positivity-preserving limiter. Also, higher order DG schemes produce more accurate
solutions than the lower order DG schemes.

Example 5. (The positivity-preserving test of the DG schemes for the two-
dimensional steady radiative transfer equation simulating the purely absorbing model)

We test the schemes on the purely absorbing model which is expressed by the
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Table 5.10

Errors of the Q2 DG scheme for the 2D steady radiative transfer equation simulating
the purely absorbing model

without positivity-preserving limiter

Nx = Ny L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.521E-04 0.110E-01 - - -
20 0.584E-05 3.16 0.154E-02 2.84 - - -
40 0.700E-06 3.06 0.198E-03 2.96 - - -
80 0.863E-07 3.02 0.251E-04 2.98 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.520E-04 0.110E-01 12.0 12.0 0.145E-05
20 0.584E-05 3.15 0.154E-02 2.84 7.8 7.8 0.122E-07
40 0.700E-06 3.06 0.198E-03 2.96 6.9 6.9 0.101E-09
80 0.863E-07 3.02 0.251E-04 2.98 6.3 6.3 0.593E-12

with positivity-preserving limiter (scaling limiter preferred)

10 0.519E-04 0.110E-01 0.0 11.0 0.0
20 0.584E-05 3.15 0.154E-02 2.84 0.0 7.5 0.0
40 0.700E-06 3.06 0.198E-03 2.96 0.0 5.9 0.0
80 0.863E-07 3.02 0.251E-04 2.98 0.0 5.3 0.0

Table 5.11

Errors of the Q3 DG scheme for the 2D steady radiative transfer equation simulating
the purely absorbing model

without positivity-preserving limiter

Nx = Ny L2 error L2 order L∞ error L∞ order rot(%) tol(%) c err

10 0.819E-05 0.234E-02 - - -
20 0.551E-06 3.89 0.171E-03 3.78 - - -
40 0.335E-07 4.04 0.111E-04 3.94 - - -
80 0.198E-08 4.08 0.706E-06 3.98 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.911E-05 0.234E-02 25.0 25.0 0.108E-05
20 0.562E-06 4.02 0.171E-03 3.78 17.8 17.8 0.116E-07
40 0.336E-07 4.06 0.111E-04 3.94 13.4 13.4 0.705E-10
80 0.198E-08 4.08 0.706E-06 3.98 10.6 10.6 0.371E-12

with positivity-preserving limiter (scaling limiter preferred)

10 0.904E-05 0.234E-02 0.0 22.0 0.0
20 0.567E-06 4.00 0.171E-03 3.78 0.0 14.0 0.0
40 0.336E-07 4.08 0.111E-04 3.94 0.0 9.2 0.0
80 0.198E-08 4.08 0.706E-06 3.98 0.0 7.5 0.0

equation (2.2) with σt = 1, σs = 0 and q = 0. The computational domain is [0, 1] ×
[0, 1]. ζ = 0.7, η = 0.7. The boundary condition is

I(x, 0) = 0, I(0, y) = 1.

The exact solution for this example can be described as follows,

(5.3) I(x, y) =

{

0, y < η
ζ x,

e−
σt
ζ x, else.
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Table 5.12

Errors of the Q4 DG scheme for the 2D steady radiative transfer equation simulating the
purely absorbing model

without positivity-preserving limiter

Nx = Ny L2 error L2 order L∞ error L∞ order rot (%) tol(%) c err

10 0.929E-06 0.274E-03 - - -
20 0.210E-07 5.47 0.103E-04 4.74 - - -
40 0.541E-09 5.28 0.335E-06 4.94 - - -
80 0.151E-10 5.17 0.105E-07 4.99 - - -

with positivity-preserving limiter (rotational limiter preferred)

10 0.942E-06 0.274E-03 13.0 13.0 0.118E-07
20 0.210E-07 5.48 0.103E-04 4.74 11.0 11.0 0.258E-09
40 0.541E-09 5.28 0.335E-06 4.94 9.8 9.8 0.297E-11
80 0.151E-10 5.17 0.105E-07 4.99 8.5 8.5 0.184E-13

with positivity-preserving limiter (scaling limiter preferred)

10 0.947E-06 0.274E-03 0.0 12.0 0.0
20 0.210E-07 5.49 0.103E-04 4.74 0.0 7.0 0.0
40 0.541E-09 5.28 0.335E-06 4.94 0.0 6.3 0.0
80 0.151E-10 5.17 0.105E-07 4.99 0.0 6.3 0.0

Fig. 5.2. The contours of the radiative intensity for the transparent model simulating by the
DG schemes with the positivity-preserving limiter on a 40×40 uniform grid. From left to right, 1st:
Q1; 2nd: Q2; 3rd: Q3; 4th: Q4. The white points represent the cells where the positivity-preserving
limiter has been enacted during the computation.

Figures 5.5-5.7 show the results of {Q1, Q2, Q3, Q4} DG schemes on a 40 × 40
uniform grid individually. To be more specific, Figure 5.5 depicts the contours of
the radiative intensity simulated by the {Q1, Q2, Q3, Q4} DG schemes with the (type
1) positivity-preserving limiter respectively, where the cells in which the positivity-
preserving limiter has been enacted during the computation are marked by the discrete
white points. In Figures 5.6-5.7, the comparison of the radiative intensity cut along the
lines y = 0.5 and x = 0.5 obtained by the DG schemes without and with the positivity-
preserving limiter is presented respectively. From these figures, we can observe that
the positivity-preserving limiter is necessary for the DG schemes to produce positive
solutions and the limiter can also maintain the good resolution of the DG schemes.

Example 6. (The positivity-preserving test of the DG schemes for the two-
dimensional steady radiative transfer equation simulating the absorbing-scattering model)

In this problem, we test the schemes on the absorbing-scattering model described
by the equation (2.2) with σt = 1, σs = 1 and q = 0. The computational domain is
[0, 1]× [0, 1]. The boundary condition is set as follows,

I(x, 0) = 0, η > 0; I(x, 1) = 0, η < 0;

I(0, y) = 1 − cos(4πy), ζ > 0; I(1, y) = 0, ζ < 0.
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Fig. 5.3. The comparison of the radiative intensity cut along the line y = 0.5 for the transparent
model simulated by the DG schemes without and with the positivity-preserving limiter on a 40 × 40
uniform grid. From left to right, 1st: Q1; 2nd: Q2; 3rd: Q3; 4th: Q4.
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Fig. 5.4. The comparison of the radiative intensity cut along the line x = 0.5 for the transparent
model simulated by the DG schemes without and with the positivity-preserving limiter on a 40 × 40
uniform grid. From left to right, 1st: Q1; 2nd: Q2; 3rd: Q3; 4th: Q4.

Fig. 5.5. The contours of the radiative intensity for the purely absorbing model simulated by the
DG schemes with the positivity-preserving limiter on a 40×40 uniform grid. From left to right, 1st:
Q1; 2nd: Q2; 3rd: Q3; 4th: Q4. The white points represent the cells where the positivity-preserving
limiter has been enacted during the computation.
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Fig. 5.6. The comparison of the radiative intensity cut along the line y = 0.5 for the purely
absorbing model simulated by the DG schemes without and with the positivity-preserving limiter on
a 40 × 40 uniform grid. From left to right, 1st: Q1; 2nd: Q2; 3rd: Q3; 4th: Q4.
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Fig. 5.7. The comparison of the radiative intensity cut along the line x = 0.5 for the purely
absorbing model simulated by the DG schemes without and with the positivity-preserving limiter on
a 40 × 40 uniform grid. From left to right, 1st: Q1; 2nd: Q2; 3rd: Q3; 4th: Q4.
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Fig. 5.8. The contours of the radiative intensity for the absorbing-scattering model in the
(ζ, η) = (0.2578, 0.1068) angular direction simulated by the DG schemes with the positivity-preserving
limiter on a 40 × 40 uniform grid. From left to right, 1st: Q1; 2nd: Q2; 3rd: Q3; 4th: Q4. The
white points represent the cells where the positivity-preserving limiter has been enacted during the
computation.
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Fig. 5.9. The comparison of the radiative intensity cut along the cells near the left boundary
in the (ζ, η) = (0.3256,−0.7860) angular direction for the absorbing-scattering model simulated by
the DG schemes without and with the positivity-preserving limiter. Left: Q1; Middle: Q2; Right:
the zoomed region by Q2.

The exact solution for this problem cannot be obtained explicitly. For the purpose
of comparison, we take the numerical solution by the Q4 DG schemes with the (type
1) positivity-preserving limiter on a 80 × 80 uniform grid as a reference solution.
We implement the test on a 40 × 40 uniform grid by using the different order DG
schemes without and with the (type 1) positivity-preserving limiter. The contours
of the radiative intensity in the (ζ, η) = (0.2578, 0.1068) angular direction simulated
by the {Q1, Q2, Q3, Q4} DG schemes with the positivity-preserving limiter are given
in Figure 5.8. In the pictures, the cells where the positivity-preserving limiter has
taken effect during the computation are marked by discrete white points as well.
Figure 5.9 shows the comparison of the radiative intensity cut along the cells near
the left boundary in the (ζ, η) = (0.3256,−0.7860) angular direction simulated by the
{Q1, Q2} DG schemes without and with the positivity-preserving limiter individually.
From these figures, we notice that negative solution will appear if the high order DG
schemes without the positivity-preserving limiter are used, while the high order DG
schemes with the positivity-preserving limiter can produce nonnegative solutions with
good resolution.

6. Concluding remarks. In this paper, we present a methodology to con-
struct positivity-preserving discontinuous Galerkin (DG) schemes in one- and two-
dimensional spaces for steady and unsteady radiative transfer equations. We develop
a positivity-preserving limiter, which is a combination of the (now well known) scal-
ing limiter in [33] and a new rotational limiter. It can be proved that this limiter
keeps the radiative intensity nonnegative and also maintains convergence to weak
solutions with the originally designed high order accuracy in smooth regions. The
numerical results of steady and unsteady radiative transfer problems demonstrate the
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effectiveness of our high order positivity-preserving DG schemes. Although in this
paper we only discuss the scheme on rectangular meshes up to two spatial dimensions
using tensor product polynomials, the idea can be extended to arbitrary meshes with
P k polynomials and to higher dimensions, which constitutes our future work. The
generalization of the positivity-preserving DG schemes to other coordinates such as
cylindrical and spherical coordinates, and a combination of this limiter with vari-
ous acceleration techniques for faster iterative convergence, also constitute our future
work. We have observed that, in all our numerical tests including both smooth and
discontinuous problems, the cell averages of the unlimited DG solution for the radia-
tive intensity are always nonnegative. Therefore, our “type 1” positivity-preserving
limiting procedure, which favors the scaling limiter, uses only the scaling limiting and
hence maintains exact conservation. It can be proved that the cell averages of the
unlimited DG solution for the radiative intensity should be non-negative for the case
without extinction, namely σt = 0, however whether this is true for the general case
is unknown and will be carefully studied in the future. In this paper, we have not
used any non-oscillatory limiters such as the total variation bounded (TVB) limiters
[28, 5, 3] or the weighted essentially non-oscillatory (WENO) limiter [26, 36, 37], hence
there are some localized spurious oscillations near the discontinuities in the numeri-
cal solution, which are not eliminated by the positivity-preserving limiter if they are
not near zero. A combination of the positivity-preserving limiter with the traditional
TVB or WENO limiters will also be studied in future work. Finally, we have only
considered first order implicit time discretization (backward Euler) in this paper, the
extension to higher order implicit methods will be studied in the future as well.

7. Appendix. In this appendix, we will show that the limiter (3.3) can guar-

antee the original second order accuracy for I
(ℓ+1)
m,i (x) ∈ P 1(Sj), but may lead to

accuracy degeneracy for I
(ℓ+1)
m,i (x) ∈ P 2(Si).

We will drop the superscripts and subscripts here as they are irrelevant to our
accuracy study, and will simply use a subscript h to denote its relationship to the mesh
size. We assume the k-th degree polynomial Ih(x) approximates a smooth function
I(x) ≥ 0 to (k + 1)-th order accuracy. We only consider the case ξ = xi+1/2, i.e.
Ih(xi+1/2) ≥ 0 in (3.3). The limiter is given as

Îh(x) = λ(Ih(x) − Ih(xi+1/2)) + Ih(xi+1/2)

with

λ = min

{
∣

∣

∣

∣

Ih(xi+1/2)

Ih(xi+1/2) − zi

∣

∣

∣

∣

, 1

}

, zi = min
α=1,...,N

(0, Ih(x̂α
i )).

The error between the original polynomial and the modified polynomial, when the
limiter is enacted (i.e. when λ < 1), can be written as follows,

|e(x)| = |Îh(x) − Ih(x)| = |(λ− 1)(Ih(x) − Ih(xi+1/2)| = |zi|

∣

∣

∣

∣

Ih(x) − Ih(xi+1/2)

Ih(xi+1/2) − zi

∣

∣

∣

∣

.

If Ih(x) ∈ P 1(Si), then if the limiter is enacted, the negative minimum should
appear at the point xi−1/2 (since Ih(xi+1/2) ≥ 0), that is, zi = Ih(xi−1/2). Further-
more, since I(xi− 1

2
) ≥ 0, we have |Ih(xi− 1

2
)| ≤ |Ih(xi− 1

2
) − I(xi− 1

2
)| = O(h2). Thus

we can find

|e(x)| = |zi|

∣

∣

∣

∣

Ih(xi−1/2) − Ih(xi+1/2)

Ih(xi+1/2) − zi

∣

∣

∣

∣

= |zi| = O(h2).



30 D. Yuan, J. Cheng, and C.-W. SHU

This implies that the limiter (3.3) has maintained the designed second order accuracy
if Ih(x) ∈ P 1(Si).

If Ih(x) ∈ P 2(Si), we will give a counter example to illustrate that the limiter
(3.3) may lead to a lower order of accuracy.

Example: Let Si = [−h + h
3
2 , h

3
2 ]. We assume the smooth function I(x) = x2

and its approximation Ih(x) = x2 − h3. For the approximation Ih(x), we have the
following facts

|I(x) − Ih(x)| ≤ Ch3, Ih(h
3
2 ) = 0, Ih(−h+ h

3
2 ) = O(h2).

The fact Ih(h
3
2 ) = 0 means the limiter parameter λ = Ih(h

3
2 )

Ih(h
3
2 )−zi

= 0. Hence the

modified function Îh(x) = 0. Then the error function between the original polynomial
and the modified polynomial, evaluated at the left boundary of the cell, is as follows

|e(−h+ h
3
2 )| = |Ih(−h+ h

3
2 ) − Îh(−h+ h

3
2 )| = |Ih(−h+ h

3
2 )| = O(h2)

which implies the degeneracy of the order of accuracy.
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