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Abstract

In this paper, we aim to solve one and two dimensional hyperbolic conservation

laws on arbitrarily distributed point clouds. The initial condition is given on such a

point cloud, and the algorithm solves for point values of the solution at later time also

on this point cloud. By using the Voronoi technique and by introducing a grouping

algorithm, we divide the computational domain into non-overlapping cells. Each cell is

a polygon and contains a minimum number of the given points to ensure accuracy. We

carefully select points in each cell during the grouping procedure, and hence are able

to interpolate or fit the discrete initial values with piecewise polynomials. By adapting

the traditional discontinuous Galerkin method on the constructed polygonal mesh, we

obtain a stable, conservative and high order method. Numerical results for both one and

two dimensional scalar equations and Euler systems of compressible gas dynamics are

provided to illustrate the good behavior of our mesh generation algorithm as well as the

numerical scheme.
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1 Introduction

In this paper, we are interested in solving the following hyperbolic conservation law

ut + f(u)x = 0, (1)

with suitable initial condition u(x, 0), and its two-dimensional version

ut + f(u)x + g(u)y = 0 (2)

with suitable initial condition u(x, y, 0). Here, u, f and g can be either scalars or vectors.

Unlike traditional finite difference (FD) methods for which a structured set of grid points

is given, or traditional finite volume (FV), finite element (FE) or discontinuous Galerkin

(DG) methods for which a structured or unstructured mesh is given, we assume that

an arbitrarily distributed point cloud (a set of unstructured points), together with the

values of the initial condition at these points, is given, and we seek an algorithm to obtain

the point values of the numerical solution in this point cloud for later time. One possible

scenario for such a set-up could be that the point clouds are locations of the observation

posts or places where measurements are being made, and evolution data would need to

be predicted and compared with future measurements.

This problem is not directly suited to classical well developed computational methods

such as FD methods, FV volume methods and FE methods. The underlying structure of

these methods is that they first cover the computational domain with a given grid or mesh

and then build the algorithm upon it. For example, in the FD method, by knowing the

connectivity between neighbors in the grid, we can use values on some points of the grid

to compute difference operators to approximate the derivatives and hence the partial

differential equations (PDEs). Another difficulty is that, unlike traditional problems

where the initial condition is assumed given as a function, here we only assume the

knowledge of the initial values on the arbitrarily distributed point cloud. Our algorithm

seeks the numerical solution on the same point cloud for later time. Hence it appears

difficult to apply the classical grid- or mesh-based numerical methods directly.
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Meshless methods are alternatives to traditional mesh-based methods, which may be

suitable for our problem. The objective of these methods is to provide numerical solutions

in terms of nodes without using any mesh to connect them or using a background mesh

only minimally, for example, only for the numerical integration. There are many different

types of meshless methods, such as the smoothed particle hydrodynamics (SPH) [34, 6,

22, 36], the diffuse element method (DEM) [8], the reproducing kernel particle method

(RKPM) [33] and the partition of unity method [35]. An important component in the

meshless method is the meshless interpolation. It approximates functions based on a set

of scattered points that have no particular topological connection among them, such as

the Shepard’s interpolant [42] and the moving least square method [31, 37]. A significant

progress has been made for these methods through the work of Babus̆ka and Melenk [4].

They recognized that the methods based on moving least squares are specific instances

of partitions of unity. For a broad survey of the meshless methods, we refer to [32].

Meshless methods have been used in many different applications. However, most

of them are mainly concerned with engineering applications, focusing on the practical

aspects of the algorithms without extensive analysis to issues like conservation, accu-

racy and stability. There are a few papers emphasizing the analysis of these methods

for solving PDEs, such as [2, 3] for steady-state linear elliptic equations, [25] for steady

convection dominated problems, and [43] for incompressible Navier–Stokes equations.

However, to our best knowledge, there are few papers devoted to meshless methods

for solving time-dependent hyperbolic conservation laws, and conservation and stability

appear to be particularly difficult for meshless methods for such PDEs. [48] uses an

improved localized radial basis functions collocation method (LRBFCM) for the numer-

ical solution of hyperbolic Burgers equation. However, they have chosen uniform nodal

arrangement due their suitability and better accuracy.

We would like to solve time-dependent hyperbolic conservation laws under the same

condition as meshless methods, however we would like to still utilize traditional grid-
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or mesh-based methods which have many important good properties. Since we would

like to solve time dependent conservation laws on arbitrarily distributed point clouds,

we would need to find a way to generate suitable grid or mesh and interpolate or fit the

discrete initial values with functions in order to use the traditional methods. We start

from building an appropriate mesh based on the given point cloud, so that each cell is a

polygon, and contains a minimum number of points in the original point cloud so that a

polynomial of a pre-defined degree can be constructed to represent the initial condition

to high order accuracy. Once the polygonal mesh is constructed, we march the piecewise

polynomial numerical solution in time by choosing a suitable numerical method.

Note that the polygonal meshes are difficult for traditional finite element methods as

it is difficult to construct continuous finite element spaces on such cells (see, for example,

the recent development of virtual element methods [5] which uses finite element spaces

with a high number of degrees of freedom per cell and non-polynomial basis functions

in order to obtain continuity on polygonal mesh interfaces). Finite volume methods are

also difficult because reconstruction on such heterogeneous polygonal meshes (different

cells may have different number of sides) is difficult. For discontinuous Galerkin (DG)

methods, such difficulties do not exist and we can use the usual piecewise polynomials

of degree k for any pre-defined k as our finite element space. Hence, DG is a relatively

suitable method on such heterogeneous polygonal meshes. As far as we know, there

are few papers discussing DG methods on such heterogeneous polygonal meshes. [17]

presents an explicit DG method applied to a nonlinear convection-diffusion equation,

which allows the usage of a nonconforming mesh formed by non-convex star-shaped

polyhedral elements. As a continuation, [16] proposes a semi-implicit DG scheme and

presents numerical experiments to treat the effect of non-convexity of elements and

nonconformity of a mesh. Besides the DG method, other methods such as the CPR

method [28, 49, 18, 19] could of course also be used on the polygonal meshes, but it

appears that the DG method has the best conservation, stability and accuracy properties.
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We point out that our method is indeed based on the same setup as meshless methods,

that is, the initial data is given on a set of arbitrarily distributed points and we seek

for the values on these points for later time. Unlike most meshless methods, our paper

presents a way to cover the computational domain with a suitable polygonal mesh and to

construct suitable initial functions for DG time marching. Besides the generation of the

mesh, we also need to compute cell and edge integrals for polygons, which may be costly.

However, due to the good properties of the DG method, our method is conservative,

stable and high order accurate, both for linear and nonlinear equations. These properties

are difficult to achieve simultaneously by using previous meshless methods. Hence, when

these properties are desired, our scheme may be a good choice despite of its relatively

higher computational cost.

This paper is organized as follows. In Section 2, we describe how to generate a

suitable mesh as well as how to interpolate or fit the given values at the original point

cloud to obtain a piecewise polynomial at the initial time. In Section 3, a brief review

of the DG scheme is given to illustrate how we march in time. Also, a more detailed

comment on the computational cost and the good properties of our method will be given

in this section. In Section 4, numerical experiments are provided to verify the accuracy

and stability of our method. We also test the discontinuous initial conditions in this

section. Finally, concluding remarks are provided in Section 5.

2 Mesh generation

Let us denote the computational domain as Ω and assume that the initial condition

is given as point values on a point cloud, namely a finite set of distinct, isolated points

{zi}
N
i=1 belonging to Ω. A set {Vj} is called a tessellation of Ω if Vj

⋂
Vk = ∅ for j 6= k

and
⋃

j V j = Ω. With the given set of the random points {zi}
N
i=1, we first need to

generate a tessellation of Ω before we can actually proceed with our numerical scheme.

Our goal is that each cell Vj in the tessellation contains at least a minimum number of
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the given points such that we can obtain a good approximation to the exact solution by

interpolating or fitting the given values at these points.

The mesh generation includes two steps. The first step is to adopt the Voronoi

tessellation technique to divide the computational domain into small regions. Each region

contains one single given point. We will review the concept of the Voronoi tessellation

[20, 38] in Section 2.1. The second step is to group these small Voronoi regions into cells

such that we can interpolate or fit the discrete initial values with piecewise polynomials,

thus achieving high order accuracy. The algorithm of grouping Voronoi regions into cells

will be illustrated in Section 2.2.

2.1 Voronoi diagram

For each point in the point cloud {zi}
N
i=1, there is a corresponding region consisting of

all locations in Ω closer to that point than to any other point in the cloud with respect

to the Euclidean distance. We call the set of locations assigned to each point as its

Voronoi region. By denoting | · | as the Euclidean norm, we can write the Voronoi region

V̂i corresponding to the point zi more precisely in mathematical terms as

V̂i = {x ∈ Ω | |x − zi| < |x − zj| for j = 1, · · · , N, j 6= i}. (3)

In this definition, each Voronoi region is an open set. Note that Voronoi regions are all

polygons. For a comprehensive treatment, see [38].

One can easily see that every location in Ω belongs to at last one closure of the Voronoi

regions, that is,
⋃N

i=1 V̂ i = Ω. On the other hand, since we use “<” in the definition of

the Voronoi regions, we have V̂i

⋂
V̂j = ∅ for i 6= j. Hence, the set {V̂i}

N
i=1 is a tessellation

of Ω. We call this tessellation a Voronoi tessellation or a Voronoi diagram. The points

{zi}
N
i=1 are called generators. Figure 1 shows a Voronoi tessellation corresponding to

16 randomly generated points in a square. Here, we use dots to represent the Voronoi

generators.

The same idea is straightforward and simpler in the one-dimensional case. Given a
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set of random points in one-dimensional computational domain Ω, the Voronoi domain

corresponding to each point is a line segment called a Voronoi line. We easily notice that

the boundary point between two adjacent Voronoi lines is the midpoint of the generator

points of those Voronoi lines. Figure 2 shows a one-dimensional Voronoi tessellation

corresponding to 5 randomly generated points in [0, 1].

There are several ways to generate a Voronoi diagram from a set of generators, such as

the Fortune’s algorithm and the Lloyd’s algorithm. In this paper, we adopt the Fortune’s

algorithm, which is a sweep line algorithm [21]. Our code is based on the Voronoi diagram

generator written in C++ by Shane O’Sullivan [39], which is a modified version of Steven

Fortune’s sweep line algorithm, by fixing a few misprints and memory leak issues of the

original C code written by Steven Fortune.
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Figure 1: Voronoi diagram in two dimension

Figure 2: Voronoi diagram in one dimension
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2.2 Grouping algorithm

In the last section, we have divided the computational domain Ω into Voronoi regions

{V̂i}
N
i=1. Each region contains one generator point zi. To obtain high order accuracy,

we now need to further use an appropriate algorithm to group the Voronoi regions into

cells. Each cell is a union of several adjacent small Voronoi regions and thus contains

the corresponding generator points. All new grouped cells collectively form another

tessellation of Ω. We denote them as {Vj}
M
j=1.

In each cell Vj, we would like to interpolate or fit the given discrete initial values by

a polynomial in P k(Vj). Here, P k(Vj) is the space of polynomials of degree up to k on

Vj. For this purpose, the number of generator points in each cell should be at least K,

where K is the degree of freedom of P k(Vj). In the one-dimensional case, K = k+1, and

in the two-dimensional case, K = (k + 1)(k + 2)/2. Since the total number of generator

points {zi}
N
i=1 in the entire domain Ω is arbitrary, and because there might be issues of

condition numbers for the interpolation polynomials, some cells may contain more than

K points. In this case, we use the least squares method to obtain a fitting polynomial.

The locations of the generator points in each cell is crucial. For example, if we need

to construct a two-dimensional polynomial in P 1, then the three interpolation points can

not be aligned along a straight line. Hence, the choice of the Voronoi regions in each cell

can not be arbitrary. Considering the cell Vj, we rename the generator points in this cell

as {xj,l}
L
l=1. By choosing a set of basis functions {φm(x)}K

m=1 in Vj, we can attempt to

interpolate the solution in Vj by

uj(x) =

K∑

m=1

αmφm(x), x ∈ Vj, (4)

such that

uj(xj,l) = uj,l, l = 1, · · · , L. (5)

Here, uj,l, l = 1, · · · , L are the given initial values at the generator points. By denoting

A = (al,m) with al,m = φm(xj,l), ~α = (αm) and ~b = (uj,l), we can rewrite Equations (4)
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and (5) into the following matrix version:

A~α = ~b. (6)

When the number of generator points in Vj is exactly K, that is, L = K, and if A

is invertible, we can solve the above system of equations to obtain the interpolation

coefficients vector ~α. The condition number of A gives a bound on how inaccurate

the solution ~α will be. A large condition number will lead to poor solutions. In the

extreme situation that the condition number is infinite, Equation (6) is ill-posed, and

no algorithm can be expected to reliably find a solution. Hence, a crucial rule in our

algorithm of grouping is to bound the condition number of A, by using a threshold value

δ.

We can easily see that each row of A relates to one generator point in Vj. During

the grouping procedure, even when A is non-square, that is, when the number of points

is less than K, we can still compute the condition number of A, which can be viewed as

a measure of closeness to a rank loss [15]. If the first several points chosen in Vj have

already led to a poor condition number of A, then any choice of the remaining generator

points is useless. Hence, we need to make sure that the condition number of A is always

bounded by δ each time we add one point into the current cell Vj.

In addition to the condition number issue, another rule is that we would like to make

the cell as close to a circle as possible (to have good aspect ratios). Also, we need to

make sure that every given point is distributed into one cell such that all cells together

form a tessellation of Ω. Considering these issues, we introduce the following algorithm

to group Voronoi regions into cells. We show an illustrative figure in Figure 3 with

uniformly distributed points to make the algorithm more clear. Here we take K = 6

(corresponding to P 2) for example. Note that each generator point in {zi}
N
i=1 has an

index number i. For the uniformly distributed points, we just sort them in a trivial

way as shown in Figure 3. For randomly distributed points, we will compare different

indexing of the points in the numerical example in Section 4. It seems that the points
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can be sorted arbitrarily.

• We check all generator points one by one from z1 to zN . When we check zi, if it has

not been distributed into any cells, we now need to find an appropriate union of zi

and its neighbors to create a new cell, say, Vj , which should contain K generator

points. Let us denote xj,1 = zi. As shown in Figure 3(b), if we take i = 1, then

x1,1 = z1.

• The next step is to check all immediate neighbors of xj,1 one by one in ascending

order of their index numbers. Here and below, two points x and y are called

immediate neighbors if their Voronoi regions share a common edge. If an immediate

neighboring point has not been distributed into any other cells yet and the condition

number of the corresponding matrix A is less than δ, then we add this point into

the cell Vj . For the example in Figure 3(c), we now have x1,2 = z2 and x1,3 = z11.

• After we check all immediate neighbors of xj,1, if the number of generator points

in Vj is still less than K, we now illustrate how to add remaining points into Vj.

We use the following algorithm to add only one point each time, until the total

number of points reaches K.

We find out all available immediate neighboring generator points of Vj (that is,

generator points who are immediate neighbors with at least one generator point in

Vj), and rank them according to the number of their immediate neighbors in Vj.

We are interested in the point with the largest number of immediate neighbors in Vj

since it helps to make Vj close to a circle. If there are several points with the same

number of immediate neighbors in Vj, we check the one with the smallest index

number i first. If the condition number of A related to the existing points in Vj and

the above selected point is less than δ, then we add this point into Vj. Otherwise,

we check the neighboring point with second largest number of immediate neighbors

in Vj, and so on.
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Figure 3: Procedure to generate V1
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For example in Figure 3, staring from V1 = {z1, z2, z11}, all available immediate

neighboring points are z12, z3 and z21. We check z12 first since it has two immediate

neighbors in V1 while the other two points have only one. The condition number

of A related to V1 and z12 is less than δ. Hence, we add z12 into V1 and now

V1 = {z1, z2, z11, z12}, as shown in Figure 3(d).

Now, all available immediate neighboring points of V1 are z3, z13, z21 and z22.

We check z3 first and it satisfies the condition number limit. Hence, we have

V1 = {z1, z2, z11, z12, z3}, as shown in Figure 3(e).

All available immediate neighboring points of the updated V1 are now z13, z4,

z21 and z22. We check z13 first since it has the largest number of immediate

neighbors in V1. However, it does not satisfy the condition number limit. We

move on to check z4. Again, it fails the condition number test. Next, we check

z21 and find that is satisfies the condition number limit. Hence, V1 becomes V1 =

{z1, z2, z11, z12, z3, z21}, as shown in Figure 3(f). Now the total number is K = 6,

and hence we can stop the procedure of constructing V1.

• It is possible that after we have checked all available neighboring points of Vj , the

number of points in Vj is still less than K and any choice of additional point will

lead to a poor condition number of the corresponding A, that means, we are unable

to find K Voronoi regions to compose a good cell starting from the point xj,1, say,

z1. In this case, we put aside z1 for a while and continue to check z2. If it has

not been grouped into any cell, we set xj,1 = z2 and use the above algorithm to

construct Vj again. After we have checked all generator points, we return to check

z1. If it still has not been added to any cells yet, we add it to the nearest existing

cell. By doing so, the number of points in this cell will be larger than K, thus

the system of equations (6) is over-determined. In this case, we need to solve the
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following least squares problem [7]

min
~α

||~b − A~α||2 (7)

to determine the fitting polynomial in (4).

By using the algorithm described in this section, we can divide the computational

domain into non-overlapping cells. Each cell contains at least K points in the given

point cloud. To achieve a better usage of the given initial values, we have carefully

selected the points in each cell during the grouping procedure. Thus, when the number

of points is exactly K in a cell, we are able to obtain an interpolation polynomial in P k

by solving Equation (6). When the number of points is more than K, we can also obtain

an approximation to the exact solution in P k by solving the least squares problem (7).

In this way, we can recover the initial solution with piecewise polynomials. Note that

the algorithm described above is for the two-dimensional case. However, it is trivial to

be applied to the one-dimensional case, and hence we omit the details.

3 Numerical method on the generated mesh

In the previous section, we have already divided the computational domain into cells

and approximated the initial value with piecewise polynomials. In this section, we need

to use a suitable numerical scheme to march in time. We will review the formulation of

the Runge-Kutta discontinuous Galerkin (RKDG) method in Section 3.1 and give some

comments on our scheme in Section 3.2.

3.1 RKDG discretization

DG methods are a class of finite element methods using completely discontinuous

basis functions, which are usually chosen as piecewise polynomials. The first DG method

was introduced in 1973 by Reed and Hill [40]. In this section, we will adapt the RKDG

method carried out by Cockburn et al. in a series of papers [10, 11, 12, 13, 14]. It uses

DG discretization in space and Runge-Kutta method in time.
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Recall that we have denoted cells generated in the last section as Vj, 1 6 j 6 M .

For the one-dimensional case, we denote Vj = [xj− 1

2

, xj+ 1

2

] and ∆xj = xj+ 1

2

− xj− 1

2

. For

the two-dimensional case, Vj are polygons. In the DG method, the numerical solution

belongs to the following finite element space consisting of piecewise polynomials

V k
h = {v : v|Vj

∈ P k(Vj), 1 6 j 6 M}. (8)

As in the last section, we can interpolate or fit the given initial values to obtain an initial

solution in V k
h .

The DG method in space for the one-dimensional conservation law (1) is defined as:

find the unique function uh = uh(t) ∈ V k
h such that, for all test functions vh ∈ V k

h and

all 1 6 j 6 M , we have
∫

Vj

(uh)tvhdx −

∫

Vj

f(uh)(vh)xdx + f̂j+ 1

2

vh(x
−

j+ 1

2

) − f̂j− 1

2

vh(x
+
j− 1

2

) = 0. (9)

Here, f̂j+ 1

2

= f̂(uh(x
−

j+ 1

2

, t), uh(x
+
j+ 1

2

, t)) is the standard numerical flux, which is a single

valued function defined at the cell interfaces and depends on the values of uh from both

sides of the interface. It can be chosen as a monotone flux in the scalar case and an

exact or approximate Riemann solver for the system case.

For the two-dimensional conservation law (2), Equation (9) becomes
∫

Vj

(uh)tvhdxdy −

∫

Vj

F(uh) · ∇vhdxdy +

∫

∂Vj

F̂ nvhds = 0, (10)

where F = (f, g), n is the outward unit normal vector of the cell boundary ∂Vj . F̂ n =

F̂ n(u−

h , u+
h ,n) is the numerical flux along the normal direction of the cell boundary,

consistent with F ·n. Here u−

h and u+
h are the values of uh inside the cell Vj and outside

the cell Vj .

For the time discretization, we use a class of high order nonlinearly stable Runge-

Kutta methods [23, 24, 44, 47]. They are convex combinations of first order forward Euler

steps. The most popular scheme in this class is the following third order Runge-Kutta

method for solving

ut = L(u, t)
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where L(u, t) is a spatial discretization operator:

u(1) = un + ∆tL(un, tn),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn + ∆t),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t). (11)

3.2 Properties of our numerical method on cells generated from

point clouds

As mentioned in the introduction, we first need to admit that our method does have

the issue of relatively high computational cost. Besides the cost of generating the mesh

(which is a one-time start-up cost for time dependent simulations), the main cost will be

the computation of residues, i.e., cell and edge integrals in the DG formulations (9) and

(10). For linear problems, if we write the solution as a combination of basis functions

in each cell Vj and denote the vector of coefficients as uj, then the DG formulations

can be written in the form of
duj

dt
= Bj,juj +

∑
i∈Sj

Bj,iui, where Sj is the set of indices

of immediate neighboring cells of the cell Vj (sharing an edge with Vj), and Bj,i are

small K × K matrices depending only on the mesh and the basis chosen. In this case,

we can pre-compute and store the matrices Bj,i at the beginning, and use matrix vector

multiplications to compute the residue, so the cost would be comparable to that of the DG

method for triangular meshes. For nonlinear problems with quadratic nonlinearities, such

as Burgers equations, incompressible Navier-Stokes equations etc., the DG formulations

can be written in the form of
duℓ

j

dt
= (uj)

T Bj,j,ℓuj +
∑

i∈Sj
(ui)

T Bj,i,ℓui, where uℓ
j is the ℓ-th

component of the vector uj, Sj is still defined as above, and Bj,i,ℓ are small K×K matrices

depending only on the mesh and the basis chosen. In this case, we can again pre-compute

and store the matrices Bj,i,ℓ at the beginning, and use matrix vector multiplications to

compute the residue, so the cost would be again comparable to that of the DG method

for triangular meshes. For some of the general nonlinearities, such as the compressible

Euler equations, we can use similar ideas such as the quadrature-free DG methodology
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[1] to obtain similar efficient implementation. However, for most general nonlinear cases,

the computation of the residual will be more costly, as quadrature rules need be used to

compute the integrals in polygons with many edges. If we decompose the polygon into

the union of several triangles and then use triangular quadrature rules on each of them,

the computational cost would be proportional to the number of sides of the polygon.

Despite the computational cost issue, due to the good properties of the DG method,

our method shares these same good properties. By taking vh = 1, we can prove that the

adopted method is locally conservative, which is a very important property for solving

conservation laws, especially for non-smooth solutions. Jiang and Shu [29] have proven a

cell entropy inequality for the one and two dimensional semi-discrete DG method for the

square entropy, which implies that the numerical solutions, if convergent, will converge

to an entropy solution, at least for the convex case. The entropy inequality also holds for

DG solutions to symmetric systems [27]. Also, we have the L2 stability for periodic or

compactly supported boundary conditions. There are also some analysis of the stability

of fully discretized DG schemes [52]. Regarding the accuracy issue, there are many works

devoted to error estimates [30, 41, 50, 51]. Generally speaking, the L2 error estimate

of at least O(hk+ 1

2 ) order in space can be proved on arbitrary meshes, where h in our

context is the size of the cells Vj, which is related to the maximum distance between two

adjacent points in the point cloud. The optimal error estimate O(hk+1) can be observed

in most situations and can be proved in many cases. For more detailed introduction to

the DG method, we refer to [9, 26, 46].

Note that although the DG method for two-dimensional conservation laws is usually

used on quadrilateral or triangular meshes, proofs of the entropy inequality and the L2

stability are independent of the shape of cells. Hence, these results are still valid for

our polygonal cells. For the implementation of the DG method, usually L2 projection of

the initial condition is used. Since we only know point values of the initial solution in

the point cloud, we use polynomial interpolation or fitting instead of the L2 projection.

16



This difference does not affect the proof of the L2 error estimate, as long as the initial

order of accuracy ‖u(·, 0)−uh(·, 0)‖ 6 Chk+1 still holds for the polynomial interpolation

or fitting, which is valid for our algorithm of forming the cells, since we control the

condition number of the matrix for interpolation or fitting. Also, the L2 error estimate

of the order O(hk+ 1

2 ) does not depend on the shape of the cells for DG methods, as long

as they are regular (namely the ratio of the radius of the circumscribed circle over that

of the inscribed circle of any cell stays bounded during refinement), hence we also have

the O(hk+ 1

2 ) error estimate provided our mesh is regular, which is again a reasonable

assumption for our algorithm of forming the cells. In our numerical simulation, we do

observe optimal order of accuracy as will be shown in the next section.

4 Numerical examples

In this section, we provide numerical experiments to demonstrate the performance of

our mesh generating algorithm and the numerical scheme used. We show some numerical

examples with smooth initial conditions in Section 4.1 and test the order of accuracy. In

Section 4.2, we show some examples with discontinuous initial conditions.

In most numerical experiments, we test both uniform point clouds and random point

clouds. For the former one, we use N (or N × N for the two-dimensional case) uniform

points such that the resulting Voronoi diagram is a uniform decomposition of the com-

putational domain. For the latter one, we also use N (or N ×N for the two-dimensional

case) number of points, but each point (or inner point for the two-dimensional case) in

the cloud is randomly generated that satisfies a uniform distribution in the computa-

tional domain. For the two-dimensional case, the outmost nodes are set to be the same as

that in the uniform point cloud, in order to impose periodic boundary conditions. Note

that our mesh refinement is unstructured, that is, the generations of random points are

independent with the refinement of N .

Each point in the cloud has an index. For the one-dimensional case, we just rank the
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points from left to right. For the two-dimensional case with uniform points, we use the

trivial way of indexing as shown in Figure 3. For two-dimensional randomly distributed

points, we will compare different indexing of the points in Example 4. It appears that

the performance of our algorithm is not sensitive to the specific ranking of the points.

Therefore, we just maintain the indexing when we generate the points and thus eliminate

the cost of ranking points. Since each point is randomly generated, the indexing is totally

arbitrary.

In the procedure of grouping Voronoi regions into cells, we need to bound the con-

dition number of the matrix A by a threshold value δ. Note that a large value of δ

may lead to poor numerical interpolations. However, if δ is chosen too small, then it

becomes harder to establish a cell that satisfies the condition number limit and more

points may be added to neighboring existing cells, especially for highly inhomogeneous

points. In general, the condition number for the matrix with higher order is larger. It is

not easy to find a proper δ for all different orders of schemes (we will give some results

to explain it in Example 1). In all numerical examples, we take δ as 100, 200 and 1000

for the one-dimensional second, third and fourth order schemes, respectively, and set it

to be 100, 1000 and 3000 for two-dimensional second, third and fourth order schemes,

respectively.

We use the third order TVD Runge-Kutta method for the time discretization. Sec-

ond, third and fourth order DG schemes are tested in all examples. Since the time

discretization is only third order accurate, we take ∆t ∼ ∆x4/3 to obtain fourth order

accurate results for accuracy test examples.

We use the upwind numerical flux for linear numerical examples. In the one-dimensional

case with f(u) = au, where a is a constant, we take

f̂j+ 1

2

(u−, u+) =

{
au−, if a > 0,
au+, if a < 0.

(12)

In the two-dimensional linear case with F(u) = (au, bu), where a and b are constants,
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we use

F̂ n(u−, u+,n) =

{
F(u−) · n, if (a, b) · n > 0,
F(u+) · n, if (a, b) · n < 0.

(13)

For nonlinear numerical examples, we chose the Lax-Friedrichs flux. In the one-dimensional

case, the flux is taken as

f̂j+ 1

2

(u−, u+) =
1

2
[f(u−) + f(u+) − α(u+ − u−)], (14)

where α = maxu |f
′(u)|. For the two-dimensional case, it becomes

F̂ n(u−, u+,n) =
1

2
[F(u−) · n + F(u+) · n− α(u+ − u−)], (15)

where α = maxu,n |F
′(u) · n|.

In each accuracy test example, we show two types of error tables. In the first type,

we measure the standard numerical error of the piecewise polynomials on the entire

computational region as in the traditional DG method. Since the initial data are only

given on the point cloud and we care about the values on these points for the later time,

we also show another error table measuring the numerical error on the points from the

point cloud. For the L∞ norm, we compute the maximum absolute value of the error

on these points. For the L1 norm, we multiply the absolute value of the error on each

point with the area of the corresponding Voronoi region, add them together and divide

the result by the area of the entire domain. For the one dimensional figures, we plot

the numerical solutions on the given points in the point cloud. For the two dimensional

cases, we divide the computational domain by a triangulation with the given points as

the vertexes and thus plot the values on these points.

4.1 Smooth initial conditions

Example 1. We first test the performance of our method on the one-dimensional linear

scalar problem

ut + ux = 0, 0 6 x 6 2π, (16)
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with the initial condition u(x, 0) = sin(x) and a 2π-periodic boundary condition. The

exact solution is u(x, t) = sin(x − t). Figure 4(a) and Figure 4(b) show the Voronoi

diagrams generated by the uniform point cloud and the random point cloud with N = 20,

respectively. We use black circles to denote the given points and use red squares to denote

the boundary points of the Voronoi lines. Figures 4(c) to 4(h) show the resulting meshes

by using the designed grouping algorithm with respect to different orders of the solution

space. Numerical errors at t = 2π are listed in Table 1 and Table 2. We show the results

with uniform nodes in the left column and the results with random nodes in the right

column. We can see that the order of accuracy for the random point cloud fluctuates,

especially when k = 2, due to the highly inhomogeneity of the points. However, the

average order of accuracy in the L1 norm (measured by least square) is close to the

optimal (k + 1)-th order.

As we have already mentioned, we take δ as 100, 200 and 1000 for the one-dimensional

second, third and fourth order schemes, respectively. In this numerical example, we show

that δ can not be too large nor too small. If we take δ = 100 for P 3, then we are unable

to find any cell that satisfies the condition number limit for the random points. In Figure

5, we show the mesh decompositions by taking δ = 1000 for P 2 and δ = 200 for P 3,

respectively. The resulting numerical errors are shown in Tables 3 and 4. We can see

that if we take δ = 1000 for P 2, then the mesh contains cells with poor interpolation

property. If we take δ = 100 for P 3, the first cell contains a lot of points and we need

to approximate the initial data by using the least squares method. For both cases, the

order of accuracy fluctuates a lot.

Example 2. We consider the one-dimensional Burgers equation

ut +

(
u2

2

)

x

= 0, 0 6 x 6 2π, (17)

with the initial condition u(x, 0) = 0.5 + sin(x) and periodic boundary conditions. We

use the same point clouds as in the last example. Numerical errors at t = 0.25 when
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x
0 1 2 3 4 5 6

(a) uniform, Voronoi diagram

x
0 1 2 3 4 5 6

(b) random, Voronoi diagram

| | | | | | | | | | |

x
0 1 2 3 4 5 6

(c) uniform, P 1

| | | | | | | | | | |

x
0 1 2 3 4 5 6

(d) random, P 1

| | | | | | |

x
0 1 2 3 4 5 6

(e) uniform, P 2

| | | | | | |

x
0 1 2 3 4 5 6

(f) random, P 2

| | | | | |

x
0 1 2 3 4 5 6

(g) uniform, P 3

| | | | |

x
0 1 2 3 4 5 6

(h) random, P 3

Figure 4: Mesh decompositions of the one-dimensional domain [0, 2π], N = 20
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Table 1: 1D linear equation with u(x, 0) = sin(x) at t = 2π. Error on the whole domain.

N uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20 1.58E-02 – 3.43E-02 – 6.67E-02 – 1.46E-01 –
40 3.48E-03 2.18 1.15E-02 1.57 2.03E-02 1.72 8.86E-02 0.72
80 8.18E-04 2.09 3.27E-03 1.82 3.03E-03 2.75 1.64E-02 2.43
160 1.97E-04 2.05 8.63E-04 1.92 7.45E-04 2.02 8.07E-03 1.02
320 4.83E-05 2.03 2.21E-04 1.96 1.53E-04 2.29 1.97E-03 2.04

average – 2.09 – 1.83 – 2.23 – 1.59
k = 2

20 5.40E-03 – 3.13E-02 – 1.52E-02 – 8.31E-02 –
40 3.45E-04 3.97 2.57E-03 3.61 1.24E-03 3.62 6.14E-03 3.76
80 4.79E-05 2.85 6.45E-04 1.99 1.79E-04 2.79 3.23E-03 0.93
160 4.71E-06 3.35 4.09E-05 3.98 1.65E-05 3.43 1.01E-04 5.00
320 6.08E-07 2.95 1.01E-05 2.02 2.84E-06 2.54 5.17E-05 0.97

average – 3.24 – 2.92 – 3.10 – 2.72
k = 3

20 6.34E-04 – 1.91E-03 – 4.48E-03 – 1.76E-02 –
40 3.89E-05 4.03 1.18E-04 4.02 2.47E-04 4.18 1.48E-03 3.57
80 2.43E-06 4.00 7.45E-06 3.99 3.36E-05 2.88 1.85E-04 3.00
160 1.51E-07 4.01 4.71E-07 3.98 1.34E-06 4.65 8.65E-06 4.42
320 9.45E-09 4.00 2.95E-08 4.00 8.76E-08 3.93 1.27E-06 2.77

average – 4.01 – 3.99 – 3.88 – 3.49

the solution is smooth are listed in Tables 5 and 6. Again, we can see that although the

order of accuracy for the random point clouds fluctuates, the average order of accuracy

(measured by least square), at least in the L1 norm, is close to the optimal (k + 1)-th

| | | | | | |

x
0 1 2 3 4 5 6

(a) random, P 2 with δ = 1000

| | | |

x
0 1 2 3 4 5 6

(b) random, P 3 with δ = 200

Figure 5: Mesh decompositions with inappropriate choices of δ
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Table 2: 1D linear equation with u(x, 0) = sin(x) at t = 2π. Error on the given points.

N uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20 1.28E-02 – 3.44E-02 – 6.87E-02 – 1.31E-01 –
40 2.57E-03 2.32 6.72E-03 2.36 1.91E-02 1.85 6.23E-02 1.08
80 6.52E-04 1.98 1.36E-03 2.30 2.70E-03 2.83 1.10E-02 2.51
160 1.63E-04 2.00 2.99E-04 2.19 7.03E-04 1.94 4.34E-03 1.34
320 4.09E-05 2.00 6.95E-05 2.10 1.48E-04 2.25 1.77E-03 1.29

average – 2.06 – 2.24 – 2.25 – 1.63
k = 2

20 4.85E-03 – 1.60E-02 – 1.23E-02 – 3.85E-02 –
40 2.42E-04 4.33 1.37E-03 3.55 9.55E-04 3.69 3.84E-03 3.33
80 3.64E-05 2.73 3.09E-04 2.15 1.50E-04 2.67 9.44E-04 2.02
160 3.15E-06 3.53 2.29E-05 3.76 1.51E-05 3.31 7.13E-05 3.73
320 4.20E-07 2.91 5.14E-06 2.15 2.46E-06 2.62 4.14E-05 0.78

average – 3.33 – 2.91 – 3.06 – 2.55
k = 3

20 4.85E-04 – 1.40E-03 – 3.76E-03 – 8.02E-03 –
40 2.79E-05 4.12 9.65E-05 3.86 1.99E-04 4.24 1.18E-03 2.77
80 1.71E-06 4.03 6.04E-06 4.00 2.84E-05 2.80 1.57E-04 2.91
160 1.06E-07 4.01 3.80E-07 3.99 1.29E-06 4.46 1.20E-05 3.72
320 6.65E-09 4.00 2.38E-08 4.00 6.79E-08 4.25 8.68E-07 3.79

average – 4.03 – 3.97 – 3.88 – 3.30

order. In Figure 6, we show the numerical results using 80 cells at t = 1.5, when a shock

has already appeared in the solution. We can see that the results are quite good but

there are some oscillations near the discontinuity. This is expected as we have not used

any limiters to control these oscillations. The design and application of suitable limiters

for our method will be studied in our future work, as discussed in the concluding remarks

section.
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Table 3: 1D linear equation with inappropriate choices of δ. Error on the whole domain.

N P 2 with δ = 1000 P 3 with δ = 200
L1 norm order L∞ norm order L1 norm order L∞ norm order

20 1.52E-02 – 8.31E-02 – 6.38E-02 – 9.81E-02 –
40 9.53E-04 4.00 8.53E-03 3.28 4.29E-04 7.22 2.74E-03 5.16
80 5.81E-04 0.71 4.73E-03 0.85 3.82E-05 3.49 1.87E-04 3.87
160 1.58E-05 5.20 1.02E-04 5.53 2.13E-05 0.85 2.76E-04 -0.56
320 4.27E-06 1.89 8.01E-05 0.35 1.56E-07 7.09 1.78E-06 7.28

average – 2.95 – 2.64 – 4.16 – 3.48

Table 4: 1D linear equation with inappropriate choices of δ. Error on the given points.

N P 2 with δ = 1000 P 3 with δ = 200
L1 norm order L∞ norm order L1 norm order L∞ norm order

20 1.21E-02 – 3.82E-02 – 6.18E-02 – 1.25E-01 –
40 1.14E-03 3.40 4.58E-03 3.06 2.81E-04 7.78 9.28E-04 7.07
80 5.75E-04 0.99 5.63E-03 -0.30 3.09E-05 3.19 1.59E-04 2.55
160 1.41E-05 5.35 7.31E-05 6.27 1.98E-05 0.64 3.13E-04 -0.98
320 3.91E-06 1.84 7.43E-05 -0.02 1.34E-07 7.20 2.26E-06 7.11

average – 2.95 – 2.40 – 4.15 – 3.31

Example 3. Consider the one-dimensional Euler system of compressible gas dynamics

ut + f(u)x = 0,

u =




ρ
m
E



 , f(u) =




m

ρv2 + p
v(E + p)



 .
(18)

Here ρ is the density, v is the velocity, m = ρv is the momentum, E is the total energy,

and p is the pressure, with the equation of state

p(u) = (γ − 1)(E −
1

2
ρv2); (19)

γ = 1.4 for the air. The initial condition is set to be ρ(x, 0) = 1 + 0.2 sin(x), v(x, 0) = 1,

p(x, 0) = 1, with a 2π-periodic boundary condition. The exact solution is ρ(x, t) =

1 + 0.2 sin(x − t), v(x, t) = 1 and p(x, t) = 1. We show the numerical errors for the

density at t = 2π in Tables 7 and 8. We can see that the error in the L1 norm (in

average) can reach the optimal (k + 1)-th order of accuracy.
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Table 5: 1D Burgers equation with u(x, 0) = 0.5+sin(x) at t = 0.25. Error on the whole
domain.

N uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20 1.07E-02 – 5.65E-02 – 3.07E-02 – 1.76E-01 –
40 2.58E-03 2.05 1.59E-02 1.83 1.56E-02 0.97 1.03E-01 0.77
80 6.32E-04 2.03 4.19E-03 1.93 2.57E-03 2.60 1.74E-02 2.57
160 1.57E-04 2.01 1.07E-03 1.96 7.88E-04 1.70 9.24E-03 0.91
320 3.93E-05 2.00 2.72E-04 1.98 1.74E-04 2.18 1.57E-03 2.56

average – 2.02 – 1.93 – 1.92 – 1.71
k = 2

20 4.67E-03 – 1.30E-02 – 1.44E-02 – 7.93E-02 –
40 4.69E-04 3.31 2.29E-03 2.51 1.38E-03 3.38 8.42E-03 3.23
80 7.66E-05 2.62 3.83E-04 2.58 2.49E-04 2.47 1.74E-03 2.28
160 9.99E-06 2.94 6.84E-05 2.49 3.44E-05 2.86 2.53E-04 2.78
320 1.48E-06 2.76 1.15E-05 2.58 4.85E-06 2.82 3.89E-05 2.70

average – 2.88 – 2.54 – 2.84 – 2.70
k = 3

20 4.96E-04 – 1.59E-03 – 5.32E-03 – 1.20E-02 –
40 5.64E-05 3.13 2.81E-04 2.50 3.12E-04 4.09 1.83E-03 2.72
80 3.00E-06 4.23 1.76E-05 4.00 3.08E-05 3.34 1.96E-04 3.23
160 1.94E-07 3.95 1.23E-06 3.83 1.73E-06 4.15 1.40E-05 3.81
320 1.18E-08 4.03 7.89E-08 3.96 1.23E-07 3.82 1.33E-06 3.39

average – 3.89 – 3.64 – 3.83 – 3.33

Example 4. From now on, we consider two-dimensional cases. Let us first consider the

two-dimensional linear equation

ut + ux − 2uy = 0, 0 ≤ x, y ≤ 2π, (20)

with the initial condition u(x, y, 0) = sin(x + y) and a 2π-periodic boundary condi-

tion. Figure 7 shows 20× 20 uniform and random point clouds and their corresponding

Voronoi diagrams. Figure 8 shows mesh subdivisions of these points for different orders

of schemes. Here we use red lines to denote Voronoi edges and use black lines to denote

cell boundaries of the mesh. Numerical errors at t = 2π are listed in Tables 9 and 10.

Again, we can see that the L1 norm of the error (in average) can reach the optimal
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Table 6: 1D Burgers equation with u(x, 0) = 0.5+ sin(x) at t = 0.25. Error on the given
points.

N uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20 6.48E-03 – 1.65E-02 – 2.09E-02 – 5.89E-02 –
40 1.54E-03 2.08 4.72E-03 1.80 1.69E-02 0.31 1.00E-01 -0.76
80 3.73E-04 2.04 1.25E-03 1.92 2.30E-03 2.88 1.18E-02 3.08
160 9.29E-05 2.00 3.18E-04 1.97 6.81E-04 1.75 3.25E-03 1.86
320 2.32E-05 2.00 8.01E-05 1.99 1.77E-04 1.95 1.47E-03 1.14

average – 2.03 – 1.93 – 1.84 – 1.56
k = 2

20 4.29E-03 – 1.08E-02 – 7.43E-03 – 2.24E-02 –
40 4.25E-04 3.33 1.58E-03 2.77 1.58E-03 2.24 6.75E-03 1.73
80 6.18E-05 2.78 2.39E-04 2.73 2.25E-04 2.81 1.03E-03 2.71
160 7.62E-06 3.02 3.76E-05 2.67 2.93E-05 2.94 1.64E-04 2.66
320 1.09E-06 2.81 6.61E-06 2.51 5.03E-06 2.54 3.84E-05 2.09

average – 2.97 – 2.67 – 2.68 – 2.37
k = 3

20 4.46E-04 – 1.79E-03 – 5.25E-03 – 1.21E-02 –
40 4.87E-05 3.19 2.72E-04 2.72 3.64E-04 3.85 2.26E-03 2.42
80 2.46E-06 4.31 1.34E-05 4.34 3.24E-05 3.49 1.77E-04 3.68
160 1.60E-07 3.95 8.86E-07 3.92 1.76E-06 4.20 1.34E-05 3.72
320 9.62E-09 4.05 5.41E-08 4.03 1.21E-07 3.86 1.33E-06 3.34

average – 3.93 – 3.83 – 3.85 – 3.37

(k + 1)-th order of accuracy.

Note that the results on random points in Tables 9 and 10 are obtained by just

using the index of each point when it is generated. We now test different rules of sort

these random points. For Rule 1, we rank the random points by the value of x + y in

increasing order. If two points have the same value of x + y, the point with smaller x

has the priority. For Rule 2, we first rank the points by y and then use the value of x to

rank the points with the same value of y. The mesh decompositions by using different

rules are shown in Figure 9. Numerical errors at t = 2π are listed in Tables 11 and 12.

It appears that the results are not sensitive to the specific ranking of the random points.
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Therefore, we will simply take the ranking by using the index of each point when it is

generated in the remaining examples to save computational cost.

Example 5. We consider the two-dimensional Burgers equation

ut +

(
u2

2

)

x

+

(
u2

2

)

y

= 0, 0 6 x, y 6 2π, (21)

with the initial condition u(x, y, 0) = 0.5 + sin(x + y) and periodic boundary conditions.

We use the same mesh as in Example 4. Numerical errors at t = 0.25 when the solution

is smooth are listed in Tables 13 and 14. We can see that the L1 norm of the error (in

average) is close to the optimal order of accuracy.

In this example, we investigate the computational times (in seconds) for different

parts of our algorithm with N = 160. In Table 15, “Voronoi” represents the cost of

Voronoi decomposition and collecting relevant decomposition information. “Grouping”

represents the cost of grouping Voronoi regions into cells. “Initialization” represents the

cost of computing relevant matrices needed in the DG method and approximating the
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Figure 6: 1D Burgers problem at T = 1.5, N = 80
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Figure 7: Point clouds and Voronoi diagrams in the two-dimensional domain

[0, 2π] × [0, 2π], Nx = Ny = 20
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Figure 8: Mesh decompositions of the two-dimensional domain [0, 2π] × [0, 2π],
Nx = Ny = 20
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Figure 9: Mesh decompositions of the two-dimensional domain [0, 2π] × [0, 2π]
with different indexing rules, Nx = Ny = 20
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Table 7: 1D Euler equation with ρ(x, 0) = 1 + 0.2 sin(x), v(x, 0) = 1 and p(x, 0) = 1 at
t = 2π. Error on the whole domain.

N uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20 2.00E-03 – 6.37E-03 – 1.26E-02 – 3.09E-02 –
40 4.54E-04 2.14 1.82E-03 1.81 3.81E-03 1.73 1.76E-02 0.81
80 1.11E-04 2.03 4.84E-04 1.91 5.42E-04 2.82 3.18E-03 2.47
160 2.77E-05 2.01 1.25E-04 1.96 1.46E-04 1.90 1.59E-03 1.01
320 6.90E-06 2.00 3.16E-05 1.98 3.05E-05 2.26 3.85E-04 2.04

average – 2.04 – 1.92 – 2.21 – 1.61
k = 2

20 1.29E-03 – 6.75E-03 – 3.45E-03 – 1.73E-02 –
40 1.11E-04 3.54 6.38E-04 3.40 3.08E-04 3.49 1.52E-03 3.52
80 1.62E-05 2.78 1.49E-04 2.10 5.00E-05 2.62 6.60E-04 1.20
160 1.68E-06 3.27 1.08E-05 3.79 4.74E-06 3.40 2.67E-05 4.63
320 2.17E-07 2.96 2.33E-06 2.21 7.38E-07 2.68 1.07E-05 1.32

average – 3.11 – 2.89 – 3.04 – 2.71
k = 3

20 7.79E-05 – 2.79E-04 – 1.16E-03 – 4.56E-03 –
40 4.35E-06 4.16 1.23E-05 4.51 5.58E-05 4.38 2.96E-04 3.94
80 2.57E-07 4.08 7.03E-07 4.13 7.65E-06 2.87 3.64E-05 3.03
160 1.56E-08 4.04 4.46E-08 3.98 2.73E-07 4.81 1.80E-06 4.34
320 9.72E-10 4.01 2.78E-09 4.00 1.80E-08 3.92 2.50E-07 2.85

average – 4.07 – 4.13 – 3.96 – 3.57

discrete initial data with element-wise polynomials. “DG” represents the cost of march-

ing in time using DG method. We can see that the procedure of Voronoi decomposition

and collecting decomposition information costs some time. But it dose not depend on

the order of the scheme and hence can be done just once for each point cloud. The costs

for grouping and initialization are very small. Despite the Voronoi start-up cost, the

majority cost is using DG to march in time, as mentioned in Section 3.2. Note that the

DG cost becomes smaller as k increases because there are fewer cells. In general, the

costs for random points are larger than the costs for uniform points.
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Table 8: 1D Euler equation with ρ(x, 0) = 1 + 0.2 sin(x), v(x, 0) = 1 and p(x, 0) = 1 at
t = 2π. Error on the given points.

N uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20 1.38E-03 – 3.71E-03 – 1.15E-02 – 2.48E-02 –
40 2.33E-04 2.57 6.07E-04 2.61 3.52E-03 1.71 1.19E-02 1.06
80 5.69E-05 2.04 1.19E-04 2.36 4.74E-04 2.89 1.84E-03 2.69
160 1.41E-05 2.01 2.58E-05 2.20 1.33E-04 1.84 8.29E-04 1.15
320 3.52E-06 2.00 5.99E-06 2.11 2.80E-05 2.24 3.45E-04 1.26

average – 2.13 – 2.31 – 2.21 – 1.62
k = 2

20 1.09E-03 – 3.61E-03 – 2.73E-03 – 8.24E-03 –
40 8.40E-05 3.70 3.24E-04 3.48 2.68E-04 3.35 1.21E-03 2.76
80 1.24E-05 2.76 7.45E-05 2.12 4.76E-05 2.49 2.22E-04 2.45
160 1.19E-06 3.38 5.86E-06 3.67 4.49E-06 3.41 2.17E-05 3.35
320 1.54E-07 2.95 1.13E-06 2.37 6.77E-07 2.73 8.75E-06 1.31

average – 3.17 – 2.91 – 2.99 – 2.56
k = 3

20 4.12E-05 – 1.17E-04 – 1.05E-03 – 1.92E-03 –
40 3.19E-06 3.69 8.04E-05 3.86 4.48E-05 4.55 2.23E-04 3.11
80 1.92E-07 4.06 5.42E-06 3.89 6.35E-06 2.82 3.17E-05 2.81
160 1.17E-08 4.03 3.30E-07 4.04 2.53E-07 4.65 1.96E-06 4.02
320 7.32E-10 4.00 2.06E-09 4.00 1.38E-08 4.19 1.74E-07 3.49

average – 3.97 – 3.95 – 3.99 – 3.37

Example 6. Let us consider the two-dimensional Euler system which is given by

ut + f(u)x + g(u)y = 0,

u =





ρ
m
n
E



 , f(u) =





m
ρu2 + p

ρuv
u(E + p)



 , g(u) =





n
ρuv

ρv2 + p
v(E + p)



 .
(22)

Here, ρ is the density, (u, v)T is the velocity vector, m = ρu and n = ρv are the momenta,

E is the total energy, and p is the pressure, with the equation of state

p(u) = (γ − 1)
(
E −

1

2
ρ(u2 + v2)

)
. (23)

The initial condition is set to be ρ(x, y, 0) = 1+0.2 sin(x+y), u(x, y, 0) = 0.7, v(x, y, 0) =
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Table 9: 2D linear equation with u(x, y, 0) = sin(x + y) at t = 2π. Error on the whole
domain.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20×20 4.38E-02 – 0.13 – 0.13 – 0.38 –
40×40 6.13E-03 2.84 4.02E-02 1.71 1.76E-02 2.89 0.12 1.68
80×80 1.17E-03 2.39 1.09E-02 1.89 3.60E-03 2.29 4.44E-02 1.41

160×160 2.72E-04 2.11 2.96E-03 1.88 8.00E-04 2.17 1.44E-02 1.62
320×320 6.74E-05 2.01 7.34E-04 2.01 2.07E-04 1.95 3.39E-03 2.09
average – 2.32 – 1.87 – 2.30 – 1.66

k = 2
20×20 7.31E-03 – 0.11 – 2.34E-02 – 0.24 –
40×40 6.93E-04 3.40 1.84E-02 2.62 2.76E-03 3.08 3.46E-02 2.78
80×80 7.20E-05 3.27 2.04E-03 3.17 4.24E-04 2.70 8.08E-03 2.10

160×160 9.20E-06 2.97 2.58E-04 2.98 3.49E-05 3.60 1.05E-03 2.94
320×320 1.01E-06 3.19 3.42E-05 2.92 4.63E-06 2.91 1.02E-04 3.36
average – 3.19 – 2.95 – 3.09 – 2.74

k = 3
20×20 1.09E-03 – 8.49E-03 – 9.33E-03 – 7.77E-02 –
40×40 6.72E-05 4.02 6.37E-04 3.74 4.48E-04 4.38 7.30E-03 3.41
80×80 4.06E-06 4.05 4.24E-05 3.91 3.16E-05 3.82 4.69E-04 3.96

160×160 2.50E-07 4.02 2.69E-06 3.98 1.71E-06 4.21 4.20E-05 3.48
320×320 1.56E-08 4.01 1.69E-07 3.99 1.08E-07 3.99 3.14E-06 3.74
average – 4.03 – 3.91 – 4.08 – 3.66

0.3 and p(x, y, 0) = 1, 0 ≤ x, y ≤ 2π. The boundary conditions are periodic. γ = 1.4

is used in the computation. The exact solution is ρ(x, y, t) = 1 + 0.2 sin(x + y − t),

u(x, y, t) = 0.7, v(x, y, t) = 0.3 and p(x, y, t) = 1. For this test case, we use the same

mesh as in Example 4. Tables 16 and 17 show the L1 and L∞ errors and numerical

orders of accuracy of the density at t = 2π. We can see that the L1 norm of errors (in

average) can reach the (k + 1)-th order of accuracy.

Example 7. Consider the two-dimensional vortex evolution problem, which is an ide-

alized problem for the two-dimensional Euler equations [45]. The setup of this problem

is: The mean flow is ρ = 1, p = 1 and (u, v) = (1, 1) (diagonal flow). We add, to this
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Table 10: 2D linear equation with u(x, y, 0) = sin(x + y) at t = 2π. Error on the given
points.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20×20 4.92E-02 – 1.15E-01 – 1.32E-01 – 3.56E-01 –
40×40 6.04E-03 3.03 2.05E-02 2.49 1.74E-02 2.93 7.52E-02 2.24
80×80 7.45E-04 3.02 4.11E-03 2.32 3.26E-03 2.41 1.98E-02 1.92

160×160 1.24E-04 2.59 8.51E-04 2.27 6.93E-04 2.24 7.83E-03 1.34
320×320 2.71E-05 2.19 2.03E-04 2.06 1.78E-04 1.96 2.35E-03 1.74
average – 2.73 – 2.29 – 2.37 – 1.78

k = 2
20×20 6.42E-03 – 3.09E-02 – 2.15E-02 – 8.57E-02 –
40×40 5.86E-04 3.45 5.33E-03 2.53 2.50E-03 3.10 1.75E-02 2.29
80×80 6.08E-05 3.27 5.65E-04 3.24 4.00E-04 2.65 3.66E-03 2.26

160×160 7.73E-06 2.97 8.92E-05 2.66 3.12E-05 3.68 3.17E-04 3.53
320×320 8.42E-07 3.20 9.15E-06 3.29 4.23E-06 2.88 4.49E-05 2.82
average – 3.20 – 2.93 – 3.09 – 2.76

k = 3
20×20 9.76E-04 – 2.40E-03 – 8.78E-03 – 3.44E-02 –
40×40 5.85E-05 4.06 1.64E-04 3.87 4.25E-04 4.37 2.48E-03 3.80
80×80 3.50E-06 4.06 1.03E-05 4.00 2.97E-05 3.84 2.06E-04 3.59

160×160 2.15E-07 4.02 6.40E-07 4.00 1.62E-06 4.19 3.40E-05 2.60
320×320 1.34E-08 4.01 4.00E-08 4.00 1.02E-07 3.99 1.26E-06 4.76
average – 4.04 – 3.97 – 4.08 – 3.57

mean flow, an isentropic vortex (perturbation in (u, v) and the temperature T = p
ρ
, no

perturbation in the entropy S = p
ργ ):

(δu, δv) =
ǫ

2π
e0.5(1−t2)(−ȳ, x̄), δT = −

(γ − 1)ǫ2

8γπ2
e1−r2

, δS = 0, (24)

where (x̄, ȳ) = (x− 7, y− 7), r2 = x̄2 + ȳ2, and the vortex strength ǫ = 5. The computa-

tional domain is taken as [0, 14] × [0, 14], extended periodically in both directions. It is

clear that the exact solution of the Euler equation with the above initial and boundary

conditions is just the passive convection of the vortex with the mean velocity. We show

the point clouds and the corresponding Voronoi diagrams in Figure 10. Mesh decompo-

sitions are shown in Figure 11. Errors and orders of accuracy for the density at t = 0.2
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Table 11: 2D linear equation with different indexing rules. Error on the whole domain.

Nx × Ny Rule 1 Rule 2
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20×20 8.36E-02 – 0.31 – 0.11 – 0.31 –
40×40 1.16E-02 2.85 8.64E-02 1.84 1.48E-02 2.90 0.11 1.52
80×80 2.34E-03 2.31 2.77E-02 1.64 2.98E-03 2.32 2.99E-02 1.83

160×160 5.36E-04 2.12 6.88E-03 2.01 6.81E-04 2.13 8.81E-03 1.76
320×320 1.32E-04 2.03 2.70E-03 1.35 1.83E-04 1.89 2.90E-03 1.60
average – 2.31 – 1.73 – 2.29 – 1.70

k = 2
20×20 1.94E-02 – 0.15 – 1.82E-02 – 0.12 –
40×40 1.52E-03 3.67 2.13E-02 2.82 2.42E-03 2.91 2.46E-02 2.23
80×80 2.02E-04 2.91 3.37E-03 2.66 2.25E-04 3.43 4.62E-03 2.41

160×160 2.51E-05 3.01 5.19E-04 2.70 2.91E-05 2.95 8.80E-04 2.39
320×320 3.30E-06 2.93 7.35E-05 2.82 3.29E-06 3.14 7.02E-05 3.65
average – 3.10 – 2.74 – 3.12 – 2.62

k = 3
20×20 3.19E-03 – 4.74E-02 – 4.26E-03 – 5.37E-02 –
40×40 2.42E-04 3.72 4.17E-03 3.51 3.40E-04 3.65 4.24E-03 3.66
80×80 1.63E-05 3.89 3.00E-04 3.80 3.24E-05 3.39 4.25E-04 3.32

160×160 9.32E-07 4.13 2.03E-05 3.88 1.39E-06 4.54 3.37E-05 3.65
320×320 7.51E-08 3.63 2.47E-06 3.04 7.85E-08 4.15 2.65E-06 3.67
average – 3.88 – 3.61 – 3.94 – 3.56

are shown in Tables 18 and 19. The L1 norm of the error is close to the optimal order

of accuracy.

We can see, in the majority of numerical experiments, larger fluctuations of the order

of convergence for the k = 2 case even for uniform points. This effect appears to be

caused by the mesh decomposition. For k = 2, the mesh decomposition appears to be

more irregular and there is a larger percentage of cells containing more than K points

and hence we need to use the least squares method to fit the initial data on these cells,

which may cause the fluctuation of the order of accuracy.
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Figure 10: Point clouds and Voronoi diagrams in the two-dimensional domain

[0, 14] × [0, 14], Nx = Ny = 20
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Figure 11: Mesh decompositions of the two-dimensional domain [0, 14]× [0, 14],
Nx = Ny = 20
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Table 12: 2D linear equation with different indexing rules. Error on the given points.

Nx × Ny Rule 1 Rule 2
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1
20×20 8.85E-02 – 2.38E-01 – 1.15E-01 – 2.56E-01 –
40×40 1.12E-02 2.98 5.95E-02 2.00 1.44E-02 3.00 6.42E-02 2.00
80×80 2.00E-03 2.49 1.18E-02 2.34 2.67E-03 2.43 1.63E-02 1.98

160×160 4.27E-04 2.23 3.12E-03 1.92 5.77E-04 2.21 6.39E-03 1.35
320×320 1.01E-04 2.08 1.29E-03 1.27 1.55E-04 1.90 1.57E-03 2.02
average – 2.43 – 1.93 – 2.37 – 1.80

k = 2
20×20 1.86E-02 – 7.37E-02 – 1.65E-02 – 7.00E-02 –
40×40 1.30E-03 3.84 1.00E-02 2.88 2.15E-03 2.94 2.37E-02 1.56
80×80 1.75E-04 2.89 1.23E-03 3.03 1.99E-04 3.43 1.90E-03 3.64

160×160 2.23E-05 2.97 2.83E-04 2.12 2.63E-05 2.92 4.75E-04 2.00
320×320 2.95E-06 2.91 3.81E-05 2.89 2.92E-06 3.17 3.90E-05 3.61
average – 3.11 – 2.70 – 3.13 – 2.73

k = 3
20×20 2.80E-03 – 1.49E-02 – 3.64E-03 – 1.48E-02 –
40×40 2.24E-04 3.64 2.32E-03 2.68 3.09E-04 3.56 2.45E-03 2.60
80×80 1.52E-05 3.89 1.82E-04 3.67 3.10E-05 3.32 2.33E-04 3.40

160×160 8.66E-07 4.13 1.09E-05 4.06 1.31E-06 4.56 1.16E-05 4.32
320×320 7.05E-08 3.62 7.60E-07 3.84 7.31E-08 4.17 7.32E-07 3.99
average – 3.86 – 3.63 – 3.91 – 3.63

4.2 Discontinuous initial conditions

As we can see in the second numerical example in last subsection, when dealing

with the solution (not in the initial time) with strong shocks, our current scheme will

generate some numerical oscillations. Now we test the behavior of approximation for

discontinuous initial data on random points. Here, we use the same point clouds as in

Section 4.1. We first show two examples for one dimensional and two dimensional cases,

respectively, and then give some conclusions.

Example 1. We first test the one-dimensional discontinuous initial condition

u0(x) =

{
1, if x 6 π,
0, if x > π.

(25)
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Table 13: 2D Burgers equation with u(x, y, 0) = 0.5 + sin(x + y) at t = 0.25. Error on
the whole domain.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1

20×20 2.23E-02 – 0.33 – 5.09E-02 – 0.54 –
40×40 5.64E-03 1.98 0.11 1.56 1.27E-02 2.01 0.18 1.59
80×80 1.38E-03 2.03 3.45E-02 1.68 3.62E-03 1.81 8.43E-02 1.09

160×160 3.45E-04 2.00 8.08E-03 2.09 9.58E-04 1.92 3.72E-02 1.18
320×320 8.56E-05 2.01 2.37E-03 1.77 2.42E-04 1.99 8.14E-03 2.19
average – 2.01 – 1.80 – 1.92 – 1.44

k = 2

20×20 9.91E-03 – 0.44 – 2.32E-02 – 0.47 –
40×40 1.45E-03 2.77 0.13 1.81 3.67E-03 2.66 0.20 1.24
80×80 1.56E-04 3.22 1.26E-02 3.31 5.05E-04 2.86 3.03E-02 2.72

160×160 2.12E-05 2.88 3.06E-03 2.05 6.92E-05 2.87 6.27E-03 2.27
320×320 2.49E-06 3.09 4.14E-04 2.89 8.83E-06 2.97 1.60E-03 1.97
average – 3.00 – 2.54 – 2.84 – 2.14

k = 3

20×20 4.85E-03 – 0.16 – 1.38E-02 – 0.42 –
40×40 3.94E-04 3.62 2.27E-02 2.86 1.42E-03 3.28 7.83E-02 2.42
80×80 3.04E-05 3.70 2.01E-03 3.50 1.25E-04 3.50 1.14E-02 2.78

160×160 2.11E-06 3.85 1.69E-04 3.58 8.22E-06 3.93 1.47E-03 2.95
320×320 1.40E-07 3.91 1.23E-05 3.78 6.12E-07 3.75 1.44E-04 3.36
average – 3.77 – 3.45 – 3.63 – 2.88

Given the initial values only on the random point could, we now divide all the points into

groups and approximate the initial data with piecewise polynomials. Figure 12 shows

the values of the initial piecewise polynomials on the given random points for different k

and different N . Next, we use the approximated piecewise polynomials as initial data to

solve for the nonlinear Burgers equation. Figure 13 shows the results on random points

at t = 1.

Example 2. Consider the two-dimensional discontinuous initial condition

u0(x, y) =

{
1, if x + y 6 2π,
0, if x + y > 2π.

(26)

Figure 14 shows the values of the approximated piecewise polynomials on the given

random points. Now we consider the two-dimensional Burgers equation with the ap-

39



x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) P 1, N = 80

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) P 1, N = 160

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) P 1, N = 320

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) P 2, N = 80

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(e) P 2, N = 160

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(f) P 2, N = 320

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(g) P 3, N = 80

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(h) P 3, N = 160

x

u

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(i) P 3, N = 320

Figure 12: 1D approximation of discontinuous initial data on random point

cloud.
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Figure 13: 1D Burgers with discontinuous initial function on random point

cloud. t = 1.
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Table 14: 2D Burgers equation with u(x, y, 0) = 0.5 + sin(x + y) at t = 0.25. Error on
the given points.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1

20×20 1.12E-02 – 1.02E-01 – 3.91E-02 – 2.46E-01 –
40×40 2.44E-03 2.19 2.92E-02 1.81 9.56E-03 2.03 6.91E-02 1.83
80×80 5.46E-04 2.16 7.03E-03 2.06 2.80E-03 1.77 3.90E-02 0.83

160×160 1.31E-04 2.06 2.03E-03 1.80 7.52E-04 1.89 1.61E-02 1.27
320×320 3.16E-05 2.05 5.00E-04 2.02 1.92E-04 1.97 5.53E-03 1.55
average – 2.12 – 1.92 – 1.90 – 1.31

k = 2

20×20 7.37E-03 – 1.06E-01 – 1.88E-02 – 1.52E-01 –
40×40 1.04E-03 2.82 3.25E-02 1.70 2.89E-03 2.70 5.48E-02 1.47
80×80 1.13E-04 3.20 2.33E-03 3.80 4.21E-04 2.78 1.24E-02 2.14

160×160 1.65E-05 2.78 6.60E-04 1.82 5.73E-05 2.88 3.31E-03 1.91
320×320 1.86E-06 3.15 9.48E-05 2.80 7.44E-06 2.95 6.18E-04 2.42
average – 2.99 – 2.59 – 2.83 – 1.99

k = 3

20×20 3.74E-03 – 3.06E-02 – 1.11E-02 – 1.00E-01 –
40×40 3.41E-04 3.45 4.16E-03 2.88 1.22E-03 3.20 2.36E-02 2.09
80×80 2.72E-05 3.65 4.07E-04 3.35 1.05E-04 3.53 3.57E-03 2.73

160×160 1.89E-06 3.84 2.99E-05 3.77 7.20E-06 3.87 3.26E-04 3.45
320×320 1.24E-07 3.93 2.50E-06 3.58 5.49E-07 3.71 4.37E-05 2.90
average – 3.73 – 3.43 – 3.60 – 2.85

proximated piecewise polynomials as the initial data. Figure 15 shows the results at

t = 1.

For both the one dimensional and the two dimensional cases, we can see that there are

some small oscillations in the approximated piecewise polynomials near the discontinuity

at the initial time, but in general we are able to recover to the true initial conditions and

the approximation in the smooth region becomes more accurate as we refine the mesh.

Table 15: 2D Burgers equation. Computational costs (in s). Nx = Ny = 160.

order uniform points random points
Voronoi Grouping Initialization DG Voronoi Grouping Initialization DG

k = 1 46.89 2.82E-01 3.20E-02 33.68 65.36 4.06E-01 8.60E-02 309.18
k = 2 – 2.89E-01 5.60E-02 29.64 – 4.02E-01 1.64E-01 210.12
k = 3 – 3.99E-01 1.15E-01 14.75 – 5.61E-01 2.52E-01 85.37
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Figure 14: 2D approximation of discontinuous initial data on random point

cloud.
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Figure 15: 2D Burgers with discontinuous initial function on random point

cloud. t = 1.
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Table 16: 2D Euler equation with ρ(x, y, 0) = 1 + 0.2 sin(x + y), u(x, y, 0) = 0.7,
v(x, y, 0) = 0.3 and p(x, y, 0) = 1 at t = 2π. Error on the whole domain.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1

20×20 1.04E-02 – 3.42E-02 – 2.76E-02 – 9.90E-02 –
40×40 1.35E-03 2.95 6.79E-03 2.33 3.97E-03 2.80 2.37E-02 2.06
80×80 2.31E-04 2.54 2.32E-03 1.55 7.11E-04 2.48 8.49E-03 1.48

160×160 5.04E-05 2.20 5.14E-04 2.17 1.64E-04 2.12 3.23E-03 1.40
320×320 1.22E-05 2.05 1.55E-04 1.73 3.99E-05 2.03 1.04E-03 1.64
average – 2.42 – 1.93 – 2.35 – 1.60

k = 2

20×20 1.62E-03 – 3.62E-02 – 5.03E-03 – 7.01E-02 –
40×40 1.47E-04 3.47 3.06E-03 3.56 5.26E-04 3.26 7.12E-03 3.30
80×80 1.41E-05 3.38 4.92E-04 2.64 5.40E-05 3.28 1.68E-03 2.08

160×160 1.74E-06 3.01 7.53E-05 2.71 6.37E-06 3.08 2.77E-04 2.60
320×320 1.95E-07 3.17 8.20E-06 3.20 7.79E-07 3.03 2.31E-05 3.58
average – 3.24 – 2.96 – 3.17 – 2.78

k = 3

20×20 2.06E-04 – 2.19E-03 – 1.59E-03 – 1.70E-02 –
40×40 1.19E-05 4.11 1.62E-04 3.76 6.63E-05 4.59 1.48E-03 3.52
80×80 7.01E-07 4.09 1.01E-05 4.01 4.35E-06 3.93 1.19E-04 3.64

160×160 4.29E-08 4.03 6.33E-07 3.99 2.55E-07 4.09 1.37E-05 3.12
320×320 2.67E-09 4.01 3.96E-08 4.00 1.59E-08 4.01 8.48E-07 4.01
average – 4.06 – 3.95 – 4.13 – 3.53

Also, we can see that although there are some oscillations near the discontinuity at the

initial time, the scheme is stable and does not blow up. This is due to the nonlinear L2

stability of the DG algorithm which results from the cell entropy inequalities.

Of course, when no limiters are used, there are spurious numerical oscillations around

the discontinuities and these oscillations become more severe for higher order methods.

This is expected, as similar oscillations also exist for DG schemes without limiters on

classical triangular or rectangular meshes, even with the smooth initial conditions. Non-

linear limiters would be needed to deal with these oscillations for strong shocks, which

will be studied in the future.
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Table 17: 2D Euler equation with ρ(x, y, 0) = 1 + 0.2 sin(x + y), u(x, y, 0) = 0.7,
v(x, y, 0) = 0.3 and p(x, y, 0) = 1 at t = 2π. Error on the given points.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1

20×20 1.16E-02 – 3.09E-02 – 2.80E-02 – 8.89E-02 –
40×40 1.41E-03 3.04 4.52E-03 2.77 3.94E-03 2.83 1.56E-02 2.51
80×80 1.74E-04 3.02 6.54E-04 2.79 6.53E-04 2.59 4.93E-03 1.66

160×160 2.14E-05 3.02 1.64E-04 2.00 1.41E-04 2.21 1.58E-03 1.64
320×320 3.78E-06 2.50 2.80E-05 2.55 3.34E-05 2.08 5.33E-04 1.57
average – 2.92 – 2.50 – 2.42 – 1.81

k = 2

20×20 1.43E-03 – 9.15E-03 – 4.42E-03 – 2.74E-02 –
40×40 1.23E-04 3.54 9.38E-04 3.29 4.53E-04 3.29 4.11E-03 2.74
80×80 1.15E-05 3.41 1.25E-04 2.91 4.71E-05 3.27 8.26E-04 2.31

160×160 1.45E-06 2.99 1.58E-05 2.98 5.47E-06 3.11 9.23E-05 3.16
320×320 1.60E-07 3.18 2.02E-06 2.97 6.71E-07 3.03 1.05E-05 3.13
average – 3.27 – 3.02 – 3.17 – 2.82

k = 3

20×20 1.85E-04 – 4.75E-04 – 1.42E-03 – 6.31E-03 –
40×40 1.02E-05 4.18 3.08E-05 3.95 5.95E-05 4.58 6.69E-04 3.24
80×80 5.92E-07 4.11 1.99E-06 3.95 3.90E-06 3.93 4.06E-05 4.04

160×160 3.61E-08 4.03 1.25E-07 3.99 2.29E-07 4.09 9.67E-06 2.07
320×320 2.24E-09 4.01 7.87E-09 3.99 1.41E-08 4.02 2.19E-07 5.46
average – 4.08 – 3.97 – 4.13 – 3.57

5 Concluding remarks

In this paper, we aim to solve one and two dimensional time-dependent hyperbolic

conservation laws, with initial values only given at an arbitrarily distributed point cloud.

With the given point cloud, we first divide the computational domain into a Voronoi

diagram. Each region within the Voronoi diagram contains one point in the give point

cloud and consists of all locations in the computational domain closer to that point

than to any other. Then we group these regions into cells. Each cell is a polygon and

consists of several neighboring Voronoi regions. By controlling the condition number

of the matrix used in the interpolation procedure, we carefully select points in each

cell and hence are able to interpolate or fit the discrete initial values with piecewise

polynomials. By adapting the traditional DG method on the constructed mesh, we
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Table 18: 2D Euler system. The smooth vortex evolution problem at t = 0.2. Error on
the whole domain.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1

20×20 3.27E-03 – 0.15 – 5.12E-03 – 0.18 –
40×40 1.09E-03 1.58 7.30E-02 1.02 1.45E-03 1.82 8.28E-02 1.12
80×80 2.94E-04 1.90 2.39E-02 1.61 4.71E-04 1.62 4.34E-02 0.93

160×160 7.29E-05 2.01 6.70E-03 1.83 1.41E-04 1.74 1.23E-02 1.82
320×320 1.80E-05 2.02 1.74E-03 1.95 3.68E-05 1.94 5.78E-03 1.09
average – 1.89 – 1.63 – 1.76 – 1.27

k = 2

20×20 2.33E-03 – 9.41E-02 – 4.36E-03 – 0.20 –
40×40 4.20E-04 2.47 3.79E-02 1.31 8.53E-04 2.35 6.95E-02 1.49
80×80 6.66E-05 2.66 7.10E-03 2.42 1.13E-04 2.91 7.65E-03 3.18

160×160 8.82E-06 2.92 9.64E-04 2.88 1.87E-05 2.60 2.85E-03 1.42
320×320 1.53E-06 2.53 1.87E-04 2.36 2.72E-06 2.78 3.70E-04 2.95
average – 2.67 – 2.32 – 2.68 – 2.27

k = 3

20×20 3.64E-03 – 0.16 – 2.92E-03 – 8.62E-02 –
40×40 3.32E-04 3.46 2.89E-02 2.43 5.84E-04 2.32 2.99E-02 1.53
80×80 2.45E-05 3.76 4.62E-03 2.65 4.98E-05 3.55 4.54E-03 2.72

160×160 1.82E-06 3.75 3.02E-04 3.94 4.48E-06 3.47 7.23E-04 2.65
320×320 1.18E-07 3.94 2.18E-05 3.79 2.83E-07 3.99 6.90E-05 3.39
average – 3.73 – 3.22 – 3.37 – 2.59

obtain a conservative, stable and high order method. Numerical examples for both one

and two dimensional scalar equations and Euler systems of compressible gas dynamics

are provided to illustrate the good behavior of our mesh generation algorithm and the

numerical scheme.

As we can see in the numerical example, when dealing with solutions containing

strong shocks, our current scheme will generate spurious numerical oscillations, just as

DG schemes without limiters on regular triangular or rectangular meshes will do. In our

future work, we will develop limiters for our polygonal mesh to eliminate the oscillations

near discontinuities as well as to maintain uniform high order accuracy in smooth regions,

such as the WENO limiters and positivity-preserving limiters used for the DG method

[54, 55, 53] and for the CPR method [18, 19].
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Table 19: 2D Euler system. The smooth vortex evolution problem at t = 0.2. Error on
the given points.

Nx × Ny uniform points random points
L1 norm order L∞ norm order L1 norm order L∞ norm order

k = 1

20×20 2.29E-03 – 9.11E-02 – 4.18E-03 – 1.13E-01 –
40×40 7.69E-04 1.57 2.36E-02 1.95 1.09E-03 1.93 6.15E-02 0.87
80×80 1.95E-04 1.98 6.55E-03 1.85 3.82E-04 1.52 1.66E-02 1.88

160×160 4.69E-05 2.06 1.72E-03 1.93 1.20E-04 1.67 8.28E-03 1.01
320×320 1.13E-05 2.06 4.12E-04 2.06 3.16E-05 1.92 2.51E-03 1.72
average – 1.94 – 1.94 – 1.73 – 1.39

k = 2

20×20 1.67E-03 – 5.58E-02 – 3.20E-03 – 7.55E-02 –
40×40 3.13E-04 2.42 1.27E-02 2.14 6.66E-04 2.27 2.43E-02 1.63
80×80 4.85E-05 2.69 2.02E-03 2.65 9.52E-05 2.81 3.33E-03 2.87

160×160 6.69E-06 2.86 3.52E-04 2.52 1.65E-05 2.53 1.14E-03 1.55
320×320 1.14E-06 2.55 8.17E-05 2.11 2.47E-06 2.73 2.45E-04 2.22
average – 2.66 – 2.40 – 2.60 – 2.09

k = 3

20×20 2.39E-03 – 4.35E-02 – 2.77E-03 – 6.97E-02 –
40×40 2.59E-04 3.21 9.22E-03 2.24 5.01E-04 2.47 1.41E-02 2.30
80×80 1.98E-05 3.71 1.05E-03 3.14 4.42E-05 3.50 2.70E-03 2.39

160×160 1.42E-06 3.80 1.11E-04 3.24 4.12E-06 3.42 6.39E-04 2.08
320×320 9.67E-08 3.87 7.57E-06 3.87 2.66E-07 3.96 5.07E-05 3.66
average – 3.67 – 3.14 – 3.36 – 2.53

In this paper, we only present the method for solving time-dependent conservation

laws on arbitrarily distributed point clouds, but our method can also be applied to the

convection-diffusion problems, which will be studied in the future.
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[48] Siraj-ul-Islam, R. Vertnik and B. Šarler, Local radial basis function collocation

method along with explicit time stepping for hyperbolic partial differential equations,

Applied Numerical Mathematics, 67 (2013), 136–151.

[49] Z.J. Wang and H. Gao, A unifying lifting collocation penalty formulation includ-

ing the discontinuous Galerkin, spectral volume/difference methods for conservation

laws on mixed grids, Journal of Computational Physics, 228 (2009), 8161–8186.

[50] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta dis-

continuous Galerkin methods for scalar conservation laws, SIAM Journal on Nu-

merical Analysis, 42 (2004), 641–666.

53



[51] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta dis-

continuous Galerkin method for symmetrizable systems of conservation laws, SIAM

Journal on Numerical Analysis, 44 (2006), 1703–1720.

[52] Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third

order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation

laws, SIAM Journal on Numerical Analysis, 48 (2010), 1038–1063.

[53] X. Zhang and C.-W. Shu, On positivity-preserving high order discontinuous Galerkin

schemes for compressible Euler equations on rectangular meshes, Journal of Com-

putational Physics, 229 (2010), 8918–8934.

[54] X. Zhong and C.-W. Shu, A simple weighted essentially nonoscillatory limiter for

RungeCKutta discontinuous Galerkin methods, Journal of Computational Physics,

232 (2013), 397–415.

[55] J. Zhu, X. Zhong, C.-W. Shu and J.-X. Qiu, RungeCKutta discontinuous Galerkin

method using a new type of WENO limiters on unstructured meshes, Journal of

Computational Physics, 248 (2013), 200–220.

54


