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OPTIMAL ERROR ESTIMATES FOR DISCONTINUOUS

GALERKIN METHODS BASED ON UPWIND-BIASED FLUXES

FOR LINEAR HYPERBOLIC EQUATIONS

XIONG MENG, CHI-WANG SHU, AND BOYING WU

Abstract. We analyze discontinuous Galerkin methods using upwind-biased
numerical fluxes for time-dependent linear conservation laws. In one dimen-
sion, optimal a priori error estimates of order k+1 are obtained for the semidis-
crete scheme when piecewise polynomials of degree at most k (k ≥ 0) are used.
Our analysis is valid for arbitrary nonuniform regular meshes and for both peri-
odic boundary conditions and for initial-boundary value problems. We extend
the analysis to the multidimensional case on Cartesian meshes when piecewise
tensor product polynomials are used, and to the fully discrete scheme with
explicit Runge–Kutta time discretization. Numerical experiments are shown
to demonstrate the theoretical results.

1. Introduction

In this paper, we study the semidiscrete and fully discrete discontinuous Galerkin
(DG) method using upwind-biased numerical fluxes for solving linear hyperbolic
conservation laws

ut +
d∑

i=1

ciuxi
= 0, (x, t) ∈ Ω × (0, T ],(1.1a)

u(x, 0) = u0(x), x ∈ Ω,(1.1b)

where Ω is a bounded rectangular domain of Rd, and x = (x1, . . . , xd). Here, ci

are constants and u0(x) is a given smooth function. Both the periodic boundary
condition and the inflow boundary condition are discussed.

Traditionally, purely upwind numerical fluxes are used for DG methods applied
to linear hyperbolic equations. However, purely upwind fluxes may be difficult to
construct for complex systems, as they would require exact eigenstructures of the
flux Jacobian. It would be interesting to study the property of DG schemes when
the more general upwind-biased fluxes are used. For such a semidiscrete DG method
applied to linear conservation laws, we prove the L2-stability and optimal conver-
gence results in one dimension and in multidimensions for Cartesian meshes. These
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results are extended to the fully discrete scheme coupled with explicit third order
total variation diminishing Runge–Kutta (TVDRK3) time discretization, under the
standard temporal-spatial CFL condition.

The DG method discussed in this paper is a class of finite element methods usu-
ally using discontinuous piecewise polynomials as the solution and the test func-
tions. It was first introduced by Reed and Hill [19] for solving a steady-state
linear hyperbolic equation in the framework of neutron transport. Later, it was
developed by Cockburn et al. [11, 10, 8, 12] for solving time-dependent nonlinear
conservation laws, termed Runge–Kutta discontinuous Galerkin (RKDG) method,
by combining DG spatial discretization and explicit high order nonlinearly stable
Runge–Kutta time discretizations [21]. The most important ingredient in designing
the DG scheme is the choice of the so-called numerical fluxes, which should guaran-
tee the stability of the scheme. Typically, the numerical fluxes of DG methods for
conservation laws and wave equations are chosen as upwind or general monotone
fluxes in the framework of finite volume methodology. In the present paper, we con-
sider numerical fluxes in a more general setting, namely, the upwind-biased fluxes,
which may not always be monotone, but could be easier to construct, produce less
numerical dissipation, and thus give us a good approximation to smooth solutions.

For smooth solutions of linear conservation laws, optimal a priori error estimates
of order k + 1 for one-dimensional and some multidimensional cases [17, 20, 7] can
be obtained for steady-state solution or for the space-time DG discretization when
upwind fluxes are used. Here and in what follows, k is the polynomial degree of the
finite element space. For smooth solutions of time-dependent nonlinear conservation
laws, optimal a priori error estimates of order k + 1 are obtained for the RKDG
schemes using upwind numerical fluxes [25, 26]. We would like to remark that, as
far as we know, all previous optimal L2 a priori error estimates of order k + 1 for
DG methods for first order hyperbolic equations are obtained for purely upwind
fluxes, including space-time, semidiscrete, or fully discrete DG methods. When
general, not purely upwind numerical fluxes are used, quasi-optimal a priori error
estimates of order k + 1

2 are obtained for fully discrete RKDG schemes in [3, 25,
26]. The paper [3] also contains quasi-optimal a priori error estimates for general
stabilized finite element methods besides DG. We emphasize that the techniques
used in [3] or in [25, 26] cannot yield optimal error estimates of order k + 1 for DG
methods with numerical fluxes which are not purely upwind. For second order wave
equations, an energy conserving interior penalty DG method was proposed in [15],
and optimal error estimates were derived for a fully discrete scheme coupled with
the second order leap-frog time discretization [16]. In [23], Xing et al. developed
an energy conserving local DG (LDG) method for solving the second order linear
wave equation and showed an optimal error estimate. For high order linear wave
equations, Xu and Shu [24] proposed a general approach for proving optimal error
estimates by utilizing the LDG scheme and its time derivatives with different test
functions and fully making use of the so-called Gauss–Radau projections.

Let us now mention in particular a work that is relevant to the current paper.
In [1], following the earlier work in [5], a class of conservative DG schemes without
introducing auxiliary variables that approximate the different order derivatives of
the solution for the generalized KdV equation were constructed and analyzed. A key
ingredient in this more recent scheme is the construction and analysis of a globally
defined projection ω that is consistent with the dispersion term and possesses an
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important conservative property enjoyed by the fully continuous problem. In [1],
some restrictions on the degree of the polynomials k and the mesh Ih are required
to ensure the existence and optimal approximation properties of the projection ω.

The main idea in the derivation of optimal convergence results in the present
paper is to obtain the energy stability of our scheme and to construct and analyze
some suitable projections. In one dimension, motivated by the successful analysis
of the projection ω in [1], we construct a proper global projection P ⋆

h according to
the very definition of the upwind-biased flux, when the periodic boundary condition
is considered. Unlike the projection ω, the existence and optimal approximation
properties of P ⋆

h do not demand any special requirements on the degree of the poly-
nomials k or the mesh Ih, as long as the mesh is regular. Moreover, the projection
P ⋆

h can eliminate the inter-element boundary terms involving u − P ⋆
hu, and thus

the optimal convergence rate is derived, which also works for the fully discretized
scheme. For the initial-boundary value problems, we modify P ⋆

h to construct an-

other projection P̃h which is no longer globally coupled, and therefore the optimal
order of accuracy can be easily obtained. The proof of optimal convergence re-
sults is valid for arbitrary nonuniform regular meshes and for polynomials of degree
k ≥ 0, no matter whether the periodic boundary condition or the inflow boundary
condition is concerned.

For multidimensional Cartesian meshes, we follow the same arguments in the
one-dimensional case to construct a suitable projection Π⋆

h and analyze its approx-
imation properties, when the periodic boundary problems are considered. Again,
the existence and optimal approximation properties of the projection Π⋆

h do not
require any special restrictions on the degree of the polynomials k or the mesh
Ωh, as long as the mesh is shape-regular. Although this new projection cannot
eliminate the boundary terms in our error equation involving u − Π⋆

hu that affect
the convergence rate, the superconvergence result of Π⋆

h on Cartesian meshes helps
to obtain the optimal convergence results. We would like to remark that the su-
perconvergence proof of Π⋆

h requires some additional regularity assumption on the
exact solution.

The objective of this paper is to set a solid theoretical foundation on the fact
that upwind-biased numerical fluxes are comparable with the purely upwind fluxes
in designing DG methods for solving linear problems in terms of stability and opti-
mal error estimates. Indeed, we have proved L2-stability and optimal convergence
results for linear conservation laws in one dimension and in multidimensions for
Cartesian meshes. To our best knowledge, this is the first optimal convergence
proof for DG methods applied to conservation laws when upwind-biased, but not
purely upwind, numerical fluxes are considered.

The paper is organized as follows. In section 2, we present the semidiscrete
DG method using the upwind-biased numerical flux for the one-dimensional linear
conservation laws. In this simple setting, the main ideas of how to perform sta-
bility and convergence analysis are clearly displayed. Thus, the L2-stability and
optimal convergence results are obtained. Extensions of the analysis to the mul-
tidimensional case are carried out in section 3, in which optimal error estimates
are proved, essentially following the same idea of the one-dimensional case. In sec-
tion 4, by taking one-dimensional linear conservation laws for example, we provide
stability analysis and optimal error estimates for the fully discrete RKDG scheme
coupled with TVDRK3 time discretization. Numerical experiments confirming the
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optimality of our theoretical results are given in section 5. We end in section 6 with
some concluding remarks and perspectives for future work.

2. The DG method for the one-dimensional case

In this section, to display the main idea of our optimal error estimates, we
present and analyze the semidiscrete DG method using upwind-biased fluxes for
the following one-dimensional linear conservation law

ut + ux = 0, (x, t) ∈ [0, 2π] × (0, T ],(2.1a)

u(x, 0) = u0(x), x ∈ R,(2.1b)

where u0(x) is a smooth function. Both the periodic boundary condition u(0, t) =
u(2π, t) and the inflow boundary condition u(0, t) = g(t) are discussed.

2.1. Notation and definitions in the one-dimensional case. In this subsec-
tion, we shall first introduce some notation and definitions in the one-dimensional
case, which will be used in our analysis for one-dimensional linear conservation
laws.

2.1.1. The meshes. Let us denote by Ih a tessellation of the computational interval
I = [0, 2π], consisting of cells Ij = (xj− 1

2
, xj+ 1

2
) with 1 ≤ j ≤ N , where

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 2π.

The following standard notation of DG methods will be used. Denote xj = (xj− 1
2
+

xj+ 1
2
)/2, hj = xj+ 1

2
−xj− 1

2
, h = maxj hj , and ρ = minj hj. The mesh is assumed to

be regular in the sense that h/ρ is always bounded during mesh refinements, namely,
there exists a positive constant γ such that γh ≤ ρ ≤ h. We denote by p−

j+ 1
2

and

p+
j+ 1

2

the values of p at the discontinuity point xj+ 1
2
, from the left cell, Ij , and from

the right cell, Ij+1, respectively. In what follows, we employ [[p]] = p+ − p− and
{{p}} = 1

2 (p+ + p−) to represent the jump and the mean value of p at each element
boundary point. The following discontinuous piecewise polynomials space is chosen
as the finite element space:

Vh ≡ V k
h =

{
v ∈ L2(I) : v|Ij

∈ P k(Ij), j = 1, . . . , N
}

,

where P k(Ij) denotes the set of polynomials of degree up to k ≥ 0 defined on the
cell Ij .

2.1.2. Function spaces and norms. For any integer l ≥ 0, denote by ‖ ·‖W l,2(Ij) and

‖ · ‖W l,∞(Ij) the standard Sobolev norms on the cell Ij . Then, the norms of the

broken Sobolev spaces W l,p(Ih) := {u ∈ L2(I) : u|Ij
∈ W l,p(Ij), ∀j = 1, . . . , N}

with p = 2,∞ are given by

‖u‖W l,2(Ih) = ‖u‖Hl(Ih) =




N∑

j=1

‖u‖2
Hl(Ij)




1
2

, ‖u‖W l,∞(Ih) = max
1≤j≤N

‖u‖W l,∞(Ij).

In the case l = 0, we denote ‖u‖L2(I) = ‖u‖H0(Ih).

2.2. The DG method and stability analysis.
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2.2.1. The DG scheme. The approximation of the semidiscrete DG scheme to solve
(2.1) is as follows. Find, for any time t ∈ (0, T ], the unique function uh = uh(t) ∈
V k

h such that

(2.2)

∫

Ij

(uh)tvhdx −
∫

Ij

uh(vh)xdx + ûhv−h |j+ 1
2
− ûhv+

h |j− 1
2

= 0

holds for all vh ∈ V k
h and all j = 1, . . . , N.

In this paper, instead of using the purely upwind flux, we adopt the so-called
upwind-biased flux. To be more specific, we choose

(2.3) ûh = θu−
h + (1 − θ)u+

h at xj+ 1
2
, j = 0, . . . , N

for the periodic boundary condition, and

(ûh)j+ 1
2

=





θu−
h + (1 − θ)u+

h , j = 1, . . . , N − 1,

(uh)−1
2

= g(t), j = 0,

(uh)−
N+ 1

2

, j = N

(2.4)

for the inflow boundary condition. Here and in what follows, θ > 1
2 . Note that

fluxes (2.3) and (2.4) are not even monotone when 1 > θ > 1
2 . For the initial

condition, we take uh(0) = Phu0, and there holds

(2.5) ‖u0 − Phu0‖L2(I) ≤ Chk+1‖u0‖Hk+1(Ih),

where Ph is the L2 projection into V k
h .

2.2.2. Stability analysis. The DG scheme using the upwind-biased numerical flux
for the one-dimensional linear conservation laws satisfies the following L2-stability.

Proposition 2.1. (stability) The solution of the semidiscrete DG method defined
by (2.2) with the numerical flux (2.3) or (2.4) satisfies

‖uh(T )‖L2(I) ≤ ‖uh(0)‖L2(I) + ‖g‖L2([0,T ]),

where ‖g‖L2([0,T ]) =
(∫ T

0
g2(t)dt

) 1
2

.

Proof. Taking vh = uh in the DG scheme (2.2) and summing over all j, we obtain,
for the periodic boundary condition

∫

I

(uh)tuhdx +

N∑

j=1

(({{uh}} − ûh)[[uh]])j+ 1
2

= 0.

Using the upwind-biased numerical flux (2.3), we get

1

2

d

dt
‖uh‖2

L2(I) + (θ − 1

2
)

N∑

j=1

[[uh]]
2
j+ 1

2

= 0.

For the initial-boundary value problem, we follow the same line and take into ac-
count the upwind-biased numerical flux (2.4) to obtain, after some simple algebraic
calculations

1

2

d

dt
‖uh‖2

L2(I) + (θ − 1

2
)

N−1∑

j=1

[[uh]]
2
j+ 1

2

+
1

2
((uh)−

N+ 1
2

)2 +
1

2
[[uh]]

2
1
2

=
1

2
g2(t).
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In both cases, since θ > 1
2 , we get

d

dt
‖uh‖2

L2(I) ≤ g2(t).

The L2-stability result follows immediately by integrating the above inequality with
respect to time between 0 and T . This completes the proof. �

2.3. A priori error estimates. In this subsection, we state the a priori error
estimate of the DG method using upwind-biased fluxes for solving one-dimensional
conservation laws and then briefly discuss our main results. The detailed proofs will
be provided in the next subsection, in which problems with the periodic boundary
condition and the inflow boundary condition are discussed separately.

Theorem 2.2. (error estimate) Assume that the exact solution u of (2.1) is suf-
ficiently smooth with bounded derivatives, i.e., ‖u‖W k+1,∞(Ih) and ‖ut‖W k+1,∞(Ih)

are bounded uniformly for any time t ∈ [0, T ]. Let uh be the numerical solution
of the semidiscrete DG scheme (2.2) when the upwind-biased numerical flux (2.3)
or (2.4) with θ > 1

2 is used, which corresponds, respectively, to the periodic bound-
ary problem or the initial-boundary value problem. For regular triangulations of
I = [0, 2π], if the finite element space V k

h of piecewise polynomials with arbitrary
degree k ≥ 0 is used, then for T > 0 there holds the following error estimate

(2.6) ‖u(T ) − uh(T )‖L2(I) ≤ C(1 + T )hk+1,

where C depends on θ, ‖u‖W k+1,∞(Ih) and ‖ut‖W k+1,∞(Ih), but is independent of h.

Remark 2.3. The proof of Theorem 2.2 is valid for the DG scheme (2.2) using the
numerical flux (2.3) or (2.4) with any θ > 1

2 and for any k ≥ 0. In particular, we
conclude that the optimal convergence results hold true not only for the DG method
with general monotone fluxes and the upwind flux corresponding to θ ≥ 1, but for
the DG method with numerical fluxes that are not even monotone corresponding
to 1 > θ > 1

2 .

Remark 2.4. On the extreme case θ = 1
2 , the numerical flux (2.3) reduces to the

central flux {{uh}}, and thus the DG method (2.2) becomes an energy conservative
scheme, when the periodic boundary condition is concerned. In this case, existence
and the optimal approximation property of the global projection P ⋆

h can also be
proved under the same assumptions on the polynomial degree k and the mesh Ih

as those in [1]. Moreover, the inverse of the coefficient matrix is an N ×N circulant
matrix with 1

2 [1,−1, 1,−1, · · · , 1] as its first row, and thus the optimal convergence
results can be obtained under the aforementioned conditions. In the numerical
experiments, we can see that the convergence rate is k +1 for even values of k, but
only k for odd values of k.

Remark 2.5. Even though the proof in this section is presented only for simple
scalar linear conservation laws (2.1), the same optimal convergence results can be
easily obtained for one-dimensional linear systems along the same lines. This is due
to the fact that the one-dimensional linear hyperbolic system can be decoupled to
several scalar equations.
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2.4. Proof of the error estimates. This section is devoted to the proof of The-
orem 2.2 stated in the previous section. In subsection 2.4.1, we recall some local
projections and define a global projection we are going to use in our analysis. The
optimal convergence result for the periodic boundary condition is thus proved in
subsection 2.4.1. For the initial-boundary value problem, the analysis is much easier
since the corresponding projection is no longer coupled, and the optimal conver-
gence result is derived in subsection 2.4.2.

2.4.1. The periodic boundary condition case. It is well known that the locally de-
fined Gauss–Radau projections P±

h play an important role in deriving optimal error
estimates of DG methods using upwind fluxes applied to hyperbolic problems and
LDG methods using alternating fluxes applied to elliptic as well as parabolic prob-
lems. Taking the definition of P−

h in, for example, [4], for any given function

u ∈ H1(Ij) and an arbitrary cell Ij = (xj− 1
2
, xj+ 1

2
), the restriction of P−

h u to Ij is

the unique polynomial in V k
h satisfying

∫

Ij

P−
h u(x)vhdx =

∫

Ij

u(x)vhdx ∀vh ∈ P k−1(Ij),(2.7a)

(P−
h u)− = u− at xj+ 1

2
.(2.7b)

In the case k = 0, we set P−1(Ij) = {0}. From the above definition, we clearly see
that the projection P−

h can be solved explicitly on each element.
The projection defined above has the following approximation error estimates.

Let u ∈ W k+1,p(Ij) (p = 2,∞); then by the standard approximation theory [6, 2]

(2.8) ‖u − P−
h u‖Lp(Ij) ≤ Chk+1

j ‖u‖W k+1,p(Ij), p = 2,∞,

where C is independent of hj .
For the DG scheme (2.2) using the upwind-biased flux (2.3) solving conservation

laws with periodic boundary conditions, we need to construct a globally defined
projection P ⋆

h , since we have made use of the information of the numerical solution
at cell interfaces from both the left and the right. For u ∈ H1(Ih), the projection
P ⋆

hu is defined as the element of V k
h that satisfies

∫

Ij

P ⋆
hu(x)vhdx =

∫

Ij

u(x)vhdx ∀vh ∈ P k−1(Ij),(2.9a)

P̂ ⋆
hu = û at xj+ 1

2
, j = 1, . . . , N(2.9b)

with θ > 1
2 . Here and below, parallel to the definition of the upwind-biased numer-

ical flux ûh, we denote ŵ := θw− + (1 − θ)w+ for any w ∈ H1(Ih). In particular,
when θ = 1, ŵ = w− and the projection P ⋆

h reduces to the standard Gauss–Radau

projection P−
h .

Existence and the optimal approximation properties of the global projection P ⋆
h

are established in the following lemma.

Lemma 2.6. Assume that u is sufficiently smooth and periodic. Then, there exists
a unique P ⋆

h satisfying the conditions (2.9). Moreover, there holds the following
approximation properties

‖u − P ⋆
hu‖L∞(Ij) ≤ Chk+1‖u‖W k+1,∞(Ih),(2.10a)

‖u − P ⋆
hu‖L2(Ij) ≤ Chk+ 3

2 ‖u‖W k+1,∞(Ih),(2.10b)
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where C = C(θ) is independent of the cell Ij and the mesh size h.

Proof. Let us first prove existence and uniqueness of P ⋆
hu.

For u ∈ H1(Ih), let P−
h u and P ⋆

hu be defined by (2.7) and (2.9), respectively.

Denote P ⋆
hu − u = P ⋆

hu − P−
h u + P−

h u − u := E + P−
h u − u. If we can prove the

existence and uniqueness of E, then P ⋆
hu = E + P−

h u will exist and is unique. To
do that, we start by combining (2.7) and (2.9) to obtain

∫

Ij

Evhdx = 0 ∀vh ∈ P k−1(Ij),(2.11a)

Ê = (1 − θ)(u − P−
h u)+ at xj+ 1

2
,(2.11b)

which holds for j = 1, . . . , N . Let Pl(ξ) be the lth-order Legendre polynomials that

are orthogonal on [−1, 1] with ξ =
2(x−xj)

hj
. Next, on each element, we denote

Pl(ξ) = Pl(
2(x−xj)

hj
) := Pj,l(x) for x ∈ Ij . Thus, the restriction of E to each Ij ,

denoted by Ej , can be expressed in the form

Ej(x) =

k∑

l=0

αj,lPj,l(x) =

k∑

l=0

αj,lPl(ξ).

The equality (2.11a) and the orthogonality of the Legendre polynomials yield that

αj,l = 0, l = 0, . . . , k − 1, j = 1, . . . , N.

Hence, Ej(x) = αj,kPk(ξ). It follows from the equality (2.11b) that, for j =
1, . . . , N ,

(2.12) θαj,k + (1 − θ)(−1)kαj+1,k = (1 − θ)(u − P−
h u)+

j+ 1
2

since Pk(1) = 1 and Pk(−1) = (−1)k. For any given u, P−
h u is uniquely defined,

and thus (2.12) is an N × N linear system for αj,k (j = 1, . . . , N) with a known
right-hand side. For periodic boundary conditions discussed in this subsection, if
we denote

(2.13) ηj+1 = (u − P−
h u)+

j+ 1
2

for j = 0, . . . , N − 1 with ηN+1 = η1, then the linear system (2.12) can be written
in the following matrix form

(2.14) Aαk = (1 − θ)η,

where A = circ(θ, (1 − θ)(−1)k, 0, · · · , 0) is an N × N circulant matrix, and

αk =




α1,k

α2,k

...
αN,k


 , η =




η2

η3

...
ηN+1


 .

Here and from now on, circ(a1, a2, · · · , aN ) denotes an N ×N circulant matrix with
the first row (a1, a2, · · · , aN ). Moreover, we can readily compute the determinant
of A in the form

|A| = θN (1 − qN ), q =
(θ − 1)(−1)k

θ
.

We can see that the matrix is always invertible for all values of k whenever θ 6= 1
2 .

This establishes existence and uniqueness of E, and thus P ⋆
hu.
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In what follows, we shall derive the optimal approximation error estimates
(2.10). It is well known [13] that the inverse of a nonsingular circulant matrix
is also circulant. So, we can compute the inverse of A in the form of A−1 =
βNcirc(1, q, q2, · · · , qN−1), where

βN =
1

θ(1 − qN )
.

Clearly, for θ > 1
2 ,

lim
N→∞

βN =
1

θ
, |q| < 1.

Consequently, βN is bounded, namely, there exists a positive constant C such that
for all N , βN ≤ C. Therefore, αj,k can be solved explicitly from (2.14)

αj,k = βN (1 − θ)

N∑

m=1

dj,mηm+1, j = 1, . . . , N,

where {dj,m}N
m=1 (j = 1, . . . , N) are the entries in the jth row of the circulant

matrix circ(1, q, q2, · · · , qN−1). Since

|ηj+1| ≤ ‖u − P−
h u‖L∞(Ij+1) ≤ Chk+1‖u‖W k+1,∞(Ij+1) ≤ Chk+1‖u‖W k+1,∞(Ih),

we arrive at a bound for αj,k (j = 1, . . . , N) as follows

|αj,k| ≤ βN |1 − θ|Chk+1‖u‖W k+1,∞(Ih)

(
1 + |q| + |q|2 + · · · + |q|N−1

)

≤ C
|1 − θ|
1 − |q|h

k+1‖u‖W k+1,∞(Ih)

:= C(θ)hk+1‖u‖W k+1,∞(Ih).(2.15)

In the case p = ∞, (2.15) yields a bound for ‖E‖L∞(Ij)

‖E‖L∞(Ij) = ‖αj,kPj,k‖L∞(Ij) = |αj,k|‖Pk‖L∞([−1,1]) ≤ C(θ)hk+1‖u‖W k+1,∞(Ih).

Then, the error estimate (2.10a) follows by the approximation property of the
projection P−

h , (2.8), and the triangle inequality.
In the case p = 2, (2.10b) is a direct consequence of (2.10a). The proof of this

lemma is thus completed. �

Remark 2.7. The error estimate (2.10) is global because of the coupling of the
information from different cells (2.9b). Moreover, the bound is optimal, and they
hold true for all values of k ≥ 0 and arbitrary nonuniform regular meshes. In
addition, (2.10b) trivially implies that

(2.16) ‖u − P ⋆
hu‖L2(I) ≤ C(θ)hk+1‖u‖W k+1,∞(Ih).

In what follows, for the one-dimensional linear problems discussed in this section,
we would like to introduce the DG discretization operator D as in [24, 18]: for each
cell Ij = (xj− 1

2
, xj+ 1

2
),

(2.17) DIj
(w, v; ŵ) = −

∫

Ij

wvxdx + ŵv−|j+ 1
2
− ŵv+|j− 1

2
,

and we denote

D(w, v; ŵ) =

N∑

j=1

DIj
(w, v; ŵ).
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Using the definitions of the operator D and the projection P ⋆
h , we have the

following lemma.

Lemma 2.8. For periodic boundary conditions and vh ∈ V k
h , we have

(2.18) D(u − P ⋆
hu, vh; u − P̂ ⋆

hu) = 0,

where P ⋆
h is the projection defined by (2.9).

Note that for a given function u, the projection P ⋆
hu is a unique polynomial in

P k, and hence P ⋆
huh = uh. Therefore, e := u − uh = u − P ⋆

hu + P ⋆
he. To estimate

‖u(T )− uh(T )‖L2(I), it remains to estimate ‖P ⋆
he(T )‖L2(I), which is contained in

the following lemma.

Lemma 2.9. Under the same conditions as in Theorem 2.2, we have

(2.19) ‖P ⋆
he(T )‖L2(I) ≤ C(1 + T )hk+1,

where C depends solely on θ and ‖ut‖W k+1,∞(Ih).

Proof. Using the DG discretization operator D, the DG scheme (2.2) can be written
as ∫

Ij

(uh)tvhdx + DIj
(uh, vh; ûh) = 0,

for any vh ∈ V k
h and j = 1, . . . , N . Since the exact solution u also satisfies the weak

formulation, we thus have the Galerkin orthogonality∫

Ij

(u − uh)tvhdx + DIj
(u − uh, vh; u − ûh) = 0,

which holds for any vh ∈ V k
h and j = 1, . . . , N . Now, we take vh = P ⋆

he ∈ V k
h in

the above identity and sum over all j to obtain

1

2

d

dt
‖P ⋆

he‖2
L2(I) +

∫

I

(u − P ⋆
hu)tP

⋆
hedx + D(u − P ⋆

hu, P ⋆
he; u − P̂ ⋆

hu)

+ D(P ⋆
h e, P ⋆

he; P̂ ⋆
he) = 0.(2.20)

By Lemma 2.8,

D(u − P ⋆
hu, P ⋆

he; u − P̂ ⋆
hu) = 0.

By the same argument as that in the proof of L2-stability,

D(P ⋆
h e, P ⋆

he; P̂ ⋆
he) = (θ − 1

2
)

N∑

j=1

[[P ⋆
he]]

2
j+ 1

2

.

Inserting the above two estimates into (2.20) and taking into account θ > 1
2 , we

get, after a straightforward application of the Cauchy–Schwarz inequality

1

2

d

dt
‖P ⋆

he‖2
L2(I) ≤ ‖(u − P ⋆

hu)t‖L2(I)‖P ⋆
he‖L2(I),

which is,

d

dt
‖P ⋆

he‖L2(I) ≤ ‖(u − P ⋆
hu)t‖L2(I) ≤ C(θ)hk+1‖ut‖W k+1,∞(Ih),

where we have used the fact that (P ⋆
hu)t = P ⋆

hut and the approximation error
estimate (2.16). The estimate (2.19) follows immediately by integrating the above
inequality with respect to time between 0 and T and by using the initial error
estimate (2.5). This completes the proof of Lemma 2.9. �
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We are now ready to get the final error estimate (2.6) by combining (2.16)
and (2.19). This completes the proof of Theorem 2.2 when the periodic boundary
condition is considered.

2.4.2. The inflow boundary condition case. When the inflow boundary condition
u(0, t) = g(t) is considered, to perform error analysis, we need to introduce another

projection P̃h, which is defined as the element of V k
h that satisfies

∫

Ij

P̃hu(x)vhdx =

∫

Ij

u(x)vhdx ∀vh ∈ P k−1(Ij),(2.21a)

̂̃Phu = û at xj+ 1
2
, j = 1, . . . , N − 1,(2.21b)

(P̃hu)− = u− at xj+ 1
2
, j = N(2.21c)

with θ > 1
2 . Again, when θ = 1, the projection P̃h reduces to the standard P−

h

projection.
Existence and the optimal approximation property of the projection P̃h are es-

tablished in the following lemma.

Lemma 2.10. Assume that u is sufficiently smooth, i.e., u ∈ W k+1,∞(Ih). Then,

P̃hu exists and is unique. Moreover, there holds the following approximation prop-
erties

‖u − P̃hu‖L∞(Ij) ≤ Chk+1‖u‖W k+1,∞(Ih),(2.22a)

‖u − P̃hu‖L2(Ij) ≤ Chk+ 3
2 ‖u‖W k+1,∞(Ih),(2.22b)

where C = C(θ) is independent of the cell Ij and the mesh size h.

Proof. For u ∈ H1(Ih), let P−
h u and P̃hu be defined by (2.7) and (2.21), respec-

tively. Denote P̃hu− u = P̃hu− P−
h u + P−

h u − u := Ẽ + P−
h u − u. If we can prove

the existence and uniqueness of Ẽ, then P̃hu = Ẽ + P−
h u will exist and is unique.

To do that, we combine (2.7) and (2.21) to obtain
∫

Ij

Ẽvhdx = 0 ∀vh ∈ P k−1(Ij),(2.23a)

̂̃E = (1 − θ)(u − P−
h u)+ at xj+ 1

2
, j = 1, . . . , N − 1,(2.23b)

Ẽ−
j+ 1

2

= 0 at xj+ 1
2
, j = N.(2.23c)

In contrast to (2.11), the conditions (2.23) are no longer globally coupled. To be

more specific, denote by Ẽj the restriction of Ẽ to Ij and let

Ẽj(x) =

k∑

l=0

α̃j,lPj,l(x) =

k∑

l=0

α̃j,lPl(ξ).

The equality (2.23a) and the orthogonality of the Legendre polynomials yield that

α̃j,l = 0, l = 0, . . . , k − 1, j = 1, . . . , N.

Hence, Ẽj(x) = α̃j,kPk(ξ). It follows from the equality (2.23c) that,

α̃N,k = 0.
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Thus, the N × N linear system (2.23b) and (2.23c) can be decoupled and solved
explicitly with α̃N,k = 0 as a starting point, i.e., for j = 1, . . . , N − 1

α̃j,k =
1 − θ

θ

N−j∑

m=1

qm−1ηj+m,

where q and ηj have been defined in subsection 2.4.1. Next, by an analysis similar
to that in the proof of (2.15), we have that, for j = 1, . . . , N

(2.24) |α̃j,k| ≤ C(θ)hk+1‖u‖W k+1,∞(Ih),

and hence the error estimate (2.22) follows immediately. This completes the proof
of Lemma 2.10. �

We are now ready to prove Theorem 2.2 when the inflow boundary condition is
considered. Note that for a given function u, P̃hu is a unique polynomial in P k,
and thus P̃huh = uh. Therefore, e := u − uh = u − P̃hu + P̃he.

By Galerkin orthogonality, we arrive at the following identity

1

2

d

dt
‖P̃he‖2

L2(I) +

∫

I

(u − P̃hu)tP̃hedx + D(u − P̃hu, P̃he; u − ̂̃Phu)

+ D(P̃he, P̃he; ̂̃Phe) = 0.(2.25)

On the one hand,

D(u − P̃hu, P̃he; u − ̂̃Phu) = 0.

On the other hand, since (P̃he)−1
2

= 0,

D(P̃he, P̃he; ̂̃Phe) = (θ − 1

2
)

N−1∑

j=1

[[P̃he]]
2

j+ 1
2

+
1

2
((P̃he)−

N+ 1
2

)2 +
1

2
((P̃he)+1

2

)2.

Inserting the above two estimates into (2.25) and using the approximation error
estimate (2.22), we get

d

dt
‖P̃he‖L2(I) ≤ C(θ)hk+1‖ut‖W k+1,∞(Ih).

To complete the proof of Theorem 2.2 for the inflow boundary condition case,
we only need to integrate the above inequality over [0, T ] and use the triangle
inequality.

3. The DG method for the multidimensional case

In this section, we consider the semidiscrete DG method using upwind-biased
fluxes for the multidimensional linear conservation laws (1.1). Without loss of
generality, we describe our DG scheme and prove optimal a priori error estimates
in two dimensions (d = 2); all the arguments we present in our analysis depend on
the tensor product structure of the mesh and can be easily extended to the more
general cases d > 2. Hence, from now on, we shall restrict ourselves mainly to the
following two-dimensional problem

ut + ux + uy = 0, (x, y, t) ∈ Ω × (0, T ],(3.1a)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,(3.1b)

which corresponds to the case d = 2 with x = (x, y) and c1 = c2 = 1 in (1.1).
For the sake of simplicity, we consider only the periodic boundary conditions; the
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initial-boundary value problems can be studied along the same lines of the one-
dimensional case.

3.1. Notation and definitions in the two-dimensional case.

3.1.1. The meshes. Let Ωh = {K} denote a tessellation of Ω with shape-regular
rectangular elements K, and set ∂Ωh = {∂K : K ∈ Ωh}. For each K ∈ Ωh, we
denote by hK the diameter of K and set, as usual, h = maxK∈Ωh

hK . The finite
element space associated with the mesh Ωh is of the form

Zh := {v ∈ L2(Ω) : v|K ∈ Qk(K) ∀K ∈ Ωh},
where Qk(K) is the space of tensor product of polynomials of degrees at most k in
each variable defined on K.

We would like to adopt the following notation, which are standard in DG anal-
ysis. For an arbitrary rectangular element K := Ii × Jj with Ii = (xi− 1

2
, xi+ 1

2
)

and Jj = (yj− 1
2
, yj+ 1

2
), we denote xi = 1

2 (xi− 1
2

+ xi+ 1
2
), yj = 1

2 (yj− 1
2

+ yj+ 1
2
),

hx
i = xi+ 1

2
− xi− 1

2
, and hy

j = yj+ 1
2
− yj− 1

2
. Similar to the one-dimensional case,

(uh)−
i+ 1

2
,y

, (uh)+
i+ 1

2
,y

, (uh)−
x,j+ 1

2

, and (uh)+
x,j+ 1

2

are well defined. Moreover, we use

[[uh]]i+ 1
2
,y = (uh)+

i+ 1
2

,y
− (uh)−

i+ 1
2
,y

and {{uh}}i+ 1
2
,y = 1

2 ((uh)+
i+ 1

2
,y

+ (uh)−
i+ 1

2
,y

) to

denote the jump and the mean value of uh on the vertical edge (xi+ 1
2
, y) when

y ∈ Jj . Analogously, on the horizontal edges, we can define (uh)−
x,j+ 1

2

, (uh)+
x,j+ 1

2

,

[[uh]]x,j+ 1
2

and {{uh}}x,j+ 1
2

when x ∈ Ii.

3.1.2. Function spaces and norms. Denote by ‖·‖L2(K) and ‖·‖L2(∂K) the standard

L2 norms on K and ∂K. For any integer l ≥ 0, the standard Sobolev l norm on
K is denoted by ‖·‖Hl(K). Furthermore, the norms of the broken Sobolev spaces

W l,p(Ωh) = {v ∈ L2(Ω) : v|K ∈ W l,p(K) ∀K ∈ Ωh} with p = 2,∞ are given by

‖v‖Hl(Ωh) =

( ∑

K∈Ωh

‖v‖2
Hl(K)

) 1
2

, ‖v‖W l,∞(Ωh) = max
K∈Ωh

‖v‖W l,∞(K).

In the case l = 0, we denote ‖v‖L2(Ωh) = ‖v‖H0(Ωh).

3.2. The DG method and stability analysis.

3.2.1. The DG scheme. The approximation of the semidiscrete DG scheme to solve
(3.1) is as follows. Find, for any time t ∈ (0, T ], the unique function uh = uh(t) ∈ Zh

such that∫

K

(uh)tvhdx −
∫

K

uh(vh)xdx +

∫

Jj

(ûhvh)i+ 1
2
,ydy −

∫

Jj

(ûhvh)i− 1
2
,ydy

−
∫

K

uh(vh)ydx +

∫

Ii

(ûhvh)x,j+ 1
2
dx −

∫

Ii

(ûhvh)x,j− 1
2
dx = 0(3.2)

holds for all vh ∈ Zh and all K ∈ Ωh, where
∫

K (·)dx stands for
∫

Ii

∫
Jj

(·)dydx.

Here, (ûh)i+ 1
2
,y and (ûh)x,j+ 1

2
are chosen to be upwind-biased numerical fluxes,

i.e.,

(ûh)i+ 1
2
,y ≡ ûh(xi+ 1

2
, y) = θ1uh(x−

i+ 1
2

, y) + (1 − θ1)uh(x+
i+ 1

2

, y),(3.3a)

(ûh)x,j+ 1
2
≡ ûh(x, yj+ 1

2
) = θ2uh(x, y−

j+ 1
2

) + (1 − θ2)uh(x, y+
j+ 1

2

)(3.3b)



14 XIONG MENG, CHI-WANG SHU, AND BOYING WU

with θ1, θ2 > 1
2 . We would like to emphasize that for the boundary integral terms in

(3.2), if vh is not single-valued on inter-element faces, we take its value from inside
of K and restrict on ∂K. For the initial condition, we simply take uh(0) = Phu0

and we have

(3.4) ‖u0 − Phu0‖L2(Ωh) ≤ Chk+1‖u0‖Hk+1(Ωh),

where Ph is the L2 projection into Zh.

3.2.2. Stability analysis. The DG scheme using the upwind-biased numerical fluxes
for the two-dimensional linear conservation laws satisfies the following L2-stability.

Proposition 3.1. (stability) The solution of the semidiscrete DG method defined
by (3.2) with the numerical fluxes (3.3) satisfies

‖uh(T )‖L2(Ωh) ≤ ‖uh(0)‖L2(Ωh).

Proof. Taking vh = uh in the DG scheme (3.2), summing over all K and using
upwind-biased numerical fluxes (3.3), we get, for the periodic boundary conditions

1

2

d

dt
‖uh‖2

L2(Ωh) + (θ1 −
1

2
)

N2∑

j=1

∫

Jj

N1∑

i=1

[[uh]]2i+ 1
2
,ydy

+ (θ2 −
1

2
)

N1∑

i=1

∫

Ii

N2∑

j=1

[[uh]]2x,j+ 1
2

dx = 0,

where we have used the fact that
∑

K∈Ωh
(·) =

∑N1

i=1

∑N2

j=1(·) for Cartesian meshes.

Since θ1, θ2 > 1
2 , we get

d

dt
‖uh‖2

L2(Ωh) ≤ 0,

from which the L2-stability result follows immediately. �

3.3. A priori error estimates. Let us now state the a priori error estimates for
the two-dimensional case, whose proof will be given in the next subsection.

Theorem 3.2. (error estimate) Assume that the exact solution u of (3.1) is suf-
ficiently smooth with bounded derivatives, i.e., ‖u‖W 2k+3,∞(Ωh) and ‖ut‖W k+1,∞(Ωh)

are bounded uniformly for any time t ∈ [0, T ]. Let uh be the numerical solution of
the semidiscrete DG scheme (3.2) when the upwind-biased numerical fluxes (3.3)
with θ1, θ2 > 1

2 are used. For two-dimensional Cartesian meshes, if the finite ele-
ment space Zh of piecewise tensor product polynomials of degree k ≥ 0 is used, then
for T > 0 there holds the error estimate

(3.5) ‖u(T ) − uh(T )‖L2(Ωh) ≤ C(1 + T )hk+1,

where C depends on θ1, θ2, k, ‖u‖W 2k+3,∞(Ωh), and ‖ut‖W k+1,∞(Ωh), but is indepen-
dent of h.

3.4. Proof of the error estimates. In this section we prove Theorem 3.2 stated
in the previous section. To do that, we proceed as follows. First, in subsection
3.4.1, we establish the existence as well as uniqueness of a suitably defined special
projection Π⋆

h. Moreover, the optimal approximation properties of Π⋆
h are derived.

We proceed in subsection 3.4.2 by performing an energy analysis, from which the
optimal convergence result follows. Finally, we complete the proof of Theorem 3.2
in subsection 3.4.3 by proving a superconvergence result that is used in our analysis.
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3.4.1. Estimate of ‖u − Π⋆
hu‖L2(Ωh). Prior to giving the definition of the special

projection Π⋆
h, we would like to recall the projection Π−

h introduced by Cockburn
et al. in their study of optimal error estimates of the LDG method for elliptic
problems on Cartesian meshes in [9]. The projection Π−

h is defined to be the tensor
product of the projections in one dimension. Specifically, on a rectangular element
K, for u ∈ C0(K) , we have

Π−
h u = P−

hx
⊗ P−

hy
u

where the sub-subscripts x and y indicate that the one-dimensional projection P−
h

defined by (2.7) is applied with respect to the corresponding variable.
For clarity, we shall list explicitly the formulations for Π−

h . On a rectangular

element K := Ii×Jj = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
), we have, for all vh ∈ Qk−1(K),

that
∫

K

Π−
h u(x, y)vh(x, y)dx =

∫

K

u(x, y)vh(x, y)dx,(3.6a)

∫

Jj

Π−
h u(x−

i+ 1
2

, y)vh(x−
i+ 1

2

, y)dy =

∫

Jj

u(x−
i+ 1

2

, y)vh(x−
i+ 1

2

, y)dy,(3.6b)

∫

Ii

Π−
h u(x, y−

j+ 1
2

)vh(x, y−
j+ 1

2

)dx =

∫

Ii

u(x, y−
j+ 1

2

)vh(x, y−
j+ 1

2

)dx,(3.6c)

Π−
h u(x−

i+ 1
2

, y−
j+ 1

2

) = u(x−
i+ 1

2

, y−
j+ 1

2

).(3.6d)

The projection defined above has the following approximation error estimates.
Let u ∈ Hk+1(K); then

(3.7a) ‖u − Π−
h u‖L2(K) + hK‖u − Π−

h u‖H1(K) ≤ Chk+1
K ‖u‖Hk+1(K).

Moreover, for u ∈ W k+1,∞(K)

(3.7b) ‖u − Π−
h u‖L∞(∂K) ≤ Chk+1

K ‖u‖W k+1,∞(K).

For more details of approximation properties for the projection Π−
h , see [9].

We are now ready to present the definition of the special projection Π⋆
h, which

is defined to be the tensor product of the projection P ⋆
h in one dimension. That is,

for u ∈ W 1,∞(Ωh), we define

(3.8) Π⋆
hu = P ⋆

hx
⊗ P ⋆

hy
u,

where the sub-subscripts x and y indicate that the one-dimensional projection P ⋆
h

defined by (2.9) is applied with respect to the corresponding variable. To be more
specific, Π⋆

hu is a unique polynomial in Qk that satisfies
∫

K

Π⋆
hu(x, y)vh(x, y)dx =

∫

K

u(x, y)vh(x, y)dx,(3.9a)

∫

Jj

Π̂⋆
hu(xi+ 1

2
, y)vh(x−

i+ 1
2

, y)dy =

∫

Jj

û(xi+ 1
2
, y)vh(x−

i+ 1
2

, y)dy,(3.9b)

∫

Ii

Π̂⋆
hu(x, yj+ 1

2
)vh(x, y−

j+ 1
2

)dx =

∫

Ii

û(x, yj+ 1
2
)vh(x, y−

j+ 1
2

)dx,(3.9c)

Π̃⋆
hu(xi+ 1

2
, yj+ 1

2
) = ũ(xi+ 1

2
, yj+ 1

2
)(3.9d)
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for all vh ∈ Qk−1(K) and K ∈ Ωh. Here and in what follows, for any w ∈ W 1,∞(Ωh)

ŵ(xi+ 1
2
, y) = θ1w(x−

i+ 1
2

, y) + (1 − θ1)w(x+
i+ 1

2

, y),

ŵ(x, yj+ 1
2
) = θ2w(x, y−

j+ 1
2

) + (1 − θ2)w(x, y+
j+ 1

2

),

w̃(xi+ 1
2
, yj+ 1

2
) = θ1θ2w(x−

i+ 1
2

, y−
j+ 1

2

) + θ1(1 − θ2)w(x−
i+ 1

2

, y+
j+ 1

2

)

+ θ2(1 − θ1)w(x+
i+ 1

2

, y−
j+ 1

2

) + (1 − θ1)(1 − θ2)w(x+
i+ 1

2

, y+
j+ 1

2

)

with θ1, θ2 > 1
2 . In particular, when θ1 = θ2 = 1, the projection Π⋆

h reduces to the

projection Π−
h .

Existence and the optimal approximation property of the global projection Π⋆
h

are established in the following lemma.

Lemma 3.3. Assume that u is sufficiently smooth and periodic. Then, there exists
a unique Π⋆

h satisfying the conditions (3.9). Moreover, there holds the following
approximation properties

(3.10) ‖u − Π⋆
hu‖L2(K) + h‖u − Π⋆

hu‖H1(K) ≤ Chk+2‖u‖W k+1,∞(Ωh),

where C = C(θ1, θ2, k) is independent of the element K and the mesh size h.

Proof. Let Π−
h u and Π⋆

hu be defined by (3.6) and (3.9), respectively. Denote Π⋆
hu−

u = Π⋆
hu − Π−

h u + Π−
h u − u := E + Π−

h u − u. If we can prove the existence and

uniqueness of E , then Π⋆
hu = E +Π−

h u will exist and is unique. To do that, we start

by combining (3.6) and (3.9) to obtain, for all vh ∈ Qk−1(K) and K ∈ Ωh∫

K

E(x, y)vh(x, y)dx = 0,(3.11a)

∫

Jj

Ê(xi+ 1
2
, y)vh(x−

i+ 1
2

, y)dy = (1 − θ1)

∫

Jj

(u − Π−
h u)(x+

i+ 1
2

, y)vh(x−
i+ 1

2

, y)dy,

(3.11b)

∫

Ii

Ê(x, yj+ 1
2
)vh(x, y−

j+ 1
2

)dx = (1 − θ2)

∫

Ii

(u − Π−
h u)(x, y+

j+ 1
2

)vh(x, y−
j+ 1

2

)dx,

(3.11c)

Ẽ(xi+ 1
2
, yj+ 1

2
) = u − Π−

h u(xi+ 1
2
, yj+ 1

2
),(3.11d)

where

u − Π−
h u(xi+ 1

2
, yj+ 1

2
) = θ1(1 − θ2)(u − Π−

h u)(x−
i+ 1

2

, y+
j+ 1

2

)

+ θ2(1 − θ1)(u − Π−
h u)(x+

i+ 1
2

, y−
j+ 1

2

)

+ (1 − θ1)(1 − θ2)(u − Π−
h u)(x+

i+ 1
2

, y+
j+ 1

2

).

Next, let Pl(µ) be the lth-order Legendre polynomials that are orthogonal on

[−1, 1] with µ = 2(x−xi)
hx

i

. Thus, the restriction of E to each element K = Ii × Jj ,

denoted by Ei,j , can be expressed in the form

Ei,j(x, y) =
k∑

l1=0

k∑

l2=0

αi,j,l1,l2Pi,l1(x)Pj,l2 (y) =
k∑

l1=0

k∑

l2=0

αi,j,l1,l2Pl1(µ)Pl2(ν)

with ν =
2(y−yj)

hy
j

.
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In what follows, we shall prove existence and uniqueness of Π⋆
h as well as its

optimal approximation properties in five steps.
Step 1. The equality (3.11a) and the orthogonality of the Legendre polynomials

yield that

αi,j,l1,l2 = 0,

for l1, l2 = 0, . . . , k − 1 and i = 1, · · · , N1, j = 1, · · · , N2. Hence,

Ei,j(x, y) = αi,j,k,0Pk(µ)P0(ν) + αi,j,k,1Pk(µ)P1(ν) + · · · + αi,j,k,k−1Pk(µ)Pk−1(ν)

+ αi,j,0,kP0(µ)Pk(ν) + αi,j,1,kP1(µ)Pk(ν) + · · · + αi,j,k−1,kPk−1(µ)Pk(ν)

+ αi,j,k,kPk(µ)Pk(ν),(3.12)

where each line on the right-hand side will be denoted by S1, S2 and S3. In the
subsequent three steps, we will work on the coefficients involved in S1, S2 and S3

separately.
Step 2. Let us first deal with αi,j,k,l2 (l2 = 0, · · · , k−1) involved in S1. It follows

from the equality (3.11b) and the orthogonality of the Legendre polynomials that,
for l2 = 0, · · · , k − 1 and i = 1, · · · , N1, j = 1, · · · , N2,

(3.13) θ1αi,j,k,l2 + (1 − θ1)(−1)kαi+1,j,k,l2 =
2l2 + 1

2
(1 − θ1)b

(j)
i+1,

where

b
(j)
i+1 =

∫ 1

−1

(u − Π−
h u)(x+

i+ 1
2

, y(ν))Pl2 (ν)dν

with y(ν) = yj +
hy

j

2 ν. It is easy to show that, for i = 1, · · · , N1, j = 1, · · · , N2,
∣∣∣b(j)

i+1

∣∣∣ ≤ 2‖u − Π−
h u‖L∞(∂KR)‖Pl2‖L∞([−1,1])

≤ Chk+1‖u‖W k+1,∞(KR) ≤ Chk+1‖u‖W k+1,∞(Ωh),

where KR = Ii+1 × Jj and we have used the approximation error estimate (3.7b).
Thus, for each l2 = 0, · · · , k − 1, the linear system (3.13) can be written in the
following matrix form

(3.14) A1αk,l2 =
2l2 + 1

2
(1 − θ1)b,

where A1 = circ(θ1, (1 − θ1)(−1)k, 0, · · · , 0) is an N1 × N1 circulant matrix, and

αk,l2 =
(
α

(1)
k,l2

, α
(2)
k,l2

, · · · , α
(N2)
k,l2

)
, b =

(
b
(1), b(2), · · · , b(N2)

)
,

with

α
(j)
k,l2

=




α1,j,k,l2

α2,j,k,l2
...

αN1,j,k,l2


 , b

(j) =




b
(j)
2

b
(j)
3
...

b
(j)
N1+1




, j = 1, · · · , N2.

Similar to the one-dimensional case, we conclude that the coefficient matrix A1 is
always invertible whenever θ1 6= 1

2 and that A−1
1 = βN1

circ(1, q1, q
2
1 , · · · , qN1−1

1 ),
where

βN1
=

1

θ1(1 − qN1

1 )
, q1 =

(θ1 − 1)(−1)k

θ1
.
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Clearly, for θ1 > 1
2 ,

lim
N1→∞

βN1
=

1

θ1
, |q1| < 1.

Hence, there exists a positive constant C such that βN1
≤ C. Now, for each

l2 = 0, · · · , k − 1, we can solve αi,j,k,l2 explicitly from (3.14)

αi,j,k,l2 =
2l2 + 1

2
(1 − θ1)βN1

N1∑

m=1

ri,mb
(j)
m+1, i = 1, · · · , N1, j = 1, · · · , N2,

where {ri,m}N1

m=1 (i = 1, · · · , N1) are the entries in the ith row of the circulant

matrix circ(1, q1, q
2
1 , · · · , qN1−1

1 ). Consequently, we arrive at a bound for αi,j,k,l2 as
follows

|αi,j,k,l2 | ≤
2k − 1

2
|1 − θ1|Chk+1‖u‖W k+1,∞(Ωh)

(
1 + |q1| + |q1|2 + · · · + |q1|N1−1

)

≤ 2k − 1

2

|1 − θ1|
1 − |q1|

Chk+1‖u‖W k+1,∞(Ωh)

:= C(θ1, k)hk+1‖u‖W k+1,∞(Ωh),(3.15)

which holds for all l2 = 0, · · · , k − 1 and i = 1, · · · , N1, j = 1, · · · , N2.
Step 3. Next we work on αi,j,l1,k (l1 = 0, · · · , k − 1) involved in S2. It follows

from the equality (3.11c) and the orthogonality of the Legendre polynomials that,
for l1 = 0, · · · , k − 1 and i = 1, · · · , N1, j = 1, · · · , N2,

(3.16) θ2αi,j,l1,k + (1 − θ2)(−1)kαi,j+1,l1,k =
2l1 + 1

2
(1 − θ2)c

(i)
j+1,

where

c
(i)
j+1 =

∫ 1

−1

(u − Π−
h u)(x(µ), y+

j+ 1
2

)Pl1 (µ)dµ

with x(µ) = xi +
hx

i

2 µ. It is easy to show that, for i = 1, · · · , N1, j = 1, · · · , N2,
∣∣∣c(i)

j+1

∣∣∣ ≤ 2‖u − Π−
h u‖L∞(∂KA)‖Pl1‖L∞([−1,1])

≤ Chk+1‖u‖W k+1,∞(KA) ≤ Chk+1‖u‖W k+1,∞(Ωh),

where KA = Ii × Jj+1 and we have used the approximation error estimate (3.7b).
Thus, for each l1 = 0, · · · , k − 1, the linear system (3.16) can be written in the
following matrix form

(3.17) A2αl1,k =
2l1 + 1

2
(1 − θ2)c,

where A2 = circ(θ2, (1 − θ2)(−1)k, 0, · · · , 0) is an N2 × N2 circulant matrix, and

αl1,k =
(
α

(1)
l1,k, α

(2)
l1,k, · · · , α

(N1)
l1,k

)
, c =

(
c
(1), c(2), · · · , c(N1)

)
,

with

α
(i)
l1,k =




αi,1,l1,k

αi,2,l1,k

...
αi,N2,l1,k


 , c

(i) =




c
(i)
2

c
(i)
3
...

c
(i)
N2+1




, i = 1, · · · , N1.
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Similar to the one-dimensional case, we conclude that the coefficient matrix A2 is
always invertible whenever θ2 6= 1

2 and that A−1
2 = βN2

circ(1, q2, q
2
2 , · · · , qN2−1

2 ),
where

βN2
=

1

θ2(1 − qN2

2 )
, q2 =

(θ2 − 1)(−1)k

θ2
.

Clearly, for θ2 > 1
2 ,

lim
N2→∞

βN2
=

1

θ2
, |q2| < 1.

Hence, there exists a positive constant C such that βN2
≤ C. Now, for each

l1 = 0, · · · , k − 1, we can solve αi,j,l1,k explicitly from (3.17)

αi,j,l1,k =
2l1 + 1

2
(1 − θ2)βN2

N2∑

m=1

sj,mc
(i)
m+1, j = 1, · · · , N2, i = 1, · · · , N1,

where {sj,m}N2

m=1 (j = 1, · · · , N2) are the entries in the jth row of the circulant

matrix circ(1, q2, q
2
2 , · · · , qN2−1

2 ). Consequently, we arrive at a bound for αi,j,l1,k as
follows

|αi,j,l1,k| ≤
2k − 1

2
|1 − θ2|Chk+1‖u‖W k+1,∞(Ωh)

(
1 + |q2| + |q2|2 + · · · + |q2|N2−1

)

≤ 2k − 1

2

|1 − θ2|
1 − |q2|

Chk+1‖u‖W k+1,∞(Ωh)

:= C(θ2, k)hk+1‖u‖W k+1,∞(Ωh),(3.18)

which holds for all l1 = 0, · · · , k − 1 and i = 1, · · · , N1, j = 1, · · · , N2.
Step 4. Let us now handle αi,j,k,k involved in S3. The equality (3.11d) yields

that, after some algebraic manipulations, for i = 1, · · · , N1, j = 1, · · · , N2

θ1θ2αi,j,k,k + θ1(1 − θ2)(−1)kαi,j+1,k,k + θ2(1 − θ1)(−1)kαi+1,j,k,k

+ (1 − θ1)(1 − θ2)(−1)2kαi+1,j+1,k,k = di,j ,(3.19)

where di,j is a combination of some terms that are of order hk+1 by using the
estimates (3.15), (3.18) and (3.7b). That is, for i = 1, · · · , N1, j = 1, · · · , N2, we
have

|di,j | ≤ C(θ1, θ2, k)hk+1‖u‖W k+1,∞(Ωh).

If we now denote

αk,k =




α
(1)
k,k

α
(2)
k,k
...

α
(N1)
k,k




, d =




d
(1)

d
(2)

...
d
(N1)




with

α
(i)
k,k =




αi,1,k,k

αi,2,k,k

...
αi,N2,k,k


 , d

(i) =




di,1

di,2

...
di,N2


 , i = 1, · · · , N1,

then the system (3.19) can be written in the following matrix form

(3.20) A1 ⊗ A2αk,k = d,
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where A1 and A2, respectively, are the coefficient matrices for the corresponding
one-dimensional variable, and ⊗ is the Kronecker product of two matrices. Clearly,
both A1 and A2 are invertible. Moreover,

(A1 ⊗ A2)
−1 = A−1

1 ⊗ A−1
2 .

Therefore, by an analysis similar to that in the proof of (3.15) or (3.18), we get

|αi,j,k,k| ≤
1

1 − |q1|
1

1 − |q2|
Chk+1‖u‖W k+1,∞(Ωh)

:= C(θ1, θ2, k)hk+1‖u‖W k+1,∞(Ωh),(3.21)

which holds for all i = 1, · · · , N1, j = 1, · · · , N2.
From the above analysis, we conclude that E is uniquely defined on each element.

This establishes the existence and uniqueness of Π⋆
h.

Step 5. We are now ready to derive the optimal approximation error estimate
(3.10). Let us start by proving

(3.22) ‖u − Π⋆
hu‖L2(K) ≤ C(θ1, θ2, k)hk+2‖u‖W k+1,∞(Ωh).

To do that, we collect the estimates (3.15), (3.18) and (3.21) into (3.12) to obtain

‖E‖L∞(K) ≤ C(θ1, θ2, k)hk+1‖u‖W k+1,∞(Ωh),

which implies that

‖E‖L2(K) ≤ h‖E‖L∞(K) ≤ C(θ1, θ2, k)hk+2‖u‖W k+1,∞(Ωh).

Thus, (3.22) follows from the approximation error estimate of the projection Π−
h

‖u − Π−
h u‖L2(K) ≤ Chk+1‖u‖Hk+1(K) ≤ Chk+2‖u‖W k+1,∞(K)

and the triangle inequality. Next, since ‖P ′
i,l1

‖L∞(Ii) ≤ Ch−1 and ‖P ′
j,l2

‖L∞(Jj) ≤
Ch−1, and hence

‖E‖W 1,∞(K) ≤ C(θ1, θ2, k)hk‖u‖W k+1,∞(Ωh),

the estimate

‖u − Π⋆
hu‖H1(K) ≤ Chk+1‖u‖W k+1,∞(Ωh)

can be proved analogously. This completes the proof of Lemma 3.3. �

Thus, the result of Lemma 3.3, (3.10), produces the estimate of ‖u − Π⋆
hu‖L2(Ωh)

(3.23) ‖u − Π⋆
hu‖L2(Ωh) ≤ C(θ1, θ2, k)hk+1‖u‖W k+1,∞(Ωh).

3.4.2. Estimate of ‖Π⋆
he‖L2(Ωh). Note that for a given function u, Π⋆

hu is a unique

polynomial in Qk, and hence Π⋆
huh = uh. Thus, e := u − uh = u − Π⋆

hu + Π⋆
he.

To estimate ‖u(T )− uh(T )‖L2(Ωh), it remains to estimate ‖Π⋆
he(T )‖L2(Ωh), which

is given in the following lemma.

Lemma 3.4. Assume that u ∈ W 2k+3,∞(Ωh) and ut ∈ W k+1,∞(Ωh). Then we
have

(3.24) ‖Π⋆
he(T )‖L2(Ωh) ≤ C(1 + T )hk+1,

where C depends solely on θ1, θ2, k, ‖u‖W 2k+3,∞(Ωh) and ‖ut‖W k+1,∞(Ωh).
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Proof. We begin by noting that the exact solution u of the problem (3.1) also
satisfies the weak formulation (3.2), so we have the Galerkin orthogonality∫

K

etvhdx −
∫

K

e(vh)xdx +

∫

Jj

((u − ûh)vh)i+ 1
2
,ydy −

∫

Jj

((u − ûh)vh)i− 1
2

,ydy

−
∫

K

e(vh)ydx +

∫

Ii

((u − ûh)vh)x,j+ 1
2
dx −

∫

Ii

((u − ûh)vh)x,j− 1
2
dx = 0

for any vh ∈ Zh and K ∈ Ωh. Next, we take vh = Π⋆
he in the above identity, sum

over all the element K and use periodic boundary conditions to obtain

1

2

d

dt
‖Π⋆

he‖2
L2(Ωh) +

∫

Ωh

(u − Π⋆
hu)tΠ

⋆
hedx +

∑

K∈Ωh

WK =
∑

K∈Ωh

GK(u, Π⋆
he),

where

WK = −
∫

K

Π⋆
he(Π⋆

he)xdx +

∫

Jj

(Π̂⋆
heΠ⋆

he)i+ 1
2
,ydy −

∫

Jj

(Π̂⋆
heΠ⋆

he)i− 1
2

,ydy

−
∫

K

Π⋆
he(Π⋆

he)ydx +

∫

Ii

(Π̂⋆
heΠ⋆

he)x,j+ 1
2
dx −

∫

Ii

(Π̂⋆
heΠ⋆

he)x,j− 1
2
dx,

GK(u, Π⋆
he) =

∫

K

(u − Π⋆
hu)(Π⋆

he)xdx −
∫

Jj

((u − P ⋆
hy

u)(Π⋆
he)−)i+ 1

2
,ydy

+

∫

Jj

((u − P ⋆
hy

u)(Π⋆
he)+)i− 1

2
,ydy +

∫

K

(u − Π⋆
hu)(Π⋆

he)ydx

−
∫

Ii

((u − P ⋆
hx

u)(Π⋆
he)−)x,j+ 1

2
dx +

∫

Ii

((u − P ⋆
hx

u)(Π⋆
he)+)x,j− 1

2
dx.(3.25)

Here, we have used the fact that on the vertical edges (xi+ 1
2
, y), Π⋆

hu = P ⋆
hy

u and

that on the horizontal edges (x, yj+ 1
2
), Π⋆

hu = P ⋆
hx

u, by the definition of Π⋆
h, (3.8).

By the same argument as that in the proof of L2-stability, we have that

∑

K∈Ωh

WK = (θ1 −
1

2
)

N2∑

j=1

∫

Jj

N1∑

i=1

[[Π⋆
he]]2i+ 1

2
,ydy + (θ2 −

1

2
)

N1∑

i=1

∫

Ii

N2∑

j=1

[[Π⋆
he]]2x,j+ 1

2

dx.

From the properties of the projection Π⋆
h, (3.9), we can see that Π⋆

h cannot
eliminate terms involving u − Π⋆

hu in GK . However, the projection Π⋆
h defined on

Cartesian meshes has the following superconvergence result, whose proof is deferred
to subsection 3.4.3.

Lemma 3.5. Let GK(u, Π⋆
he) be defined by (3.25). Then we have

|GK(u, Π⋆
he)| ≤ Chk+2‖u‖W 2k+3,∞(Ωh)‖Π⋆

he‖L2(K).

Collecting the above estimates for
∑

K∈Ωh
WK and GK(u, Π⋆

he), we get, after
suitable applications of the Cauchy–Schwarz inequality

1

2

d

dt
‖Π⋆

he‖2
L2(Ωh) ≤ ‖(u − Π⋆

hu)t‖L2(Ωh)‖Π⋆
he‖L2(Ωh)

+ Chk+1‖u‖W 2k+3,∞(Ωh)‖Π⋆
he‖L2(Ωh)

≤ Chk+1‖Π⋆
he‖L2(Ωh),

where in the last step we have used the fact that (Π⋆
hu)t = Π⋆

hut and the approxi-
mation error estimate (3.23). The estimate (3.24) now follows by using the initial
error estimate (3.4). This finishes the proof of Lemma 3.4. �
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To prove Theorem 3.2, we need only to use the triangle inequality and apply
Lemmas 3.3 and 3.4 for ‖u − Π⋆

hu‖L2(Ωh) and ‖Π⋆
he‖L2(Ωh).

3.4.3. Proof of Lemma 3.5. Let us first rewrite GK(u, Π⋆
he) into

GK(u, Π⋆
he) = G1

K(u, Π⋆
he) + G2

K(u, Π⋆
he),

where

G1
K(u, Π⋆

he) =

∫

K

(u − Π⋆
hu)(Π⋆

he)xdx −
∫

Jj

((u − P ⋆
hy

u)(Π⋆
he)−)i+ 1

2
,ydy

+

∫

Jj

((u − P ⋆
hy

u)(Π⋆
he)+)i− 1

2
,ydy,

G2
K(u, Π⋆

he) =

∫

K

(u − Π⋆
hu)(Π⋆

he)ydx −
∫

Ii

((u − P ⋆
hx

u)(Π⋆
he)−)x,j+ 1

2
dx

+

∫

Ii

((u − P ⋆
hx

u)(Π⋆
he)+)x,j− 1

2
dx.

Since the analysis for G1
K and G2

K are analogous, we only present here the detailed
proofs for G1

K .
On an arbitrary element K = Ii × Jj , by the definition of the projection Π⋆

h,
(3.8), and the Cartesian structure of the mesh, we follow the same arguments in
the proof of the superconvergence result in [9] to obtain

(3.26) G1
K(u, Π⋆

he) = 0 ∀u ∈ P k+1(K), Π⋆
he ∈ Qk(K).

Next, on each element K, consider the Taylor expansion of u around (xi, yj)

u = Tu + Rk+2,

where

Tu =

k+1∑

l=0

l∑

m=0

1

(l − m)!m!

∂lu(xi, yj)

∂xl−m∂ym
(x − xi)

l−m(y − yj)
m,

Rk+2 = (k + 2)

k+2∑

m=0

(x − xi)
k+2−m(y − yj)

m

(k + 2 − m)!m!

∫ 1

0

(1 − s)k+1
∂k+2u(xs

i , y
s
j )

∂xk+2−m∂ym
ds

with xs
i = xi + s(x − xi), y

s
j = yj + s(y − yj). Clearly, Tu ∈ P k+1(K). Note that

the operator Π⋆
h is linear and thus Π⋆

hu = Π⋆
hTu + Π⋆

hRk+2. So, by (3.26), we get

G1
K(u, Π⋆

he) = T1 + T2 + T3,

where

T1 =

∫

K

(Rk+2 − Π⋆
hRk+2)(Π

⋆
he)xdx,

T2 = −
∫

Jj

((Rk+2 − Π⋆
hRk+2)(Π

⋆
he)−)i+ 1

2
,ydy,

T3 =

∫

Jj

((Rk+2 − Π⋆
hRk+2)(Π

⋆
he)+)i− 1

2
,ydy,

which will be estimated one by one below.
From the approximation properties of the projection Π⋆

h, Lemma 3.3, we have
that

‖Rk+2 − Π⋆
hRk+2‖L2(K) ≤ Chk+2‖Rk+2‖W k+1,∞(Ωh),
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where C = C(θ1, θ2, k). It is easy to show that

‖Rk+2‖W k+1,∞(Ωh) = max
K∈Ωh

‖Rk+2‖W k+1,∞(K) ≤ Ch‖u‖W 2k+3,∞(Ωh).

Combining the above two estimates, we arrive at

(3.27) ‖Rk+2 − Π⋆
hRk+2‖L2(K) ≤ Chk+3‖u‖W 2k+3,∞(Ωh).

Analogously, we have that

(3.28) ‖Rk+2 − Π⋆
hRk+2‖H1(K) ≤ Chk+2‖u‖W 2k+3,∞(Ωh).

It follows from the Cauchy–Schwarz inequality, the estimate (3.27), and the inverse
inequality that

|T1| ≤ ‖Rk+2 − Π⋆
hRk+2‖L2(K)‖(Π⋆

he)x‖L2(K)

≤ Chk+2‖u‖W 2k+3,∞(Ωh)‖Π⋆
he‖L2(K).

To estimate T2, we begin by combining the estimates (3.27) and (3.28), and using
the trace inequality to get

‖Rk+2 − Π⋆
hRk+2‖L2(∂K) ≤ Chk+ 5

2 ‖u‖W 2k+3,∞(Ωh).

Next, by the Cauchy–Schwarz inequality and the inverse inequality, we arrive at

|T2| ≤ ‖Rk+2 − Π⋆
hRk+2‖L2(∂K)‖Π⋆

he‖L2(∂K) ≤ Chk+2‖u‖W 2k+3,∞(Ωh)‖Π⋆
he‖L2(K).

Analogously, we have that

|T3| ≤ Chk+2‖u‖W 2k+3,∞(Ωh)‖Π⋆
he‖L2(K).

The estimate for G1
K now follows by collecting the results for Ti (i = 1, 2, 3),

obtained above. The proof of Lemma 3.5 is thus completed.

4. Fully discrete analysis

In this section, we shall perform stability analysis and optimal error estimates
for the RKDG method for linear hyperbolic equations. For simplicity, we restrict
ourselves to the one-dimensional linear conservation laws

ut + βux = 0, (x, t) ∈ [0, 2π] × (0, T ],(4.1a)

u(x, 0) = u0(x), x ∈ R,(4.1b)

(β is the given constant) with periodic boundary conditions and the time discretiza-
tion is the TVDRK3 method [21]. Using an energy technique, we prove the L2-norm
stability and optimal a priori error estimate under the standard temporal-spatial
CFL condition τ ≤ γh, where τ is the time step and γ is independent of h and
τ . We would like to point out that our analysis rely on a similar idea as that in
[26, 27]. However, one of the main differences is that the newly designed projection
P ⋆

h is employed here, which not only eliminates boundary terms involving projec-
tion error, but possesses optimal interpolation properties. This entails us to obtain
optimal convergence results, where, for example, in [3] quasi-optimal convergence
rate of the form O(hk+1/2 + τ3) is obtained for general fluxes.
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4.1. Fully discrete DG scheme. For equation (4.1), we would like to introduce
the DG spatial operator H, which is bilinear. For any functions w and v in H1(Ih),
on each element Ij we define

Hj(w, v) = −βDIj
(w, v; ŵ),

where DIj
(w, v; ŵ) has been given in (2.17). Using this notation, the semidiscrete

DG scheme solving (4.1) reads
∫

Ij

(uh)tvhdx = Hj(uh, vh)

for any vh ∈ Vh and j = 1, . . . , N .
For a given time step τ , the solution of the scheme is denoted by un

h(x) =
uh(x, nτ). Applying TVDRK3 method to the semidiscrete DG scheme, we will
obtain the fully discrete RKDG method. First we set the initial value u0

h = Phu0(x).
Then for each n ≥ 0, the approximate solution from the time nτ to the next time
(n + 1)τ is defined as follows: find un,1

h , un,2
h , and un+1

h in the finite element space
Vh such that, for any vh ≡ vh(x) ∈ Vh and j = 1, . . . , N , on each element Ij there
holds

∫

Ij

un,1
h vhdx =

∫

Ij

un
hvhdx + τHj(u

n
h, vh),(4.2a)

∫

Ij

un,2
h vhdx =

3

4

∫

Ij

un
hvhdx +

1

4

∫

Ij

un,1
h vhdx +

τ

4
Hj(u

n,1
h , vh),(4.2b)

∫

Ij

un+1
h vhdx =

1

3

∫

Ij

un
hvhdx +

2

3

∫

Ij

un,2
h vhdx +

2τ

3
Hj(u

n,2
h , vh).(4.2c)

To facilitate our analysis, we denote by (·, ·)Ij
and (·, ·) the scalar inner product

on L2(Ij) and L2(I), respectively, and by ‖·‖Ij
, ‖·‖ the associated norms.

To end this subsection, we list some inverse properties of the finite element space
Vh. For any vh ∈ Vh, there exist positive constants µ1, µ2 independent of vh and h,
such that

(i) ‖(vh)x‖ ≤ µ1h
−1‖vh‖, (ii) ‖vh‖Γh

≤ µ2h
−1/2‖vh‖.

Here and below, Γh is the union of all cell boundary points, and for any w ∈ H1(Ih),
the L2-norm on Γh is defined by

‖w‖Γh
=




N∑

j=1

(
(w−

j+ 1
2

)2 + (w+
j+ 1

2

)2
)



1/2

.

4.2. Stability result. In this subsection, using the arguments in [26, 27], we are
able to show the L2-norm stability for the fully discrete RKDG method with TV-
DRK3 time-marching.

For equation (4.1), the DG spatial operator and periodic boundary conditions
yield

H(w, v) =

N∑

j=1

Hj(w, v) =

N∑

j=1

(∫

Ij

βwvxdx + βŵj+ 1
2
[[v]]j+ 1

2

)
.
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Here, at each element boundary point

ŵ =

{
θw− + (1 − θ)w+, if β > 0,

θw+ + (1 − θ)w−, if β < 0

with θ > 1
2 . Since the stability analysis follows from the arguments similar to that

in [26] and depends on some elementary properties of the bilinear operator H, we
list the results only and omit the detailed proofs to save space. In what follows, we
denote

(4.3) µ = max{µ1, (µ2)
2}, δ =

√
θ2 + (1 − θ)2, a =

(1 +
√

2δ)2

3
, b = θ − 1

2
.

Lemma 4.1. For any w, v ∈ Vh, we have |H(w, v)| ≤ (1 +
√

2δ)|β|µh−1‖w‖‖v‖.

Lemma 4.2. For any w, v ∈ H1(Ih), we have

H(w, v) + H(v, w) = −2b N∑

j=1

|β|[[w]]j+ 1
2
· [[v]]j+ 1

2
,(4.4a)

H(w, w) = −b N∑

j=1

|β|[[w]]2j+ 1
2

.(4.4b)

Using the above lemmas, we will obtain the L2-norm stability result for the
RKDG method with TVDRK3 time discretization. For more details, see [26, 22].

Theorem 4.3. (stability) The numerical solution uh of the fully discrete scheme
(4.2) with the explicit TVDRK3 time discretization satisfies the following strong
stability

(4.5) ‖un+1
h ‖ ≤ ‖un

h‖

under the CFL condition

(4.6) µ|β|τh−1 ≤ 1

1 +
√

2δ
,

where µ and δ are constants defined in (4.3).

Remark 4.4. Following an online version of [26] in [27], we could have easily provided
a more explicit and technical proof of the stability result (4.5), under a slightly
different CFL condition

(4.7) µ|β|τh−1 ≤ 1√b2 + a+ b ,

where a and b are positive constants defined in (4.3). Analysis of the above CFL
condition for stability is also reflected in the derivation of optimal error estimates.
Indeed, in subsection 4.3, under the same CFL condition (4.7), optimal a priori
error estimate of the form O(hk+1 + τ3) is obtained. Several approximate values of

1
1+

√
2δ

and 1√b2+a+b for different θ are given in Table 4.1. From the table, we can

see that for small values of θ, say, θ ≤ 3
2 , the CFL condition (4.7) is better than

(4.6), while for large values of θ, say θ ≥ 2, the CFL condition (4.6) is better than
(4.7).
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Table 4.1. Approximate values of 1
1+

√
2δ

and 1√b2+a+b for dif-

ferent θ.

θ = 1
2 θ = 3

5 θ = 3
4 θ = 1 θ = 3

2 θ = 2 θ = 3 θ = 5
1

1+
√

2δ
0.500 0.495 0.472 0.414 0.309 0.240 0.164 0.099

1√b2+a+b 0.866 0.787 0.667 0.505 0.321 0.231 0.147 0.084

4.3. Optimal a priori error estimate. In this subsection, we state and prove
optimal a priori error estimate for the fully discrete RKDG scheme with the explicit
TVDRK3 time discretization. The main work is to eliminate cell boundary terms
involving projection error and to deal with the accumulation of the error from the
time discretization.

Theorem 4.5. (error estimate) Assume that the exact solution u of (4.1) is suf-
ficiently smooth with bounded derivatives, i.e., ‖u‖W k+1,∞(Ih), ‖ut‖W k+1,∞(Ih) and
‖utttt‖ are bounded uniformly for any time t ∈ [0, T ]. Let uh be the numerical
solution of the fully discrete RKDG scheme (4.2) with the explicit TVDRK3 time
marching when the upwind-biased numerical flux is used. For regular triangulations
of I = [0, 2π], if the finite element space Vh of piecewise polynomials with arbitrary
degree k ≥ 0 is used, then there holds the following error estimate

(4.8) max
nτ≤T

‖u(tn) − un
h‖ ≤ C(hk+1 + τ3)

under the standard CFL condition (4.7). Here C is a positive constant independent
of h, τ , and uh.

4.3.1. The error equation and the energy equality. Following [26], reference func-
tions are introduced. Let u(0)(x, t) = u(x, t) and

u(1)(x, t) = u(0)(x, t) − τβ∂xu(0)(x, t),(4.9a)

u(2)(x, t) =
3

4
u(0)(x, t) +

1

4
u(1)(x, t) − 1

4
τβ∂xu(1)(x, t).(4.9b)

Denote un,♯ = u(♯)(x, tn) for any time level n and ♯ = 0, 1, 2. Then, for any n and

inner stage ♯ = 0, 1, 2, we would like to split the error en,♯ = un,♯ − un,♯
h (un,0 = un,

un,0
h = un

h) into two parts, that is, en,♯ = ξn,♯ − ηn,♯, with

ξn,♯ = P ⋆
hun,♯ − un,♯

h , ηn,♯ = P ⋆
hun,♯ − un,♯,

where P ⋆
h is the globally defined projection in (2.9).

By Lemma 2.6, for smooth enough u, we have

(4.10a) ‖ηn,♯‖ ≤ C1h
k+1, ∀n : nτ ≤ T.

Denote by dn = d0η
n + d1η

n,1 + d2η
n,2 + d3η

n+1 a linear combination of errors in
different stages, where di, i = 0, 1, 2, 3, are any four constants satisfying d0 + d1 +
d2 + d3 = 0. Since the projection operator P ⋆

h is linear in time, thus we have

(4.10b) ‖dn‖ ≤ C2h
k+1τ, ∀n : nτ ≤ T,

when ut is smooth enough. Here, C1 and C2 are positive constants independent of
n, h, and τ .
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To obtain the error equation for fully discrete scheme, we need to present the
local truncation error in time for the reference functions [26], which is,

(4.11) u(x, t + τ) =
1

3
u(0)(x, t) +

2

3
u(2)(x, t) − 2

3
τβ∂xu(2)(x, t) + T (x, t),

where T (x, t) is the local truncation error in time and ‖T (x, t)‖ = O(τ4) uniformly
for any time t ∈ [0, T ]. Denote en+1 = ξn+1 − ηn+1 with ξn+1 = P ⋆

hun+1 −
un+1

h , ηn+1 = P ⋆
hun+1 − un+1.

We are now ready to get the error equation by subtracting the DG scheme (4.2)
about the numerical solution from a similar weak formulation based on (4.9) and
(4.11) with t = tn about the exact solution that for any vh ∈ Vh and j = 1, . . . , N

(ξn,1, vh)Ij
= (ξn, vh)Ij

+ τJj(vh),(4.12a)

(ξn,2, vh)Ij
=

3

4
(ξn, vh)Ij

+
1

4
(ξn,1, vh)Ij

+
τ

4
Kj(vh),(4.12b)

(ξn+1, vh)Ij
=

1

3
(ξn, vh)Ij

+
2

3
(ξn,2, vh)Ij

+
2τ

3
Lj(vh),(4.12c)

where

Jj(vh) =
1

τ
(ηn,1 − ηn, vh)Ij

+ Hj(e
n, vh),(4.13a)

Kj(vh) =
1

τ
(4ηn,2 − 3ηn − ηn,1, vh)Ij

+ Hj(e
n,1, vh),(4.13b)

Lj(vh) =
1

2τ
(3ηn+1 − ηn − 2ηn,2 + 3T (x, tn), vh)Ij

+ Hj(e
n,2, vh).(4.13c)

The three integrals on the right-hand side of (4.13) will be denoted by J tm
j (vh),

Ktm
j (vh), and Ltm

j (vh), respectively. Also, similar to H, the removal of the subscript

j from Jj , J tm
j , etc., indicates summation over j.

Taking vh = ξn, 4ξn,1 and 6ξn,2 in the error equations (4.12a), (4.12b), and
(4.12c), respectively, we arrive at the energy equality for ξn in the form

(4.14) 3‖ξn+1‖2 − 3‖ξn‖2 = S1 + S2,

where

S1 = τ
(
J (ξn) + K(ξn,1) + 4L(ξn,2)

)
,

S2 = ‖2ξn,2 − ξn,1 − ξn‖2 + 3(ξn+1 − ξn, ξn+1 − 2ξn,2 + ξn).

4.3.2. Relationships between ξn,♯ in different time stages. Following [26], we intro-
duce the following notation

G
n
1 = ξn,1 − ξn, G

n
2 = 2ξn,2 − ξn,1 − ξn, G

n
3 = ξn+1 − 2ξn,2 + ξn,

and show in the following lemma their relationships, which are useful for the es-
timate of S2. The proof is straightforward by some combinations of the error
equation, (4.12), and by the fact that H(ηn,♯, vh) = 0 due to the definition of the
projection P ⋆

h , (2.9), so it is omitted here.
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Lemma 4.6. For the fully discrete RKDG method (4.2), we have

(Gn
1 , vh) = τ

(
H(ξn, vh) + J tm(vh)

)
,(4.15a)

(Gn
2 , vh) =

τ

2

(
H(Gn

1 , vh) + Ktm(vh) − J tm(vh)
)
,(4.15b)

(Gn
3 , vh) =

τ

3

(
H(Gn

2 , vh) + 2Ltm(vh) −Ktm(vh) − J tm(vh)
)
,(4.15c)

for any vh ∈ Vh.

The next lemma shows the relationships between ‖ξn‖, ‖ξn,1‖, and ‖ξn,2‖, which
are helpful to control the error at intermediate stages.

Lemma 4.7. If the time step satisfies τ = O(h), then we have

‖ξn,1‖2 ≤ C‖ξn‖2 + Ch2k+2,(4.16a)

‖ξn,2‖2 ≤ C‖ξn‖2 + C‖ξn,1‖2 + Ch2k+2,(4.16b)

where C is a positive constant independent of n, h, τ, and uh.

Proof. To prove (4.16a), we take vh = ξn,1 in the error equation (4.12a) and get

(4.17) ‖ξn,1‖2 = (ξn, ξn,1) + τ
(
J tm(ξn,1) + H(ξn, ξn,1)

)
,

since H(ηn, ξn,1) = 0. Note that

|J tm(ξn,1)| ≤ Chk+1‖ξn,1‖
by the approximation property (4.10b), and

|H(ξn, ξn,1)| ≤ (1 +
√

2δ)|β|µh−1‖ξn‖‖ξn,1‖
by Lemma 4.1. Substituting above two estimates into (4.17) and taking into account
τ = O(h) < 1, we arrive at

‖ξn,1‖ ≤ C‖ξn‖ + Chk+1,

which implies (4.16a).
Analogously, (4.16b) can be obtained by taking vh = ξn,2 in (4.12b), and details

are omitted. �

4.3.3. Estimates for S1 and S2. Let us begin by presenting the estimate for S1,
which follows by the approximation property (4.10b), and the negative semidefi-
niteness of H, (4.4b).

Lemma 4.8. We have that

τJ (ξn) ≤ Cτ(‖ξn‖2 + h2k+2) − bτ

N∑

j=1

|β|[[ξn]]
2
j+ 1

2

,(4.18a)

τK(ξn,1) ≤ Cτ(‖ξn,1‖2 + h2k+2) − bτ

N∑

j=1

|β|[[ξn,1]]
2

j+ 1
2

,(4.18b)

τL(ξn,2) ≤ Cτ(‖ξn,2‖2 + h2k+2) + Cτ7 − bτ

N∑

j=1

|β|[[ξn,2]]
2

j+ 1
2

,(4.18c)

where C is independent of n, h, τ , and uh.

Next, we move on to the estimate for S2 resulting from the time discretization,
in which the temporal-spatial condition is needed.
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Lemma 4.9. Assume that the temporal-spatial condition (4.7) holds. Then we
have

S2 ≤ Cτ
(
‖ξn‖2 + ‖ξn,1‖2 + ‖ξn,2‖2 + h2k+2

)
+ Cτ7

+ bτ

N∑

j=1

|β|
(
[[ξn]]

2
j+ 1

2

+ [[ξn,1]]
2

j+ 1
2

)
,(4.19)

where C is independent of n, h, τ , and uh.

Proof. Note that ξn+1 − ξn = Gn
1 + Gn

2 + Gn
3 , and thus

S2 = (Gn
2 , Gn

2 ) + 3(Gn
1 , Gn

3 ) + 3(Gn
2 , Gn

3 ) + 3(Gn
3 , Gn

3 ) := Θ1 + Θ2 + Θ3 + Θ4,

which will be estimated separately.
To do that, let us begin by estimating Θ1+Θ2. By taking different test functions

in (4.15b) and (4.15c) of Lemma 4.6, and using (4.4a) of Lemma 4.2, we get

Θ1 + Θ2 = −(Gn
2 , Gn

2 ) + 2(Gn
2 , Gn

2 ) + 3(Gn
1 , Gn

3 )

= −‖G
n
2‖2 + τ (H(Gn

1 , Gn
2 ) + H(Gn

2 , Gn
1 ))

+ τ
(
Ktm(Gn

2 ) − J tm(Gn
2 ) + 2Ltm(Gn

1 ) −Ktm(Gn
1 ) − J tm(Gn

1 )
)

= −‖G
n
2‖2 − 2bτ

N∑

j=1

|β|[[Gn
1 ]]j+ 1

2

[[Gn
2 ]]j+ 1

2

+ τ
(
Ktm(Gn

2 ) − J tm(Gn
2 ) + 2Ltm(Gn

1 ) −Ktm(Gn
1 ) − J tm(Gn

1 )
)
.

Denote λmax = µ|β|τh−1. It follows from Young’s inequality and the approximation
property (4.10b) that

Θ1 + Θ2 ≤ −‖G
n
2‖2 + 2bτ

N∑

j=1

|β|
(

[[Gn
1 ]]

2
j+ 1

2

4
+ [[Gn

2 ]]2j+ 1
2

)

+ Cτ
(
h2k+2 + τ6 + ‖G

n
1‖2 + ‖G

n
2‖2
)

≤ −‖G
n
2‖2 + bτ

N∑

j=1

|β|
(
[[ξn]]

2
j+ 1

2

+ [[ξn,1]]
2

j+ 1
2

)
+ 2bτ

N∑

j=1

|β|[[Gn
2 ]]

2
j+ 1

2

+ Cτ
(
h2k+2 + τ6 + ‖G

n
1‖2 + ‖G

n
2‖2
)
.(4.20a)

The identities (4.15c) and (4.4b) together with the approximate property (4.10b)
give us the estimate for Θ3 as follows.

Θ3 = τH(Gn
2 , Gn

2 ) + τ
(
2Ltm(Gn

2 ) −Ktm(Gn
2 ) − J tm(Gn

2 )
)

≤ −bτ
N∑

j=1

|β|[[Gn
2 ]]2j+ 1

2

+ Cτ
(
h2k+2 + τ6 + ‖G

n
2‖2
)
.(4.20b)

To estimate Θ4, we first use (4.15c) and Lemma 4.1 to obtain

‖G
n
3‖2 = (Gn

3 , Gn
3 ) =

τ

3
H(Gn

2 , Gn
3 ) +

τ

3
(2Ltm(Gn

3 ) −Ktm(Gn
3 ) − J tm(Gn

3 ))

≤ τ

3
(1 +

√
2δ)|β|µh−1‖G

n
2‖‖G

n
3‖ + Cτ(hk+1 + τ3)‖G

n
3‖,

which implies

(4.20c) Θ4 = 3‖G
n
3‖2 ≤ aλ2

max‖G
n
2‖2 + Cτ(h2k+2 + τ6),
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where a = (1+
√

2δ)2

3 has been given in (4.3). We now collect the estimates for

Θi (i = 1, 2, 3, 4) in (4.20) and take into account ‖Gn
1‖2 + ‖Gn

2‖2 ≤ C(‖ξn‖2 +
‖ξn,1‖2 + ‖ξn,2‖2) to get

S2 ≤ −(1 − 2bλmax − aλ2
max)‖G

n
2‖2 + bτ

N∑

j=1

|β|
(
[[ξn]]

2
j+ 1

2

+ [[ξn,1]]
2

j+ 1
2

)

+ Cτ
(
‖ξn‖2 + ‖ξn,1‖2 + ‖ξn,2‖2 + h2k+2

)
+ Cτ7.

Note that the temporal-spatial condition (4.7) implies 1−2bλmax−aλ2
max ≥ 0 and

thus the proof of Lemma 4.9 is completed. �

4.3.4. Proof of Theorem 4.5. We now collect the estimates for S1, S2 in Lemmas
4.8 and 4.9 into the energy identity (4.14) and employ the relationships in Lemma
4.7, we finally obtain for (n + 1)τ ≤ T

3‖ξn+1‖2 − 3‖ξn‖2 ≤ C‖ξn‖2τ + Ch2k+2τ + Cτ7,

where C is a positive constant independent of n, h, and τ . Then, a direct application
of the discrete Gronwall inequality yields

‖ξn‖2 ≤ Ch2k+2 + Cτ6, nτ ≤ T.

Therefore, the optimal error estimate for the fully discrete RKDG scheme with
explicit TVDRK3 time discretization follows by combining the above estimate with
the approximation property (4.10a). This completes the proof of Theorem 4.5.

5. Numerical experiments

The purpose of this section is to numerically validate the a priori error estimates
of the DG method using upwind-biased fluxes for linear conservation laws. In most
of the numerical experiments below, in order to reduce the time errors, we use
the strong stability preserving ninth-order (SSP9) time discretization [14] in time
and take ∆t = CFL h for one- and two-dimensional linear problems with periodic
boundary conditions, and we use TVDRK3 time-marching and take ∆t = CFL h2

for other cases. One exception is the computation for Table 5.2, which is used to
verify the sharpness of Theorem 4.5, hence we use the TVDRK3 time discretization
with standard CFL condition ∆t = CFL h.

Example 5.1. To test the validity of optimal error estimates of DG methods (2.2)
with numerical fluxes (2.3), we solve the linear conservation law

{
ut + ux = 0,

u(x, 0) = sin(x)
(5.1)

with periodic boundary conditions. The exact solution to this problem is

(5.2) u(x, t) = sin(x − t).

Table 5.1 lists the numerical errors and their orders with different values of θ at
T = 1. We test this example using P k polynomials with 0 ≤ k ≤ 4 on a nonuniform
mesh which is a 10% random perturbation of the uniform mesh. From the table
we conclude that, for all values of θ > 1

2 , one can always observe (k + 1)th order
of accuracy, indicating that the error estimates obtained in Theorem 2.2 are sharp.
Moreover, in the case of the same P k elements and the same meshes, it seems
that for even values of k, smaller θ would produce better approximations and that
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for odd values of k, larger θ would produce better approximations as far as the
magnitude of errors is concerned.

Table 5.1. The errors ‖u − uh‖L2(I) and orders for Example 5.1

using P k polynomials with different θ on a random mesh of N cells.
SSP9 time discretization. T = 1.

θ = 0.75 θ = 1 θ = 2
N L2 error Order L2 error Order L2 error Order

P 0

20 8.50E-02 – 1.22E-01 – 2.72E-01 –
40 4.29E-02 1.00 6.27E-02 0.97 1.52E-01 0.86
80 2.17E-02 1.01 3.19E-02 1.01 8.03E-02 0.95
160 1.08E-02 1.01 1.60E-02 0.99 4.13E-02 0.96

P 1

20 6.77E-03 – 4.30E-03 – 3.00E-03 –
40 1.78E-03 1.96 1.07E-03 2.03 7.35E-04 2.07
80 4.55E-04 2.03 2.74E-04 2.04 1.95E-04 1.97
160 1.14E-04 2.00 6.84E-05 2.00 4.85E-05 2.01

P 2

20 8.84E-05 – 1.13E-04 – 2.33E-04 –
40 1.12E-05 3.04 1.42E-05 3.05 3.16E-05 2.93
80 1.44E-06 3.05 1.80E-06 3.07 4.07E-06 3.05
160 1.72E-07 3.07 2.20E-07 3.03 5.07E-07 3.00

P 3

20 3.40E-06 – 2.25E-06 – 1.73E-06 –
40 2.15E-07 4.05 1.36E-07 4.12 1.03E-07 4.15
80 1.41E-08 4.07 9.00E-09 4.05 7.50E-09 3.90
160 8.79E-10 4.00 5.61E-10 4.00 4.61E-10 4.02

P 4

20 3.05E-08 – 3.61E-08 – 7.20E-08 –
40 9.78E-10 5.05 1.17E-09 5.04 2.44E-09 4.97
80 3.31E-11 5.04 3.79E-11 5.11 7.97E-11 5.10
160 9.43E-13 5.13 1.12E-12 5.08 2.43E-12 5.04

In order to verify the sharpness of Theorem 4.5, we also consider TVDRK3
time discretization for Example 5.1 and take ∆t = CFL h. We use different CFL
numbers for different θ and k, and use more refined meshes whenever necessary to
show clean orders. Table 5.2 lists the numerical errors and their orders with different
θ at T = 1. From the table we conclude that the error is indeed O(τ3 + hk+1),
which is O(hk+1) for k ≤ 2 and O(τ3) = O(h3) when k ≥ 3.

Example 5.2. In this example, we consider the problem (5.1) with exact solution
(5.2) and the inflow boundary condition

(5.3) u(0, t) = g(t),

where g(t) corresponds to the data from the exact solution.

We test this example using P k polynomials with 0 ≤ k ≤ 4 on a nonuniform
mesh which is a 10% random perturbation of the uniform mesh. The numerical
errors and their orders obtained by using different values of θ at T = 1 are listed
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Table 5.2. The errors ‖u − uh‖L2(I) and orders for Example 5.1

using P k polynomials with different θ on a random mesh of N cells.
TVDRK3 time discretization. T = 1.

θ = 0.75 θ = 1 θ = 1.50
N L2 error Order L2 error Order L2 error Order

P 0

CFL = 1.75 CFL = 1.00 CFL = 0.50

20 8.77E-02 – 1.22E-01 – 2.00E-01 –
40 4.35E-02 1.03 6.28E-02 0.98 1.08E-01 0.91
80 2.18E-02 1.03 3.19E-02 1.01 5.59E-02 0.98
160 1.08E-02 1.01 1.60E-02 0.99 2.84E-02 0.98

P 1

CFL = 0.50 CFL = 0.34 CFL = 0.17

20 6.79E-03 – 4.32E-03 – 3.23E-03 –
40 1.78E-03 1.96 1.07E-03 2.04 7.95E-04 2.06
80 4.55E-04 2.03 2.74E-04 2.04 2.07E-04 2.01
160 1.14E-04 2.00 6.84E-05 2.00 5.15E-05 2.00

P 2

CFL = 0.25 CFL = 0.17 CFL = 0.08

20 9.07E-05 – 1.13E-04 – 1.75E-04 –
40 1.14E-05 3.04 1.42E-05 3.04 2.26E-05 3.01
80 1.49E-06 3.04 1.80E-06 3.07 2.88E-06 3.07
160 1.77E-07 3.07 2.20E-07 3.03 3.56E-07 3.01

P 3

CFL = 0.15 CFL = 0.10 CFL = 0.05

160 9.32E-09 – 2.80E-09 – 5.77E-10 –
320 1.26E-09 3.01 3.74E-10 3.02 5.55E-11 3.51
640 1.57E-10 3.00 4.64E-11 3.00 6.09E-12 3.18
1280 1.96E-11 3.00 5.79E-12 3.00 7.34E-13 3.05

P 4

CFL = 0.10 CFL = 0.07 CFL = 0.03

20 1.25E-06 – 4.33E-07 – 6.42E-08 –
40 1.64E-07 2.99 5.62E-08 3.00 4.78E-09 3.81
80 2.19E-08 2.99 7.52E-09 3.00 5.96E-10 3.10
160 2.74E-09 3.00 9.43E-10 3.00 7.42E-11 3.01

in Table 5.3. From the table, we observe almost the same results as that in Table
5.1; that is, the conclusions also hold true for the initial-boundary value problems.

Example 5.3. To illustrate that the optimal error estimate still holds for the linear
variable coefficient equations, we solve

{
ut + (a(x)u)x = b(x, t),

u(x, 0) = sin(x)
(5.4)

with periodic boundary conditions, where

a(x) = sin(x),

b(x, t) = (sin(x) + 1) cos(x + t) + cos(x) sin(x + t).
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Table 5.3. The errors ‖u − uh‖L2(I) and orders for Example 5.2

using P k polynomials with different θ on a random mesh of N cells.
T = 1.

θ = 0.75 θ = 1 θ = 2
N L2 error Order L2 error Order L2 error Order

P 0

20 8.97E-02 – 1.25E-01 – 2.57E-01 –
40 4.49E-02 1.01 6.57E-02 0.95 1.52E-01 0.77
80 2.27E-02 1.02 3.38E-02 0.99 8.35E-02 0.89
160 1.13E-02 1.01 1.71E-02 0.98 4.40E-02 0.93

P 1

20 6.63E-03 – 4.30E-03 – 3.13E-03 –
40 1.75E-03 1.95 1.07E-03 2.03 7.63E-04 2.07
80 4.51E-04 2.02 2.74E-04 2.04 1.99E-04 2.00
160 1.13E-04 1.99 6.84E-05 2.00 4.87E-05 2.03

P 2

20 8.93E-05 – 1.13E-04 – 2.24E-04 –
40 1.12E-05 3.04 1.42E-05 3.05 3.10E-05 2.90
80 1.45E-06 3.05 1.80E-06 3.07 4.04E-06 3.04
160 1.72E-07 3.07 2.20E-07 3.03 5.05E-07 3.00

P 3

20 3.30E-06 – 2.24E-06 – 1.79E-06 –
40 2.12E-07 4.03 1.36E-07 4.11 1.07E-07 4.14
80 1.39E-08 4.05 9.00E-09 4.05 7.63E-09 3.93
160 8.74E-10 3.99 5.61E-10 4.00 4.62E-10 4.05

P 4

20 5.80E-08 – 5.91E-08 – 7.79E-08 –
40 1.33E-09 5.54 1.46E-09 5.44 2.49E-09 5.05
80 3.87E-11 5.27 4.25E-11 5.27 8.05E-11 5.11
160 1.01E-12 5.26 1.17E-12 5.18 2.43E-12 5.05

The exact solution to this problem is

(5.5) u(x, t) = sin(x + t).

Note that a(x) changes sign across cell boundaries. If a(xj+ 1
2
) is positive, then

at xj+ 1
2
, we take ûh = θu−

h +(1−θ)u+
h ; otherwise, we choose ûh = θu+

h +(1−θ)u−
h .

We test this example using P k polynomials with 0 ≤ k ≤ 4 on a nonuniform mesh
which is a 10% random perturbation of the uniform mesh. The results in Table 5.4
show that the rate of convergence of the error, ‖u − uh‖L2(I), achieves the expected
(k + 1)th order of accuracy. This example demonstrates that the conclusions also
hold true for the variable coefficient problems.

Example 5.4. In this example, we consider the following two-dimensional problem
{

ut + ux + uy = 0,

u(x, y, 0) = sin(x + y)
(5.6)

with periodic boundary conditions. The exact solution is

u(x, y, t) = sin(x + y − 2t).
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Table 5.4. The errors ‖u − uh‖L2(I) and orders for Example 5.3

using P k polynomials with different θ on a random mesh of N cells.
T = 1.

θ = 0.75 θ = 1 θ = 2
N L2 error Order L2 error Order L2 error Order

P 0

20 8.02E-02 – 1.07E-01 – 1.97E-01 –
40 4.09E-02 0.99 5.70E-02 0.92 1.21E-01 0.71
80 2.11E-02 0.99 2.99E-02 0.96 6.97E-02 0.83
160 1.06E-02 0.99 1.53E-02 0.97 3.73E-02 0.90

P 1

20 6.61E-03 – 4.23E-03 – 3.06E-03 –
40 1.69E-03 2.00 1.06E-03 2.03 7.67E-04 2.03
80 4.37E-04 2.02 2.70E-04 2.04 1.96E-04 2.03
160 1.11E-04 1.98 6.73E-05 2.00 4.75E-05 2.05

P 2

20 9.12E-05 – 1.23E-04 – 2.59E-04 –
40 1.12E-05 3.08 1.47E-05 3.12 3.42E-05 2.97
80 1.48E-06 3.01 1.86E-06 3.08 4.31E-06 3.09
160 1.78E-07 3.06 2.26E-07 3.04 5.28E-07 3.03

P 3

20 3.68E-06 – 2.31E-06 – 1.79E-06 –
40 2.21E-07 4.12 1.43E-07 4.08 1.17E-07 4.00
80 1.40E-08 4.11 9.09E-09 4.11 7.68E-09 4.06
160 8.67E-10 4.02 5.51E-10 4.04 4.41E-10 4.12

P 4

20 4.42E-08 – 5.29E-08 – 9.68E-08 –
40 1.08E-09 5.45 1.30E-09 5.45 2.85E-09 5.17
80 3.54E-11 5.09 4.03E-11 5.17 8.85E-11 5.17
160 1.01E-12 5.13 1.19E-12 5.08 2.63E-12 5.07

We test this example using Qk polynomials with 0 ≤ k ≤ 2 on a nonuniform mesh
which is a 30% random perturbation of the uniform mesh. Different combinations of
(θ1, θ2) are considered in our computations. The results in Table 5.5 show that the
order of convergence of the error, ‖u − uh‖L2(Ωh), achieves the expected (k + 1)th
order of accuracy, indicating that the error estimates given in Theorem 3.2 are
sharp.

6. Concluding remarks

In this paper, an analysis of the L2-stability and optimal error estimates to DG
methods using upwind-biased numerical fluxes applied to linear conservation laws
is carried out. Optimal a priori error estimates are obtained in one dimension and
in multidimensions for Cartesian meshes. Our analysis is valid for arbitrary nonuni-
form regular meshes and for polynomials of degree k ≥ 0, no matter the periodic
boundary condition or the inflow boundary condition is concerned. The main tech-
nical difficulties are the construction and analysis of some suitable projections P ⋆

h

and P̃h corresponding to different boundary conditions for the one-dimensional case
and Π⋆

h for the multidimensional case. The sharpness of our theoretical results is
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Table 5.5. The errors ‖u − uh‖L2(Ωh) and orders for Example

5.4 using Qk polynomials with different (θ1, θ2) on a random mesh
of N1 × N2 cells. T = 1.

(θ1, θ2) = (0.75, 0.75) (θ1, θ2) = (0.75, 2) (θ1, θ2) = (2, 2)
N1 × N2 L2 error Order L2 error Order L2 error Order

Q0

10 × 10 2.81E-01 – 4.91E-01 – 6.04E-01 –
20 × 20 1.54E-01 0.91 3.16E-01 0.67 4.39E-01 0.49
40 × 40 8.43E-02 0.91 1.81E-01 0.83 2.72E-01 0.72
80 × 80 4.14E-02 1.14 9.64E-02 1.02 1.52E-01 0.94

Q1

10 × 10 3.67E-02 – 3.18E-02 – 2.50E-02 –
20 × 20 1.08E-02 1.86 8.97E-03 1.93 6.57E-03 2.04
40 × 40 2.89E-03 1.98 2.49E-03 1.92 1.89E-03 1.86
80 × 80 7.16E-04 2.25 5.93E-04 2.32 4.26E-04 2.41

Q2

10 × 10 1.56E-03 – 2.05E-03 – 2.41E-03 –
20 × 20 2.16E-04 3.02 3.20E-04 2.83 4.00E-04 2.74
40 × 40 3.07E-05 2.92 4.52E-05 2.93 5.62E-05 2.94
80 × 80 3.05E-06 3.50 5.52E-06 3.39 6.95E-06 3.37

confirmed by a series of numerical experiments. Extensions of this work to nonlin-
ear equations and high order wave equations are challenging and this will be carried
out in the future.
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