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Abstract

For numerical simulation of detonation, computational cost using uniform
meshes is large due to the vast separation in both time and space scales.
Adaptive mesh refinement (AMR) is advantageous for problems with vastly
different scales. This paper aims to propose an AMR method with high or-
der accuracy for numerical investigation of multi-dimensional detonation. A
well-designed AMR method based on finite difference weighted essentially
non-oscillatory (WENO) scheme, named as AMR&WENO is proposed. A
new cell-based data structure is used to organize the adaptive meshes. The
new data structure makes it possible for cells to communicate with each other
quickly and easily. In order to develop an AMR method with high order accu-
racy, high order prolongations in both space and time are utilized in the data
prolongation procedure. Based on the message passing interface (MPI) plat-
form, we have developed a workload balancing parallel AMR&WENO code
using the Hilbert space-filling curve algorithm. Our numerical experiments
with detonation simulations indicate that the AMR&WENO is accurate and
have a high resolution. Moreover, we evaluate and compare the performance
between the uniform mesh WENO scheme and the parallel AMR&WENO
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method. The comparison results provide us further insight into the high
performance of the parallel AMR&WENO method.

Keywords: AMR, WENO, high order accuracy, unstable detonations,
detonation structure

1. Introduction

Detonation involves complex interactions between reactive chemical ki-
netics and fluid dynamics. It consists of a precursor shock wave that prop-
agates into the unreacted medium at supersonic speed with a thin reaction
zone immediately behind the shock. The research on detonation phenomena
has lasted for more than one hundred years, yet even today many phenom-
ena are still not very well understood. Because of the limited insight that
experimental observations can provide, numerical simulations play a more
and more important role in the investigation of detonation phenomena.

Detonation waves exhibit non-negligible multi-dimensional sub-structures.
These sub-structures are in the millimeter range which is much smaller than
the size of the physical geometry. The additional stiff source terms modeling
chemical reactions introduce extremely small time scales into the flow field
which are much smaller than the fluid-dynamical time scale. There is a re-
quirement of a locally refined resolution for the numerical method, due to
the separation in both time and space scales. The adaptive mesh refinement
(AMR) method has an advantage for solving such problems with separation
scales. It automatically refines the mesh locally where a fine resolution is
needed. The AMR method was first developed by Berger et al. [1-2] to
solve hyperbolic partial differential equations. Nowadays it is widely used in
detonation simulation and has been validated to be an effective tool [3-11].

Recently, weighted essentially non-oscillatory (WENO) schemes have at-
tracted increasing attention in the investigation of detonation owing to their
advantage of high order accuracy, high resolution and essentially non-oscillatory
shock resolution [12-14]. As is well known, WENO schemes can resolve com-
plex solution structures with a relatively coarse numerical mesh. However,
the mesh should still be refined enough to resolve detonation phenomena.
High order conservative finite difference WENO schemes are very efficient in
multi-dimensions in comparison with finite volume WENO schemes, yet they
require uniform or smooth varying meshes. It is expensive in the investigation
of detonation waves which would only need a locally refined resolution.
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In order to develop an efficient method for detonation simulation, this
paper aims to combine AMR methods with WENO schemes. The coupling
of AMR methods and WENO schemes has been extensively studied. Li et
al. [15] used a fifth order Lagrange interpolation for the prolongation in the
space and a locked time step method in time. The locked time step method
avoids time refinement, with the time step size limited by the CFL condition
of the finest mesh. It may result in a waste of the computational effort. Baeza
et al. [16] adopted the linear interpolation in time which would reduce the
temporal accuracy of the scheme. Shen et al. [17] proposed an AMR method
based on high order WENO schemes for hyperbolic conservation laws. High
order prolongation is used in both space (WENO interpolation) and time
(Hermite interpolation). The AMR method with high order prolongation is
proved to be an accurate and robust method. However, due to the adoption
of block-based data structure, the method in [17] may involve unprofitable
refinement and is inflexible in dealing with complicated geometry. Also, the
simulation is performed on hyperbolic conservation laws without considering
possible complications from stiff source terms.

This paper focuses on developing an AMR method base on the fifth order
WENO finite difference scheme for detonation problems, which is a general-
ization of the method in [17]. The outline of the paper is as follows. In Section
2, an appropriate model for gas detonation is proposed. The one-step Arrhe-
nius chemistry model is utilized in this paper. Section 3 gives a description of
the WENO scheme and introduces the detailed implementation of the paral-
lel AMR&WENO method. In Section 4, the parallel AMR&WENO method
is used to investigate a series of multi-dimensional detonation problems and
a detailed analysis of the numerical results is provided.

2. Governing equations

The reaction mechanism adopted in this paper is the one-step reaction
model. It is well known that one-step reaction models cannot reveal the
detailed reaction chemistry of detonations and cannot give quantitatively
correct description of detonation. However, it does have the practical ad-
vantage in terms of computational cost. In the investigation of detonation,
detailed reaction models consume huge amount of computer resource. It is
not realistic to use the detailed reaction model to simulate detonation in
large domains or for high dimensional problems. In many situations, one-
step reaction models are good choices as a compromise between cost and
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performance.
This paper aims to develop and test a numerical method, hence the simple

one-step reaction model is a good testing model. This model for detonation
propagation in premixed gases neglects the effect of viscosity, the heat trans-
fer, the diffusion and body forces. It can be written as the Euler equations
with reactive source terms. In three-dimensional Cartesian coordinates, these
equations are given as follows

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= S

U = (ρ, ρu, ρv, ρw, ρE, ρY )T

F = (ρu, ρu2 + p, ρuv, ρuw, (ρE + p)u, ρuY )T

G = (ρv, ρuv, ρv2 + p, ρvw, (ρE + p)v, ρvY )T

H = (ρw, ρuw, ρvw, ρw2 + p, (ρE + p)w, ρwY )T

S = (0, 0, 0, 0, 0, ω)T

(1)

where u, v and w are the components of the fluid velocity in the x, y and
z directions, respectively. ρ is the density, p is the pressure, E is the total
energy per unit volume, and Y is the mass fraction of the reactant.

The total energy E is defined as following

E =
p

ρ(γ − 1)
+

(u2 + v2 + w2)

2
+ qY (2)

where q is the heat production in the reaction, and γ is the ratio of specific
heat.

The source term S is assumed to have an Arrhenius form and is written
as follows

ω = −KρY exp

(
−

Ea

RT

)
(3)

where Ea is the activation energy and K is the constant rate coefficient. For
perfect gas, the equation of state is p = ρRT .

3. The numerical method

As mentioned above, the AMR method has significant advantages for
detonation problems owing to its local high resolution. The WENO scheme
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is outstanding in the numerical simulation of detonation because of its high
order accuracy and essentially non-oscillatory shock resolution. It is very nat-
ural to combine them to study detonation problems. Nowadays, both AMR
and WENO methods have attracted increasing attention in the numerical
simulation of detonation. Although there are many investigations about the
combination of them, few of these studies focus on solving detonation prob-
lems, especial in three dimensions. In this paper, an AMR method based
on finite difference WENO schemes is proposed to solve multi-dimensional
detonation problems.

3.1. Review of finite difference WENO schemes

In this section, we briefly describe the framework of WENO schemes for
solving hyperbolic conservation laws. More details of the high order finite
difference WENO schemes can be found in the literature [18-19]. Consider
a uniform mesh with grid points xi = i∆x, i = 0, . . . , nx, yj = j∆y, j =
0, . . . , ny and zk = k∆z, k = 0, . . . , nz. The cell boundaries are given by
xi+1/2 = xi + ∆x/2, yi+1/2 = yi + ∆y/2, zi+1/2 = zi + ∆z/2. The partial
differential equation at the grid points is written as the following form.

dU(xi, yj, zk, t)

dt
=

(
−

∂F (U)

∂x
−

∂G(U)

∂y
−

∂H(U)

∂z
+ S

)
|x=xi,y=yj ,z=zk

(4)

We use a finite difference scheme to approximate the Eq.4.

(
∂U

∂t

)

i,j,k

= −
F̂i+1/2,j,k − F̂i−1/2,j,k

∆x
−

Ĝi,j+1/2,k − Ĝi,j−1/2,k

∆y

−
Ĥi,j,k+1/2 − Ĥi,j,k−1/2

∆z
+ Si,j,k

(5)

where U is an approximation to the point value U(xi, yj, zk, t). F̂i±1/2,j,k,

Ĝi,j±1/2,k and Ĥi,j,k±1/2 are numerical fluxes on the cell boundary and can be
obtained from WENO reconstruction.

Take the numerical flux F̂i±1/2,j,k and fifth order accuracy as an example,
the WENO reconstruction is implemented as follows. The fifth order WENO
scheme uses 5-point stencil to approximate the numerical flux, which is di-
vided into three 3-point sub-stencils S0, S1 and S2.
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First, the Lax-Friedrichs flux splitting is performed.

F± =
1

2
(F (U) ± αU) (6)

where α is taken as α = maxU |F ′(U)|.

Then two numerical fluxes F̂+
i+1/2,j,k and F̂−

i+1/2,j,k are constructed to ap-

proximate F+ and F− whose sum is the numerical flux F̂i+1/2,j,k. As the

construction procedure of F̂+
i+1/2,j,k and F̂−

i+1/2,j,k is mirror symmetric with

respect to i + 1/2, we only give the details of the construction of F̂+
i+1/2,j,k in

the following.

F̂+
i+1/2,j,k =

2∑

r=0

ωrF̂
(r)
i+1/2,j,k (7)

where ωr are the nonlinear weights satisfying ω0+ω1+ω2 = 1 and are defined
in the following form

ωr =
αr∑2
s=0 αs

, αr =
dr

(ǫ + βr)2 (8)

where dr are the linear weights and βr are the smoothness indicators. ǫ is
a small constant used to avoid the denominator to become zero. The fluxes
for the three sub-stencils have the form

F̂
(0)
i+1/2,j,k =

1

3
Fi−2,j,k −

7

6
Fi−1,j,k +

11

6
Fi,j,k

F̂
(1)
i+1/2,j,k = −

1

6
Fi−1,j,k −

5

6
Fi,j,k +

1

3
Fi+1,j,k

F̂
(2)
i+1/2,j,k =

1

3
Fi,j,k +

5

6
Fi+1,j,k −

1

6
Fi+2,j,k

(9)

The linear weights are d0 = 3/10, d1 = 3/5, d2 = 1/10, and the smooth-
ness indicators are given as follows

β0 =
13

12
(Fi−2,j,k − 2Fi−1,j,k + Fi,j,k) +

1

4
(Fi−2,j,k − 4Fi−1,j,k + 3Fi,j,k)

β1 =
13

12
(Fi−1,j,k − 2Fi,j,k + Fi+1,j,k) +

1

4
(Fi−1,j,k − Fi+1,j,k)

β2 =
13

12
(Fi,j,k − 2Fi+1,j,k + Fi+2,j,k) +

1

4
(3Fi,j,k − 4Fi+1,j,k + Fi+2,j,k)

(10)
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The conservative updating of U needs the numerical fluxes F̂+
i+1/2,j,k and

F̂+
i−1/2,j,k, involving 6 points in the x-direction around the point (i, j, k). In

three dimensions, the numerical fluxes Ĝ+
i,j±1/2,k and Ĥ+

i,j,k±1/2 in the y and z
directions can be obtained by utilizing the same procedure. The calculation
of

(
∂U
∂t

)
i,j,k

involves 16 points in all three directions. Considering the cal-

culations on two adjacent points (i, j, k) and (i − 1, j, k), it can be observed
that they share many sub-stencils. If we implement the WENO procedure on
each point independently (cell-by-cell type), it would result in the repeated
calculation on the shared sub-stencils. It appears to be more efficient to
implement the WENO procedure for points in the same dimension jointly
(dimension by dimension type).

If we denote the right hand side of Eq.5 as L(Ui,j,k) and use the third-
order TVD Runge-Kutta scheme for temporal discretization, then the fully
discrete scheme can be written in the following form

U
(1)
i,j,k = Un

i,j,k + ∆tL(Un
i,j,k)

U
(2)
i,j,k =

3

4
Un

i,j,k +
1

4
U

(1)
i,j,k +

1

4
∆tL(U

(1)
i,j,k)

Un+1
i,j,k =

1

3
Un

i,j,k +
2

3
U

(2)
i,j,k +

2

3
∆tL(U

(2)
i,j,k)

(11)

The reconstruction for the fluxes involves information on a wide stencil
with a number of nearby grid points and this makes the AMR implementation
more complicated. A proper organization of data is necessary. Local time
refinement and the Runge-Kutta sub-steps also make the AMR implementa-
tion more complicated. The details of the implementation will be described
in the following subsections.

3.2. AMR data structure

Different data structures used to track mesh connectivity make a big dif-
ference in the performance of the AMR method. The data structure for
AMR can be generally classified into two categories, block-based structure
and cell-based structure. Fig. 1 shows the sketch of both the block-based
structure and the cell-based structure. Fig. 1(a) demonstrates uniform cells
on level 0 covering the overall computational domain. Cells with black dots
require higher resolution and need to be refined. Fig. 1(b) and Fig. 1(c)
depict the refinement based on block-based structure and cell-based struc-
ture, respectively. As shown in Fig. 1(b), a sequence of structured blocks is
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nested on different levels patched onto each other. The block represents a
rectangular logical domain containing many cells. On the same refinement
level, the meshes of the block are refined by the same refinement ratio in
both time and space. Refinement based on cell-based structure is shown in
Fig. 1(c). Each cell is refined individually. Both cell-based structure and
block-based structure can be abstract to the logical hierarchical tree struc-
ture as shown in Fig. 1(d). The nodes of the tree represent the blocks for
block-based structure and individual cells for cell-based structure. There is
some advantage for block-based structure. Because the tree structure re-
sulted from block-based structure is lighter than that of cell-based structure,
the computational effort to access the node and the memory overhead to
maintain the tree structure information of block-based structure are smaller
than that of cell-based structure. The original solver can be directly used on
the block without any modification. However, block-based structure relies on
sophisticated clustering algorithm to organize individual cells into a block.
The clustering algorithm makes cells that do not need to be refined also in-
volved in the block and this results in a waste of computational resource.
On the same refinement level, the blocks bond with each other such as in
Fig. 1(e). Blocks communicate with each other in order to exchange bound-
ary information in the process of calculation. As the procedure of WENO
scheme involves many points and needs a lot of boundary information, the in-
formation exchange between blocks is very large. Cell-based structure avoids
unnecessary refinement and it readily achieves the local refinement without
clustering algorithm. It is difficult to say which approach is better in prac-
tice, but the cell-based structure has high flexibility and efficiency in theory.
We adopt the cell-based structure in this work.

As mentioned above, the tree structure is heavy for the cell-based struc-
ture. Different data storage structures have distinct performance on com-
putational effort and the memory overhead. Traditional tree data structure
used to store the cell data has a high computational effort and high mem-
ory overhead. A data structure with relatively low computational effort is
proposed by Khokhlov et al. [20] named as the fully threaded tree (FTT)
structure. FTT adds pointers in order to achieve the connection among cells.
Pointers stored in the cell include a pointer for its parent cell, pointers for
its child cells and pointers for neighboring cells. For the FTT structure, it
is possible to access the neighbors of a cell without a search operation ow-
ing to the pointers, but the memory cost is large. As the WENO scheme
involves a lot of neighboring cells, the memory cost used to store pointers is
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Fig. 1: Sketch of block-based structure and cell-based structure.

especially large. In recent research [5], a new cell-based structured adaptive
mesh refinement (CSAMR) data structure is proposed aimed to decrease the
memory cost. It uses Cartesian-like indices to identify each cell. A simple
hash table structure is used to maintain the cell data. The memory overhead
is significantly reduced. At the same time, the information on the parent,
child and neighboring cells can be accessed with low computational effort.
However, this approach also has its own disadvantages. The computational
effort to create a hash table may be tremendous if the reserved memory for
the hash table is too small. The computational effort and memory overhead
heavily rely on the size of the hash table. It is difficult to obtain a reasonable
hash table size to balance the computational effort and memory overhead.

As mentioned in sub-section 3.1, the WENO scheme involves a lot of
neighboring cells and needs a dimension by dimension type treatment. The
feature of the WENO scheme requires the data structure to have high per-
formance on accessing neighboring cells and to be easy in implementing the
dimension-by-dimension type calculation. In this paper, we propose a new
AMR data structure based on the WENO scheme. This data structure is sim-
ilar to CSAMR except for the hash table. The details of the data structure
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are outlined in following.
Take two dimensions for an example, the refinement ratio is r = 3. A

square spatial domain with dimension Lx × Ly is firstly discretized into a
coarse, uniform computational mesh (the level of refinement is 0) called “root
cells”. The cell on the finer mesh is called a child cell. It is created to focus
computational efforts on parts of the domain. The cells on the domain are
shown in Fig. 2(a). The center of the cell with dimension (∆x, ∆y) is located
at the grid node (xc, yc). Standard structured cell indexing is (i, j), with
i = 0, . . . , nx and j = 0, . . . , ny.

Fig. 2: Sketch of the proposed cell-based structure.

We use Cartesian-like indices and the refinement level l to identify each
cell on the l-level which is similar to CSAMR. According to the definition
above, the centroid (xc, yc)l and dimension (∆x, ∆y)l of the an l-level cell
with an index (i, j)l is given as follows

(xc, yc)l = ((i +
1

3
) ×

Lx

3l
, (j +

1

3
) ×

Ly

3l
)

(∆x, ∆y)l = (
Lx

3l
,
Ly

3l
)

(12)

The indices of the child cell and the parent cell then can be calculated
from

(i, j)l−1 = (3 × i + n, 3 × j + m)

(i, j)l+1 = ([
i

3
], [

j

3
])

(13)
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where, [a] denotes the integer value of the quantity a.
Data storage in each cell is outlined as following

(1) The indices of the cell: (i, j);
(2) Cell level: l;
(3) Cell flag: flag (if the cell is not refined, then set flag = 0, else flag = 1);
(4) The numerical solution: U ;
(5) The time derivative of the solution: D(U)t;

On every refinement level, a Cartesian-like list is created to store the
address information of cells. We define the list as Cl(i, j) = cell-address.
We can use the lists and the indices to access arbitrary cells without any
access operation. For example, neighboring cells in the y-direction can be
accessed directly by the list Cl(i, j − 1) and the parent cell can be accessed
by Cl−1([

i
3
], [ j

3
]) as shown in Fig. 2(b).

In the process of calculation, the Cartesian-like list is used to cluster the
cells on the same level l into an irregular domain referred as “pool” as shown
in Fig. 2(c). The cells in the “pool” have a same size. The “pool” can be
considered as an irregular computational domain and this makes it possible
to implement the WENO procedure in the dimension by dimension style.
This data structure has a higher memory overhead compared with CSAMR,
but it has higher efficiency when used in the WENO scheme.

3.3. Criterion and prolongations

In the implementation of AMR, the first issue is to determine where an
adaptive refinement mesh is needed. A refinement criterion is used to address
this issue. There are many approaches to construct the refinement criterion.
A popular criterion is the estimation of the local truncation error based on
Richardson extrapolation [1-2]. However, this is a computationally expensive
procedure. A physics-based criterion is often used in the simulation of det-
onation. Ji et al. [5] used cell-size-weighted velocity divergence and curl as
the refinement criterion. The criterion used in [6] is based on local gradients
of fluid density and temperature. Wilkening et al. [7] used the difference of
velocity between neighboring nodes. In this paper, the gradients of both the
mass fraction Y and the pressure p are employed as the criterion. The cells
are refined if |grad(Yi,j,k)| ≥ αcr or |grad(pi,j,k)| ≥ βcr, where αcr and βcr are
products of the average gradients of all cells in the computational domain
and a constant coefficient whose value should be fixed after experiments. A
buffer zone is created to ensure shocks can not propagate out of the refine-
ment regions in one time step. The cells in the refinement regions and the
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cells in the buffer zone are flagged with flag = 1. The neighbors of these
cells defined as “ghost cells” are the internal boundary. Their flags are set
to flag = 2. These cells in the refinement areas and buffer areas are refined
in space. The time step is also refined with the same refinement ratio.

During the refinement, a new cell Cl as the child of the cell Cl−1 is created.
The data in the child cell Cl can be obtained in two ways. If the child cell
is covered by a previously existing cell, the data would be copied from the
existing cell directly. Otherwise, the data is prolonged from the parent cell.
In this paper, the scheme used to discretize in space is of fifth order accuracy.
Because a low order prolongation may reduce the accuracy of AMR, the fifth
order WENO interpolation prolongation in [21] is used to prolong the data
from Cl−1 to Cl. For multi-dimensional problems, the implementation of
the WENO interpolation utilizes a “dimension by dimension” style. The
prolongation in three dimensions can be written as following

Ul(i, j, k) = WI(Ul−1([
i

3
] + m, [

j

3
] + n, [

k

3
] + p))

with, m = −3, . . . ,−3, n = −3, . . . ,−3, p = −3, . . . ,−3
(14)

where WI denotes the WENO interpolation operator.

3.4. Internal boundary

The refinement time step is defined as in Eq.(15) below. It is based on
the enforcement of a global CFL condition. The time step on the refinement
level l is refined by the refinement ratio r

∆tl =
∆t

rl
(15)

where ∆t is the time step of the “root cells”.
Because of the refinement of the time step, the boundary condition on ev-

ery intermediate time stage should be supplied before the cells are integrated
on the fine mesh. Since the internal boundary of the refinement area does not
coincide with the physical boundary, the internal boundary condition should
be obtained by constructing the data on “ghost cells” at every intermediate
time stage.

One issue arising is how to construct the data on ghost cells at an inter-
mediate stage. In addressing this issue, two main approaches are considered.
One is a uniform time step on all refinement levels, used in [5]. It avoids the
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construction on “ghost cells” at an intermediate stage. But this approach re-
sults in a waste of computational effort, because the time step must be small
enough to satisfy the CFL restriction of the finest mesh. Another approach
is to construct the data using the parent data at two time stages. The sec-
ond approach is adopted in this paper. The Hermite interpolation method
is used to construct the data of “ghost cells”. We give a brief description of
the method. More details can be found in [17].

We take two time stages tn and tn+1 with a time step ∆t as an example.
The data of parent cells at the two time stages are known. They are written
as Un

l , Un+1
l , Dt(Ul)

n and Dt(Ul)
n+1. The prolongation in space mentioned

above is used to construct the data of the “ghost cells” at these two time
stages. Utilizing the data Un

g , Un+1
g , Dt(Ug)

n and Dt(Ug)
n+1 of the “ghost

cells”, a cubic polynomial M(t) is constructed by Hermite interpolation

M(tn) = Un
g , M(tn+1) = Un+1

g

M ′(tn) = Dt(Ug)
n, M ′(tn+1) = Dt(Ug)

n+1
(16)

For an arbitrary time stage t ∈ [tn, tn+1], an approximation of the ghost
cell data is expressed as following

Ug(t) ≈ M(t) (17)

The data of the TVD-RK sub-steps are also constructed

Ug(t) = M(t)

U (1)
g (t) = M(t) + ∆tlM

′(t)

U (2)
g (t) = M(t) +

∆tl
2

M ′(t) +
∆t2l
4

M ′′(t)

(18)

When the internal boundary condition is supplied, the child cells on the
level l + 1 are integrated with a refinement time step ∆tl from tn to tn+1.
After the integration on the child cells, the data of the child cells are used to
update the data on parents cells.

When data on the child cells iterate to tn+1, a cell to cell replacement
process is implemented to update the parents cells. For example, the data
of the parent cell with centroid located at (xc, yc, zc) are replaced directly by
that of the child cell with the same centroid.
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3.5. Parallelization strategy

One of the major goals of this paper is to design a parallel AMR&WENO
method based on the MPI platform to perform well on multiprocessor ma-
chines. It is well known that AMR refines the mesh locally. As the distribu-
tion of refinement cells is nonuniform and changes over time, the computa-
tional efforts dynamically change over the global domain. Static partition of
the domain would result in a workload imbalance. Various kinds of dynamic
partition approach are proposed to balance the workload for AMR computa-
tions such as the space filling curve algorithm [22], the bin packing algorithm
[23] and so on. The space-filling curve approach is adopted in this paper.
The details of the implementation are outlined in the following.

Fig. 3: Sketch of the Hilbert space-filling curve algorithm.

The computational domain is initially divided into cells at level 0 referred
as “root cells”. We assign root cells and their child cells on every refinement
level to the same processor and count the workload of the child cells in the
corresponding root cells. The domain partition problem is now simplified to
the assignment problem of root cells with different workload to different pro-
cessors. The Hilbert space-filling curve load balancing algorithm is employed
here. Fig. 3 gives a sketch of the Hilbert space-filling curve load balancing
algorithm. We use the Hilbert curve to link the root cells one by one and
create a one-to-one mapping from the cell to the node of the curve as shown
in Fig. 3(a). Considering the workload on the node, the curve is cut into
np (np is the number of processors) segments with different sizes. All the
segments have similar amount of workload. Corresponding cells on the same
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segment are assigned to the same processor. As shown in Fig. 3(b), the com-
putational domain is split into a series of non-overlapping portions. Finally,
the workload is evenly distributed among all processors.

During the AMR process, refinement grid is often added or removed to
regions of the domain. Refinement state is evolving in time which leads
to dynamic changing of workload on the node. Thus dynamic load balanc-
ing is necessary. The dynamic load balancing is achieved through a process
known as domain repartitioning. The domain repartitioning process consists
of two steps. First, considering the new refinement state, repartition the do-
main into np sub-domains utilizing Hilbert space-filling curve load balancing
algorithm mentioned above. Second, assign sub-domains on processors by
migrating data among processors.

Fig. 4: Domain partition for two dimensional and three dimensional cases

The load imbalance factor metric is used as the criteria for triggering
repartition and is defined as follows:

LIFg = max
np

i=1|
Wi∑np

i=1 Wi/np

− 1| (19)
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where np is the total number of processors in the computation and Wi is the
estimation of workload on the i-th processor. The repartition is triggered
if LIFg > δ with δ being the imbalance tolerance. A typical imbalance
tolerance is δ = 0.1, which means that each part must not exceed 10% of
the ideal workload. Fig. 4(a) presents the domain partition on 40 processors
for the two-dimensional detonation case. It can be found that the domain is
dynamic partitioned on processors. Fig. 4(b) shows the domain partition for
the three-dimensional detonation case.

4. Numerical results

We have developed the parallel AMR&WENO code based on the method
described above and performed simulation on a three dimensional test case to
examine the convergence of the method firstly. Then, we move to the study
of one, two and three dimensional detonations. We give some conventions
here. The refinement ratio in the following simulations is fixed at r = 3.
Numerical results marked with “AMR&WENO” are obtained utilizing the
AMR&WENO code. Results labeled with “WENO” are produced by the
classical WENO scheme on a uniform mesh. A relative grid size n is employed
to quantify spatial resolution expressed as a reciprocal relationship to the cell
size and is defined as follows.

n = 5∆x/L1/2 (20)

where L1/2 is the half-reaction length which is the distance between the lead-
ing shock and the point where half of the reactant is consumed by combustion.
∆x is the cell size. In particular, the relative grid size of the AMR&WENO
method refers to the relative grid size of the root cells.

4.1. Verification of the numerical resolution

For this test case, the partial differential equations (PDEs) are modified
by adding additional source terms so that they accommodate the following
exact solution

ρ(x, y, z, t) = 1 +
1

2
sin(π(x + y + z − 3t))

u(x, y, z, t) = v(x, y, z, t) = ω(x, y, z, t) = p(x, y, z, t) = 1

Y (x, y, z, t) =
1

2
+

1

2
sin(π(x + y + z − 3t))

(21)
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Tab. 1: Errors and orders of accuracy for density.

CFL = 0.2

∆h error order

2/10 1.25E − 02
2/20 6.04E − 04 4.39
2/30 7.78E − 05 5.06
2/40 1.86E − 05 4.98
2/50 6.13E − 06 4.97

In this case, the PDEs actually become a linear system. The activation
energy Ea = 50.0, overdrive factor f = 1.6, heat of reaction q = 50.0, and the
specific heat ratio γ = 1.2 are fixed. The computational domain is taken as
[0, 2] × [0, 2] × [0, 2]. The AMR&WENO is performed on the root cells with
∆x = ∆y = ∆z = ∆h. The refinement regions are placed around the center
of the computational domain. The periodic boundary condition is utilized
here. Tab. 1 shows the results at time t = 2.0. It is obvious that the desired
fifth order accuracy is achieved.

4.2. One-dimensional results

The oscillation mechanism of one dimensional unsteady detonation is
studied using the WENO&AMR method. The linear stability analysis of
the one-dimensional detonation solution indicates that, below a threshold in
overdrive, one-dimensional detonation waves in high activation energy are
unstable. There are a number of unstable modes which interact with each
other in the finite-amplitude, nonlinear regime. In the nonlinear regime,
small difference in truncation errors between algorithms eventually leads to
dramatic change of solutions [24]. We use the one dimensional unsteady
detonation solution to validate the WENO&AMR code.

We consider a long tube with dimension 1000L1/2. The computational
domain is split in 40 portions and distributed in 40 processors. A steady
overdriven detonation is located at x = 200L1/2 in the initial state. The
detonation front is set far from the left side of the tube in order to reduce the
influence of the boundary. Here and in the following, the values of the heat
Release, activation energy and ratio of specific heats are fixed at q = 50, Ea =
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50 and γ = 1.2, unless otherwise stated. The constant rate coefficient K is a
scaling factor and is fixed at an appropriate value so that the characteristic
length scale is the half-reaction length of the steady wave. In this case, the
threshold of the overdrive factor is f = 1.73. The detonation wave is stable
for f ≥ 1.73 and there is only a single mode of instability for 1.73 > f > 1.57
[25].

Two test cases are considered here. The first case is the detonation with
single mode instability at f = 1.6. In this test case, there is an exact result
computed from linear stability theory for the basic model owing to Fickett
and Wood [26]. Three kinds of grid resolution are considered in this test case
in order to check the mesh convergence of AMR&WENO. The Second case
is a unstable detonation with the overdrive factor f = 1.5.

Fig. 5 shows the history of the peak pressure near the shock front with
f = 1.6. The curve with square symbols labeled with WENO is obtained
utilizing a uniform mesh with n = 1.5. The other curve with triangular
symbols is obtained by the AMR&WENO code and the relative cell size of
the “root cells” is n = 0.5. The grid resolution near the reaction zone is
therefore the same for both methods. The coincidence of the two curves
indicates that the AMR&WENO performance is as good as that of WENO
with a relatively lower grid resolution in most part of the computational
domain. The amplitude and the period of the oscillation agree well with the
results using the uniform grid WENO scheme [27].

Fig. 5: History of peak pressure with f = 1.6.
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A simulation with f = 1.6 is repeated using three kinds of grid resolution.
They are n = 0.75, n = 1.5 and n = 3. Fig. 6(a) shows the history of the
peak pressure in the shock front and Fig. 6(b) is a convergence comparison
with the exact solution between the AMR&WENO method and the WENO
scheme with uniform meshes. Fig. 6(a) illustrates a mesh refinement conver-
gence during the period of peak pressure oscillation and Fig. 6(b) illustrates
that the peak pressure amplitude of AMR&WENO converges to the exact
solution. The AMR&WENO method performance is as good as WENO with
a lower grid resolution in most part of the computational domain. The con-
vergence of the AMR&WENO both during the period of oscillation and in
the peak pressure amplitude validates the practicability and the effectiveness
of AMR&WENO. Fig. 6 also gives a required resolution n = 1.5 for the sim-
ulation of detonation. In the following test case, the relative grid size is fixed
at n = 1.5.

The second test case uses AMR&WENO with the grid resolution n = 1.5.
In this test case, the overdrive is reduced to f = 1.5. As reported in Hwang et
al. [27], linear stability analysis suggests that there are two unstable modes
generated at this overdrive. The history of the shock front pressure shown
in Fig. 7 agrees well with the results using a uniform mesh WENO scheme
[27].

4.3. Two-dimensional results

Detonation fronts usually have a complicated three-dimensional, time-
dependent structure with interior transverse shock waves. There are many
investigations on two-dimensional cellular detonations and the transverse
wave structures. In this section, the structure of strong transverse waves
in two dimensional numerical simulations of detonations is studied.

In the simulation of two-dimensional detonation, the parameters used are
f = 1.0, q = 50, Ea = 50 and γ = 1.2. The test case in two-dimensional
detonation is focused on the detailed structure of the strong transverse waves.
In this case, detonation wave travels from left to right along a rectangle tube
with dimension 10L1/2×240L1/2. The AMR&WENO method is performed on
40 processors. The left boundary of the tube is an inflow, the right boundary
is an outflow, and the remaining sides are rigid walls. The initial condition
is given by placing the steady, one-dimensional detonation on the domain in
the region x < 10L1/2. The precursor shock wave is located at x = 10L1/2.
A perturbation of density is placed in the region of 10L1/2 ≤ x ≤ 11L1/2 to
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Fig. 6: Convergence study. (a) History of the peak pressure with differ-
ent grid resolution; (b) Amplitude of the peak pressure with different grid
resolution.
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Fig. 7: History of the peak pressure with f = 1.5.

initiate a disturbance. The form of the disturbance is as following

ρ′ =






0 , x < 10L1/2

sin(π(11L1/2 − x))

4
× [1 + cos(

πy

10L1/2

)] , 10L1/2 ≤ x ≤ 11L1/2

0 , x > 10L1/2

(22)

After giving the initial condition and boundary condition, the simulation
is performed using AMR&WENO and WENO schemes. The grid resolution
of the WENO scheme is n = 0.7. The grid resolution of AMR&WENO in
the root cells and the grid resolution of WENO are the same. Since the
density and pressure change rapidly across the shock wave and the density
has a dramatic change across the contacts and slip lines, we investigate the
detailed structure of detonation shown in the pictures of the density gradient
|grad(ρ)| and the pressure gradient |grad(p)|. The mass fraction Y and the
|ω| reaction rate are used to reveal the reaction structure.

Fig. 8 shows the mesh near the detonation front at a particular time.
As mentioned above, the refinement criteria in this picture is a combination
of the pressure gradient and the mass fraction gradient. In the process of
calculation, the mesh is adaptively refined in the area where the value of the
pressure gradient and the mass fraction gradient is relatively large. Figs. 9-12
show the density gradient, pressure gradient, mass fraction and the reaction
rate of AMR&WENO and the WENO scheme. For the detonation with

21



strong transverse waves, there will be two triple points in the detonation
wave [28]. Take Fig. 9(a) as an example. One triple point which is labeled
as t2 appears on the front of the precursor shock wave. The incident shock
I and Mach stem M which is kinked at the point b intersect at the triple
point t2. The transverse shock wave T is kinked at the second triple point t1
which is inside the reaction zone. This is different from the weak transverse
case. Weak transverse extends back into the flow from the triple point on the
shock front without being distorted. S is a slip line which extends from the
triple point t2 and rolls up near the upper boundary. Fig. 10 shows that the
pressure gradient of the segment between t1 and a is large, which indicates
that there is a shock. Fig. 12 shows that the slip line S separates the areas of
the completely burnt gas mixture and the unburnt mixture. There is another
slip line R far away from the shock front.

Fig. 8: Mesh near the detonation front.

Although the base grid resolutions of the AMR&WENO and WENO are
the same, the results are quite different. The density gradient in Fig. 9(a)
is obtained using AMR&WENO and Fig. 9(b) using the WENO scheme.
The results of the WENO scheme appear to be in qualitative agreement
with that of AMR&WENO. The incident shock I, Mach stem M , kinked
point b and triple point on the shock front can be identified in both figures.
But Fig. 9(a) shows a higher resolution and shows clearer structures than
Fig. 9(b). The result of WENO shows a fuzzy outline of the slip line S and
fails to describe the slip line R. AMR&WENO reveals the detailed helical
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structure of the slip line S and gives the position sharply of the slip line R.
The shock between t1 and a which is discernible in Fig. 9(a) cannot be seen
in Fig. 9(b). That is, WENO fails to identify this shock wave. The pressure
gray-scale map in Fig. 10 confirms this conclusion. The results of WENO
in Fig. 11 and Fig. 12 show that the pocket of the unburnt mixture behind
the slip line R is completely burnt out. WENO fails to describe the flow
fired behind the detonation. With the same base grid resolution n = 1.5,
AMR&WENO scheme gives better resolution comparing with WENO. The
detailed structure of the strong transverse wave is correctly identified.

Fig. 9: Density gradient. (a) AMR&WENO. (b) WENO.
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Fig. 10: Pressure gradient. (a) AMR&WENO. (b) WENO.
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Fig. 11: Reaction rate. (a) AMR&WENO. (b) WENO.
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Fig. 12: Mass fraction. (a) AMR&WENO. (b) WENO.
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4.4. Three-dimensional results

In the simulation of three dimensional detonation, we consider the det-
onation wave traveling in a long, straight and rectangular duct. As is well
known, the duct width has a great influence on the detonation propagation
mode when it is small. For unstable detonation, when the duct width is
smaller than a threshold value, the unstable detonation propagates in a spin-
ning mode [13]. In this paper, we set the detonation parameters to f = 1.0,
q = 50, Ea = 50 and γ = 1.2. One-dimensional ZND analytical solution
is employed as the initial condition. A very small random perturbation in
the ZND profile is added to accelerate the unstable growth of the flow. In
order to observe the detonation derivation in a long period of time, we give
a relatively long duct length with 240L1/2. The square duct width is fixed
at 2L1/2. The left boundary of the duct is an inflow, the right boundary
is an outflow, and the remaining sides are rigid walls. We use the paral-
lel AMR&WENO code to simulate propagation of detonation. The code is
used on a high-performance computer. The same relative grid size n = 1 is
adopted in all of the following simulations.

Simulation is firstly performed on 40 processors using the AMR&WENO
code whose maximum refinement level is lmax = 1. The simulation results
distributed on 40 processors are organized to a complete computational do-
main. We cut the one part off the global domain where refinement cells
are located. The cells on the refinement level 1 form an irregular domain
referred as “pool”. Fig. 13 shows the density contours of the spinning deto-
nation front. Only the density contours on the “pool” is displayed. We can
observe the edge of the “pool” in the picture. Fig. 13(a)-(j) give a series
of frames in a typical spinning detonation cycle. The AMR&WENO code
produces results that are as good as using a WENO scheme with a relative
grid size n = 0.25 [13].

The AMR&WENO code allows for multiple refinement to obtain a higher
local resolution. In the following work, we simulate the same problem using
the AMR&WENO code with the maximal refinement level lmax = 2. For
comparison purposes, we also do the same simulation utilizing the classical
WENO scheme on uniform meshes. Three sets of results are shown in Fig. 14
and Fig. 15. These results are obtained by using WENO, AMR&WENO
with maximal refinement level lmax = 1 and AMR&WENO with maximal
refinement level lmax = 2, respectively. Fig. 14(a)-(c) give the meshes of the
domain for the three cases. For the WENO scheme case, the initial domain
is cut into cells with uniform size as shown in Fig. 14(a). Resolution in the

27



Fig. 13: Density contours of the spinning detonation front on the “pool” of
level 1. Frames (a)-(j) show a typical spinning detonation cycle.

Fig. 14: Mesh near the detonation front. (a) WENO with uniform mesh. (b)
AMR&WENO with refinement level lmax = 1. (c) AMR&WENO with level
lmax = 2.
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Fig. 15: Density iso-surface of the spinning detonation front. (a) WENO
with uniform mesh. (b) AMR&WENO with refinement level lmax = 1. (c)
AMR&WENO with level lmax = 2.
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global domain is the same. For AMR&WENO with lmax = 1, the domain is
cut into cells with uniform size. The regions where a high local resolution
is needed are determined, and cells in these regions are divided into smaller
ones as shown in Fig. 14(b). The subdivided cells can be further divided
into smaller ones to get higher local resolution as displayed in Fig. 14(c).
Fig. 15(a)-(c) give the density iso-surfaces of the spinning detonation front for
the three cases. By comparing resolution on the iso-surfaces, we can find that
AMR&WENO with lmax = 2 has the highest resolution. AMR&WENO with
lmax = 1 case follows it. Both of them are better than the WENO scheme.
The comparison confirms the superior performance of the AMR&WENO
method.

5. Conclusions

In this paper, a well-designed adaptive mesh refinement (AMR&WENO)
method is proposed to simulate multi-dimensional detonation. A new cell-
based data structure is used to organize the data. The new data structure
makes it possible for cells to communicate with each other quickly and easily.
High order WENO interpolation and Hermite interpolation are used to pro-
long the data from parent cells to child cells. High order prolongation can im-
prove the accuracy of the AMR&WENO method. A workload balancing par-
allel AMR&WENO code is developed utilizing the Hilbert space-filling curve
algorithm and is used for detonation simulation. The high order accuracy
of AMR&WENO is verified using smooth test problems. One dimensional
result shows that AMR&WENO is convergent and robust in solving deto-
nation problems. The AMR&WENO method is also performed in two and
three dimensional simulations. The comparison results between the classical
WENO scheme on uniform meshes and AMR&WENO further demonstrate
the high performance the AMR&WENO method.
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