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Abstract

Fourier spectral methods achieve exponential accuracy both on the approximation level

and for solving partial differential equations (PDEs), if the solution is analytic. If the so-

lution is discontinuous but piecewise analytic up to the discontinuities, Fourier spectral

methods produce poor pointwise accuracy, but still maintains exponential accuracy after

post-processing [13]. In [7], an extended technique is provided to recover exponential accu-

racy for functions which have end-point singularities, from the knowledge of point values on

standard collocation points. In this paper, we develop a technique to recover exponential

accuracy from the first N Fourier coefficients of functions which are analytic in the open in-

terval but have unbounded derivative singularities at end points. With this post-processing

method, we are able to obtain exponential accuracy of spectral methods applied to linear

transport equations involving such functions.
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1 Introduction

In this paper, we are concerned with the accuracy of spectral methods when applied to

problems involving piecewise smooth functions with unbounded derivative singularities. We

investigate the issue of overcoming the Gibbs phenomenon, which describes how a global

spectral approximation of a piecewise analytic function behaves at the jump discontinuity.

A prototype is to use Fourier series to approximate an analytic but non-periodic function

u(x) on interval [−1, 1], which has discontinuities at the boundaries of the interval when

extended periodically with period 2. The Fourier partial sum using the first 2N + 1 modes

uN(x) =
∑

|k|≤N

ũke
ikπx, (1.1)

with Fourier coefficients ũk defined by

ũk =
1

2

∫ 1

−1

u(x)e−ikπxdx, (1.2)

has large oscillations near the jumps, which are not improved as the number of terms in the

partial sum increases. In smooth regions away from the discontinuities, convergence is only

first order. Therefore, there is no convergence in the maximum norm. This is the so-called

Gibbs phenomenon.

In [14, 9, 12, 10, 11], Gottlieb et al. developed a general framework to overcome this

difficulty. This technique recovers exponential accuracy in the maximum norm for any

(sub-)interval of analyticity (up to and including the boundaries of this interval), from the

knowledge of either the first N spectral expansion coefficients, or the point values at N

standard collocation points. This means that exponential accuracy is recovered at all points,

including at the actual discontinuity points (the left and right limits at these points), if the

locations of these discontinuity points are known. If the locations of these discontinuity points

are not known exactly but are known to be within certain fixed intervals, then exponential

accuracy can be recovered from any interval which does not overlap with these fixed intervals

containing the discontinuities. In this framework, an important tool is the set of Gegenbauer
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polynomials, which are orthogonal in the interval [−1, 1] with the weight (1 − x2)λ− 1

2 . The

key in this technique is that the parameter λ in the weight function as well as the number

of terms m retained in the Gegenbauer expansion should both be chosen proportional to

N . For a review, we refer to [13]. These methods are widely used as “reconstruction” or

“post-processing” techniques to recover exponential accuracy for point values or coefficients

based on the spectral approximation, such as in recovering high order information of the

discontinuous solutions of scalar nonlinear hyperbolic PDEs [18], and in the simulation of

sophisticated problems [8]. These techniques have been successfully applied to the field of

image reconstruction [3, 4, 2, 5] as well. The Gegenbauer basis has also been successful

in recovering lost order of accuracy in other types of approximations, such as weighted

essentially non-oscillatory (WENO) solutions of hyperbolic PDEs [15], and in radial basis

functions approximations of linear and nonlinear hyperbolic PDEs [17].

Besides piecewise analytic functions, functions with end-point singularities exist in many

applications. Most fractional differential equations have singular solutions. Many standard

numerical methods solving fractional differential problems give poor accuracy, due to the

lack of regularities. Therefore, it is important to provide a way to recover accuracy of so-

lutions as well as to obtain high order accuracy at the approximation level. In [1], Adcock

et al. focused on the approximation of functions which are analytic on a compact interval

except at the end-points, and utilized variable transform methods. They introduced two new

mappings from the original interval to either semi-infinite or infinite interval, and provided

approximation procedure from sampling information on the new region. The two new map-

pings, compared with the standard transformations, vastly improve resolution power, and

achieve root exponential decays, with proper choice of parameters in the mappings.

We are interested in developing post-processors to recover high order accuracy for such

functions as well. This task is significantly more difficult than the recovery of accuracy for

piecewise analytic functions. In particular, the extension of the technique in [13] to functions

with end-point singularities is highly non-trivial. In [7], we made this extension to handle
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spectral collocation methods for such functions. The reconstruction procedure is performed

on functions of the following form

f(x) = a(x) + b(x)(1 + x)s, x ∈ [−1, 1] (1.3)

where s is a given fractional constant

0 < s =
p

q
< 1 (1.4)

with relatively prime integers p and q, and a(x) and b(x) are both analytic but unknown

functions. Such functions lack regularities, and the derivatives blow up at the end points.

With this extension, exponential accuracy can be obtained from standard collocation point

values of such functions, which is different from sampling on the mapped region as in [1],

by properly choosing the parameters λ and m to be linearly dependent on N . A crucial

modification of the choice of parameters and a more refined estimate were necessary to

balance the terms in the truncation error for this analysis.

In this study, we are interested in recovering high order accuracy from the first 2N + 1

Fourier coefficients for functions in the form (1.3). The objective is to extract the hidden

information from the truncated Fourier series (1.1) and recover exponentially accurate point

values at every point including at the singularities.

As in [7], we assume that the analytic functions a(x) and b(x), denoted generically as

c(x), satisfy the following condition.

Assumption 1.1 There exists a constant ρ ≥ 1 and a constant C(ρ) such that, for every

k ≥ 0,

max
−1≤x≤1

∣

∣

∣

∣

dkc(x)

dxk

∣

∣

∣

∣

≤ C(ρ)
k!

ρk
.

This is a standard assumption for analytic functions, where ρ is the distance from the

interval [−1, 1] to the nearest singularity of the function c(x) in the complex plane.

We will use the following one-to-one transformation between x ∈ [−1, 1] and y ∈ [−1, 1]:

(2q−1(1 + x))
1

q = 1 + y (1.5)
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where q is defined in (1.4).

The function F (y) = f(x(y)) of the variable y has its usual Gegenbauer expansion under

the basis {Cλ
l (y)}:

f(x(y)) = F (y) =

∞
∑

l=0

f̂λ(l)Cλ
l (y)

with the Gegenbauer coefficients f̂λ(l) given by

f̂λ(l) =
1

hλ
l

∫ 1

−1

(1 − y2)λ− 1

2 F (y)Cλ
l (y)dy (1.6)

where the precise value of the normalization constant hλ
l will be given later by (2.4) in

Definition 2.1.

Our goal is to find a good approximation to the first m ∼ N Gegenbauer coefficients

f̂λ(l) in (1.6), denoted as ĝλ(l) (defined later in (3.1)), from the given Fourier coefficients.

We will then obtain the approximation of f(x) using these m ∼ N terms of its Gegenbauer

expansion:

fm,λ
N (x) =

m
∑

l=0

ĝλ(l)Cλ
l (y(x)).

With proper choice of the parameters λ and m, the error between the reconstructed approxi-

mation fm,λ
N (x) and the function f(x), measured in the maximum norm, decays exponentially

as N increases. Therefore, the reconstruction method provides a way to post-process func-

tions with such singularities from the first 2N + 1 accurate Fourier coefficients.

Another major concern in the reconstruction methods is the possible existence of noise

in the data. The Gegenbauer reconstruction techniques in [13] work well with noise. This is

because the noise is projected to be very small in the Gegenbauer basis. Similar robustness

can also be observed in the new reconstruction methods for piecewise smooth functions with

end-point singularities.

The analysis of the error from reconstruction divided into two parts: the truncation error

and the regularization error. The truncation error measures the difference between the exact

Gegenbauer coefficients of f(x(y)) with λ ∼ N , and the approximate Gegenbauer coefficients

ĝλ(l) obtained by using the truncated Fourier series. This will be investigated in Section
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3. In relation to the collocation case as in [7], the Galerkin case is more difficult for such

singularity cases, which involves different and more complicated analysis. The regularization

error measures the difference between the Gegenbauer expansion with λ ∼ N , using the first

m ∼ N Gegenbauer coefficients, and the function itself. This error is estimated in Section 4.

The results for the reconstruction are summarized in Theorem 4.3 in Section 4. We also give

an analysis of the Fourier Galerkin methods for solving initial problems of linear hyperbolic

time-dependent partial differential equations with reconstructions in Section 5. Section 6

contains several numerical examples to illustrate our results and robustness to noise. In

Section 2, we shall give several useful preliminary properties and estimates. Concluding

remarks are given in Section 7.

Throughout this paper, we will use C to denote a generic constant either independent of

the growing parameters, or depending on them at most in polynomial growth. The details

will be indicated clearly in the text. These constants may not take the same value at different

places.

2 Preliminaries

In this section, we will introduce the Gegenbauer polynomials and discuss some of their

asymptotic behavior (see Bateman [6]). Then we will give some estimates as preparation for

the error estimates in Section 3.

Definition 2.1 The Gegenbauer polynomial Cλ
n(x), for λ ≥ 0, is defined by

(1 − x2)λ− 1

2 Cλ
n(x) =

(−1)n

2nn!
G(λ, n)

dn

dxn

[

(1 − x2)n+λ− 1

2

]

where G(λ, n) is given by

G(λ, n) =
Γ(λ + 1

2
)Γ(n + 2λ)

Γ(2λ)Γ(n + λ + 1
2
)

(2.1)

for λ > 0, by

G(0, n) =
2
√

π(n − 1)!

Γ(n + 1
2
)
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for λ = 0 and n ≥ 1, and by

G(0, 0) = 1

for λ = 0 and n = 0. Notice that by this standardization, C0
n(x) is defined by:

C0
n(x) = lim

λ→0+

1

λ
Cλ

n(x) =
2

n
Tn(x), n > 0; C0

0(x) = 1,

where Tn(x) are the Chebyshev polynomials.

Under this definition we have, for λ > 0,

Cλ
n(1) =

Γ(n + 2λ)

n!Γ(2λ)
; (2.2)

for λ = 0 and n ≥ 1,

C0
n(1) =

2

n
;

for λ = 0 and n = 0,

C0
n(1) = 1;

and
∣

∣Cλ
n(x)

∣

∣ ≤ Cλ
n(1), −1 ≤ x ≤ 1. (2.3)

The Gegenbauer polynomials are orthogonal under their weight function (1 − x2)λ− 1

2 :

∫ 1

−1

(1 − x2)λ− 1

2 Cλ
k (x)Cλ

n(x)dx = δk,nh
λ
n

where, for λ > 0,

hλ
n = π

1

2 Cλ
n(1)

Γ(λ + 1
2
)

Γ(λ)(n + λ)
; (2.4)

for λ = 0 and n ≥ 1,

h0
n =

2π

n2
;

for λ = 0 and n = 0,

h0
0 = π.

We will need to use the Stirling’s formula and the estimate of hλ
n for the asymptotics of

the Gegenbauer polynomials for large n and λ.
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Lemma 2.2 We have the Stirling’s formula

(2π)
1

2 xx+ 1

2 e−x ≤ Γ(x + 1) ≤ (2π)
1

2 xx+ 1

2 e−x+ 1

12x , x ≥ 1. (2.5)

Lemma 2.3 There exists a constant C independent of λ and n such that

C−1 λ
1

2

n + λ
Cλ

n(1) ≤ hλ
n ≤ C

λ
1

2

n + λ
Cλ

n(1). (2.6)

We would need to estimate || dt

dxt{ dl

dyl (1−y2)l+λ− 1

2
dy

dx
}||L∞, therefore we need the following

preliminaries first.

Remark 2.4 dl

dyl (1 − y2)l+λ− 1

2
dy

dx
has up to t-th derivatives in x, where t = ⌊λ+ 1

2

q
⌋ − 1 , the

largest integer below
λ+ 1

2

q
− 1.

It is easy to observe that

dn

dxn
(1 − y(x)2)l+λ− 1

2 = AnY n
1 Y n

2 Y n
3 , 0 ≤ n ≤ t + 1 (2.7)

where

A =
2q

2q
, Y n

1 = (1 − y(x)2)l+λ− 1

2
−qn, Y n

2 = (1 − y(x))n(q−1),

and Y n
3 satisfies the following recursive relation:

Y 0
3 = 1

Y n+1
3 = − [(2l + 2λ − qn − n − 1)y + n(q − 1)]Y n

3 + (1 − y2)
d

dy
Y n

3 , 0 ≤ n ≤ t.

It is easy to show that Y n
3 is an n-th degree polynomial of y. We have the following estimate

on Y n
3 .

Lemma 2.5 We have, for 0 ≤ n ≤ t + 1,

|Y n
3 | ≤ (2l + 2λ)n, y ∈ [−1, 1] (2.8)
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Proof : The proof can be found in [7]. In the proof, Y n
3 is rewritten as Y n

3 =
∑n

i=0 aiy
i and

we denote Sn =
∑n

i=0 |ai|. The proof also provides an estimate for Sn:

Sn ≤ (2l + 2λ)n (2.9)

This will be used later in the estimation.

For l ≥ 1,

dt

dxt

{

dl

dyl
(1 − y2(x))l+λ− 1

2

dy

dx

}

=
dl−1

dyl−1

dt+1

dxt+1

{

(1 − y2(x))l+λ− 1

2

}

(2.10)

Lemma 2.6 We have the following estimate for l ≥ 1,

∣

∣

∣

∣

dl−1

dyl−1

dt+1

dxt+1

{

(1 − y2(x))l+λ− 1

2

}

∣

∣

∣

∣

≤ CAt+12l+λ(l + λ)l+t, y ∈ [−1, 1] (2.11)

Proof :

dl−1

dyl−1

dt+1

dxt+1

{

(1 − y2(x))l+λ− 1

2

}

= At+1 dl−1

dyl−1
{Y t+1

1 Y t+1
2 Y t+1

3 }

For simplicity, we denote

di

dyi
{Y t+1

1 Y t+1
2 Y t+1

3 } = X i
1X

i
2, 0 ≤ i ≤ l − 1

where,

X i
1 = (1 − y2)l+λ− 1

2
−q(t+1)−i

and X i
2 satisfies the following recursive relationship:

X0
2 = Y t+1

2 Y t+1
3

X i+1
2 = −

[

2(l + λ − q(t + 1) − 1

2
− i)y

]

X i
2 + (1 − y2)

d

dy
X i

2, 0 ≤ i < l − 2.
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It is easy to find out that X i
2 is a polynomial of degree (t + 1)q + i. We only need to prove

that

|X l−1
2 | ≤ C2l+λ(l + λ)l+t (2.12)

We can rewrite it as X i
2 =

∑(t+1)q+i

j=0 βi
jy

j. In order to get the upper bound for X l−1
2 as in

(2.12), we need to estimate X0
2 first. Let us rewrite Y t+1

3 =
∑t+1

i=0 aiy
i with its coefficients ai.

X0
2 = (1 − y)(t+1)(q−1)Y t+1

3

=

(t+1)(q−1)
∑

j=0

(

(t + 1)(q − 1)

j

)

(−y)j

t+1
∑

i=0

aiy
i

=

(t+1)(q−1)
∑

j=0

t+1
∑

i=0

(

(t + 1)(q − 1)

j

)

(−1)jaiy
i+j

Then we measure the sum of the coefficients of X0
2 ,

(t+1)q
∑

k=0

|β0
k| ≤

(t+1)(q−1)
∑

j=0

t+1
∑

i=0

(

(t + 1)(q − 1)

j

)

|ai|

=

(t+1)(q−1)
∑

j=0

(

(t + 1)(q − 1)

j

) t+1
∑

i=0

|ai|

= 2(t+1)(q−1)St+1

≤ 2(t+1)q(l + λ)t+1

Using induction, we can easily get similar result for X l−1
2 ,

(t+1)q+l−1
∑

k=0

|βl−1
k | ≤ 2(t+1)q+l−1(l + λ)t+l

which implies that

|X l−1
2 | ≤ 2(t+1)q+l−1(l + λ)t+l

≤ C2λ+l(l + λ)t+l

Thus, we complete the proof.
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Remark 2.7 The result in Lemma 2.6 is also true for l = 0. Hence we have
∥

∥

∥

∥

dt

dxt

{

dl

dyl
(1 − y2(x))l+λ− 1

2

dy

dx

}
∥

∥

∥

∥

L∞

≤ CAt+12l+λ(l + λ)l+t, l ≥ 0 (2.13)

3 Truncation error

In this section, we will establish the error estimate for replacing the Gegenbauer coefficients

f̂λ(l) by the new approximated coefficients ĝλ(l), defined later in (3.1), in the Gegenbauer

expansion.

Consider the function in the form of

f(x) = a(x) + b(x)(1 + x)s

where s is a given constant 0 < s = p

q
< 1 with relatively prime positive integers p and q,

and a(x) and b(x) are analytic functions satisfying Assumption 1.1.

We assume that the Fourier coefficients f̃n (−N ≤ n ≤ N) are given. Thus we have its

truncated Fourier series

fN (x) =
∑

|n|≤N

f̃ne
inπx.

We are interested in recovering the first m coefficients in the Gegenbauer expansion of f(x).

For the function F (y) = f(x(y)), we have the usual Gegenbauer expansion with the basis

{Cλ
l (y)}:

f(x(y)) = F (y) =
∞
∑

l=0

f̂λ(l)Cλ
l (y(x))

where the Gegenbauer coefficients f̂λ(l) are given by (1.6).

The candidate for approximating the Gegenbauer coefficients f̂λ(l) is:

ĝλ(l) =
1

hλ
l

∫ 1

−1

(1 − y2)λ− 1

2 fN ◦ x(y)Cλ
l (y)dy. (3.1)

Definition 3.1 The truncation error is defined as

TE(λ, m, N) = max
−1≤y≤1

∣

∣

∣

∣

∣

m
∑

l=0

(f̂λ(l) − ĝλ(l))Cλ
l (y)

∣

∣

∣

∣

∣

(3.2)

where, f̂λ(l), ĝλ(l) are defined in (1.6) and (3.1)
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In the next two lemmas, we bound the truncation error using the regularity of the function

M(y) as in (3.3), and then in terms of the number of given Fourier coefficients N , the number

of Gegenbauer polynomials m and parameter of Gegenbauer polynomial λ.

Lemma 3.2 The truncation error is bounded by

TE(λ, m, N) ≤ C

(Nπ)t−1

m
∑

l=0

Cλ
l (1)

hλ
l

∥

∥

∥

∥

dt

dxt
M(y)

∥

∥

∥

∥

L∞

where t = ⌊λ+ 1

2

q
⌋ − 1, and

M(y) = (1 − y2)λ− 1

2 Cλ
l (y)

dy

dx
(3.3)

Proof We have

TE(λ, m, N) = max
−1≤y≤1

∣

∣

∣

∣

∣

m
∑

l=0

Cλ
l (y)

hλ
l

∫ 1

−1

(1 − y2)λ− 1

2 (f − fN) ◦ x(y)Cλ
l (y)dy

∣

∣

∣

∣

∣

≤
m
∑

l=0

Cλ
l (1)

hλ
l

∣

∣

∣

∣

∫ 1

−1

(1 − y2)λ− 1

2 (f − fN ) ◦ x(y)Cλ
l (y)dy

∣

∣

∣

∣

=

m
∑

l=0

Cλ
l (1)

hλ
l

∣

∣

∣

∣

∣

∣

∫ 1

−1

(1 − y2)λ− 1

2

∑

|n|>N

f̃neinπxCλ
l (y)dy

∣

∣

∣

∣

∣

∣

=

m
∑

l=0

Cλ
l (1)

hλ
l

∣

∣

∣

∣

∣

∣

∑

|n|>N

f̃n

∫ 1

−1

einπxM(y)dx

∣

∣

∣

∣

∣

∣

=

m
∑

l=0

Cλ
l (1)

hλ
l

∣

∣

∣

∣

∣

∣

∑

|n|>N

f̃n

(inπ)t

∫ 1

−1

einπx dt

dxt
M(y)dx

∣

∣

∣

∣

∣

∣

≤ C
m
∑

l=0

Cλ
l (1)

hλ
l

∑

|n|>N

1

(|n|π)t

∥

∥

∥

∥

dt

dxt
M(y)

∥

∥

∥

∥

L∞

≤ C

(Nπ)t−1

m
∑

l=0

Cλ
l (1)

hλ
l

∥

∥

∥

∥

dt

dxt
M(y)

∥

∥

∥

∥

L∞

The definitions of f̂λ(l) in (1.6) and ĝλ(l) in (3.1) are used in the first equality; (2.3) is

used in the second inequality; in the third equality, the error of the Fourier partial sum

f(x) − fN(x) =
∑

|n|>N f̃ne
inπx is used; the substitution (1.5) has been made in the integral

in the fourth equality; in the fifth equality, we use integration by parts t times, and the fact
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that di

dxi M(y) vanishes at y = ±1 for 0 ≤ i ≤ t − 1; since f(x) is an L2-function, its Fourier

coefficients f̃n are uniformly bounded, i.e., |f̃n| ≤ C, which is used in the sixth inequality.

Lemma 3.3

TE(λ, m, N) ≤ C
(m + 1)2λAt+1(m + λ)m+t+1Γ(λ)Γ(m + 2λ)

m!Γ(2λ)Γ(m + λ + 1
2
)(Nπ)t−1

Proof From Lemma 3.2, we have

TE(λ, m, N) ≤ C

(Nπ)t−1

m
∑

l=0

Cλ
l (1)

hλ
l

∥

∥

∥

∥

dt

dxt

[

(1 − y2)λ− 1

2 Cλ
l (y)

dy

dx

]
∥

∥

∥

∥

L∞

=
C

(Nπ)t−1

m
∑

l=0

Cλ
l (1)G(λ, l)

2ll!hλ
l

∥

∥

∥

∥

dt

dxt

{

dl

dyl
(1 − y2(x))l+λ− 1

2

dy

dx

}
∥

∥

∥

∥

L∞

≤ C
At+12λ

(Nπ)t−1

m
∑

l=0

Cλ
l (1)G(λ, l)(l + λ)l+t

l!hλ
l

= C
At+12λΓ(λ)

Γ(2λ)(Nπ)t−1

m
∑

l=0

Γ(l + 2λ)(l + λ)l+t+1

l!Γ(l + λ + 1
2
)

≤ C
At+12λΓ(λ)(m + 1)Γ(m + 2λ)(m + λ)m+t+1

m!Γ(2λ)Γ(m + λ + 1
2
)(Nπ)t−1

where the definition of Gegenbauer polynomial in (2.1) is used in the second step; Lemma 2.6

and Remark 2.7 are used in the third inequality; (2.1) and (2.4) are used in fourth equality;

in the last step, we use the fact that Γ(l + 2λ)(l + λ)l+t+1/{l!Γ(l + λ + 1
2
)} is an increasing

function of l.

If both λ and m grow linearly with N , the truncation error can be made to decay

exponentially. This result is stated in the following theorem.

Theorem 3.4 (The exponential decay of the truncation error) Let λ = αN , m = βN with

0 < α, β < 1, then

TE(αN, βN, N) ≤ CN2qN
T

with

qT =
A

α
q eβ(2α + β)2α+β

π
α
q (2α)αββ(α + β)(1− 1

q
)α

.
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When we choose β = γα, i.e. m = γλ, we have

qT =

(

A
1

q eγ(2 + γ)2+γα
1

q

2π
1

q γγ(1 + γ)1− 1

q

)α

.

If we choose α to satisfy

α <
π

A

(

2γγ(1 + γ)1− 1

q

eγ(2 + γ)2+γ

)q

, (3.4)

then qT < 1.

Proof From lemma 3.3, we use Stirling’s formula (2.5) and get

TE(λ, m, N) ≤ C
(m + 1)2λAt+1(m + λ)m+t+1Γ(λ)Γ(m + 2λ)

m!Γ(2λ)Γ(m + λ + 1
2
)(Nπ)t−1

≤ C
emAt+1(m + 2λ)m+2λ− 1

2

2λλλ(m + λ)λ−t−1mm− 1

2 (Nπ)t−1

hence

TE(αN, βN, N) ≤ CN2

(

A(α + β)

π

)t{
eβ(2α + β)2α+β

(2α)αββ(α + β)α

}N

≤ CN2

(

A(α + β)

π

)
α
q

N {
eβ(2α + β)2α+β

(2α)αββ(α + β)α

}N

= CN2qN
T

where we have used λ
q
− 2 ≤ t = ⌊λ+ 1

2

q
⌋ − 1 ≤ λ

q
in the second step.

Remark 3.5 With proper choice of the ratios between λ, m and N , qT can be a positive

number less than 1, and then the upper bound of truncation error is exponentially small. In

the proof, there is no effort to optimize the parameters. In practice, λ and m should be chosen

to balance the truncation error as well as the regularization error, which will be analyzed in

the next section.
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4 Regularization error

Regularization error, the second part of the post-processing error, is caused by approximating

f(x) = a(x) + b(x)(1 + x)s on [−1, 1] by its Gegenbauer expansion based on the Gegenbauer

polynomials Cλ
l (x(y)). This has been studied in [7]. We will just quote the result.

The function F (y) = f(x(y)) = a◦x(y)+ b◦x(y)(1+ y)p2s−p of the variable y is analytic

on y ∈ [−1, 1]. Let us consider the Gegenbauer partial sum of the first m terms for the

function f(x) given by:

fλ,m(x) =
m
∑

l=0

f̂λ(l)Cλ
l (y(x)), (4.1)

with the Gegenbauer coefficients f̂λ(l) defined by (1.6).

Definition 4.1 The regularization error is defined by

RE(λ, m) = max
−1≤x≤1

∣

∣

∣

∣

∣

f(x) −
m
∑

l=0

f̂λ(l)Cλ
l (y(x))

∣

∣

∣

∣

∣

= max
−1≤y≤1

∣

∣

∣

∣

∣

f(x(y)) −
m
∑

l=0

f̂λ(l)Cλ
l (y)

∣

∣

∣

∣

∣

.

When both λ and m grow linearly with N , we have the following result for the estimate

of regularization error [7].

Theorem 4.2 (The exponential decay of the regularization error) For the function f(x) =

a(x) + b(x)(1 + x)s, with analytic functions a(x) and b(x) satisfying Assumption 1.1, if we

assume λ = αN and m = γλ, then

max
−1≤x≤1

∣

∣

∣

∣

∣

f(x) −
m
∑

l=0

f̂λ(l)Cλ
l (y(x))

∣

∣

∣

∣

∣

≤ CqN
R

where

qR =

(

(γ + 2)γ+2

ργ2γ+2(γ + 1)γ+1

)α

which is always less than 1.

Proof The proof of this theorem can be found in [7].
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We can combine the estimates for the truncation error and the regularization error and

obtain the following theorem about the reconstruction error:

Theorem 4.3 (Removal of the Gibbs Phenomenon) Consider a function in the form of

f(x) = a(x) + b(x)(1 + x)s, with given fractional constant 0 < s = p

q
< 1, and a(x) and b(x)

are analytic functions satisfying Assumption 1.1. Assume that the Fourier coefficient

f̃n =
1

2

∫ 1

−1

f(x)e−ikπxdx

are known for −N ≤ n ≤ N . Let ĝλ(l), with 0 ≤ l ≤ m, be the Gegenbauer expansion

coefficients of fN (x) =
∑

|n|≤N f̂ne
inπx, defined in (3.1). Then for λ = αN and m = γλ with

α <
π

A

(

2γγ(1 + γ)1− 1

q

eγ(2 + γ)2+γ

)q

,

we have

max
−1≤x≤1

∣

∣

∣

∣

∣

f(x) −
m
∑

l=0

ĝλ(l)Cλ
l (y(x))

∣

∣

∣

∣

∣

≤ C
(

qN
T + qN

R

)

where

qT =

(

A
1

q eγ(2 + γ)2+γα
1

q

2π
1

q γγ(1 + γ)1− 1

q

)α

< 1, qR =

(

(γ + 2)γ+2

ργ2γ+2(γ + 1)γ+1

)α

< 1.

Remark 4.4 In the proof, no attempt has been made to optimize the parameters. We will

discuss about the choice of parameters in numerical examples in Section 6.

Remark 4.5 For functions with multiple singularities, the reconstructions can be built piece

by piece, and on each piece the function has at most one end-point singularity. The technique

only needs to be modified by scaling. It is easy to prove that the reconstruction for each piece

can also be exponentially accurate with proper parameters.
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5 Error analysis for Fourier Galerkin methods with re-

constructions

In this section, we will consider using the new reconstruction method to post-process the so-

lution obtained by using Fourier Galerkin methods to solve linear, hyperbolic time-dependent

partial differential equations (PDEs) [16]. Consider the problem
{

ut − L u = 0, x ∈ [−1, 1], t > 0

u(x, 0) = g(x), x ∈ [−1, 1]
(5.1)

where L is a differential operator. In the Fourier Galerkin method, we seek solution uN(x, t)

from the space B̂N = span{eikπx}|k|≤N , i.e.:

uN(x, t) =
∑

|k|≤N

ak(t)e
ikπx (5.2)

where, ak(t) are unknown coefficients which will be determined by the method. In general,

the coefficients ak(t) are not equal to the Fourier coefficients ũk; they will be equal only

if we obtain the exact solution of the problem. In the Fourier Galerkin method, ak(t) are

determined by requiring that the residual

RN (x, t) =
∂uN (x, t)

∂t
− L uN(x, t) (5.3)

is orthogonal to B̂N . The method is defined by the requirement that the orthogonal pro-

jection of the residual onto the space B̂N is zero. If the residual is smooth enough, this

requirement implies that the residual itself is small.

When spectral method is used to solve PDEs, we will estimate the errors in the maximum

norm. If the solution lacks regularity,

‖u(x, t) − uN(x, t)‖L∞

can not be small even for t = 0, due to the Gibbs phenomenon. We would like to reconstruct

the solution from uN(x, t) at the final time t = T , and recover exponentially decaying error

‖u(x, T ) − QNuN(x, T )‖L∞

17



where QN is a post-processing operator.

In order to illustrate the post-processing methods clearly, we consider the simple linear

transport equations involving piecewise smooth functions with unbounded derivative singu-

larities:
{

ut + cux = 0, x ∈ [−1, 1], t > 0

u(x, 0) = a(x) + b(x)(1 + x)s, x ∈ [−1, 1]
(5.4)

with periodic boundary conditions, where c is the phase speed (for simplicity, assume that

c > 0), s is a given fractional constant

0 < s =
p

q
< 1 (5.5)

with relatively prime integers p and q, and a(x) and b(x) are both analytic functions. The

initial condition is C0,α Hölder continuous with α ≤ s and 2-periodic. It has a singularity in

[−1, 1], which means its first derivative blows up at x = −1. The solution to this problem is

u(x, t) = u(x − ct, 0) (5.6)

The singularities will move along the lines through points (x, t) = (2n − 1, 0) (here, n ∈ Z)

with direction (c, 1). Even though we consider functions with one singularity in this paper,

our technique can be easily applied to functions with finitely many such singularities in

[−1, 1] of known locations.

The coefficients ak(t) are determined by requiring that the residual

RN(x, t) =
∂uN(x, t)

∂t
+ c

∂uN(x, t)

∂x
(5.7)

is orthogonal to B̂N . If we rewrite the residual in terms of the Fourier series,

RN(x, t) =
∑

|k|≤∞

R̂k(t)e
ikπx, (5.8)

the orthogonality requirement yields

R̃k(t) =
1

2

∫ 1

−1

RN (x, t)e−ikπxdx = 0, −N ≤ k ≤ N. (5.9)
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This requirement provides (2N + 1) ordinary differential equations to determine the

(2N + 1) unknowns ak(t),

d

dt
ak(t) + ikπcak(t) = 0, −N ≤ k ≤ N, (5.10)

and the corresponding initial conditions are

uN(x, 0) =
∑

|k|≤N

ak(0)eikπx, (5.11)

ak(0) =
1

2

∫ 1

−1

u(x, 0)e−ikπxdx (5.12)

For this linear constant coefficient problem, RN (x, t) itself is in the space B̂N , therefore

the orthogonal complement must be zero, i.e.,

RN(x, t) = 0.

It means that we obtain the exact solution of this linear problem by Fourier Galerkin

methods. Therefore, the coefficients ak(t) are exactly the Fourier coefficients for the solution

u(x, t), which has singularities at (2n − 1 + ct, t) (here, n ∈ Z).

In order to recover the exponential accuracy of the solution, we need to take post-

processing on its translation v(x, t) = u(x + ct, t), which has a singularity x = −1 in the

interval [−1, 1]. The function v(x, t) behaves like (1 + x)s near the singularity. Under this

translation, the Fourier coefficients bk(t) of v(x, t) are

bk(t) = eikπctak(t). (5.13)

From the truncated Fourier series vN(x, t) =
∑

|k|≤N bk(t)e
ikπx, we get a reconstructed ap-

proximation

vλ,m
N (x, t) =

m
∑

l=0

v̂λ
l Cλ

l (y(x)), x ∈ [−1, 1] (5.14)

with

v̂λ
l =

1

hλ
l

∫ 1

−1

(1 − y2)λ− 1

2 vN(x(y), t)Cλ
l (y)dy. (5.15)
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Then the numerical solution after processing uλ,m
N (x, t) is obtained by

uλ,m
N (x, t) = QNuN(x, t) = vλ,m

N (x − ct, t). (5.16)

From Theorem 4.3, we obtain the following theorem on the accuracy in spectral methods

solving the problem (5.4).

Theorem 5.1 Using Fourier Galerkin method to solve problem (5.4), the solution uN(x, t)

is defined by

uN(x, t) =
∑

|k|≤N

ak(t)e
ikπx,

where the coefficients ak(t) are determined by (5.10) and (5.12). After post-processing, we

get

QNuN(x, t) = vλ,m
N (x − ct, t)

where, vλ,m
N (x, t) is defined in (5.14) and (5.15). The error

max
−1≤x≤1

|u(x, t) − QNuN(x, t)|

is exponentially small, when the parameters λ and m chosen in the post-processing are pro-

portional to N and satisfy (3.4).

Remark 5.2 For linear problems (5.4) with variable coefficients c(x), the computed coeffi-

cients ak(t) are not exact for t > 0. But they are still computed with exponential accuracy,

even with nonsmooth L2 initial data. Therefore, we can still observe improved accuracy after

post-processing, and numerical tests are shown in Section 6.

6 Numerical results

In this section, we give numerical examples to illustrate the results of the reconstruction

technique. In order to testify that exponential accuracy could be recovered from the knowl-

edge of the first 2N + 1 Fourier coefficients, we first test on the same two examples as in

[7].
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Example 6.1 We take the first 2N + 1 Fourier coefficients of function

u(x) = cos(x) + sin(x)
√

1 + x, x ∈ [−1, 1] (6.1)

and try to recover the pointwise values of the solution over [−1, 1].

First, the parameters are chosen according to

λ =
1

16
N, m =

3

80
N. (6.2)

For the sake of easy computation, we choose λ and m to be the biggest integer satisfying

(6.2).

In Fig. 6.1 (a), we show the errors in the logarithm scale, for N = 40, 80, 160, 320 and

640. In Table 6.1 “linear choice”, we show the maximum errors of the reconstruction over

x ∈ [−1, 1], for each N and the orders of convergence. We can clearly find out that the error

is exponentially decaying.

The other way is to find the optimal choice of the parameters such that the reconstruction

achieves the smallest error. To choose the optimal parameters, we compare the errors of all

the possible pairs 0 ≤ λ ≤ N
2

and 0 ≤ m ≤ N
2
. In Table 6.1 “optimal choice”, we also show

the L∞ errors of the reconstruction with the optimal choice for each N .

Table 6.1: Maximum error table

N
linear choice optimal choice

L∞ error order λ m L∞ error λ m
40 5.91E-001 2 1 1.21E-003 8 18
80 2.95E-001 1.00 5 3 5.25E-005 12 40
160 1.56E-002 4.25 10 6 5.57E-010 20 80
320 1.33E-005 10.19 20 12 2.75E-011 22 51
640 6.46E-012 20.98 40 24 1.11E-012 23 44

Example 6.2 We take the first 2N + 1 Fourier coefficients of function

u(x) = cos(x) + sin(x)(1 + x)
1

3 , x ∈ [−1, 1] (6.3)
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and try to recover the pointwise values of the solution over [−1, 1].

First, the parameters are chosen linearly dependent on N :

λ =
1

8
N, m =

1

32
N. (6.4)

In Fig. 6.1 (b), we show the errors in the logarithm scale, for N = 40, 80, 160, 320

and 640. In Table 6.2, we show the maximum errors of the reconstruction over x ∈ [−1, 1]

with both ways to choose parameters, for each N . We again clearly find out that the error is

exponentially decaying with linear choice.

Table 6.2: Maximum error table

N
linear choice optimal choice

L∞ error order λ m L∞ error λ m
40 7.13E-001 5 1 1.83E-001 5 12
80 3.64E-001 0.97 10 2 1.98E-002 7 33
160 2.91E-001 0.33 20 5 1.24E-003 12 76
320 1.17E-002 4.64 40 10 5.50E-006 17 97
640 1.83E-006 12.64 80 20 3.15E-007 21 89

Next, we reconstruct the same two functions with different levels of noise in data to test

the robustness to noise. The way we add noise to Fourier coefficients is to generate two

random and independent sequences, which are uniformly distributed in [− δ
2
, δ

2
] with noise

level δ, and then add the sequences to the real parts and imaginary parts of the Fourier

coefficients separately.

Example 6.3 (Noise) For the function

u(x) = cos(x) + sin(x)
√

1 + x, x ∈ [−1, 1] (6.5)

we try to recover it with given information of the first 2N +1 Fourier coefficients with certain

level of noise. We compare the maximum error of the reconstruction with different levels of

noise, for either the linear choice or the optimal choice of parameters λ and m as in Example

6.1. The results are listed in Table 6.3 and Table 6.4.
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Figure 6.1: Pointwise errors in the logarithm scale.

Example 6.4 (Noise) For the function

u(x) = cos(x) + sin(x)(1 + x)
1

3 , x ∈ [−1, 1] (6.6)

we try to recover it with given information of the first 2N +1 Fourier coefficients with certain

level of noise. We compare the maximum error of the reconstruction with different levels of

noise, for either the linear choice or the optimal choice of parameters λ and m as in Example

6.2. The results are listed in Table 6.5 and Table 6.6.
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Table 6.3: Maximum error with different levels of noise in data (linear choice)

N L∞ (no noise) L∞ noise L∞ noise L∞ noise

40 5.91E-01 6.07E-01 1.00E-02 5.53E-01 1.00E-01 8.54E-01 1.00E+00
80 2.95E-01 1.82E-01 1.00E-02 3.25E-01 1.00E-01 8.59E+00 1.00E+00
160 1.56E-02 1.53E-02 1.00E-05 8.16E-03 1.00E-04 9.44E-02 1.00E-03
320 1.33E-05 1.36E-05 1.00E-11 1.12E-05 1.00E-10 8.37E-05 1.00E-09

Table 6.4: Maximum error with different levels of noise in data (optimal choice)

N L∞ (no noise) L∞ noise L∞ noise L∞ noise

40 1.21E-03 1.16E-03 1.00E-07 3.30E-03 1.00E-06 2.66E-02 1.00E-05
80 5.25E-05 4.74E-05 1.00E-12 1.20E-04 1.00E-11 4.19E-04 1.00E-10
160 5.57E-10 4.97E-10 1.00E-22 4.81E-09 1.00E-21 6.24E-08 1.00E-20
320 2.75E-11 2.38E-11 1.00E-23 3.25E-11 1.00E-22 1.76E-10 1.00E-21

Table 6.5: Maximum error with different levels of noise in data (linear choice)

N L∞ (no noise) L∞ noise L∞ noise L∞ noise

40 7.13E-01 6.82E-01 1.00E-02 7.21E-01 1.00E-01 1.25E+00 1.00E+00
80 3.64E-01 3.43E-01 1.00E-02 8.04E-01 1.00E-01 8.30E+00 1.00E+00
160 2.91E-01 2.81E-01 1.00E-04 8.87E-01 1.00E-03 6.06E+00 1.00E-02
320 1.17E-02 1.65E-02 1.00E-08 4.93E-02 1.00E-07 1.13E+00 1.00E-06

Table 6.6: Maximum error with different levels of noise in data (optimal choice)

N L∞ (no noise) L∞ noise L∞ noise L∞ noise

40 1.83E-01 1.80E-01 1.00E-04 1.77E-01 1.00E-03 2.14E+00 1.00E-02
80 1.98E-02 1.01E-02 1.00E-06 8.46E-02 1.00E-05 4.89E-01 1.00E-04
160 1.24E-03 1.21E-03 1.00E-12 7.29E-03 1.00E-11 1.53E-02 1.00E-10
320 5.50E-06 5.16E-06 1.00E-18 2.73E-06 1.00E-17 1.13E-04 1.00E-16
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From the results in Example 6.3 and Example 6.4, we observe that the reconstruction

method works pretty well with noise. The more accurate the reconstruction is, the more

sensitive to noise it is. The linear choice of parameters is less sensitive, since it is patterned.

The optimal one is numerically chosen for best errors, thus is more sensitive to any pertur-

bation. And the allowable noise level to actual error level is about error2 for Example 6.3

and error3 for Example 6.4.

At last, we have numerical tests on Fourier Galerkin methods with post-processing for

initial boundary problems of linear transport equation with variable coefficients.

Example 6.5 We solve the following initial boundary problem
{

ut − xux = 0, x ∈ [−1, 1], t > 0

u(x, 0) = g(x) =
√

1 + x, x ∈ [−1, 1]
(6.7)

with periodic boundary condition.

The exact solution is u(x, t) =
√

1 + xet (mod 2). If we look at the solution at T = log 2,

it has two deformed “copies” of the initial condition, and has singularities at two places −0.5

and 0.5. Therefore, the filtered Fourier Galerkin method with Runge-Kutta time stepping (as

in [18]) provides solutions with poor accuracy and oscillations near the singularities, as in

Fig. 6.2. Here, we would like to recover the solution on [−0.5, 0], since the solution behaves

like square root at the left end of this sub-interval.

u(x, log 2) =
√

1 + 2x, x ∈ [−0.5, 0].

We choose the parameters λ and m in two different ways. First, we choose λ and m linearly

dependent on N :

λ =
N

80
, m =

N

4
.

The other way is to choose the pair, which gives best recovery, in the range 0 ≤ λ, m ≤ N
2
.

The results are listed in Table 6.7 and shown in Fig. 6.3. With both choices, the solutions

after post-processing provide improved accuracy, even up to the singularities. We also observe

exponential accuracy from the reconstruction with the linear choice.
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Figure 6.2: Numerical solution uN(x) (N = 10, 20, 40, and 80) on [−0.5, 0], using Fourier
Galerkin method with filters.

7 Concluding remarks

We have built the Gegenbauer polynomial based technique to reconstruct approximations

with exponential accuracy in the maximum norm, based on the Fourier coefficients, for piece-
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Figure 6.3: Pointwise errors of the reconstructions with two different strategies for choosing
parameters λ and m, in logarithm scale.

wise analytic functions where in each piece the function is analytic only in the open interval

with unbounded derivative end-point singularities. Such functions are significantly more
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Table 6.7: Maximum error table

N
linear choice optimal choice without PP

L∞ error order λ m L∞ error λ m L∞ error
10 6.93E-01 0 3 5.81E-01 1 2 6.57E-01
20 5.13E-01 0.43 0 5 1.72E-01 1 8 5.04E-01
40 1.01E-02 5.67 1 10 7.34E-03 1 6 4.45E-01
80 2.61E-05 8.60 1 20 2.61E-05 1 20 4.07E-01

difficult to handle than piecewise analytic functions which are analytic up to the discontinu-

ity points. Our technique provides a post-processing method for spectral methods to solve

transport equations involving such functions to achieve exponential accuracy. Preliminary

numerical results are provided to demonstrate the theory. This technique is easy to be gen-

erated to higher dimensional cases, and has potential applications for solving other partial

differential equations whose solutions have such singularities.
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