
Analysis of sharp superconvergence of local discontinuous Galerkin method for

one-dimensional linear parabolic equations 1

Yang Yang2 and Chi-Wang Shu3

Abstract

In this paper, we study the superconvergence of the error for the local discontinuous

Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when

the alternating flux is used. We prove that if we apply piecewise k-th degree polynomials, the

error between the LDG solution and the exact solution is (k + 2)-th order superconvergent

at the Radau points with suitable initial discretization. Moreover, we also prove the LDG

solution is (k + 2)-th order superconvergent for the error to a particular projection of the

exact solution. Even though we only consider periodic boundary condition, this boundary

condition is not essential, since we do not use Fourier analysis. Our analysis is valid for

arbitrary regular meshes and for Pk polynomials with arbitrary k ≥ 1. We perform numerical

experiments to demonstrate that the superconvergence rates proved in this paper are sharp.
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1 Introduction

In this paper, we apply local discontinuous Galerkin (LDG) method to one-dimensional linear

parabolic equation

ut = uxx, (x, t) ∈ [0, 2π] × [0, T ],
u(x, 0) = u0(x), x ∈ [0, 2π],

(1.1)

where the initial datum u0 is assumed to be sufficiently smooth. For simplicity, we will

consider periodic boundary condition u(0, t) = u(2π, t). However, this assumption is not

essential since the proof is not based on Fourier analysis. We use piecewise k-th degree

polynomials to approximate the solution in each cell and prove that, under suitable initial

discretization, the rate of convergence for the error between the LDG solution and the exact

solution is of (k + 2)-th order at the Radau points. Moreover, we also prove the (k + 2)-

th order superconvergence of the error between the LDG solution and a particular type of

projection of the exact solution estimated in Lp-norm, for any 1 ≤ p ≤ ∞.

The DG method was first introduced in 1973 by Reed and Hill [25], in the framework

of neutron linear transport. Later, the method was applied by Johnson and Pitkäranta to

a scalar linear hyperbolic equation and the Lp-norm error estimate was proved [23]. Subse-

quently, Cockburn et al. developed Runge-Kutta discontinuous Galerkin (RKDG) methods

for hyperbolic conservation laws in a series of papers [18, 17, 16, 19]. In [20], Cockburn and

Shu first introduced the LDG method to solve the convection-diffusion equation. Their idea

was motivated by Bassi and Rebay [8], where the compressible Navier-Stokes equations were

successfully solved.

The superconvergence properties have been analyzed intensively. In [2, 5], Adjerid et al.

studied the ordinary differential equations and proved the (k+2)-th order superconvergence

of the DG solutions at the downwind-biased Radau points. For hyperbolic equations, the

superconvergence results have been investigated by several authors [6, 7, 12, 27, 24, 26, 10, 9].

Especially, in [26], we obtained sharp superconvergence for linear hyperbolic equations by

using the dual argument, and this gives us the motivation to the prove the sharp super-
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convergence for linear parabolic equations. For convection-diffusion problems, in [3, 4], the

authors used numerical experiments to demonstrate the superconvergence of LDG solution

at the Radau points. In [11], the steady state solution was studied and the superconvergence

of the numerical fluxes was proved. In [13], Cheng and Shu discussed the superconvergence

property of the LDG scheme for heat equation by using piecewise linear approximations and

uniform meshes. Subsequently, they proved the (k + 3

2
)-th order superconvergence when

using piecewise k-th degree polynomials with arbitrary k on arbitrary regular meshes in [14].

However, the convergence rate obtained in [14] is not sharp. Numerical tests demonstrated

that the error of the DG solution towards a particular projection of the exact solution is

(k + 2)-th order accurate, even on highly non-uniform meshes. In [14], the framework to

prove the superconvergence results does not rely on Fourier analysis. Recently, in [10, 9], the

authors studied the sharp superconvergence of linear hyperbolic and parabolic equations.

In this paper, we give another proof for the estimate of the error between the exact and

numerical solutions at the Radau points for linear parabolic equations. Motivated by [26],

we adopt the dual argument to obtain the sharp rate of superconvergence and improve upon

the result in [14]. The proof works for arbitrary regular meshes and schemes of any order.

The organization of this paper is as follows. In Section 2, we introduce the LDG scheme

and state the main theorem. In Section 3, we present some preliminaries, including the

norms we use throughout the paper, Radau polynomials, some essential properties of the

finite element spaces, LDG spatial discretization as well as the error equations. Section 4

is the main body of the paper where the main theorem is proved. Numerical evidences

about the sharpness of the superconvergence estimates are given in Section 5. In Section

6, we present some concluding remarks and remarks on future work. Finally, the initial

discretization and properties about the test functions are given in Appendices A and B,

respectively.
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2 LDG scheme and the main result

In this section, we construct the LDG scheme for the linear parabolic equation (1.1). First,

we divide the computational domain Ω = [0, 2π] into N cells

0 = x 1
2
< x 3

2
< · · · < xN+

1
2

= 2π,

and define

Ij = (xj− 1
2
, xj+ 1

2
)

to be the cells. Let hj be the length of the cell Ij, and denote h = hmax = maxj hj and

hmin = minj hj to be the lengths of the largest and smallest cells, respectively.

The finite element space is defined as

V k
h =

{

v : v|Ij
∈ Pk(Ij), j = 1, · · · , N

}

,

where Pk(Ij) is the space of polynomials in Ij with degree no more than k. In addition, we

also define

H1
h =

{

v : v|Ij
∈ H1(Ij), j = 1, · · · , N

}

.

To construct the LDG scheme, we introduce an auxiliary variable q = ux, then (1.1) can

be written as a first order linear system

ut = qx,
q = ux.

(2.1)

The LDG scheme we consider is the following: find uh, qh ∈ V k
h such that for any vh, wh ∈ V k

h

((uh)t, vh)j = −(qh, (vh)x)j − q̂hv
+

h |j− 1
2

+ q̂hv
−
h |j+ 1

2
,

(qh, wh)j = −(uh, (wh)x)j − ûhw
+

h |j− 1
2

+ ûhw
−
h |j+ 1

2
,

(2.2)

where (u, v)j =
∫

Ij
uvdx, and v−h |j+ 1

2
denotes the left limit of the function vh at xj+ 1

2
. Likewise

for v+

h . q̂h and ûh are the numerical fluxes. For LDG scheme, we consider the alternating

fluxes

q̂h = q+

h , ûh = u−h , (2.3)
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or

q̂h = q−h , ûh = u+

h . (2.4)

In this paper, we use (2.4) as the numerical flux, then the LDG scheme turns out to be

((uh)t, vh)j = H1
j (qh, vh), (qh, wh)j = H2

j (uh, wh), (2.5)

where

H1
j (qh, vh) = −(qh, (vh)x)j − q−h v

+

h |j− 1
2

+ q−h v
−
h |j+ 1

2
, (2.6)

H2
j (uh, wh) = −(uh, (wh)x)j − u+

hw
+

h |j− 1
2

+ u+

hw
−
h |j+ 1

2
. (2.7)

In this paper, we assume k ≥ 1, and define P−u and P+u as two Gauss-Radau projections

of u into V k
h such that

(P−u, v)j = (u, v)j ∀v ∈ Pk−1(Ij) and P−u(x
−
j+ 1

2

) = u(x−
j+ 1

2

), (2.8)

(P+u, v)j = (u, v)j ∀v ∈ Pk−1(Ij) and P+u(x
+

j− 1
2

) = u(x+

j− 1
2

). (2.9)

For the initial discretization, we require

qh = P−q and ‖uh − P+u‖ = O(hk+2). (2.10)

This requirement is used in our proof. However, other initial discretizations, such as uh =

P−u, can still yield the same result in Theorem 2.1 in numerical experiments. The construc-

tion of the initial discretization will be given in Appendix A. Now, we can state the main

result.

Theorem 2.1. Let u(x, t) be the exact solution of the linear parabolic equation (1.1) and uh

be the numerical solution of the LDG scheme (2.5). The finite element space is made up of

polynomials of degree k ≥ 1. Then at t=T, we have

max
1≤j≤N

|(u− uh)(xj)| ≤
{

C(1 + T )hk+2 lnh k = 1
C(1 + T )hk+2 k ≥ 2

, (2.11)

where xj is any one of the left-biased Radau points in the cell Ij. The constant C does not

depend on h or T , but depends on ‖u‖k+5,2 and ‖u‖k+3,∞.
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In addition, we can also prove the following corollary.

Corollary 2.1. Suppose the conditions in the above theorem are satisfied, then we have

‖P+u− uh‖p ≤
{

C(1 + T )hk+2 lnh k = 1
C(1 + T )hk+2 k ≥ 2

, (2.12)

where 1 ≤ p ≤ ∞ is a constant, and the constant C does not depend on h, T but depends on

p, ‖u‖k+5,2 and ‖u‖k+3,∞.

3 Preliminaries

3.1 Norms

In this subsection, we present some norms that will be used later.

Denote ‖u‖p,Ij
to be the standard Lp-norms of u on Ij with 1 ≤ p <∞. For any natural

number ℓ ≥ 1, we consider the norm of the Sobolev space W ℓ,p(Ij), defined by

‖u‖ℓ,p,Ij
=

{

∑

0≤α≤ℓ

‖Dαu‖p
p,Ij

}1/p

,

where Dαu = dαu
dxα is the α-th order spatial derivative. Moreover, the W ℓ,∞-norm is defined

as

‖u‖ℓ,∞,Ij
= max

0≤α≤ℓ
‖Dαu‖∞,Ij

,

where ‖u‖∞,Ij
is the standard L∞-norm of u on Ij. Clearly, the L∞-norm is stronger than

the L2-norm, and we have

‖u‖2,Ij
≤ h

1/2

j ‖u‖∞,Ij
. (3.1)

For convenience, if we consider the standard L2-norm, then the corresponding index will be

omitted, and we use ‖u‖Ij
to denote ‖u‖2,Ij

.

Finally, we define the norms on the whole computational domain as follows:

‖u‖ℓ,p,Ω =

(

N
∑

j=1

‖u‖p
ℓ,p,Ij

)

1
p

, ‖u‖ℓ,∞,Ω = max
1≤j≤N

‖u‖ℓ,∞,Ij
,

where 1 ≤ p < ∞. For simplicity, if we consider the norm on the whole computational

domain Ω, then the corresponding index will be omitted. Especially, we use ‖ · ‖ for the

standard L2-norm on Ω.
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3.2 Radau polynomials

In this subsection, we study the properties of Radau polynomials, more details can be found

in [1].

We denote

Lk(x) =
(−1)k

2kk!

dk

dxk

[

(1 − x2)k
]

to be the Legendre polynomial of degree k on [−1, 1]. Then the left-biased Radau polynomial

of degree k + 1 is defined as

Rk+1
1 = Lk + Lk+1.

Moreover, we define the scaled left-biased Radau polynomial on cell Ij as

Rk+1
1,j (x) = Rk+1

1

(

2x− xj− 1
2
− xj+ 1

2

hj

)

,

and the left-biased Radau points on Ij are given as the zeros of Rk+1
1,j (x). In Theorem 2.1, we

would like to prove the superconvergence property at these points. Similarly, we also define

the right-biased Radau polynomial on [−1, 1] and the scaled one on Ij as

Rk+1
2 = (−1)k+1(Lk+1 − Lk) and Rk+1

2,j (x) = Rk+1
2

(

2x− xj− 1
2
− xj+ 1

2

hj

)

,

respectively.

The following two properties are important in our analysis.

• Rk+1
1,j (xj− 1

2
) = 0, Rk+1

1,j (xj+ 1
2
) = 2, Rk+1

2,j (xj− 1
2
) = 2, Rk+1

2,j (xj+ 1
2
) = 0.

• For any Q(x) ∈ Pk−1(Ij),
∫

Ij
Rk+1

1,j (x)Q(x)dx = 0 and
∫

Ij
Rk+1

2,j (x)Q(x)dx = 0.

3.3 Properties of the finite element space

In this subsection, we state some properties of the finite element space. Let us start with

the following inverse property [15].

Lemma 3.1. Assuming u ∈ V k
h , then there exists a constant C > 0 independent of h and u

such that
∣

∣

∣
u−

j+ 1
2

∣

∣

∣
+
∣

∣

∣
u+

j− 1
2

∣

∣

∣
≤ Ch

−1/2

j ‖u‖Ij
. (3.2)
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In addition to the Gauss-Radau projections P− and P+ defined in (2.8) and (2.9), we also

introduce the k-th order L2 projection of u as a function Pku ∈ V k
h such that:

(Pku, v)j = (u, v)j , ∀v ∈ Pk(Ij). (3.3)

Suppose Ph is a projection, either Pk, P+ or P−. Denote the error operator by P
⊥
h = I − Ph,

where I is the identity operator. By the scaling argument, we have the following lemma [15].

Lemma 3.2. Suppose the function u(x) ∈ Ck+1(Ij), then there exists a positive constant C

independent of h and u, such that for any natural number m with 0 ≤ m ≤ k, we have

‖P
⊥
h u‖Ij

≤ Chm+1
j ‖Dm+1u‖Ij

and ‖P
⊥
h u‖∞,Ij

≤ Chm+1
j ‖Dm+1u‖∞,Ij

. (3.4)

Besides the above, we also use the following lemma for L1-norm error estimates [15].

Lemma 3.3 (Bramble-Hilbert Lemma). Suppose the function u(x) ∈ Ck+1(Ij), then there

exists a positive constant C independent of h and u, such that

inf
v∈Pk

‖u− v‖1,Ij
≤ Chk+1

j ‖Dk+1u‖1,Ij
. (3.5)

Moreover, one can also prove the following superconvergence property [2].

Lemma 3.4. Suppose u(x) ∈ Ck+2(Ij), and xj is one of the left-biased Radau points in the

cell Ij, then

|(u− P+u)(xj)| ≤ Chk+2
j ‖Dk+2u‖∞,Ij

. (3.6)

Now, we move on to the projection of functions depending not only on the spatial variable

x but also on the time variable t. Suppose u(x, t) is a function differentiable and integrable

with respect to t, and t1, t2 are two real values such that t1 > t2, then we have

Ph (ut(x, t)) = (Phu(x, t))t , and Ph

(
∫ t1

t2

u(x, t)dt

)

=

∫ t1

t2

(Phu(x, t))dt. (3.7)
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3.4 Properties of the LDG spatial discretization

In this subsection, we present some basic properties about the bilinear forms H1
j and H2

j .

The definitions of the two Gauss-Radau projections (2.8) and (2.9) lead to the following

lemma.

Lemma 3.5. Suppose vh ∈ V k
h and p(x) ∈ H1

h. The two Gauss-Radau projections satisfy

the following properties

H1
j (P

⊥
−p(x), vh) = 0, H1

j (vh,P
⊥
+p(x)) = 0, (3.8)

and

H2
j (P

⊥
+p(x), vh) = 0, H2

j (vh,P
⊥
−p(x)) = 0. (3.9)

Moreover, we define the bilinear forms and inner product on the whole computational

domain Ω as

H1(p, q) =
∑

j

H1
j (p, q), H2(p, q) =

∑

j

H2
j (p, q), and (p, q) =

∑

j

(p, q)j

to obtain the following corollary directly.

Corollary 3.1. Suppose p(x) ∈ H1
h and vh ∈ V k

h , there holds

H1(P⊥
−p(x), vh) = 0, H1(vh,P

⊥
+p(x)) = 0, (3.10)

and

H2(P⊥
+p(x), vh) = 0, H2(vh,P

⊥
−p(x)) = 0. (3.11)

3.5 The error equations

In this subsection, we proceed to construct the error equations. Denote the error between

the exact solution and the LDG numerical solution to be eu = u−uh. As the usual treatment

in finite element analysis, we divide the considered error into the form eu = ηu − ξu, where

ηu = u− P+u, and ξu = uh − P+u.
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Similarly, we also define eq = q − qh, and rewrite the error as eq = ηq − ξq, where

ηq = q − P−q, and ξq = qh − P−q.

Lemma 3.5 yields the following error equations of the LDG scheme. For any vh, wh ∈ V k
h ,

((eu)t, vh)j = H1
j (eq, vh)

= −H1
j ((ξq, vh)

= (ξq, (vh)x)j − ξ−q v
−
h |j+ 1

2
+ ξ−q v

+

h |j− 1
2

(3.12)

= −((ξq)x, vh)j − [ξq]v
+

h |j− 1
2
, (3.13)

and similarly

(eq, wh)j = (ξu, (wh)x)j − ξ+
u w

−
h |j+ 1

2
+ ξ+

u w
+

h |j− 1
2

(3.14)

= −((ξu)x, wh)j − [ξu]w
−
h |j+ 1

2
, (3.15)

where [v]j+ 1
2

= v(x+

j+ 1
2

)− v(x−
j+ 1

2

) is the jump of v across xj+ 1
2
. Equations (3.12)-(3.15) are

fundamental in our analysis. For example, we can obtain the estimates of eq and (eu)t. The

proof follows from [14] with some minor changes, so we skip it and state the results in the

following lemma.

Lemma 3.6. Let u(x, t), q(x, t) = ux(x, t) be the exact solution of the linear parabolic

equation (1.1) and uh, qh be the numerical solution of the LDG scheme (2.5). The finite

element space is made up of polynomials of degree k ≥ 1 and the initial discretization satisfies

(2.10). Then by using flux (2.4), we have

‖eq(t)‖ ≤ Chk+1(1 + t), (3.16)

and

‖(eu)t(t)‖ ≤ Chk+1(1 + t), (3.17)

where C = C(‖u‖k+5,2) is independent of h and t.
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Let us finish this section by providing the following lemma whose proof follows from

Lemma 3.7 in [26] with some minor changes.

Lemma 3.7. Suppose ξ̄u and ξ̄q are the cell averages of ξu and ξq, respectively. Then we

have

‖ξu − ξ̄u‖Ij
≤ Chj‖(ξu)x‖Ij

≤ Chj‖Pkeq‖Ij
≤ Chj‖eq‖Ij

, (3.18)

‖ξq − ξ̄q‖Ij
≤ Chj‖(ξq)x‖Ij

≤ Chj‖Pk(eu)t‖Ij
≤ Chj‖(eu)t‖Ij

. (3.19)

4 Proof of the main result

In this section, we proceed to prove Theorem 2.1 and give the estimate of eu(xj). The

following is the basic idea. Because of Lemma 3.4, only ξu(xj) is considered. Noticing

that ξu is a polynomial in each cell, by the Gauss-Radau quadrature, ξu(xj) can be written

as an inner product of ξu and a suitable polynomial Φ in cell Ij. By extending Φ to the

whole computational domain Ω, we are able to give the estimate of (ξu,Φ) by using the dual

problem of (1.1). Notice that Φ may not be smooth on Ω at the final time t = T . Finally, we

will prove Corollary 2.1 at the end of this section. Now, we give the details of the estimate

of ξu(xj).

Denote the left-biased Radau points of the cell Ij as xi
j , 0 ≤ i ≤ k. Also denote Φi

j to be

a piecewise polynomial function on the real line, such that

• Φi
j is continuous on Ω.

• Φi
j is supported on the union of Ij−1, Ij and Ij+1. For convenience, we denote I0 and

IN+1 to be IN and I1, respectively.

• on Ij , Φi
j ∈ Pk(Ij) and

Φi
j(xℓ) =

{

1 xℓ = xi
j

0 xℓ 6= xi
j

.

• on Ij−1, Φi
j =

C1Rk+2
1,j−1

2
, where C1 = Φi

j(x
+

j− 1
2

) and Rk+2
1,j−1 is the left-biased Radau

polynomial of degree k + 2.
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• on Ij+1, Φi
j =

C2Rk+2
2,j+1

2
, where C2 = Φi

j(x
−
j+ 1

2

) and Rk+2
2,j+1 is the right-biased Radau

polynomial of degree k + 2.

Clearly, we have

‖Φi
j‖ ≤ Ch

1
2 , ‖(Φi

j)x‖ ≤ Ch−
1
2 ,

where the constant C does not depend on h, i or j. By the Gauss-Radau quadrature

(ξu,Φ
i
j) =

k
∑

ℓ=0

ωℓξu(x
ℓ
j)Φ

i
j(x

ℓ
j)hj = ωihjξu(x

i
j),

where the constant ωℓ is the weight of the quadrature at the ℓth left-biased Radau point

on the reference interval [−1

2
, 1

2
]. Therefore, ξu(x

i
j) = 1

ωihj
(ξu,Φ

i
j). Motivated by [22], we

consider the dual problem of (1.1): Find a function φi
j(x, t) which satisfies

(φi
j)t + (φi

j)xx = 0, (x, t) ∈ Ω × [0, T ],
φi

j(x, T ) = Φi
j(x), x ∈ Ω,

(4.1)

with periodic boundary condition φ(0, t) = φ(2π, t). For convenience, we drop the superscript

i as well as the subscript j, and denote φ to be φi
j and Φ to be Φi

j . Some properties of the

test function φ are given in the following lemma.

Lemma 4.1. Suppose t1, t2 are two real numbers with t1 > t2 and ℓ ≥ 0 is a natural number,

then we have

‖Dℓφ(t1)‖2 = ‖Dℓφ(t2)‖2 + 2

∫ t1

t2

‖Dℓ+1φ‖2dt, (4.2)

∫ T

T−h

‖φx‖dt ≤ Ch,

∫ T

T−h

‖φxx‖dt ≤ C, (4.3)

‖φ(0)‖ ≤ Ch, (4.4)

‖Dℓφ(t)‖1 ≤ C(T − t)−
ℓ
2h, ‖Dℓφ(t)‖ ≤ C(T − t)−

ℓ
2h

1
2 . (4.5)

The proof of this lemma will be given in Appendix B.

In this section, for simplicity, if p(x, t) and q(x, t) are two functions depend on x and

t, then we denote (p, q)(t) = (p(·, t), q(·, t)) =
∑N

j=1
(p(·, t), q(·, t))j. With all the above

preparation, we can proceed to the proof of Theorem 2.1.
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Proof. Following [22]

(eu, φ)(T ) = (eu, φ)(0) +

∫ T

0

((eu), φ)tdt. (4.6)

We apply the two Gauss-Radau projections (2.8) and (2.9) to deal with the integrand.

(eu, φ)t = ((eu)t, φ) + (eu, φt)

= ((eu)t,P
⊥
+φ) −H1(ξq,P+φ) + (eu, φt)

= ((eu)t,P
⊥
+φ) −H1(ξq, φ) + (eu, φt)

= ((eu)t,P
⊥
+φ) + (ξq, φx) + (eu, φt) (4.7)

and

(ξq, φx) = (ξq,P
⊥
−φx) + (ξq,P−φx)

= (ξq,P
⊥
−φx) + (ηq,P−φx) + H2(ξu,P−φx)

= (ξq,P
⊥
−φx) + (ηq,P−φx) + H2(ξu, φx)

= (ξq,P
⊥
−φx) + (ηq,P−φx) − (ξu, φxx). (4.8)

Plug (4.8) into (4.7), then plug (4.7) into (4.6). We have

(eu, φ)(T ) = (eu, φ)(0) +

∫ T

0

((eu)t,P
⊥
+φ) + (ξq,P

⊥
−φx) + (ηq,P−φx) + (ηu, φt)dt. (4.9)

We use integration by parts on the last term of the right-hand side of (4.9),

∫ T

0

(ηu, φt)dt = (ηu, φ)(T ) − (ηu, φ)(0) −
∫ T

0

((ηu)t, φ)dt. (4.10)

Plugging (4.10) into (4.9) and noticing the fact that eu = ηu − ξu, we obtain

(ξu φ)(T ) = (ξu, φ)(0) −
∫ T

0

((eu)t,P
⊥
+φ) − ((ηu)t, φ) + (ξq,P

⊥
−φx) + (ηq,P−φx)dt

= T1 − T2 − · · · − T6, (4.11)

where
T1 = (ξu, φ)(0), T2 =

∫ T

T−h
((eu)t,P

⊥
+φ) − ((ηu)t, φ)dt,

T3 =
∫ T

T−h
(ξq,P

⊥
−φx)dt, T4 =

∫ T−h

0
((eu)t,P

⊥
+φ) − (eq,P

⊥
−φx)dt,

T5 =
∫ T

T−h
(ηq,P−φx)dt, T6 =

∫ T−h

0
(ηq, φx) − ((ηu)t, φ)dt.

(4.12)
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In (4.11), we separate the time interval into two parts [0, T − h] and [T − h, T ]. This is

because φ is not smooth when t ∈ [T − h, T ]. Therefore, we can hardly use the regularity of

φ. Fortunately, the length of the interval is h, hence it does not affect the superconvergence

result. In what follows, we will give the estimate of each term in (4.12). For any natural

numbers m and n, we denote Cn
m as a constant that does not depend on h or T , but

may depend on ‖u‖k+m,2 and ‖u‖k+n,∞. For convenience, if m = 0 or n = 0, then the

corresponding index will be omitted. Especially, we use C for a constant that is independent

of u.

Using the Cauchy-Schwarz inequality, (2.10) and (4.4), we have

T1 ≤ ‖ξ(0)‖‖φ(0)‖ ≤ C2h
k+3. (4.13)

For T2

T2 =

∫ T

T−h

((eu)t,P
⊥
+φ) − ((ηu)t, φ− φ)dt

≤ Ch

∫ T

T−h

‖(eu)t‖‖φx‖ + ‖(ηu)t‖‖φx‖dt

≤ C5(1 + T )hk+2

∫ T

T−h

‖φx‖dt

≤ C5(1 + T )hk+3, (4.14)

where the first inequality follows from Lemma 3.2 and Cauchy-Schwarz inequality, the

second inequality is based on (3.17) and the last inequality is given in (4.3). Similarly, we

have the estimates for T3 and T4. Actually, using Lemma 3.7, (3.17) and (4.3) we have

T3 =

∫ T

T−h

(ξq − ξq,P
⊥
−φx)dt

≤ Ch2

∫ T

T−h

‖(eu)t‖‖φxx‖dt

≤ C5(1 + T )hk+3. (4.15)

For T4 we have

T4 ≤ C5(1 + T )h2k+2

∫ T−h

0

‖Dk+1φ‖ + ‖Dk+2φ‖dt

14



≤ C5(1 + T )h2k+5/2

∫ T−h

0

(T − t)−
k+2
2 + (T − t)−

k+1
2 dt

≤ C5(1 + T )hk+3. (4.16)

Here the first inequality follows from (3.16), (3.17) and Lemma 3.2, the second inequality is

based on (4.5) and the last one is direct computation. The estimates of T5 and T6 are more

complicated. Let us consider T6 first. Suppose p1, p2 ∈ V k−1

h , by using Hölder inequality, we

have

T6 =

∫ T−h

0

(ηq, φx − p1) − ((ηu)t, φ− p2)dt

≤
∫ T−h

0

‖ηq‖∞‖φx − p1‖1 + ‖(ηu)t‖∞‖φ− p2‖1dt.

Notice the fact that p1 and p2 are arbitrarily chosen in V k−1

h , by Lemma 3.3,

T6 ≤
∫ T−h

0

‖ηq‖∞ inf
p1

‖φx − p1‖1 + ‖(ηu)t‖∞ inf
p2

‖φ− p2‖1dt

≤ C3h2k+1

∫ T−h

0

‖Dk+1φ‖1 + ‖Dkφ‖1dt

≤ C3h2k+2

∫ T−h

0

(T − t)−
k+1
2 + (T − t)−

k
2 dt

≤
{

C3(1 +
√
T )hk+3 lnh, k = 1,

C3(1 +
√
T )hk+3, k ≥ 2,

(4.17)

where the second inequality follows from Lemmas 3.2 and 3.3, the third one is based on

(4.5), and the last one follows from direct computation. Finally, we proceed to the estimate

of T5, which is the most complicated. We first write T5 into two parts T5 = T51 + T52, where

T51 =

∫ T

T−h

(ηq − ηq(T ),P−φx)dt, T52 =

∫ T

T−h

(ηq(T ),P−φx)dt.

T51 is easy to deal with,

T51 ≤
∫ T

T−h

‖ηq − ηq(T )‖‖P−φx − φx + φx − φx‖dt

≤ Chk+2

∫ T

T−h

‖Dk+1 [q(t) − q(T )] ‖‖φxx‖dt

≤ C4h
k+3

∫ T

T−h

‖φxx‖dt
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≤ C4h
k+3. (4.18)

In the first two inequalities, we use Cauchy-Schwarz inequality and Lemma 3.2, while the

last two follow from Taylor expansion and (4.3). Before proceeding to the estimate of T52,

we define

ψ(x, t) =

∫ x

0

φ(s, t)ds. (4.19)

Then ψ satisfies

ψt + ψxx = φx(0, t).

Therefore,

T52 = (ηq(T ),P−

∫ T

T−h

ψxxdt)

= −(ηq(T ),P−

∫ T

T−h

ψtdt)

= (ηq(T ),P−ψ(T − h)) − (ηq(T ),P−ψ(T )). (4.20)

Let us estimate the first term on the right-hand side of (4.20). Actually,

(ηq(T ),P−ψ(T − h)) = (ηq(T ),P−ψ(T − h) − ψ(T − h) + ψ(T − h) − ψ̄(T − h))

≤ Ch2‖ηq(T )‖‖D2ψ(T − h)‖ + Ch‖ηq(T )‖∞‖Dψ(T − h)‖1

≤ C2h
k+3‖φx(T − h)‖ + C2hk+2‖φ(T − h)‖1

≤ C2
2h

k+3,

where the first inequality follows from Hölder inequality, Lemma 3.2 and Lemma 3.3, the

second one is based on Lemma 3.2, the third one follows from (4.19) and the fact that

ηu = u − P−u, finally in the last one we use (4.5). The estimate of the second term on the

right-hand side of (4.20) is trivial. Using Cauchy-Schwarz inequality and Lemma 3.2, we

have

(ηq(T ),P−ψ(T )) = (ηq(T ),P−ψ(T ) − ψ(T ) + ψ(T ) − ψ̄(T ))

≤ Ch

N
∑

i=0

‖ηq(T )‖Ii
‖φ(T )‖Ii
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=

j+1
∑

i=j−1

Ch
3
2‖ηq(T )‖∞,Ii

‖φ(T )‖Ii

≤ C2hk+3.

Now we finish the estimate of T52, i.e.

T52 = (ηq(T ),P−(ψ(T − h)) − (ηq(T ),P−ψ(T )) ≤ C2
2h

k+3. (4.21)

Combining (4.18) and (4.21), we obtain

T5 = T51 + T52 ≤ C2
4h

k+3. (4.22)

We have now completed the estimates of Ti, and finished the proof of Theorem 2.1.

Now we proceed to the proof of Corollary 2.1. For simplicity, we only prove for p = ∞,

as the cases for other p follow from the same lines. We consider the assertion in cell Ij and

define a special norm in Pk(Ij) as

|||v||| = max
0≤i≤k

{

v(xi
j), x

i
j are the left-biased Radau points in cell Ij

}

.

It is not difficult to show this is indeed a norm and the analysis in this section implies

|||ξu||| ≤
{

C3
5(1 + T )hk+2 lnh k = 1

C3
5(1 + T )hk+2 k ≥ 2

.

Since all norms in Pk are equivalent, we have

‖P+u− uh‖∞,Ij
= ‖ξu‖∞,Ij

≤ C|||ξu|||,

which further implies Corollary 2.1.

5 Numerical examples

In this section, we use numerical experiments to verify our main result, Theorem 2.1 and

Corollary 2.1. In this section, we use λ to denote the ratio of the length of the largest cell

to that of the smallest one.
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Example 1. We solve the following problem

ut = uxx, (x, t) ∈ [0, 2π] × (0, 1],
u(x, 0) = sin(x), x ∈ [0, 2π],

(5.1)

with periodic boundary condition u(0, t) = u(2π, t). Clearly, the exact solution is

u(x, t) = e−t sin(x).

We use ninth order strong-stability-preserving (SSP) Runge-Kutta discretization in time [21]

and take ∆t = 0.01h2
min to reduce the time error. Non-uniform meshes which are obtained

by randomly and independently perturbing each node in a uniform mesh by up to 20% are

used, and the example is tested with both P1 and P2 polynomials. The special error in

Theorem 2.1 at different left-biased Radau points at t = 1 on random meshes of N cells

are computed. In Table 5.1, we can observe (2k + 1)-th order superconvergence at the left

end point and (k+2)-th order superconvergence at other Radau points. The initial solution

is obtained by exactly the same way as mentioned in Appendix A. The left-biased Radau

points on the interval [-1,1] are −1 and 1

3
for P1 polynomials, and are −1, 1−

√
6

5
and 1+

√
6

5

for P2 ones.

Table 5.1: The error eu at the Radau points for equation (5.1) when using P1 and P2

polynomials.

left end point 2nd Radau point 3rd Radau point
Polynomial N hmax λ error order error order error order

P1 20 0.406 1.813 5.74E-04 - 4.70E-04 -
40 0.217 2.146 7.89E-05 3.15 6.48E-05 3.15
80 0.107 2.089 9.36E-06 3.02 7.57E-06 3.04
160 5.300e-02 2.106 1.20E-06 2.92 9.81E-07 2.91

P2 20 0.406 1.813 3.58E-07 - 3.43E-06 - 5.87E-06 -
40 0.217 2.146 1.60E-08 4.94 3.76E-07 3.52 4.81E-07 3.98
80 0.107 2.089 3.94E-10 5.24 2.19E-08 4.02 2.95E-08 3.95
160 5.300e-02 2.106 1.11E-11 5.10 1.19E-09 4.16 1.59E-09 4.17

Table 5.2 shows the rate of convergence of the error ξu in L∞-norm. We observe that the

order is k + 2, indicating that the estimate in equation (2.12) is sharp.

18



Table 5.2: The error ξu for equation (5.1) when using P1 and P2 polynomials.

L∞ norm of ξu P1 Polynomial P2 Polynomial
N hmax λ L∞ error order L∞ error order
20 0.406 1.813 5.74E-04 - 2.44E-05 -
40 0.217 2.146 7.89E-05 3.15 2.17E-06 3.85
80 0.107 2.089 9.36E-06 3.02 1.31E-07 3.97
160 5.300e-02 2.106 1.20E-06 2.92 7.06E-09 4.16

6 Concluding remarks

We have studied the behavior of the error between the LDG solution and the exact solution

for sufficiently smooth solutions of linear parabolic equations when the alternating flux is

used. We prove that under suitable initial discretization, the error between the LDG solution

and the exact solution is (k + 2)-th order superconvergent at the Radau points. We also

prove that the LDG solution is superconvergent with the rate k + 2 towards a particular

projection of the exact solution estimated in Lp-norm. Moreover, numerical experiments

demonstrate that the rates of convergence are sharp.

In future work, we will attempt to prove the superconvergent property for general initial

conditions, and apply the superconvergence at the Radau points for adaptive methods.
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A Initial discretization

In this appendix we consider the suitable discretization of the initial datum. As mentioned

in Section 2, we would like to have the initial solution satisfy ξq = 0 and ‖ξu‖Ω ≤ Chk+2,
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see (2.10). We assume ξq = 0 and construct a special numerical initial solution which also

satisfies the second requirement ‖ξu‖ ≤ Chk+2. For simplicity, in this appendix we use ξ

and e for ξu and eu, respectively. Let us start from the following lemma. Taking wh = 1 in

equation (3.14), we have

Lemma A.1.
∫

Ij
eqdx = 0, ∀ 1 ≤ j ≤ N if and only if ξ+

j− 1
2

is a constant which does not

depend on j.

Denote S to be the constant given in the previous lemma. To control ‖ξ‖Ij
, we have to

take a small S, and this is shown in the following lemma.

Lemma A.2. Suppose ‖eq‖ ≤ Chk+1, then ‖ξ‖ ≤ Chk+2 if S ≤ Chk+2.

Proof: Suppose S ≤ Chk+2, then by Lemma 3.7

ξ̄j = ξ−
j+ 1

2

− (ξ − ξ̄j)
−
j+ 1

2

≤ S + Ch
−1/2

j ‖ξ − ξ̄‖Ij

≤ S + Ch
1/2

j ‖eq‖Ij
,

where ξ̄j is the cell average of ξ in cell Ij . Then

‖ξ̄‖2 =
∑

j

‖ξ̄‖2
Ij

≤
∑

j

S2hj +
∑

j

Ch2
j‖eq‖2

Ij

≤ S2 + Ch2‖eq‖2

≤ Ch2k+4.

Therefore,

‖ξ‖ ≤ ‖ξ̄‖ + ‖ξ − ξ̄‖ ≤ Chk+2 + h‖eq‖ ≤ Chk+2.

Remark: Because we require ξq = 0, we have ‖eq‖ ≤ Chk+1‖Dk+2u‖. Therefore, the

assumption ‖eq‖ ≤ Chk+1 in the lemma is true. We will also use this estimate of eq later in

this appendix.

Now let us proceed to construct the initial solution uh from ξq = 0.
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Lemma A.3. Suppose
∫

Ij
eq = 0, then ξx is uniquely determined by Pkeq in the cell Ij.

Proof: Let w−
h |j+ 1

2
= 0 in equation (3.15), then we have

(Pkeq, wh)j = −(ξx, wh)j. (A.1)

By the linearity of the equation above, we need only prove the uniqueness. That is, suppose

(Pkeq, wh)j = 0, ∀ wh ∈ V k
h and w−

h |j+ 1
2

= 0, then we have ξx = 0. To show this, we take

wh = p− p−
j+ 1

2

, where p(x) is an arbitrary polynomial of degree no more than k. Then

(Pkeq, p)j = (Pkeq, p− p−
j+ 1

2

)j = 0.

Therefore, Pkeq = 0, which further implies ξx = 0 by Lemma 3.7.

Now, we determine the value of the constant S = ξ+

j− 1
2

. By Lemma A.2 we can simply

take S = 0. However, such S violates the conservation of mass. We can construct a special

S such that
∫

Ω
ξ = 0 and such S satisfies the property S ≤ Chk+2. Actually,

0 =

∫

Ω

ξdx =

N
∑

j=1

ξ̄jhj =

N
∑

j=1

(

S − (ξ − ξ̄)−
j+ 1

2

)

hj,

which yields

S|Ω| =
N
∑

j=1

(ξ − ξ̄)−
j+ 1

2

hj. (A.2)

Then we obtain

S ≤ C

|Ω|

N
∑

j=1

‖eq‖Ij
h

3/2

j ≤ Ch
√

|Ω|
‖eq‖ ≤ C

√

|Ω|
hk+2‖Dk+2u‖. (A.3)

In the first inequality in (A.3) we use Lemma 3.1 and Lemma 3.7. For the second inequality

we use Cauchy-Schwarz inequality and the fact that
∑

hj = |Ω|. The last inequality follows

from the estimate ‖et‖ ≤ Chk+1
j ‖Dk+2u‖ which is obtained in the remark after Lemma A.2.

Now we summarize the procedure to implement the initial discretization. We divide the

process into the following steps:

(1) Let ξq = 0, then compute the value of eq;

(2) Find out ξx by using Lemma A.3;
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(3) Compute ξ − ξ̄ in each cell from the expression of ξx and the fact that
∫

Ij
(ξ − ξ̄)dx = 0;

(4) Work out S by using (A.2) or simply by taking S = 0;

(5) Calculate ξ from the expressions of S and ξx;

(6) Figure out uh = ξ + P+u.

From the process mentioned above, we can observe that the initial solution is uniquely

determined by the requirements ξq = 0 and
∫

Ω
ξdx = 0 or ξ+

j− 1
2

= 0.

B Proof of Lemma 4.1

In this appendix, we proceed to the proof of Lemma 4.1. The following lemma is useful in

this appendix.

Lemma B.1. Suppose f(x) ∈ L1(R) and g(x) ∈ Lp(Ω). If we extend g(x) periodically on

R, and also use g(x) to denote the extended function, then ‖f ∗ g‖p ≤ ‖f‖1,R‖g‖p

Proof: The proof directly follows from that of Young’s inequality with some minor changes,

so we omit it here.

Now we start the proof of Lemma 4.1. In (4.2), we take ℓ = 0 only, and the cases for

ℓ ≥ 1 follows from the same lines.

‖φ‖2(t1) = ‖φ‖2(t2) +

∫ t1

t2

d

dt
(φ, φ)dt

= ‖φ‖2(t2) + 2

∫ t1

t2

(φt, φ)dt

= ‖φ‖2(t2) − 2

∫ t1

t2

(φxx, φ)dt

= ‖φ‖2(t2) + 2

∫ t1

t2

‖φx‖2dt. (B.1)

If we take t1 = T and t2 = T − h in (B.1), then we have
∫ T

T−h

‖φx‖2dt ≤ 1

2
‖φ‖2(T ) ≤ Ch.

Then by Hölder inequality,

∫ T

T−h

‖φx‖dt ≤ h
1
2

(
∫ T

T−h

‖φx‖2dt

)

1
2

≤ Ch.
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Similarly, we can also prove

∫ T

T−h

‖φxx‖dt ≤ h
1
2

(
∫ T

T−h

‖φxx‖2dt

)

1
2

≤ Ch
1
2‖φx‖(T ) ≤ C.

Now, we finish the proof of (4.2) and (4.3). To prove (4.4) and (4.5), we have to periodically

extend φ to the entire real line R. Then

φ(x, t) = Γ(x, T − t) ∗ φ(x, T ),

where Γ(x, t) is the fundamental solution of the heat equation given as

Γ(x, t) =
1√
4πt

e−
x2

4t .

Clearly, there exits some polynomial P with degree ℓ such that

DℓΓ(x, t) =
1√
π

(4t)−
ℓ+1
2 e−

x2

4t P (x/
√

4t).

Then for t ∈ [0, T − h] we have

‖DℓΓ(x, t)‖1,R ≤ Ct−
ℓ
2 .

We consider the Lp-norm of Dℓφ, and

‖Dℓφ(x, t)‖p = ‖(DℓΓ(x, T − t)) ∗ φ(x, T )‖p

≤ ‖DℓΓ(·, T − t)‖1,R‖φ(·, T )‖p

≤ C(T − t)−
ℓ
2‖φ‖p. (B.2)

If we take p = 1 and 2, we obtain (4.5).

Finally, we prove (4.4). Actually

|φ(x, 0)| =

∣

∣

∣

∣

∫

R

1√
4πT

e−
(x−y)2

4T φ(y, T )dy

∣

∣

∣

∣

≤ 1√
4πT

‖φ(y, T )‖1 ≤ Ch.

Now we finish the proof of Lemma 4.1.
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