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In this paper, we discuss high order finite difference weighted essentially non-oscillatory
(WENO) schemes, coupled with total variation diminishing (TVD) Runge-Kutta (RK)
temporal integration, for solving the semilinear hyperbolic system of a correlated random
walk model describing movement of animals and cells in biology. Since the solutions to
this system are non-negative, we discuss a positivity-preserving limiter without compro-
mising accuracy. Analysis is performed to justify the maintanance of third order spatial /
temporal accuracy when the limiters are applied to a third order finite difference scheme
and third order TVD-RK time discretization for solving this model. Numerical results
are also provided to demonstrate these methods up to fifth order accuracy.
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1. Introduction

In this paper, we consider the random walk model in biology. The system is given
as
Ut + YUy = —A1U + Agv, (x,t) e R x [0,T]
Vp — YUg = AU — A2V, (x,t) e R x [0,T] (1.1)
u(z,0) = uo(x), v(x,0) =vo(x), z €R

This model describes two kinds of particles moving in opposite directions on a line.
u(z,t) and v(z,t) are the densities of left-moving and right-moving individuals. The
particles move in a constant speed v and change their directions with rates A\; and
Aa, respectively.

This model has been studied as the classical Goldstein-Kac theory for correlated
random walk in Refs. 4, 7 when the turning rates are constants, A\ = Ay = % Since
biological phenomena are complicated, the assumption of a constant speed and con-
stant turning rates may not always be true. Often, individuals in a group change
their directions when interacting with their neighbors locally or globally. These in-
teractions can be direct through the neighbors’ density '113:532 or indirect through
the chemicals produced by their neighbors '2. Here, we will consider alignment, at-
traction and repulsion between individuals. Numerical results in Refs. 11, 13, 3, 2
demonstrate a variety of patterns by using first order upwind and second order Lax-
Wendroff schemes. More recently, in Ref. 10, third-order positivity-preserving ex-
plicit Runge-Kutta discontinue Galerkin (RKDG) methods are designed. Weighted
essentially non-oscillation (WENO) scheme is another class of popular schemes for
solving hyperbolic equations, which has the advantage of simplicity on uniform or
smooth meshes as well as better control on spurious oscillations for discontinuous
or sharp gradient solutions. In this paper, we will discuss positivity-preserving high
order finite difference weighted essentially non-oscillation (WENO) schemes for the
correlated random walk model with explicit Runge-Kutta time discretization.

WENO schemes are usually used to approximate hyperbolic conservation laws
and the first derivative convection terms in the convection dominated partial dif-
ferential equations, which give sharp, non-oscillatory discontinuity transitions and
at the same time provide high order accurate resolutions for the smooth part of the
solution. The first WENO scheme was introduced in 1994 by Liu, Osher and Chan
in their pioneering paper ?, in which a third order accurate finite volume WENO
scheme in one space dimension was constructed. In Ref. 6, a general framework
is provided to design arbitrary order accurate finite difference WENO schemes,
which are more efficient for multi-dimensional calculations. Very high order WENO
schemes are documented in Ref. 1. Details about the development and applications
of WENO schemes can be found in Ref. 14.

Since the densities u(x,t) and v(x,t) in (1.1) should be positive, it is desirable to
have numerical schemes also satisfy this property. Recently, Zhang et al. developed a
framework to obtain positivity-preserving finite volume and discontinuous Galerkin
schemes which are proven to maintain the original high order accuracy of these



January 25, 2015 20:58 WSPC/INSTRUCTION FILE paper

Finite difference WENO schemes for correlated random walk 3

schemes 19:20:21,23 The work in Ref. 10 followed this approach to design positivity-
preserving discontinuous Galerkin methods for the random walk model. Unfortu-
nately, this framework is not easy to be generalized to finite difference schemes.
The work in Ref. 22 uses this framework for designing positivity-preserving finite
difference WENO schemes, however accuracy can be maintained only away from
vacuum. On the other hand, in Refs. 16, 17, Xiong et al. developed a parame-
ter maximum principle preserving (MPP) flux limiter for finite difference WENO
schemes with total variation diminishing (TVD) Runge-Kutta (RK) temporal in-
tegration, following the ideas in Refs. 18, 8. The MPP properties of high order
schemes are realized by limiting the high order flux towards a first order monotone
flux, where the flux limiters are obtained by decoupling the linear, explicit maxi-
mum principle constraints. Analysis on the one-dimensional scalar conservation law
was performed in Ref. 16, in which it is shown that the MPP limiter can main-
tain third order accuracy when applied to third order finite difference schemes with
third order TVD Runge-Kutta method. In this paper, we will follow the idea in
Ref. 16 to design and analyze positivity-preserving finite difference WENO schemes
on the correlated random walk model, which contains global integral source terms
and needs modifications to the algorithm as well as its analysis.

The rest of the paper is organized as follows. In Sec. 2, we will introduce our
model. A first order upwind scheme is introduced to prove its positivity-preserving
property under a suitable CFL condition. A short review of finite difference WENO
schemes will be given in Sec. 3. In Sec. 4 we discuss the positivity-preserving limiter
to guarantee positivity of the numerical solution. We provide analysis to verify
that, when used to a third order finite difference scheme with third order TVD-RK
time discretization, the limiter can keep third order accuracy under a suitable CFL
condition, for both the source terms and the numerical fluxes. In Sec. 5 we present
numerical results to demonstrate our numerical methods. Concluding remarks are
given in Sec. 6. The proof of some of the technical lemmas are given in the Appendix.

2. The correlated random walk model

In this paper, we consider the correlated random walk model in Refs. 2, 10. It is a
nonlocal one-dimensional hyperbolic system with a constant speed « and density-
dependent turning rate functions. The turning rate functions A1, A2 are defined as
follows

A1 = a1+ azf(yifu, v, 2]) = a1 + a2 f(0) + a2 (f(y1[u, v, 2]) — f(0)) (2.1)
A2 = a1 + az f(y2lu, v, 2]) = a1 + a2 f(0) + ax2(f (y2[u, v, 2]) — f(0)) (2.2)

where a1, as are positive constants, a; +aq f(0) is the autonomous turning rate, and
as(f(y1[u, v, 2])— £(0)) and as(f(y2[u, v, x])— £(0)) are the bias turning rates. Here,
we consider the cases with three social interactions: attraction (y1,q,¥2,q), repulsion
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(Y1,r, y2,») and alignment (Y141, Y2,a1)-

fy) = 0.5+ 0.5tanh(y — yo), p=u+v,

paper

Y1 [ua v, I] == yl,r[uv v, {E] - y1,a[U7 v, {E] + Y1,al [u7 v, .I],

yQ[U, v, ,’E] = y2,7‘[u7 v, JI] - y2,a[u7 v, JI] + Y2,al [’LL, v, JI],

vl v, 2] = g / K (5)(pla 4 5) — ple — 5))ds,
P R / " Ko ()(pla — 5) — ple + 5))ds,
Yol v,2] = ga / " Ka(s)(ple +5) — pla — 5))ds,

Y2ty v, ] = qq /000 Kq(s)(p(x — s) — p(z + s))ds,

Y1,alt, U, ] = Gal /OOO Ka(s)(v(x + s) —u(z — s))ds,

Y2,at, U, ] = Gal /OOO Ka(s)(u(z — s) —v(x + 8))ds,

Ki(s) = —

2mms

K2

726{Ep(—(5 — si)z/(2mf)), t=r,a,al, s€]0,00)

We will study the system (1.1) on the interval [0, L] with periodic boundary

conditions

u(0,t) = u(L,t), 0(0,t) =v(L,t)

(2.3)

with the solution u, v extended periodically on R with period L. We assume L > 2s;

for i =r,al,al.

Here the parameters are taken as in Refs. 3, 10, listed in Table 1.

Table 1. List of the parameters in the model.

Parameter Description Units  Fixed value
¥ Speed L/T No
a1 Turning rate 1/T No
as Turning rate 1/T No
Yo Shift of the turning function 1 2
qa Magnitude of attraction L/N No
qal Magnitude of alignment L/N No
qr Magnitude of repulsion L/N No
Sa Attraction range L 1
Sal Alignment range L 0.5
Sr Repulsion range L 0.25
Ma Width of attraction kernel L 1/8

Ma] Width of alignment kernel L 0.5/8
my Width of repulsion kernel L 0.25/8
L Domain size L 10
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The following lemma is proved in Ref. 10, which shows not only the positivity-
preserving property for the densities u and v of the first order upwind scheme but
also the positivity-preserving property of the solution to the system (1.1) itself.

Lemma 2.1. °: If the initial conditions uo(z), vo(x) are nonnegative, then the
first order upwind scheme

n+l _ . n n _ ,mn
G T B T )+ () (2.4)
At Az Lg% 2)5 %5 :
ot gy o —
+1
can maintain positivity under the time step restriction
1
At (2.6)

S—
v/ Ax + a + as

where u} and v} are approrimations to the solutions u(z;,t") and v(z;,t") at the
grid point x; = jAx and time level t" = nAt. The turning rate functions ()\1);? =
Ar(yi[u™, 0™, 24]) and (A2)? = Aa(y2[u”, 0™, x5]) can be obtained by the rectangular
rule.

3. Review of finite difference WENO schemes

In this section, we briefly review finite difference WENO schemes for solving a
one-dimensional hyperbolic conservation law

us + f(u)z =0, z € [a, ] (3.1)
u(z,0) = ug '
with periodic boundary conditions. We denote the grid as

a = (El/g < 1'3/2 <. < wal/Q < ,’EN+1/2 =b

with

b—a
I;i = [xi—1/2v$i+1/2]7 Li = 5(%‘—1/2 +l’z‘+1/2), Az = N

On the uniform mesh, a semi-discrete conservative finite difference scheme has the
following form

%Uz(t) + é(HZ—+1/2 — H’ifl/2) =0 (32)
where w;(t) is an approximation to the point value u(x;,t), and the numerical flux
fli+1/2 = f(ui_p, - ,Uiyq) is consistent with the physical flux f(u) and is Lipschitz
continuous with respect to all arguments. To achieve a high order accuracy

1 R
E(Hi—i-lﬂ —Hi_12) = f(u)e
15

the scheme can use the following Lemma°:

2+ O(AZ) (3.3)
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Lemma 3.1. '° If a function h(x) satisfies the following relationship

er%
flul) = [ wee (3.4
then
A5 (M 5 - nta = 50 = futa).. (35)

Therefore, the numerical flux ﬁi+1/2 can be taken as h(z;41/2), which can be
obtained by using a WENO reconstruction from neighboring cell averages of h(z):

- 1
= 5y ), MEE = Sule:0),

J=i—p,--,1+q.

For stability, it is important that upwinding is used in the construction of the
flux. When f'(u) > 0, a stencil with one more point from the left will be taken
to reconstruct fliﬂ /2, 1.e. p = g; otherwise, a stencil with one more point from
the right will be used, p = ¢ — 2. When f’(u) changes sign over the domain, a
flux splitting can be applied. The simplest smooth splitting is the Lax-Friedrichs
splitting.

As an example, we will list the procedure on the fifth order finite difference
WENO scheme for (3.1):

(i) Split f(u) into two fluxes f*(u) and f~(u) with the property df%(u)/0u > 0
and 0f~ (u)/0u < 0. For example, the Lax-Friedrichs splitting:

1

FE () = 5(f(w) + aw)

where o = max,, | f/(u)| over the relevant range of u.
(ii) Identify v; = f*(u;) and use the fifth WENO reconstruction to obtain the

cell boundary values v for all 7. The upwind stencil is chosen as S =

;;1/2
{Li—2,...,Iiy2}, and the three small stencils are S0 = {Iiy Iiv1, Tiva}, S =
{Li=1, Ly Iiv1 }, 52 = {Ii—2,I;—1,I;}. On all small stencils and the big stencil

we use standard reconstruction, obtaining

(0) 1 5 1_
Vigr/2 = Vi T glid1 = G2
(1) 1_ 5 _ 1_
Ui+1/2 = _gvi—l + gvi + gvi"rl
2) 1_ 7 11
Vit1/2 = gli=2 = Gli-1 + BV
big 1 _ 13 _ 47 _ 9 _ 1_
Vir1j2 T 39Yi-2 T goli-t + 50" + 50 Vit T 5 Vit?

and the linear weights

1
) d2:_

do=—, d1= 10

3,3
10 )
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which lead to

big o (0) (1) (2)
Ui+q1/2 = dov;jp + d1vy g+ d2vi g,

The nonlinear weights are taken as

szz2a"" ) T:05172
s=0 Qs
with
dr
Qp = m, T:0,1,2

Here, € = 1079 is introduced to avoid the denominator to become 0. 8, is the
“smoothness indicators” of the stencil S("). For the fifth order WENO recon-
struction, we have

13 _ _ 1. _ _

fo = E(Ul — 2041 + Vi)’ + 1(3%‘ — Aiq1 + Viga)”
13 1

P = E(aifl — 20; 4 Viy1)” + 1(51'71 — Vip1)?
13

1
B2 = E(Uz’—2 —20; 1 4+ 0;)% + Z('Di—Z — 49,1 + 30;)?

Finally, the WENO reconstruction is v} | /2= S, wrvg)l /2
Take the positive numerical flux as

A o

i+1/2 = Yip1/2
Identify o; = f~ (u;) and use the WENO reconstruction to obtain the cell bound-
ary values U;H/Q for all . The upwind stencil is chosen as S = {I;_1,...,Ii+3}
and the three small stencils are S© = {I; 11, ;0 Iiy3}, SO = {I;, L1, Ii40}
and S@® = {I, 1, I;, I; ;1 }. Following a mirror-symmetric (with respect to i+1,2)
procedure we can obtain the WENO reconstruction v

127 then we take the neg-

ative numerical flux as fi+1/2 =Uii1)2

Form the numerical flux as
: ey .
fivry2 = fi+1/2 + fi+1/2'
For one-dimensional system of conservation laws,

u(e,t) = (u (2,1), - 0™ (z,1)7

is a vector, and

f(u):(fl(ulv"' 7um)7"' 7fm(u17"' vum))T

is also a vector. We could use the WENO reconstruction procedure on each compo-

nent of v as in the scalar case. For our system which is diagonal, this is equivalent
to the procedure of reconstruction in the local characteristic fields, which can effec-
tively eliminate spurious oscillations when there are discontinuities in the solution.
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4. Positivity-preserving limiter

Here, we follow the idea of the positivity-preserving (PP) limiters in Refs. 16, 17.
We describe the procedure and analysis only for the u-component of the system
(1.1). Similar results can be easily obtained for the v-component as well.

We use a third order TVD Runge-Kutta time integration as an example,

uM = u" 4+ AtL(u™)

3 1
u? = Zu” + Z(U(l) + AtL(uM))
1 2
't = S+ g(u@) + AtL(u®)). (4.1)
Here, L(u™) = _ﬁ(ﬁj-ﬂ/z - ﬁj’?_lﬂ) + é?, where H;‘l+1/2 is the numerical flux

from the WENO reconstruction based on u™, and CA?;L is the approximation of the
point value of the source term —Aq[u”, v, x;]u} + Aofu”,v™, x;Jv}. Similarly, let

(1) 77(2)
Hj+1/2 and Hj“/2

v and u®, and let G;l) and G§2) be the approximation of the source term

point values —\; [u(V), v(l),xj]u;l) + Ao [u), v(l),xj]vj(-l) and —\; [u(®), U(Q),xj]u;z) +

Ao[u®, v(?)] xj]vj(-z). Then the scheme (4.1) can be rewritten as

be the numerical fluxes which are reconstructed based on

W =l NHTE , — HTR )+ ALGTE (4.2)
where
R 1. 1. 24
T " (1) (2)
Hitre = gl T gHi e T 3500,

A 1. 1x 2 4
rk __ n (1) (2)
G = ng + ng + ng
and A = At/Azx. Based on Eq. (4.2), we propose to replace the numerical flux
H;-]f-l/Q and the source term G;k by ﬁf-]f-l/z and G;k such that
uIth =l = NHY y — HiF o) + AtGF >0 (4.3)

while attempting to maintain the original high order accuracy.

With the definitions of I?I;J’jl /2 and G;k, we have the following results:

Lemma 4.1. Using Taylor expansion, we can get
Ark no,n At n 2 3
Gj :g[u , U ,{Ej] + 7(—/\17{& — /\1ut + )\21,51) + )\21),5)|j + O(At + A.I )
(4.4)

o n 1 1 1 n
HjJIil/2 =yu; + Ax{(g - 5)\7)71% + 5)\79”;'
1, 5. 1 459,45 1 1 1 1
+ S ATH{Y(GAY = MY+ 2 )Uee + NY(5 — —/\7)(—)\1,111 — MUy + A220 + A2vyz)
2 3 2 6 2 3
1
+ §A27(—)\17tu — Aug + Agpv + )\2'Ut)}|?
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+O0(Az® + At?) (4.5)
where glu, v, z] = —Ai[u, v, z]u(z, t) + Aa[u, v, x]v(z,t).

The proof of this lemma is given in the Appendix.

4.1. Positivity-preserving limiter for the source term

First, we choose the time step

CFL
- v/ Ax + a + as
with CFL < 1, such that the first order scheme

At

u?"’l =uj — ANyuj —yuj_q) + Atg?

is positivity preserving by Lemma 2.1. We denote fj+1 /2 as the first order upwind
numerical flux. Then we modify the source term by

@ =l = ANfJ e = f]1ge) + AUGEE (4.6)

such that ﬂ?“ > 0, where

Gt =1 (G5 —g7) + g). (4.7)

Denote ; = uip = A(f e = fiia) + At@;k, r; can be chosen to be

. WP AP 0) TALGY e =

_ jt1/2 Jj—1/2 g X
= min( AUCT ) 1), if u; <0
1, otherwise

For this PP-limiter for the source term, we have the following theorem:

Theorem 4.1. We use a third order finite difference spatial discretization and a
third order RK time integration for the system. Assume the global error

ef = |u(x;, t") —uj| = O(Az® + At3),¥n, j. (4.9)
Using the limiter on the source term (4.7), we can get
rk Ark) 3 3 -
At|GTT — G| = O(Az” + At?),Vj (4.10)
with CFL < 1.

To prove Theorem 4.1, we need the following lemma as a tool, whose proof is
given in the Appendix.

Lemma 4.2. : We consider the characteristic line passing through the point (x*, t*)

l: zlj=~—-t") +a" (4.11)
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We also define wy(t; x*,t*) = u(y(t — t*) + 2*,t) and wa(t; 2*,t*) = v(y(t — t*) +
x*,t). Then we have the conclusion

wy (t; 2, t°) = w(a™, t%) + (t —t°) - glu(z, t*), v(x, t*), %] + %(t —t%)?

{=A10u — AMug 4 Ao v + Aovp + (= A1 20U — Mg + X220 + Xovg) }H (2 1)
+O((t —t)?) (4.12)

Proof. (Proof of Theorem 4.1)
If r; = 1, the limiter does not take effect. So we just need to consider the case

ui = M ffy10 = 11 )0) + Atg) <1
At(G;k - g7)

Ty =—

This implies

u = N(fPy1je = F11j0) + ALGTF <0

ok _ =AM = £ )
J —At

AHGT = GF) =l = A(ffy1jo = [ p) + AIGT".

Since uf! — A(f7, ;= f1, 1) + AtG5* < 0, to obtain (4.10), it is sufficient to show
that
)‘(f;lﬂ/z - f}lfl/z) + Até§k| = O(Az? + AP®).

Lemma 4.1 tells us that

juf -

A At
G;k = g;L —+ 7(—)\11{(}, — /\11145 + /\2th + )\2'Ut)|;'l + O(Atz)

Since the first order upwind numerical flux is fj’.ﬂrl /2= yuj, we have
Ark ~rk n n n Atz n 3
ALGT — G57) = (1 = My)ul + Myu_y + Atgy + T(_)\l’tu — Mg + Ao v+ Aovy) [T + O(AL”)

To simplify the notations, we use u; to denote u? and u(z) to denote u(w,t"). From
our assumption (4.9), the difference between u(z;,") and u} is of high order (third
order). In our proof below, we use u(z;,t") and uj interchangeably when such high
order difference allows.

Denote xo € I; to be the local minimum point in cell I;. We can expand At(é’;k—
G’;k) at xo. Denote ug = u(zo), and z = (x; — x9)/Az. Thus

A - 1
At(G;k - G;k) =ug + Az{(z — M)uy + Ag} + A:1:2{5(22 — 22Xz + AY)Ugs

1
+ A2(= A2t — AUy + A2z + Aavy) + §A2(—A1,tu — At + A2v + dovg)}
+ O(Az® + At?)
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where all unspecified u,, g and their derivatives are values at the location x.
We first consider the case zy € (:vj,l/g,xjﬂ/g), with v, = 0,uz, > 0 and
z€(—3,3). Then
AHGFF — G
1
=ug + Atg + §At2{—)\17tu — At 4 A2 0+ A + Y(— A pU — AUy + A2 p0 + Aavg) )

+ %A;CQ(ZQ — 2X\v2 4+ M))uge + AtAz(z — %)\7)(—)\1@11 — MUy + A2 50 + Aavy)
+ O(Az® + At?)
1 1
=u(zo + (z — EA”y)A:r) + Atglu, v, 29 + (2 — g)q)Aa:]

1
+ §At2{—/\17tu — Ay + /\2th + Aovy + ’}/(/\Lmu — MUy + )\2111) + /\21}1)}|m0+(z7%)>«yAac
1 1
+ §AI2(—)\")/Z . 1/\272)um|m0
+ O(Ax® + At?)
We have
At CFL x~y

=T Ay v+ Az(a; + a2)

<1

when CFL < 1. Since z € (=3, 1), we can get

—Avz+ Ay — 1)\272 > 1/\’y - l)\Q'yQ >0
4 2 4
ie (= Ayz+Ay— %)\272)%1 > 0. For the first three terms, they are an approximation
of wy (1" + At; 2o + (2 — $\y) Az, t") > 0 with third order accuracy O(Az®+At?). In
summary, At(égk - G;k) is equal to some non-negative term within O(Az?3 + At3).

In the case u(x) reaches its local minimum zy = Tj_1/2, we have u, > 0 and
z=(x; —x0)/Ax =1/2.
Thus

ALGTF - G5F)
1

1 1 1
+ A:v2{§um + 5)\(—)\1,111 — MUy + A2,z + Aavg) + 5)\2(—)\1,,511 — Aug + A2 0+ Aauy) }

+O(Az® + At?)
1 1
=u(w;_1/2 + 5(1 — M)Ax) + Atglu,v,x;_1/2 + 5(1 — A\y)Ax]
1
+ §At2{—A17tU — Mue + /\Q,t'U + Aoy + 'Y(_)\l,zu — MUy + )\Q,Iu + )\2U’I)}|Ij,1/2+%(17>\’y)Am

1 1
+ A:C(—§)\7)um(:vj,1/2) + gAx2)\7(2 — M)z (Tj-1/2)
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+ O(Az® + At?)
Let s=1— %)\% then
AHGTF — GTF) = I + 11 + O(Az® + At?)
where
1
I =u(xj_1/ + 5(1 — \y)Azx — sAzx)
1 1
+ At - {—Al[u,v,xj,l/Q + 5(1 - )\’Y)A(E] . U($j71/2 + 5(1 — )\’}/)A.’I] - SACE)
1 1
+ Xafu, v, 251 /0 + 5(1 — M) Az] vz + 5(1 — Ay)Az)}

1 1 1
+ §At2 . {_)\l,t[uu v, ,'Ej,l/g + 5(1 — )\’Y)A,’E] . ’U,(.’L'j,l/Q + 5(1 — )\’Y)Ax — SA:E)

v, @y1s %(1 Az - ur(ey1s + %(1 — \y)Az — sAz)

+ Ao ilu, v, 250 + %(1 — M)Az] - v(zj_1e + %(1 — A7)Ax)

+ Xafu, v, 251/ + %(1 — Ay)Az] v (zj_1/2 + %(1 — Ay)Ax)

+ (=M zu, v, 25212 + %(1 — Ay)Az] - u(wi_qe + %(1 — M)Az — sAx)
= Afu,v, 2519 + %(1 — Ay)Az] - ug(zj_1/2 + %(1 — M\y)Ax — sAx)
 daaluyv,yago + (1= M)A] - 0(as1yz + (1~ A)Az)

Fdafu, 0,251+ (= M)A a2 + 5 (1= X0 A0)}

IT = Az(1 — My)ug(w-1/2)

1 1
+ Al’At(l — 5)\’}/)(—)\1 [U,U,l’j,l/Q + 5(1 — )\’}/)AJJ]) . um(l'j,1/2)

We define
(z,t) = u(x — sAx,t), (x,t) =v(z,t)
g =—Mlu(z + sAx,t),0(x,t), x]u(x, t) + Ae[a(x + sAz, t),0(x, 1), ]0(z,t)
For the new system
iy + ilg = §, ) €R x [t",T]

0y — YUz = —F, ) ER X [t",T]
w(x, t") = u(zr — sAx,t"), v(z,t") = v(z,t")

(z,
(z,t

using the similar idea of Lemma 2.1, we can prove that @ and v satisfy positive
preserving principle. Considering the value along the characteristic line

1
Lialy =t =t") +aj 0+ 5(1 = M)A
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then we can see that I approximates t(yAt +;_1 /2 + %(1 — A\y)Az, t" + At) with
O(Ax® + At?).

Since

1 1
1- )‘FY + (1 - EAFY)At X (_)‘1 [uvvv'rj—l/Q + 5(1 - )‘FY)AI])

1 CFL
>1- A 1—=\y)—————(—ay —
- 7+ 2 w”y/AI—I—al—l—ag( )
1 ¥ 1
= (1 = My)— 1—- M —-—CFL(1—- =\
a1 M as + (@)1= Xy = CFL(L = 53)
1 Y gl
> - 0T (L
“y/Ax + aq —i—ag[Ax (Ax+a1+a2)]
B v | _CFL,
Cy/Az+a +ay Ax Az
>0
when CFL <1, we have II > 0.
In summary, when ¢ = Tj_1/2, we can also conclude that At(G;k — G;k) is

equal to some non-negative term within O(Az3 + At3).

If 0 = 412, then u,(7;41/2) <0 and z = (v; — 29)/Az = —1/2. Thus
AHGF - GTF)
—uy1ja+ Aa((— —My)ue + M) AP (5 + 200t
- %)\(—/\Lmu = Aty + X220 + Aavz) + %AQ(—AM — Aty + Aov + Aovy)}
+ O(Ax® + At?)
=u(Tj41/2 — %(1 + M) Ax) + Atglu, v, 254172 — %(1 + \y)Az]
+ %Atz{—/\lytu — At + A2 v + A + (= A1 pU — Aug + Ao v + )‘2090)}|zj+1/2—%(1+/\7)Aw
+ A:z:(—%/\’y)uz(:zrj+1/2) + Ax2é)\”y(6 = M) Uga(Tj41/2) + O(A2® + AL?)
Denote s = —w < 0, then
AHGEF — GTF) = T + 11 + O(Az® + At®)
where
I =u(j11/0 — %(1 + Ay)Az — sAx)
+ At{ =i [u, v, 2412 — %(1 + M)Az - u(zjp1)2 — %(1 + Ay)Az — sAx)
+ Xofu, v, 2541/ — %(1 + AY)Az] - v(zjp1 0 — %(1 + \y)Az)}



January 25, 2015 20:58 WSPC/INSTRUCTION FILE paper

14 Y. Jiang, C.-W. Shu, and M. Zhang

1 1 1
+ §At2{—A1,t[U707$j+1/2 - 5(1 + M) Az] - w(zjpye — 5(1 + X7)Az — sAx)

— AU, v, 2541/ — %(1 + M)A - ug (T2 — %(1 + Ay)Az — sAx)

F sl 255172 = 51+ M)A (51072 = 51+ 2)A2)

Dol v, 2172 — 5 (L4 M)A (apgz — (14 M)Aa)

+ (=M, v, 25412 — %(1 + A7) Az] - w0 — %(1 + M\y)Az — sAx)

1 1
— )\1 [’U,, v, ,’Ej+1/2 — 5(1 + )\’Y)AJ:] . uw(xj+l/2 — 5(1 + )\’Y)A(E - SA.’L’)

1
+ X2 e[t v, 24170 — 5 (1 + Ay)Ax] - v(2541/2 — 5(1 + \y)Az)

1
2

1
+ A2, 0, %5410 — S (1 + AY)Az] - v (@12 — 5(1 + A)Az))}

1
2
1
Il = Aw(—§)\7 + 8)Ug (T)41/2)
1
+ AzAts - (= Ai[u,v,2541/2 — 5(1 + M) Az] ug (Tj41/2)

Similar to the case of wg = z;_1/2, we can show that I equals to some non-
negative term within O(Az3 + At3). For I1, since

1 1
—5)\7 +s5—AsAt < —5)\7 + 5(1 — (a1 + a2)At)

and
v/Az + (1 — CFL)(a1 + a2)

>0
v/ A + a1 + as -

1— (a1 + a2)At =
if CFL <1, we can obtain that
—%/\7 +s5—MsAt <0
Hence, we also can get I1 > 0.

For all the cases, we can see that At(égk — G';k) equals to some non-negative
term plus O(Az® + At?). Since we know At(égk - G';k) < 0, we have

|ALGTE — GTF)| = O(A2® + AL). O

4.2. Positivity-preserving limiter for the numerical flux
We would like to modify the numerical flux

H% o = 05512 (H 1o — flage) + [Ty (4.13)
such that

uff = NHE, = HIF o) + AtGEE >0 (4.14)
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We denote Ty = —uff + A(f7y 5 — 7y j5) = AtGEF and Fj1jo = HIy = f74) o
Thus, inequality (4.14) can be rewritten as

)\9j,1/2Fj,1/2 - )\ejJrl/QFjJrl/Q - 1—‘] > 0 (415)

with I'; < 0. We need to find a pair (Afl/zylj,A+1/27Ij) such that any pair
(05-1/2:0541/2) € [0,A_1/2,1,] X [0, A 12 1;] would satisfy (4.15).

(i) If Fj_1/2 > 0 and Fj4;/5 <0, the pair would be (A_y1/27,,A11/2.1,) = (1,1);

(ii) If Fj_1/2 > 0 and Fj1,/5 > 0, the pair can be given as (A_y/27,,A1/21,) =
(1, min(L, —z=—));

(iii) If Fj_1/2 < 0 and Fj 172 < 0, the pair can be given as (A_1/2,7,,Ay1/2,1,) =
(min(1, xp—), 1);

(iv) If Fj_1/2 < 0and Fj 11,5 > 0, when (0;_1/2,0,41/2) = (1,1) satisfies (4.15), the
pair can be given as (A_y/2,7,, Ay1/2,1;,) = (1,1). However, in the case that the
pair (A_1/21,,Ay1/2,1,) = (1,1) does not satisfy (4.15), intersection is given as

. . T; r;
the pair (A—l/z,lj,A+1/2,Ij) = (AFj71/2_AFj+1/2a ,\Fj71/2_,\pj+1/2)-

Then the new flux will be defined as
f{;]f-lﬂ = Aj+1/2(H;i1/2 - f;l+1/2) + fjn+1/2 (4.16)
Aj+1/2 = miH(A+1/2,1j,A—1/2,1j+1)

It is easy to check that the new flux defined as (4.16) can satisfy (4.14).

Theorem 4.2. We use a third order finite difference spatial discretization and a
third order RK time discretization for the system. Assume the global error

e = ula; 1) — ufl| = O(Az® + AF®) Vi j (4.17)

J

Then using the limiter (4.16), we can get
7Y, )y — HIE o = O(A2® + AE), (4.18)
with CFL < 1.

Proof. Let us look at the four cases for the choice of (A,1/211]. , A+1/211].).
For Case 1, the limiter does not take effect.
For Case 4, we only need to consider the situation when A /s g,

I'; .
m <1,ie. I‘j > /\Fj,l/g — )\Fj+1/2.

rrrk Frrk Frrk Fn rn Frrk
HEY gy = HiYy o =Dayo,,(H7Y o = fiha o) + Fivae — Hida o

=(Ay1y2,1, — 1)(1?;4]6-1/2 - ffﬂ/g)
Ly Sk 2
()‘Fj—l/Q — )\Fj+1/2 )( i+1/2 fj+1/2)
_)‘ij1/2 — )\Fj+1/2 -T

- ]F 1/2
AFji10 — AFj_1)0 i1/
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It is sufficient to show that | /\Flﬁ/2’\_li\;l/j/2ij+l/2| = O(Ax® + At3). Because

I'j > AFj_1/2 — AFj11/2, which means AFj_1/0 — AFjy10 —1'j = uj — )\(H;J]il/Q
HJ 1/2)—|—AtG”C <0 < ufxy,t"*), and ulf —)\(ijl/Q H;kl/z)—i—AtG;k approxi-
mates u(z;, t" ) within third order accuracy, we can get |AF} 12— AFjp10-Ty| =

O(Az® + At?). Since 0 < 17 E

]+1/2 < 1
SE 5, we have
jr1/2=AFj 12 = A7

AFj 13— AFji1j0 — T

| ABjp1y2 = AFj 1)

Fj+1/2| = O(AJ/B + Atg)

For Case 2, (similarly for Case 3), we only need to consider the situation when
Fj

with
e .- — AHTE o+ Ay + AL
j+1/2 — Hjit1/2 = b\
Since %ﬂﬂ/z < 1, which equals to u; — )\ﬁﬁflﬂ + /\f;n_lﬂ + Até;k < 0, it is

sufficient to verify that
[l — NHTE g + AfT p + AtGTE| = O(A2® + AFY)

We have showed that At[GTF — G§k| = O(Az? + A#3) in Theorem 4.1, so we can
alternatively prove that

|} = NHTE o + AT g + ALGTF| = O(A2® + AL)
Using the results in Lemma 4.1 and f;lf1/2 = yuj_y, we can get
— NHTE o + Ay )y + DG
=ug + Az{(z — g)\w + %)\272)% +A(1 - %)\w)g}
+ %AIZ‘{X + MMy = 3)z — %/\373 + %AW + %)\”y}um
+ AtAz{(1 - %/\'y)z + %)\272 - %)\”y}(—/\lymu — MUg + A2,z0 + Aovy)

1 1
+ §At2(1 — 5/\7)(_)\1,15“ — AUt 4+ A2 v + Aavy)
+O(Ax® + At?)

Similar to the procedure in the proof of Theorem 4.1, all unmarked values of u, g
and their derivatives are located at (xg,t"), where ¢ is the local minimum point
of u(z,t") in I; and z = (x; — xo)/Axz.

If 2o € (zj_1/2,Tj41/2), then uy = 0, uzy > 0,

Y et )\fJ T ha AtGT’f
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1 1 1
=ug + At(1 — 5/\7)9 + §At2(1 - g)\”Y){—/\l,tU — AU + A2t + Aovy

Y(=A1,2U — Atz + A2,2v + A2vg) }

1 1 1 5
+ §Ax2{22 + Ay (A\y —3)z — §A373 + 5)\272 + E)w} Uy

1 1 3

+ AtAz{(1 - 5)\7)2 + §A2 2 Z)w} (=AU — MUy + A2 p0 + Aavy)
+ O(Az® + At?)

(1—1X)? — 2\ 1,6—2\y
= Atg
1— Dy {“°+6 Z S Ay
+ FY(_/\l,mu - Alum + AQ,m'U + AQUm)]}
Ay (=84 3\y)
NS F 9AY),
4(=3+ M)

1 1 1
+ §Ax2{22 + MMy —3)z — gz\g”yg + 5)\272 + 2/\’7} C Uz

At) [)\1){(1, — A\ug + )\27,5’1) + Aoy

1 1
+ AtAz{(1 - iA”y)z + g/\zfy2 - 2/\7} (=AU — AtUug + A2 z0 4+ Aavy)
+O(Az® + At?)

Denote s = z + w then

1261y
uj = )‘H+1/2+)\fj 1/2+AtGT’“
1- 1A o)
:%{U(J;O + sAzx) + 6 3)\3Atg[u v, T + SAx]
16— 2)\y
2(6 3Ny AL [=A10u — Arug + A2g0 4 Agvr + V(= A12U — Attig + A2,0V + Aova)]|zgtsac )}
Ay (=8 + 3\y)
AT O e
4(=3+ \y)
LINE 2 \2.2 1353 1545 5 (1—1x)2
+§AIU11{Z +/\*yz—3/\fyz—§)\~y +§,\7 +6/\7_$S}

+ O(Az® + At?)

—1xy)2
Using Lemma 4.1, the first term is a third order approximation of (1_27)‘7)101 "™+

1 %)\v
gi:: At;x + sAx,t"). We can check that 22 + A\292z — 3\yz — %)\373 + iX2y2 4
A
5)\ %2>Owhenz€( 3.3) and My € [0,1].
So, uf )\H’”kl/2 + )\f" s AtG’”k approximates some non-negative term
O(Az?® + At3)

Ifxoz:tj 1/2, then u, >0, and z = 1

L
— \HTE T —i—)\fJ 12 +AtGT’f

1
=u;_1/2 + (1 - 5)\7)Atg + 5(1 — g)\v)At2{—)\1)tu — AUt + Agtv + Agvy
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+ (=M1 2u — At + X220+ Aovg )}
1 3 1.,
+A:v(2 2/\7—1—2)\7)%

1 1
+ AtAw(§ — My + §A272)(—)\17Iu — MUy + A2 50 + Aavy)

Lo, 1igg 22 2 1
+ 2Aw ( 3/\ v 4+ Ay 3/\74— 4)um
+ O(Az® + At?)

Denote
R e P e

S1 =
! 1—%/\7

M(=8+3)\y), 1 2 1 (1—1xy)2 1
=/ T U T A3A3 1 \242 2 ) o 27 (g — D)2
52 \/4(—3+M) A T R s

4(=34+Ny) . 1 2 1 (1-1ix)2 1
= —— T [ A343 1 X\242 _ 2\ o 27 (g — D)2
% \//\7(—8+3/\7)[ IR R gy e

Then the equation is
ult — NHTE o+ ATy + ALGER = T+ 11+ 11T + O(Ax® + At?)

where

(1—3M)?

W
1-— %)\7
1— %)\”y

+ A2fw, v, @510 + 518] - v(z; 1 + s107)]
1,1—3A

3l 1—3;

1
I = {’LL(ZCj,l/Q + SlA(E - EAI)

At [=Mfu, v, 25170 + s1Az] - u(z;_

1
1+ s1Az — EA{E)

A
1

— A [u, v, 2519 + s101] - u(xj_% + 51Ax — EAI)
1

— Afu,v, 2519 + 5102] - ut(xj_% + s1Ax — EAI)

1+ $1Ax)

2

+ Xofu, v, 2519 + s14z] - vp(2;_1 + 51A)

)

+ A2 i[u, v, 2512 + s1Az] - v(T;

1
+ (=M 2w, v, 2512 + s51A7] - u(a:j_% + s1Ax — EA{E)

1
— Au,v, 2519 + 5102] - ux(a:j_% + s1Ax — EA{E)

+ /\Qym[u,v,xj_l/g + s1Ax] - v(xJ;% + s1Ax)
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+ Aofu, v, Ti_1/2 + s1Ax] - vz(xjfé + s1Ax))]}

Ay (=8 + 3\y)
17 :mu(xj_l/g — SgAI’)
1 1
+ Az?(1 - 5)\7)(—6)\))\1[11, U, 512 + s1Ax]ug (21 /2)
1 3 1 (1— 2Xy)? 1
HT=Aa(G =M+ 530 = Gy (o = ) sahuelwigs)

We can check that
1 3 1
X A e g
3 "M T

(1-3\)?
1—3\y
So IIT > 0. Considering the value along characteristic lines, we can see that

I+ O(Ax* + A?) >0

1
(s1 — E)q)—i—sQ >0

Since % > 0, all we need to consider is wu(zj_1/o — s3At) +
Az?oug(xj_1)2), where o = —2AA (1 — %/\7)%. It is sufficient to prove

that u(z;_1/0 — s3At) + Az?oug(zj_1/2) > 0 or uz(x;_1/2) = O(Az). If u is not
monotone in [z;_1 /5 —s3Ax — Az, 2;_; /5 — s3Ax], then there exists bl e [Tj_1/2—
530z — Az, 219 — s3Az] such that ug (z91) = 0, and ug(z;_1/2) = O(Az). If u is
monotonically decreasing in [x;_1 /o — s34z — Az, x;_1 /9 — s3Ax], then there exists
a%? € [zj_1/2 — s3Aw,xj_1 2] such that u,(2%?) = 0, and ug(z;_1/2) = O(Ax).
If w is monotonically increasing in [x;_ 1/ — s34z — Az, 2; 1/ — s3Ax], as-
sume u(xj_1/2 — s3Ax — Az) — CAz? < 0, where C = |o|. There exists 2#3 €
[€j_1/2 — s3Ax — Az, x;_1 /5 — s3Ax] such that

u(wj_1/2 — 83Ax) = u(xj_1/2 — 53Ax — Azx) + Azu, (z*2).
where ug(z%?%) > 0. Therefore ug(2%3) < CAzug(v;_1/2), ie. ug(z®3) = O(Aw).
Thus we can get u,(z;_1/2) = O(Ax), which implies now
IT + O(Az® + At?) > 0.

In the case of g = @11 /2,we can get similar results. The proof is now complet&l

5. Numerical examples

In this section, we will present some numerical results using the schemes discussed
above. We will use the third order finite difference WENO scheme and the fifth
order finite difference WENO scheme in space, denoted as WENO-3 and WENO-
5. Both schemes are combined with the third order TVD Runge-Kutta temporal
integration. Without special declaration, the time step is chosen as

CFL

At= ——— ————
v/ Az + a1 + a9

(5.1)
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We take CFL = 0.6 in the numerical tests, such that the PP-limiter will not destroy
accuracy when Az < 1. For the infinite integrals, based on the fact that

Ki(s)ds <2x 107 i=ra,al,
25i

we can just compute the integrals on the compact interval [0, 2s;]. Here, the rectan-
gular rule is used, which is the most accurate rule for compactly supported smooth
functions. To avoid the effect of rounding error, we change the condition (4.6) and
(4.14) into

P ATge = f )+ ALGTE > € (5.2)
uft = NHE = HIF o) + AtGTF > e (5.3)
where ¢ = 10716,

Example 1. We first test the accuracy with constant coefficients \; = Ay = 0.5.
The initial condition is

s o< <
u(@,0) = {o, 4 <z <10. (54)
0 0<z<6
0 =12 0 e = 5.5
v(x,0) {((z O-10)6 6 < 4 < 10, (5.5)

with 10-periodic boundary condition. Clearly u(z,0),v(z,0) € C®(R). The final
time is T' = 5. Since the exact solution is not available in closed form, we obtain an
accurate reference solution by using the spectral method with 12,800 grid points to
serve as the “exact” reference solution.

Table 2. Example 1: Constant coefficients. u-component. WENO-3. Without the
PP-limiter.

nx Loo error  order L1 error order Lo error order min value

40 2.203E-02 - 4.379E-03 - 6.385E-03 - -1.353E-05
80 6.632E-03 1.732 9.288E-04 2.237 1.615E-03 1.983 -1.297E-05
160 1.595E-03 2.056 1.910E-04 2.281 3.531E-04 2.194 -5.619E-06
320 3.203E-04 2.316 2.963E-05 2.689 6.076E-05 2.539 -3.199E-07
640  3.143E-05 3.349 2.796E-06 3.406 5.793E-06 3.391 -1.603E-08
1280 2.121E-06 3.889  2.484E-07 3.493 4.729E-07 3.615 -7.482E-10

We test the WENO-3 scheme with the time step (5.1) without the PP-limiter
and with it. The WENO-5 scheme without the PP-limiter and with it are also
tested, with time step

CFL
At = .
(v/A2)57 + a1 + as (5.6)
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Table 3. Example 1: Constant coefficients. u-component. WENO-3. With the PP-

limiter.
nx Loo error  order L1 error order Lo error order min value
40 2.203E-02 - 4.378E-03 - 6.385E-03 - 1.000E-16

80 6.632E-03  1.732 9.281E-04 2.238 1.615E-03 1.983 1.000E-16
160 1.595E-03 2.056 1.909E-04 2.281 3.531E-04 2.194 1.000E-16
320 3.203E-04 2.316 2.963E-05 2.688 6.076E-05 2.539 1.000E-16
640  3.143E-05 3.349 2.796E-06 3.406 5.793E-06 3.391 1.000E-16
1280 2.121E-06 3.889 2.484E-07 3.493 4.729E-07 3.615 1.000E-16

Table 4. Example 1: Constant coefficients. u-component. WENO-5. Without the

PP-limiter.
nx Loo error  order L1 error order Lo error order min value
40 2.006E-03 - 5.064E-04 - 6.640E-04 - -2.169E-06

80 1.475E-04 3.766  2.776E-05 4.189  3.833E-05 4.115 -2.923E-06
160  7.643E-06 4.270 1.841E-06 3.915 2.559E-06 3.905 -8.671E-08
320 3.899E-07 4.293 1.038E-07 4.148 1.503E-07 4.090 -3.682E-10
640 1.520E-08 4.681 3.940E-09 4.720 5.959E-09 4.656 -1.220E-11
1280  5.035E-10 4.916  1.256E-10 4.972 1.970E-10 4.919 -4.632E-13

Table 5. Example 1: Constant coefficients. u-component. WENO-5. With the PP-

limiter.
nx Loo error  order L1 error order Lo error order min value
40 2.006E-03 - 5.061E-04 - 6.640E-04 - 1.000E-16

80 1.475E-04 3.766 2.777E-05 4.188 3.840E-05 4.112 1.000E-16
160 7.643E-06 4.270 1.840E-06 3.915 2.559E-06 3.907 1.000E-16
320  3.899E-07 4.293 1.038E-07 4.148 1.503E-07 4.090 1.000E-16
640 1.520E-08 4.681 3.940E-09 4.720 5.959E-09 4.656  1.000E-16
1280 5.035E-10 4.916 1.256E-10 4.972 1.970E-10 4.919 1.000E-16

which is designed to match the temporal and spatial orders of accuracy. Errors
and orders of accuracy of the u-component are shown in Tables 2-5. The minimum
values of numerical solutions at the final time are also listed. It is clear that the
PP-limiter can strictly keep the solutions non-negative without loss of accuracy.

Example 2. Next, we test the accuracy for system (1.1) with variable coefficients.
We choose the parameters as

v=0.1, a; =0.2, ay=0.9,

o =16, qu =20, g =0.5.
The same initial conditions are used as in Example 1 (5.4)-(5.5).

In Tables 6-9, we list the order of accuracy and minimum values of the wu-
component at the final time 7' = 5 of WENO-3 with the time step (5.1) and
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Table 6. Example 2: Variable coefficients. u-component. WENO-3. Without the PP-

limiter.
nx Loo error  order L1 error order Lo error order min value
40 7.979E-02 - 1.487E-02 - 2.411E-02 - -1.900E-05

80 1.436E-02  2.474 2.687E-03 2.468 4.311E-03 2.483 -1.671E-05
160  5.422E-03 1.405 3.487E-04 2946 8.959E-04 2.266 -1.167E-05
320 1.720E-03 1.656 6.278E-05 2.474 2.236E-04 2.003 -9.804E-07
640  3.278E-04 2.392 T7.419E-06 3.081 3.158E-05 2.823  -5.344E-08
1280 2.761E-05 3.569 5.553E-07 3.740 2.205E-06 3.840 -2.671E-09

Table 7. Example 2: Variable coefficients. u-component. WENO-3. With the PP-

limiter.
nx Loo error  order L1 error order Lo error order min value
40 7.979E-02 - 1.486E-02 - 2.411E-02 - 1.000E-16

80 1.436E-02 2474 2.686E-03 2.468 4.311E-03 2.483 1.000E-16
160  5.422E-03 1.405 3.484E-04 2946 8.959E-04 2.266 1.000E-16
320 1.720E-03 1.656 6.278E-05 2.473 2.236E-04 2.003 1.000E-16
640  3.278E-04 2.392 7.419E-06 3.081 3.158E-05 2.823 1.000E-16
1280 2.761E-05 3.569 5.553E-07 3.740 2.205E-06 3.840 1.000E-16

Table 8. Example 2: Variable coefficients. u-component. WENO-5. Without the PP-

limiter.
nx Lo error  order L1 error order Lo error order min value
40 7.551E-02 - 1.445E-02 - 2.406E-02 - -4.538E-06

80 6.932E-03  3.445 1.968E-03 2.876 3.015E-03 2.997 -5.606E-06
160 1.704E-04 5.346 4.622E-05 5.412 7.101E-05 5.408 -6.639E-07
320 4.441E-07 8.584  7.699E-08 9.230 1.185E-07 9.226 -1.255E-09
640 1.572E-08 4.820 2.758E-09 4.803 4.224E-09 4.811 -4.296E-11
1280  5.093E-10 4.948 8.341E-11  5.048 1.301E-10 5.020 -1.792E-12

WENO-5 with the time step (5.6). They show that our schemes can achieve the de-
signed order of accuracy and the PP-limiter can keep positivity without destroying
accuracy.

Example 3. In this example, we will test the example of stationary pulses as in
10 Suppose (u*,v*) is the homogeneous steady state with u* 4+ v* = A, where
A is the total population density. When ¢,; = 0, we have only one steady state
(u*,v* = (A/2, A/2)). However, when g, # 0, the system can have one, three or
five solutions, and these solutions are obtained by the steady equation from (1.1),

—u* (a1 + a2 f(Agar — 2u"qar — y0)) + (A — u*)(a1 + a2 f(—Aqar + 2u™qa — yo) = 0.
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Table 9. Example 2: Variable coefficients. u-component. WENO-5. With the PP-

limiter.
nx Loo error  order L1 error order Lo error order min value
40 7.551E-02 - 1.445E-02 - 2.406E-02 - 1.000E-16

80 6.932E-03  3.445 1.968E-03 2.876 3.015E-03 2.997 1.000E-16
160 1.704E-04 5.346 4.622E-05 5.412 7.101E-05 5.408 1.000E-16
320  4.441E-07 8.584 7.698E-08 9.230 1.185E-07 9.226  1.000E-16
640 1.572E-08 4.820 2.758E-09 4.803 4.224E-09 4.811 1.000E-16

1280 5.093E-10 4.948 8.341E-11 5.047 1.301E-10 5.020 1.000E-16

We choose the parameters as
v=0.1, a3 =02, a2=0.9,
Ga = 2, qal = 0, qr = 247

also we choose A = 2, which means that the steady state is (u*,v*) = (1,1). The
initial conditions are taken as a small perturbation on this steady state

{ u(x,0) =1+ 0.01sin(0.27x)

v(x,0) = 1+ 0.005 cos(0.2mz) (5.7)

The solution evolves into stationary pulses.

In Figure 1, we plot the numerical solutions of the total density p = u + v from
t = 1500 to ¢ = 2000, using the first order upwind scheme, the third order WENO-3
scheme and the fifth order WENO-5 scheme with nx = 500 grid points. We also
plot the solution obtained with the first order upwind scheme using 6000 grid points
as a converged reference solution. The numerical solutions are stationary for all the
schemes. All schemes converge to the reference solution well, which can be seen
in Figure 2 for the cuts of p = u + v at the final time ¢ = 2000. In Figure 2(b),
we can see that the higher order schemes produce results closer to the reference
solution. Converged solutions in Figure 3(d) show that v and v almost overlap with
each other, and numerical solutions v and v generated by the WENO-3 scheme and
the WENO-5 scheme also overlap with each other, while v and v generated by the
upwind scheme still show a slight translation.

Example 4. In this example, we consider the traveling pulses problem. We choose
the parameters as

v=0.1, a; =0.2, ay=0.9,
Ga =16, qu=2, ¢ =0.5.
The initial condition is the same as in Example 3.
Here, we use 200 grid points for the WENO-3 scheme, the WENO-5 scheme
and the first order upwind scheme. Also, the numerical solution using the upwind

scheme with 6000 grid point is taken as the converged reference solution. In Figure
4, we plot the total density p = u+wv from time ¢ = 1500 to ¢ = 2000. The numerical
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, we give a cut of p = u+v at the

and we can see that the higher order schemes produce results

solutions are traveling for all schemes. In Figure 5
closer to the converged reference solution.

final time t = 2000,

we test the system (1.1) with discontinuous initial

5. In this example,

Example
conditions

(5.8)

,L0<x <4
0,4 <z < 10.

0 = {

(5.9)

_{Q0<x<6

)

0

i

v(x

(b) WENO-3. 500 grid points

(a) Upwind scheme. 500 grid points

2000

1900

1800

awn

1700

1600

(d) Converged solution

(¢) WENO-5. 500 grid points

Fig. 1. Example 3: Stationary pulses. u + v from ¢ = 1500 to ¢ = 2000.
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We choose the parameters as

v=0.1, a3 =02, a2=0.9,
qo = 1.6, qu =20, g¢,=0.5.

In Figure 6, we plot the numerical solutions u at time ¢ = 2, with the first
order upwind scheme, the WENO-3 scheme with and without the PP-limiter, and
the WENO-5 scheme with and without the PP-limiter. We also test the third order
finite difference (FD-3) scheme without the PP-limiter, which is the third order finite
difference WENO scheme using the linear weights. Numerical solution obtained
with the first order upwind scheme using 2000 grid points are used as a converged
reference solution. Minimum values of the u-component at ¢t = 2 of the WENO-3
scheme and the WENO-5 scheme are shown in Table 10. We can see that without the
nonlinear weights, the FD-3 scheme has oscillations near the interfaces. Comparing
Figure 6(c), Figure 6(d), Figure 6(e) and Figure 6(f), we can see that the PP-limiter
does not affect the non-oscillatory discontinuity transitions of WENO schemes when
maintaining positivity.

Table 10. Example 5: Minimum values of the u-component

at t = 2.
with the PP-limiter  without the PP-limiter
WENO-3 1.000E-16 -5.055E-08
WENO-5 1.000E-16 -1.346E-07
———— Converged solution ——— Converged solution
_ ————— Upwind scheme ————— Upwind scheme
[ — WENO3 ———— WENO-3
14 ——— WENO-5 ———— WENO-5
12|
10 -
0;I 1 1 i 1 P I T T I RS
2 4 6 8 10 17 172 174 1.76 1.78 18
X X
(a) (b)

Fig. 2. Example 3: Stationary pulses. Cut of p = u + v at time T" = 2000. Figure 2(b) is the
enlarged view of Figure 2(a)
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6. Conclusion

In this paper, we discuss high order finite difference WENO schemes coupled with to-
tal variation diminishing (TVD) Runge-Kutta (RK) temporal integration for a non-
local hyperbolic system of a correlated random walk model. A positivity-preserving
limiter is introduced to guarantee positivity of the solution. Analysis is given to
show that when the limiter is applied to a third order finite difference scheme
with third order TVD-RK time discretization solving this model, the scheme can
maintain third order accuracy for both the source and the numerical fluxes, under
the standard CFL condition. Numerical results are provided to demonstrate these
methods up to fifth order accuracy.

(b) WENO-3. 500 grid points

IS o
T TTT
——
——
IS o
T T

L

ne

(¢) WENO-5. 500 grid points (d) Converged solution

Fig. 3. Example 3: Stationary pulses. u and v at the final time ¢ = 2000. The solid lines are the
u-component and the dash lines are the v-component. The small figures are the enlarged view
inside the rectangles.
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Appendix A. Proof of some lemmas

We will give the proof of some of the technical lemmas in this section as an appendix.

A.1. The proof of Lemma 4.1

Suppose u"(x),v™(x) is the solution at time . With the third order TVD Runge-
Kutta

uM = u" + AtL(u™)

1 1

u®? = Zu” + Zu“) + ZAz&L(u(U)
1 _ L on 29, 2 (2)

w = w4 Zu® 4+ AL ®) (A1)

(a) Upwind scheme. 200 grid points (b) WENO-3. 200 grid points

(¢) WENO-5. 200 grid points (d) Converged solution

Fig. 4. Example 4: Traveling pulses. u + v from ¢ = 1500 to ¢t = 2000.
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Upwind scheme

———— WENO3 I [

WENO-5 |

Converged solution
WENO-3
WENO-5

75

6.5

~
S S S B S e e B e ey s s |

ol
N
IS
o
®
o
1S}
L
IS
o
£y
o
@
o
o
N

(a) (b)

Fig. 5. Example 4: Traveling pulses. Cut of p = u + v at time T' = 2000. Fig.5(b) is the enlarged
view inside the rectangle in fig.5(a)

(a) Upwind scheme. 100 grid (b) FD-3. 100 grid points (c) WENO-3 with the PP-
points limiter. 100 grid points

(d) WENO-3 without the PP- (¢) WENO-5 with the PP- (f) WENO-5 without the PP-
limiter. 100 grid points limiter. 100 grid points limiter. 100 grid points

Fig. 6. Example 5: The u-component at t = 2. The solid lines are converged solutions and the
symbols are numerical solutions. The small figures are the enlarged view inside the rectangles.
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we define the functions @V and @ as

aM (@) = u"(2) + At(—w" + glu™, 0", 2])

. 3 1 - (1) ~
i) = S (@) + 10 (@) + A+ gla®, 50 a])  (A2)

Since
H? . — H"
ug-l) =uj + At(— Hl/zAI o2y glu™, o™, x;])
ath - ah
@ _ 3., 1 m i+1/2 ~ Hi-1)2 H 1)
uj = +Z it = At( e + g[u®™, u® z;]) (A.3)
where H "H /2 and H' Jr)l /o are the numerical fluxes with third order accuracy w.r.t.

u™ and u). Hence we can get

ug-l) = &(1)(:Ej) + O(AtAz?)

u;z) =4 (z;) + O(AtAz®)

We also have similar definitions and results for the v-component.
In the proof below, all unmarked quantities are evaluated at time level n. Since

M = yn 4 At(—yug + glu, v, x])
71 = n 4 At(yv, — glu, v, x])

we have
yr[aD, 5M), 2] =y [u + At(—yug + g), v + At(yv, — g), 2]
=y1[u, v, 2] + Atyr [—yus + 9,702 — g, 7]
yalaM, 51, 2] =yolu + At(—yug + g), v + At(yv, — g), 2]
=yo[u, v, 2] + Atys[—yus + g,7vz — g, ]
and

A\ [ﬁ(1)7 o, z] =a1 + as f (11 [ﬂ(l), oW, z])
=a1 + asf(y1u, v, 2]) + @At f' (y1[u, v, 2] )y1 [~ vz + 9,702 — g, 2] + O(At?)
=1 + ax Atf (y1[u, v, 2))y1 [~ Ve + g, Y0r — g, 7] + O(AL?)

Ao [11(1), o, x] =ay + agf(yg[ﬂ(l), o), x])
=ay + ao f(y2[u, v, 2]) + as At f' (ya[u, v, z))ya[—yuz + g, Y0z — g, ] + O(At?)
=Xo + ao Atf (y2[u, v, z))y2[—Yus + g, Y02 — g, 2] + O(AL?)
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Hence, we can get
gla®, 5V, a] = — x[a, o0, 2)a® + Ao [a®, 5O, ] (A4)

= — Mu+ Ao + At{—az f'(y1[u, v, 2])y1 [—vue + 9,02 — g, x|u
- /\1(_")/'“90 + g) + a2f/(y2 [uv v, x])yQ[_'}/uz +9,7v: — g, I]U

+ X2(yve — 9)} + O(A)

With the definitions, we obtain @(?) and ¢(2):

1(1
4]

=u" + EAt(—vuw +9)

a? :Zuj + + At(

(A.5)

1)+g[ @ 5™ )

1
+ ZAtQ{’yZUIm;E - 7(_)\1@“‘ - )\luw + )\2,1U + )\2’1}1)

—axf'(y1[u,
+a2f’( 2[u
+O(

1
+ ZAt2{vzvm
+ a/2f/(yl [’U,,

- a/2f/(y2[u7
+O(At?)

— ,7(_)\1@” —

v, T))y1 [~ YUz + g, YV
, Uy ‘T])yQ[_/yuw + g, YUz —

v, ‘T])yl [_’}/Um + 9, VVz —
v, ‘T])yQ[_/yuw + g, YUz

— g, Ju — A (=yus + g)
g, xJv + Ao (yvz — g)}

—gla™,5M x])

)\lum + )\2,;EU + )\2U;E)

g, xJu + Ay (—yuz + g)
—g,zJv — A2(yvz: — g)}

And we repeat the procedure of g[a("), 51 2] to get g[a®, 53, z], therefore

gla®, 5 2]

1
=— MU+ v+ §At{—a2f’(y1 [u,v,2]) - y1[—vus + g, Y0z — g, z]u

— M (=7ug + 9) + as f' (y2[u, v, 2]) - ya[—Yusz + 9, Y02 — g, x|V

+ X2 (yve — 9)} + O(AF)
Since

y1[=Yus + g, Y02

Yo[—Yus + g, Y0z

(A.6)

-9 fE] = [Utﬂ)t, !E] = yl,t[uava«fc]

-9 fE] = y2[ut7vt7 !E] = y2,t[uava$]
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we write the above expressions as
g[&(l), o, x] = g+ At(=A1 0u — Mug + Ao v + Agvy) + O(At?) (A.7)

1
g[a@), 17(2), ;[:] =g+ §At(—)\17tu — MU + )\Q)t'U + )\Q'Ut) + O(At2) (AS)

a? =u+ %At(—wuw +9)+ iAtQ{WQum — (= A1 — Aty + A2 o0+ Aovy)

+ (= A — Mg + Ao v+ Ay} + O(AE?) (A.9)
7 =+ %At(yum —9)+ EAR{W%M — (=AU — MUz + A2z + A2vy)

— (= Areu = Aty + Ag v + Aavy) } + O(AF) (A.10)

Hence

A 1 1 2
ng :Eg[unu ’Unvxj] + 69[,&(1)7,&(1), !Ej] + gg[’l)@),ﬁ@),fl]]] + O(ACE3)

1
=g; + §Af(—)\1,tu — Mus + Ao40 + Aovy) + O(AE + Az?) (A.11)

If we use a third order finite difference scheme for the spatial discretization, we
have

A 13 1 1
Hji10= Efj+1/2 - ﬂfj—l/? - ﬂfj+3/2 + O(Az?)

So if we expand H'* . at x; for the u-component with f(u) = yu, we can get

j+1/2
. 1,13, 1 " 1 n
jf1/2 ZE(Ef(U )j+1/2 — ﬂf(u )j-1/2 — ﬂf(u )i+3/2)
1,13, _ 1 ... 1,
+ E(ﬁf(u(l))jﬂ/z - ﬂf(u(l))j—l/z - ﬂf(u(l))jw/z)
2,13 ., 1 ... 1,
g(ﬁf(um)jﬂ/z - ﬂf(um))j—l/z - ﬂf(u(m)jw/z)
+ O(Az?)
1 1 1.1 1 1
=yu; + Al’(g(l = AY)vus + 5/\79) + Al’2{§(§”¥2/\2 - 5)\7 + g)um
1.1 1
+ 5(5/\’}/ + 5)(—/\1@’& — MUy + /\2me + /\sz)
1
+ 6/\27(_)\1’{“ — /\1ut + )\21,51) + )\21},5)}
+ O(Ax® + At?) (A.12)

A.2. The proof of Lemma 4.2

We will find the u-component values along the characteristic line

l: =~y —t")+ 2"
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We denote wy(t; z*,t*) as wy(t), | = 1,2. Then we can get

d’LU1 -
o Ve tu=g
d’LUQ
L =Yy + Vs =270, — ¢
Hence,
wy(t) = wy (%) + /t* glu(z, 7),v(x, 7),y(r — t*) + 2*|d
Because
wi(7) —W1(t*)+(7—t*)%( ) +O((r = t*)%)
= w1 (£°) + (7 = ) (w4 Yt)| @+ =) + O((T — t)?)
wﬂﬂ—wﬁﬁ%+@—¢ﬂ%%@ﬂ+0«7—tP)
=w2 (") + (7 — ) (v + Y02)| (2~ O((r —t*)?)
p(y(r = %) + 2", 7) =wi(7) + wa(T)
=wi (%) + wo (t*) + (1 = ) (us + ve + 7 (ug + v2))| @+ 4 + O((1 = )?)

=p(a™, t°) + (1 = ") (pe (2™, t*) + ypa (2, £7)) + O((1 — t*)?

we can get

ar /°° Kp(s) - [p(y(r =) + 2" +5,7) = p(y(r = 17) + 27 — 5,7)]ds

e [ R5) B ) (5 )l ) e 4 5,07) + O = 0)?)
—p(a* — 5, %) — (T = t*)(ps(z* — 5, %) + ypo(a* — 5,t%)) + O((T — t*)?)]ds
/ K.( p(x* + s,t*) — p(a* — s,t%)]ds
+(r—t )qr/o K. (3) - [pe(z” + 5,t%) — pe(z”™ — s5,t7)]ds

oo

= ar | Krs) - [Pl 4 ,87) —pa(a” — s, ¢7)]ds

+O((r —1%)?)

Thus
,7),0(@, ), y(T = t7) + 27]

/ K. ( YT =t +a* +s,7)—ply(r —t*)+ ¥ —s,7)|ds

- qa/o Ko(s)[p(y(1 =t7) + 2" +5,7) = p(y(T —t7) + 2" — 5,7)]ds
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+ Qi /000 Kus)v(y(r =t + 2" +5,7) —uly(r —t*) + 2" — s,7)]ds

Jo(z, t%), 2% + (7 — ) -y |ue (z, %), v (z, ), 2]
) fue (@, 1), va (2, 8°), 2] + O((1 — t)?)
yo(@,t7), 2]+ (T = t7) -y efulz, £7), vz, 1), 27
— ) yrlula, 1), o(a, 1), ]+ O((T — t)?)

H-\_/H-\_/

and
Mu(z, 7),v(x, 7),y(T — t7) + x7]
=ay + az f(yifu(z, 7),v(z, 7),y(T — t7) + 27])
=ay + az f(yifu(z, 1), v(z, "), 27
+az(r — ) f (ya[u(z, 1), v(z, %), 27]) - yrefulz, t7), v(z, 1), 27
+axy (T — ) f (yau(@, 1), v(@, 1), 2%]) - yrafule, t7), v(z, t7), 27
+O((r —t*)?)
=M [u(@, t°),v(x, t%), 2%] + (7 — %)\ eJu(z, t7), vz, t7), 2" + (7 — )\ pu(z, t7), v(z, ), 2]
+O((r —t*)?)
Similarly,
Xofu(@, 7), vz, 7),y(T = %) + 2]
=Xofu(x, t*), v(z, t%), 2" + (7 — t*) Ao [ul(z, ), v(z, t%), "] + y(7 — t*) Mg w[u(z, %), v(x, t*), 7]
+O0((r —t)?)
Hence
glu(z,7),v(x,7),7(1 — ) + 7]
=— Mfu(z, t*),v(z, t*),y(r — %) + 2] - w1 (7) + Aefu(z, t*),v(x, t*),y(T — t*) + x*] - wa(7)
=— AMu(z, %), v(x, t), 2] - w1 (&) + Ao[u(z, ), v(x, t7), 2] - wa (")
+ (7 = t7) - [=An0u — Arug 4 A v + Aovp + (= A1 pu — At + X220+ Aovs)]|(ox )
+O0((1 —t*)?)

and
/t* glu(x, 7), v(x,7),y(r — £7) + 2"]dt

1
=t —t") - glu(z, t),v(z, %), "] + 5(15 — )2 LA pu — Apug + Ao v+ Agvy
7(—)\17wu — MUy + )\2@’0 + )\Q’Uw)}kz*’t*) + O((T - t*)g)
Thus

u(y(t —t%) + 2", t%)
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=u(z*, t*) + (t — t*) - glu(z, t*),v(x, t"), x*]

1
=+ E(t — t*) . {—)\17,5’11 — MU + )\2){0 + Aovy + 7(—/\17mu — MUy + /\2@’0 + )\2Um)}|(z*,t*)

+O((t —t*)?)
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