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ABSTRACT. In this paper we present an a priori error estimate of the

Runge-Kutta discontinuous Galerkin method for solving symmetrizable con-

servation laws, where the time is discretized with the third order explicit total

variation diminishing Runge-Kutta method and the finite element space is

made up of piecewise polynomials of degree k ≥ 2. Quasi-optimal error esti-

mate is obtained by energy techniques, for the so-called generalized E-fluxes

under the standard temporal-spatial CFL condition τ ≤ γh, where h is the

element length and τ is time step, and γ is a positive constant independent of

h and τ . Optimal estimates are also considered when the upwind numerical

flux is used.

Key words. Discontinuous Galerkin method, Runge-Kutta method, error

estimates, symmetrizable system of conservation laws, energy analysis.

AMS subject classification. 65M60, 65M12

∗Department of Mathematics, Nanjing University, Nanjing, 210093, Jiangsu Province, P.R.

China (E-mail: luojuan.nikki@163.com). The research of this author is supported by NSFC grants

11271187 and 11071116.
†Division of Applied Mathematics, Brown University, Providence, RI 02912, USA (E-mail:

shu@dam.brown.edu). The research of this author is supported by NSF grants DMS-1112700 and

DMS-1418750, and DOE grant DE-FG02-08ER25863.
‡Department of Mathematics, Nanjing University, Nanjing, 210093, Jiangsu Province, P.R. China

(E-mail: qzh@nju.edu.cn). The research of this author is supported by NSFC grant 11271187 and

10931004.

1



1 Introduction

In this paper we would like to continue the works in [29–31] and present error estimates

of the Runge-Kutta discontinuous Galerkin (RKDG) method for smooth solutions

of symmetrizable systems of conservation laws. For simplicity of presentation, we

consider the model equation in the spatial domain I = (0, 1) and the time interval

[0, T ],

ut + f (u)x = 0, (x, t) ∈ I × (0, T ], (1.1)

with the initial solution u0(x). Here u(x, t) : R × R+ → Rm is the unknown vector-

valued solution, and f (u) : Rm → Rm is the given smooth flux function. We will,

however, point out similarities and differences when the analysis is generalized to

multiple space dimensions. Furthermore, we do not pay much attention to boundary

conditions in this paper; hence the solution is considered to be periodic or compactly-

supported. Generic solutions to (1.1) will contain discontinuities, which are much

more difficult to analyze, see [5, 32] for some preliminary results in this direction. In

this paper we consider only smooth solutions, therefore, we assume the initial solution

u0(x) is smooth and we consider only a short time interval before discontinuities

develop.

The symmetrizable system of conservation laws has a wide background. Well-

known examples are the shallow water wave equations and the Euler equations of

compressible gas dynamics. As is well known, a conservation law system (1.1) is sym-

metrizable if and only if it has a convex entropy function [14]. Due to the symmetriza-

tion theory [14,25], one can seek a mapping u(v) : Rm → Rm applied to (1.1), so that

when transformed, u′
v
vt + f ′

v
vx = 0, the Jacobian matrix u′

v
= (∂ui/∂vj)

j=1,...,m
i=1,...,m is

symmetric positive definite and the Jacobian matrix f ′
v

= f ′
u
u′

v
is also symmetric.

In this paper we consider the numerical method to solve directly (1.1) by using

the RKDG method. The first version of discontinuous Galerkin (DG) method was

introduced in 1973 by Reed and Hill [23] for the steady linear neutron transport.

It was later developed into RKDG methods by Cockburn et al. [6–10] for nonlinear

hyperbolic conservation laws, which use a DG discretization in space and combine it

with an explicit total variation diminishing Runge-Kutta (TVDRK) time-marching

algorithm [26]. Later, this method was developed to solve equations with higher

order derivatives. It is well known that the DG method has strong stability and

optimal accuracy to capture discontinuous jumps and/or sharp transient layers, and

it combines the advantages of finite element and finite volume methods. For a fairly

complete set of references on this methods, we refer to the review papers [4, 12].

However, up to now there has been relatively few work on stability analysis and

error estimates for the fully discrete RKDG methods with the explicit TVDRK time

marching to solve (1.1). The method of line version (continuous in time) of the DG
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scheme for linear equations has been considered in [11, 18, 20], and has been proved

to maintain good L2-norm stability and optimal error estimates. For nonlinear equa-

tions, there exists the well-known local entropy inequality [17] for the semi-discrete

DG scheme, as well as for the fully discrete DG scheme with some special time-

discretizations such as the backward Euler and Crank-Nilson algorithms. Recently,

RKDG method with explicit time-discretization for nonlinear conservation laws has

been analyzed in [2,29,31], where the (quasi)-optimal a priori error estimates are ob-

tained for the second order and the third order explicit TVDRK time discretization,

respectively, for scalar equations.

As to symmetrizable systems, error estimates are more difficult to obtain. In [30],

error estimates are obtained for RKDG methods with a second order TVDRK time

discretization, under a restrictive time step constraint in which τ = o(h). This re-

striction is not surprising, as RKDG methods with a second order TVDRK time

discretization is linearly unconditionally unstable under the regular time step restric-

tion τ ≤ ch for any fixed constant c > 0, when the polynomial degree k ≥ 2 [12].

However, the time step restriction τ = o(h) is not realistic in actual computation,

and we would like to use third order TVDRK time discretization under regular CFL

time step restriction. As far as the authors know, there are still no error estimates

for the symmetrizable system, when explicit Runge-Kutta time discretization is used

under regular CFL conditions. The RKDG3 method uses the third order explicit TV-

DRK time-marching combined with piecewise polynomials of arbitrary degree, and is

more popular because in practice it provides better linear stability and higher order

accuracy in time. However, the techniques used in [30] to obtain error estimates for

RKDG2 under the more restrictive time step constraints are not applicable to RKDG3

methods under regular CFL conditions. In a recent work [31], a new technique which

explores the specific dissipation natures of third order TVDRK time discretization is

developed to analyze the scalar equations. The extension of this technique to sym-

metrizable systems is the purpose of this paper. This extension is non-trivial, as we

must carefully study the numerical fluxes (referred to as the generalized E-flux) in

the system case and their influence towards the errors. We can no longer use mono-

tonicity of the fluxes in the scalar case. Our result is a quasi-optimal or optimal error

estimate depending on the numerical flux, similar to that in [31] for the scalar case,

under the standard temporal-spatial CFL condition τ ≤ γh. Here h and τ are the

element length and time step, respectively, and the positive constant γ is independent

of h and τ .

The main line of analysis in this paper follows that in [30, 31], by using energy

analysis as the main tool. It is rather straightforward to generalize the error estimates

in [31] from the scalar case to symmetric systems. However, as we will see later in this
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paper, it is significantly more difficult to carry out the above error estimates for the

symmetrizable systems. In this development, we need to pay more attention to several

issues owing to the symmetrizable theory, for instance, the suitable norm with local

rotational matrix in each element, and Lipschitz continuity of the rotational matrix

and the Jacobian matrix of the flux. In this process, many issues about vector-valued

functions need to be addressed.

The essential difficulty in this paper is how to describe the numerical viscosity re-

sulting from the DG spatial discretization. We have considered the RKDG2 method

in [30], where the explicit second order TVDRK time-marching is used, for the sym-

metrizable system, and a description on this issue has been given there. However,

the stability mechanism in the RKDG3 method is completely different from that of

the RKDG2 method, where the additional stability provided by the explicit third or-

der TVDRK time-marching plays an important role. As we have done in section 3.3

of [31], we need to use the Lipschitz continuity of the numerical viscosity quantity to

maintain the structure of this stability term in the time direction. This property is not

needed in the analysis for the RKDG method with the second order time-marching,

as in [29, 30]. This new property demands that we have to modify the analysis in a

suitable way for the symmetrizable system.

To this end, we firstly try to propose a careful classification of the necessary

properties for the numerical fluxes used in the symmetrizable system case. This kind

of numerical flux is defined as the generalized E-flux in this paper, where we relax the

demand than that in [30]. For example, we only need two inequalities related to the

two states under consideration, and we add the freedom on the rotation position and

the adjusting matrix. Thus this new definition is more easily verified than that in [30].

Then we establish an important matrix termed generalized numerical viscosity matrix,

to describe the total numerical stability coming from the jumps at every element

interface. In order to ensure the Lipschitz continuity of this matrix, the definition in

this paper is different from that in [30]. We carry out this idea through the generalized

Newton difference quotients. Furthermore, we present three typical assumptions on

the generalized numerical viscosity matrix, which are enough to obtain good error

estimates. The details are given in section 2.2.

An outline of this paper is as follows. In section 2 we present the RKDG3 scheme

for the symmetrizable system of conservation laws. The so-called generalized E-flux

and the generalized numerical viscosity matrix are presented. Some assumptions on

the numerical viscosity matrix and the smoothness of the exact solution are also given

here, which yield the main conclusion about the quasi-optimal error estimate. In the

remaining part of this paper, we would like to present the detailed proof to this main

conclusion. In section 3 we obtain the error representation and the corresponding
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error equations, and in section 4 we provide some elementary discussions on the error

functional in detail. In section 5 we carry out the energy analysis and complete the

error estimate, with some technical proofs left to the appendix. Finally, a concluding

remark is given in section 6.

2 RKDG3 scheme and the main conclusion

In this section we present the detailed implementation of the RKDG3 method, fol-

lowing the notations in [30,31]. The generalized numerical viscosity matrix is defined

for the so-called generalized E-flux. Finally, we present the main conclusion on the

quasi-optimal error estimates in general, and on the optimal error estimate for the

upwind numerical flux.

2.1 RKDG3 scheme

Let Jh = {Ij = (xj−1/2, xj+1/2)}N
j=1 be a partition of I = (0, 1), with each element

length being hj = xj+1/2 − xj−1/2. The maximum length of this mesh is denoted by

h = maxj hj . In this paper we assume the partition is quasi-uniform, namely, there

exists a positive constant ν such that h ≤ νhj for all j = 1, 2, . . . , N , as h goes to

zero. The discontinuous finite element space is defined as

Vh = { v ∈ [L2(0, 1)]m : v|Ij
∈ [P k(Ij)]

m, j = 1, . . . , N }, (2.1)

where P k(Ij) denotes the space of polynomials in Ij of degree at most k. Note that

the function p ∈ Vh is allowed to have discontinuities across element interfaces. Two

limits from the left- and the right- directions are denoted by p− and p+, respectively.

Furthermore, the jump and the mean, respectively, are denoted by

[[p]] = p+ − p−, and {{p}} =
1

2
(p+ + p−). (2.2)

We discretize the time interval [0, T ] with the time step τ , which could actually

change from step to step but is taken as a constant in this paper for simplicity. In the

RKDG3 method, we would like to seek successively the numerical solution, denoted

by un
h(x) = uh(x, nτ), in the discontinuous finite element space.

The initial solution u0
h is taken as the approximation of u0(x), for instance, the

standard L2-projection Phu0(x). It is defined as the unique function in Vh such that

(Phu0(x) − u0(x), vh) = 0 ∀vh ∈ Vh. (2.3)

Here (p, q) =
∫

I
p⊤q dx is the inner product as usual in the space [L2(0, 1)]m. Note

that this projection is locally defined on each element and hence we will also refer to

it as the local L2-projection later.
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For each n ≥ 0, the numerical solution of the RKDG3 method from the time nτ

to the next time (n + 1)τ is defined as follows: find u
n,1
h , un,2

h and un+1
h in the finite

element space Vh, such that for any vh ≡ vh(x) ∈ Vh there hold

(un,1
h , vh) = (un

h, vh) + τH(un
h, vh), (2.4a)

(un,2
h , vh) =

3

4
(un

h, vh) +
1

4
(un,1

h , vh) +
τ

4
H(un,1

h , vh), (2.4b)

(un+1
h , vh) =

1

3
(un

h, vh) +
2

3
(un,2

h , vh) +
2τ

3
H(un,2

h , vh). (2.4c)

Here H(p, q) is the DG spatial discretization, expressed compactly in the form

H(p, q) =
∑

1≤j≤N

∫

Ij

q⊤
x f (p) dx +

∑

1≤j≤N

[[q]]⊤
j+ 1

2

f̂(p−, p+)j+ 1

2

, ∀p, q, (2.5)

since the numerical solution is periodic or compactly-supported.

In (2.5), f̂ (p−, p+) is the numerical flux to ensure the good stability and high-order

accuracy. In general, it depends on the two vectors along the left and right directions

at the element boundary point. The well-known examples include the global (local)

Lax-Friedrichs flux, the Roe linearization flux function [24] with or without Harten’s

entropy fix [15], and those fluxes constructed by the flux vector splitting [27]. They

can be looked upon as exact or approximate Riemann solvers. For more details, we

refer to [27, 30].

To ensure numerical stability, the time step should satisfy a temporal-spatial re-

striction. The detailed CFL condition will be given later; see (5.1) and (5.25). We

have now completed the definition of the RKDG3 method.

2.2 Numerical flux

In this subsection we would like to recall some issues for the numerical fluxes used

in practice. Then an important matrix will be defined to describe the numerical

viscosity for symmetrizable systems.

2.2.1 Some important matrices in the symmetrizable theory

It follows from the symmetrizable theory that f ′
u

has a strong relationship with an

important symmetric matrix, since

Q1/2f ′
u
Q−1/2 = Q1/2f ′

v
Q1/2 ≡ K, (2.6)

where Q ≡ Q(u) = v′
u

is the Jacobian matrix of the transformation v = v(u).

Note that K is a symmetric matrix with the same spectrum as f ′
u
. Thus there
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exists the eigenvector decomposition K = X−1K̃X, where K̃ = diag{λi}m
i=1. Let

K̃+ = diag{max(λi, 0)}m
i=1 and K̃− = diag{min(λi, 0)}m

i=1. The positive and negative

parts of K are then defined as K± = X−1K̃±X. The standard absolute value matrix

of K is defined as |K| = K+ − K−.

In this paper, we will use another important matrix and its generalized absolute

value matrix, respectively,

H = v′
u
f ′

u
= Q1/2KQ1/2, 〈H〉 = Q1/2|K|Q1/2. (2.7)

Note that 〈H〉 is a symmetric positive semidefinite matrix.

Furthermore, in this paper we will use ‖ · ‖M to represent the length of a vector,

or the spectrum norm of a matrix, respectively. Namely, ‖p‖M = (
∑m

i=1 p2
i )

1/2 for

any vector p = (p1, . . . , pm)⊤, and ‖C‖M = max‖p‖M=1 ‖Cp‖M for any matrix C. If

the matrix C is symmetric, then ‖C‖M is equal to the spectral radius of this matrix,

denoted by ρ(C). We will also use the following inequalities

|p⊤Cq| ≤ ‖C‖M‖p‖M‖q‖M,
∣∣∣p⊤Cq

∣∣∣ ≤
(
p⊤|C|p

)1/2(
q⊤|C|q

)1/2

, (2.8)

for any matrix C and any vectors p and q. Note that C = |C| if C is positive

semidefinite. Both inequalities in (2.8) are named Cauchy-Schwarz inequalities in

this paper.

2.2.2 Generalized numerical fluxes

Now we would like to recall some elementary properties of numerical fluxes for sym-

metrizable systems.

In general, the numerical flux f̂ (a, b) is locally Lipschitz continuous with respect

to each argument, and consistent with the true flux f (p), namely, f̂ (p, p) = f (p).

Furthermore, successful fluxes used in practice should satisfy certain conditions to

ensure stability and convergence of RKDG schemes.

In this paper we would like to present an abstract framework to describe these

conditions, suitable for further analysis. This abstract framework is naturally defined

for the scalar case (when m = 1) in terms of monotonicity, where the numerical

flux f̂(p−, p+) is assumed to be a nondecreasing function of its first argument and

a nonincreasing function of its second argument. Such fluxes are called monotone

fluxes. Following [22], a more general class of fluxes are termed as entropy fluxes

(E-fluxes), namely, there always holds for any q between p− and p+, that

[[p]](f(q) − f̂(p−, p+)) ≥ 0. (2.9)

However, this description is not trivial to extend to the system case.
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For symmetric systems of conservation laws, an important concept along this line

is the so-called generalized E-flux, proposed in [16]. That is to say that

[[p]]⊤{f (r) − f̂(p−, p+)} ≥ 0, (2.10)

for any r standing on the straight-line segment with two endpoints p±. However, this

condition can not describe desirable numerical fluxes when solving symmetrizable

(but not symmetric) systems of conservation laws.

Thanks to (2.6), we would like in this paper to propose an extension of the gen-

eralized E-fluxes to symmetrizable systems, by the help of the local rotation matrix

Q.

Definition 2.1 The numerical flux f̂(p−, p+) is called a generalized E-flux, if we

have a rotation position sκ and a positive semidefinite matrix Yκ, such that

[[p]]⊤Q(sκ){f (rκ) − f̂ (p−, p+)} + [[p]]⊤Yκ[[p]] ≥ 0, κ = 1, 2, (2.11)

for r1 = p− and r2 = p+. Here sκ = sκ(p
−, p+) lies in the standard super-rectangle

with two vertices p±. Furthermore, each element in Yκ = Yκ(p
−, p+) has the order

O(‖[[p]]‖M), with the common bound depending only on the local Lipschitz constant of

Q in the above super-rectangle.

Note that the adjusting matrix Yκ is introduced to overcome the trouble in [30]

on how to seek a reasonable rotation position sκ. It is easy to seek a good rotation

position for the scalar case and for symmetric systems; in such cases we can take

Yκ = 0. In general, with the help of the new freedom Yκ, we can take the rotation

position sκ as an arbitrary point along the straight line between p− and p+. Hence,

this definition enlarges the class of generalized E-fluxes, given in [16, 30].

Many numerical fluxes can be verified easily to be generalized E-fluxes. A detailed

example will be given in the appendix, for the (global/local) Lax-Friedrichs flux. More

examples can be found in [21].

2.2.3 Generalized numerical viscosity matrix

It is well-known that the numerical viscosity in the semi-discrete DG method comes

from the square of the jumps at element boundary points. Below we would like to

define an important matrix for the generalized E-flux, to describe the strength of the

numerical stability in space. Similar quantity has been defined and analyzed for the

scalar case; we refer to [29].

To extend to the system case, we would like to use the following notation. Let

g = (g1, g2, . . . , gm)⊤ be an m-dimensional vector-valued function with respect to
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the m-dimensional variable. For any given two vectors a = (a1, a2, . . . , am)⊤ and

b = (b1, b2, . . . , bm)⊤, define a(0) = a, a(m) = b, and

a(j) = (b1, . . . , bj−1, bj, aj+1, . . . , am)⊤, j = 1, 2, . . . , m − 1. (2.12)

Note that g(a)−g(b) =
∑m

j=1[g(a(j−1))−g(a(j))]. The generalized Newton difference

quotient is an m-dimensional matrix, denoted by Dg[a, b], with the element in the

(i, j)-entry being
(
Dg[a, b]

)
ij

=
gi(a

(j−1)) − gi(a
(j))

aj − bj

. (2.13)

If the denominator is equal to zero, the term should be understood as the limit when

the denominator goes to zero.

Definition 2.2 Let f̂ (p−, p+) be a generalized E-flux, locally Lipschitz continu-

ous and consistent with f (u). The generalized numerical viscosity matrix A(f̂ ; p) is

defined at each element boundary point, in the form

A(f̂ ; p) =
1

2
A1(f̂ ; p) +

1

2
A2(f̂ ; p)

≡
1

2
Q(s1)Df̂ (1)[p−, p+] −

1

2
Q(s2)Df̂ (2)[p−, p+], (2.14)

where f̂ (1)(r) = f̂ (r, p+) and f̂ (2)(r) = f̂ (p−, r). Here s1 and s2 are the two rotation

positions, stated in Definition 2.1.

We would like to mention that the above definition confirms the result for the linear

constant system, with f (u) = Au and A being a constant matrix. In this case, all

upwind numerical fluxes used in practice are equal to f̂ (p−, p+) = A+p− + A−p+.

Due to the symmetrizable theory, there exists a symmetric positive definite matrix

A0 such that AA0 is symmetric. A tedious stability analysis [21] for the semi-discrete

DG method will give the total numerical viscosity,

1

2

∑

1≤j≤N

[
[[uh]]

⊤〈A−1
0 A〉[[uh]]

]
j+ 1

2

. (2.15)

The generalized numerical viscosity matrix given by (2.14) is the same as the above

involved matrix, namely, 1
2
〈A−1

0 A〉. From this viewpoint, Definition 2.2 is nicer than

that in [30].

Through observation on many numerical fluxes, we would like in this paper to

make some elementary assumptions on the generalized numerical viscosity matrix,

for the convenience of analysis. They read
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A1 The matrix A(f̂ ; p) is nearly positive definite, in the sense

[[p]]⊤A(f̂ ; p)[[p]] ≥ −Lnp‖[[p]]‖3
M, ∀p. (2.16a)

A2 The matrix A(f̂ ; p) is Lipschitz continuous, in the sense,

‖A(f̂ ; p) −A(f̂ ; {{p}})‖M ≤ LLip‖[[p]]‖M, ∀p. (2.16b)

A3 The matrix A(f̂ ; p) is upper consistent with 1
2
〈H({{p}})〉, in the sense: there

exists a positive semidefinite matrix ℧ = ℧(f , f̂ ; p), such that
∣∣∣[[p]]⊤

(1

2
〈H({{p}})〉+ ℧ −A(f̂ ; p)

)
[[p]]

∣∣∣ ≤ Luc‖[[p]]‖3
M, ∀p. (2.16c)

Note that the above three bounding constants are all independent of ‖[[p]]‖M, but may

depend on the local Lipschitz constants of the true flux f (u) and/or the numerical

flux f̂ (p−, p+).

The assumption A1 is provided directly from Definition 2.1. Actually, it follows

from (2.11) and (2.14) that

[[p]]⊤A(f̂ ; p)[[p]] =
1

2
[[p]]⊤Q(s1){f (p+) − f̂ (p−, p+)} +

1

2
[[p]]⊤Q(s2){f (p−) − f̂(p−, p+)}

≥ − [[p]]⊤Y1[[p]] − [[p]]⊤Y2[[p]],

where ‖Yκ‖M ≤ Lκ‖[[p]]‖M for κ = 1, 2. The remaining two assumptions can be

verified easily for many numerical fluxes. An example is given in the appendix, for

the local/global Lax-Friedrich flux (7.1).

It is worthy to point out that the generalized numerical viscosity matrix satisfies

the kernel property

Aκ(f̂ ; p)[[p]] = Q(sκ)
[
f (rκ) − f̂ (p−, p+)

]
, (2.17)

for κ = 1, 2, where r1 = p− and r2 = p+. This property will play an important

role in our analysis, as in [30], in order to express explicitly the numerical viscosity

provided by the numerical flux. Detailed discussion can be found in section 4.4 and

in section 7.4 on the proof of Lemma 5.4.

Remark 2.1 In the above discussion, we do not pay attention to whether the

generalized numerical viscosity matrix A(f̂ ; p) is symmetric or not.

Remark 2.2 Assumption A3 can be verified easily for the upwind numerical fluxes

(namely, one-sided numerical fluxes for each characteristic variable after suitable lo-

cal characteristic decomposition, see section 5.6 for more details), for example, the

upwind numerical flux for a linear flux and the Steger-Warming flux [27] for Euler

equations. In such cases, we can take ℧ = 0, and consequently there holds A(f̂ ; p)

tends to 1
2
〈H({{p}})〉 as [[p]] goes to zero.
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2.3 The main conclusion

In this paper, some standard norms will be used. Let p be a vector-valued function

and/or matrix-valued function. The [L2(I)]m norm and the infinity norm, respec-

tively, are denoted by

‖p‖ =
(∫

I

‖p(x)‖2
M dx

)1/2

, ‖p‖∞ = ess sup
x∈(0,1)

‖p(x)‖M. (2.18)

We also use ‖ · ‖s to denote the standard norm in the Sobolev space [Hs(I)]m, in

which the function and its derivatives up to s-th order are all in [L2(I)]m.

In order to obtain the a priori error estimates to the RKDG3 method, we would

like in this paper to assume that the exact solution u(x, t) to problem (1.1) is suffi-

ciently smooth. Namely,

H1 Both ‖u‖k+1(t) and ‖utttt‖(t) are bounded uniformly by a constant for any

time t ∈ [0, T ]. Furthermore, the exact solution is continuous and bounded.

For the purpose of optimal error estimate, we assume that u has a higher order

smoothness, i.e., ‖u‖k+2(t) is also bounded uniformly for any time t ∈ [0, T ].

H2 Each component of f (p) and f ′
u
(p) is bounded for all p ∈ Rm. Moreover, f ′

u
(p)

is Lipschitz continuous with the bounding constant CFlux
⋆ .

H3 The rotation matrix Q(p) is symmetric positive definite uniformly, namely,

there exist two constants γ⋆ and γ⋆, such that 0 < γ⋆ ≤ ‖Q(p)‖M ≤ γ⋆ holds

for all p ∈ Rm. Furthermore, Q(p) is Lipschitz continuous with the bounding

constant CRot
⋆ .

As a consequence, the bounding constants in the assumptions A1–A3 can be simplified

by three common constants, respectively.

A remark is given here. Due to the boundedness of the exact solution, the last

two assumptions H2 and H3 are reasonable with a cut-off modification on f (u) and

u(v). We refer to [29] for more details.

Now we present the main conclusion in the following theorem.

Theorem 2.1 Let uh be the numerical solution of the RKDG3 scheme (2.4), us-

ing piecewise polynomials with arbitrary degree k ≥ 2, defined on any quasi-uniform

triangulations of I = (0, 1). The numerical flux is a generalized E-flux associated with

the generalized numerical viscosity matrix satisfying assumptions A1–A3. Let u be

the exact solution of problem (1.1), which satisfies the above smoothness assumptions

H1–H3. Then we have the following error estimate

max
nτ≤T

‖u(x, tn) − un
h‖ ≤ C(hk+σ + τ 3), (2.19)
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under a standard CFL condition τ ≤ γh with a suitably fixed constant γ > 0, where

the bounding constant C > 0 is independent of h and τ . Here σ = 1
2

for generalized

E-fluxes; and σ = 1 for upwind numerical fluxes.

The proof is technical and long, which will be given in several steps in the sub-

sequent sections. To show the main ideas clearly, we focus our attention on the

quasi-optimal error estimate (σ = 1
2
) for generalized E-fluxes. The optimal error es-

timate for upwind numerical fluxes can be proved in a similar line; a sketch will be

given in section 5.6.

3 The error equations

To obtain the error estimate, we have to first establish the error equations. This

process is similar to that in [30, 31].

3.1 Reference stage solutions

Following [31], three reference functions are defined as the local time discretization of

the third order explicit TVDRK algorithm for the exact solution of the conservation

law (1.1). Let u(0) = u, and

u(1) = u(0) − τf (u(0))x, u(2) =
3

4
u(0) +

1

4
u(1) −

1

4
τf (u(1))x. (3.1)

Owing to the Sobolev embedding theory [1], it follows from the smoothness assump-

tions H1–H3 that the above reference values are all continuous and bounded in the

whole domain I × [0, T ].

A simple manipulation yields the local truncation error in time, denoted by E(x, t),

such that

u(0)(x, t + τ) =
1

3
u(0)(x, t) +

2

3
u(2)(x, t) −

2

3
τ [f (u(2)(x, t))]x + E(x, t). (3.2)

There holds uniformly ‖E(x, t)‖ = O(τ 4) for any time, due to assumption H1. Similar

discussion can be found in [31] for the scalar case.

Define un,ℓ = u(ℓ)(x, tn) to be the reference stage solution. Here and below we may

drop the index ℓ if ℓ = 0. For convenience of notations, we denote three differences

En
1u

n = un,1−un, En
2u

n = 4un,2−un,1−3un, En
3u

n =
1

2
(3un+1−2un,2−un), (3.3)

to describe the evolution of the solution at each time stage.

12



Multiply the test function vh ∈ Vh on both sides of equations (3.1) and (3.2), re-

spectively. Let t = tn and then integrate them in each element. Due to the consistency

of the numerical flux, this process yields a set of equalities for ℓ = 0, 1, 2,

(En
ℓ+1u

n, vh) = τHn,ℓ(un,ℓ, vh) + (En,ℓ, vh), ∀vh ∈ Vh, (3.4)

which are almost the same as the RKDG3 scheme (2.4). In this paper we would like

to denote En,2 = E(x, tn), and denote En = En,1 = 0 just for simplicity.

3.2 Projection properties

Define the stage error en,ℓ = un,ℓ − u
n,ℓ
h . As the usual treatment in a finite element

analysis, we divide the stage error in the form

en,ℓ =
[
πhu

n,ℓ − u
n,ℓ
h

]
−

[
πhu

n,ℓ − un,ℓ
]
≡ ξn,ℓ − ηn,ℓ, (3.5)

where πh is a suitable projection. The projection error ηn,ℓ can be estimated easily.

It is enough to take πh = Ph as the standard L2-projection (refer to (2.3)), in

order to obtain the quasi-optimal error estimate. Since u(x, t) is smooth enough, a

standard scaling argument [3, 20] yields that the projection error ηn,ℓ satisfies

‖ηn,ℓ‖ + h‖ηn,ℓ
x ‖ + h1/2‖ηn,ℓ‖Γh

≤ C1h
k+1, ∀n : nτ ≤ T, ℓ = 0, 1, 2. (3.6a)

Here Γh is the union of all element interfaces, and, for any function p, we denote

‖p‖Γh
=

( ∑

1≤j≤N

1

2
‖p+

j+ 1

2

‖2
M +

1

2
‖p−

j+ 1

2

‖2
M

)1/2

.

It follows from the interpolation theory [3] that

‖ηn,ℓ‖∞ ≤ C2h
k+ 1

2 , ∀n : nτ ≤ T, ℓ = 0, 1, 2. (3.6b)

Since the projection Ph is linear and independent of the time, En
ℓ η

n is also the pro-

jection error of En
ℓ u

n under the same projection. Thus we also have the estimates

‖En
ℓ ηn‖ + h1/2‖En

ℓ ηn‖Γh
≤ C3h

k+1τ, ∀n : nτ ≤ T, ℓ = 1, 2, 3. (3.6c)

Note that the above bounding constants, C1, C2 and C3, depend solely on the smooth-

ness of the exact solution.
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3.3 The error equations

The remaining work in this paper is to estimate the errors in the finite element space,

namely ξn,ℓ = πhe
n,ℓ ∈ Vh. To this end, we need to set up the error equations as

follows. Subtracting (3.4) from (2.4) gives the error equations for ℓ = 0, 1, 2,

(En
ℓ+1ξ

n, vh) = τKn,ℓ(vh)

≡ (En
ℓ+1η

n + En,ℓ, vh) + τH(un,ℓ, vh) − τH(un,ℓ
h , vh), ∀vh ∈ Vh. (3.7)

Here Kn,ℓ(vh) is called the error functional at each time stage. To state it more clearly,

we would like to separate it into four parts with different meanings, through a simple

re-arranging process and using consistency of the numerical flux. Namely,

Kn,ℓ(vh) ≡ Ln,ℓ(en,ℓ, vh) + N n,ℓ(vh) + Vn,ℓ(vh) + T n,ℓ(vh). (3.8)

The terms on the right-hand side are named the linear part, the nonlinear part, the

viscosity part, and the time-marching part, respectively, which are defined below.

The linear part is defined as a bilinear functional with respect to w and vh, with

the given Jacobian matrix f ′
u
(un,ℓ). It reads in the form

Ln,ℓ(w, vh) = Lmain(f
′
u
(un,ℓ); w, vh)

=
∑

1≤j≤N

[
[[vh]]

⊤f ′
u
(un,ℓ){{w}}

]

j+ 1

2

+

∫

I

(vh)
⊤
x f ′

u
(un,ℓ)w dx. (3.9a)

Here and below the integration on I means the sum of those integrations on every

elements Ij. The remaining three parts are linear functionals with respect to vh. The

nonlinear part is given in the form

N n,ℓ(vh) =
∑

1≤j≤N

[[vh]]
⊤
j+ 1

2

[
f (un,ℓ) − {{f (un,ℓ

h )}} − f ′
u
(un,ℓ){{en,ℓ}}

]
j+ 1

2

+

∫

I

(vh)
⊤
x

[
f (un,ℓ) − f (un,ℓ

h ) − f ′
u
(un,ℓ)en,ℓ

]
dx. (3.9b)

If f (u) is a linear flux, the nonlinear part disappears. Further, the viscosity part

solely depends on the numerical solutions, defined as

Vn,ℓ(vh) =
∑

1≤j≤N

[[vh]]
⊤
j+ 1

2

(
{{f (un,ℓ

h )}} − f̂(un,ℓ
h )

)

j+ 1

2

. (3.9c)

The time-marching part is defined as

T n,ℓ(vh) = τ−1(ζn,ℓ, vh), (3.9d)

where ζn,ℓ = En
ℓ+1η

n +En,ℓ, representing the evolution of the projection error and the

local truncation error in time.
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Remark 3.1 In the splitting of the error (3.8) above, we have introduced the ref-

erence vector at each element boundary point, which depends on the specific projection

being used. For the local L2-projection Ph, the reference vector is taken as the sim-

ple average {{un,ℓ
h }}. This corresponds to three terms, namely, {{w}} in (3.9a), and

{{f (un,ℓ
h )}} in both (3.9b) and (3.9c).

To obtain the optimal error estimate for the upwind numerical flux, we will use the

local Gauss-Radau projection. In this case, we would need to introduce a different ref-

erence vector at each element boundary point, and make corresponding modifications;

see section 5.6 for more details.

4 Elementary estimates

In this section we would like to set up some basic discussions on the error functional.

For notational convenience, in this section we will drop the super-index, n and ℓ, for

the reference stage solutions, the numerical solutions and the operators.

4.1 Preliminaries

4.1.1 Notations

In this paper we will use notations C, K, ε to denote generic positive constants inde-

pendent of h, τ and n. Here ε is a small positive constant, and K depends solely on the

inverse constants, to be specified in section 4.1.3 below. To emphasize the nonlinear-

ity of the flux f (u) and the transformation u(v), we would like to use C⋆ to denote

a nonnegative constant which vanishes, i.e. C⋆ = 0 for a linear flux f (u) = Au.

Furthermore, for any function p, we would like to use a macro notation

C(p) = C + C⋆h
−1‖p‖∞ + C⋆h

−2‖p‖2
∞. (4.1)

If the bounding constant depends on ε, we will denote it by C(ε; p). Note that the

above notations may have a different value in each occurrence.

In this paper we use the notations uc and ub to denote the evaluation of the

reference solutions at the element center points and the element boundary points,

respectively. Recalling Q = v′
u
, we define the piecewise constant rotation matrix as

Qc = Q(uc), (4.2)

which is equal to the evaluation of the matrix at the center point in each element.

Also we denote Qb = Q(ub) at every element boundary point.
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4.1.2 Local focus shifting

Let C be one of the matrix-valued functions f ′
u
, Q, Q1/2, H and 〈H〉. Their focus

shifting (i.e. change of the vector at which this matrix-valued function is evaluated)

causes many complexity in the following analysis. Due to the Lipschitz continuity

and the famous Wielandt-Hoffman Theorem [13], we have

‖C(a) − C(b)‖M ≤ C⋆‖a − b‖M, (4.3)

where a and b are two considered focuses. Furthermore, we will use the inequalities

‖f (a) − f (b)‖M ≤ C‖a − b‖M and

‖f (a) − f (b) − f ′
u
(b)(a − b)‖M ≤

1

2
CFlux

⋆ ‖a − b‖2
M, (4.4)

in the local linearization process. We refer to [19] for more details.

The focuses considered in this paper will be taken from the reference solutions uc,

ub and u(x), or the numerical solutions {{uh}} and si = si(uh) in the definition of

generalized E-flux, in the same cell or in adjacent cells, at the same time stage level,

or at different time stage levels in the same time-marching step. In all these cases,

we have

‖a − b‖M ≤ C(h + τ) + ‖[[e]]‖M ≤ C(h + τ) + ‖e‖∞, (4.5)

since the reference solution u is Lipschitz continuous and thus

[[uh]] = [[η]] − [[ξ]] = −[[e]], (4.6)

at each element boundary point. Note that (4.5) simply gives a very crude bound.

In many cases, we do not have all the terms on the right-hand side of this inequality.

4.1.3 The inverse properties

Some inverse properties will be used in this paper. For any function vh ∈ Vh, there

exists a positive constant µ, independent of vh and h, such that

(i) ‖(vh)x‖ ≤ µh−1‖vh‖; (ii) ‖vh‖Γh
≤ µ1/2h−1/2‖vh‖; (iii) ‖vh‖∞ ≤ µh−1/2‖vh‖.

For more details of these inverse properties, we refer the reader to [3].

To cope with the local moving of focus near the element boundary, we will use

the following inequalities

‖Q1/2
b vh‖Γh

≤ Kµ1/2
[
h−1/2‖Q1/2

c vh‖ + C⋆h
1/2‖vh‖

]
, (4.7a)

‖Q1/2({{uh}})vh‖
2
Γh

≤ K‖Q1/2
b vh‖

2
Γh

+ C⋆h
−1‖e‖∞‖vh‖

2, (4.7b)

for any vh ∈ Vh. These can be obtained from the application of focus shifting and

the elementary inverse properties.
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4.2 The linear part

Starting from this subsection we will discuss separately the four parts in the error

functional. Let Smax = max ̺(f ′
u
(u)), representing the maximum of the flow speed;

here ̺(f ′
u
) is the spectral radius, and the maximum is taken over all vectors in Rm.

Lemma 4.1 The linear part is a bounded bilinear functional in Vh×Vh. Namely,

there exist bounding constants K and C⋆ independent of h and τ , such that

|L(wh, Qcvh)| ≤ KSmaxµh−1‖Q1/2
c wh‖‖Q

1/2
c vh‖ + C⋆‖wh‖‖vh‖ (4.8)

holds for any wh, vh ∈ Vh.

Proof. For any point x in the interior of each element, we move the focus

of the rotation matrix Q from uc to u(x). Then from (3.9a) we get a splitting

L(wh, Qcvh) = L(1)(wh, vh) + L(2)(wh, vh), where

L(1)(wh, vh) =

∫

I

(vh)
⊤
x H(u)wh dx +

∑

1≤j≤N

[
[[vh]]

⊤H(ub){{wh}}
]

j+ 1

2

,

L(2)(wh, vh) =

∫

I

(vh)
⊤
x M(u)f ′

u
(u)wh dx +

∑

1≤j≤N

[
[[M(ub)vh]]

⊤f ′
u
(ub){{wh}}

]
j+ 1

2

,

where M(u) = Q(uc)−Q(u). Note that M(u) may be discontinuous at the element

interface, and hence M(ub) has two limits from different directions.

Now we consider the first term L(1)(wh, vh). The two terms involved here are

denoted by L(1)
int and L(1)

bry, respectively. Recall that H(u) = Q1/2(u)K(u)Q1/2(u),

and K(u) is a symmetric matrix satisfying ‖K(u)‖M = ρ(f ′
u
(u)). Noting (2.8), a

simple application of the inverse property (i) yields that

|L(1)
int | ≤

∣∣∣
∫

I

(vh)xH(uc)wh dx
∣∣∣ +

∣∣∣
∫

I

(vh)x

[
H(u) − H(uc)

]
wh dx

∣∣∣

≤ ‖K(uc)‖∞‖(Q1/2
c vh)x‖‖Q

1/2
c wh‖ + ‖H(u) − H(uc)‖∞‖(vh)x‖‖wh‖

≤ Smaxµh−1‖Q1/2
c wh‖‖Q

1/2
c vh‖ + C⋆‖vh‖‖wh‖, (4.10)

since ‖H(u) − H(uc)‖M ≤ C⋆h holds for all x, due to (4.3) and the smoothness as-

sumption H1 on u. Also we can use (4.7a) and the boundedness of Qc (see assumption

H3), to get

|L(1)
bry| ≤ Smax‖Q

1/2
b [[vh]]‖Γh

‖Q1/2
b {{wh}}‖Γh

≤ KSmaxµh−1‖Q1/2
c wh‖‖Q

1/2
c vh‖ + C⋆‖vh‖‖wh‖. (4.11)
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Since ‖M(u)‖M = O(h) also holds for all x (as we have discussed on the focus

shifting), using Cauchy-Schwarz inequality, as well as the inverse properties (i) and

(ii), we achieve

|L(2)(wh, vh)| ≤ C⋆‖wh‖‖vh‖. (4.12)

Hence, collecting up the above inequalities completes the proof of this lemma. �

In this paper the following conclusion plays an important role. The two inequal-

ities reflect the approximate skew-symmetric and negative semidefinite properties,

respectively.

Lemma 4.2 For any functions wh and vh in Vh, there holds

|L(wh, Qcvh) + L(vh, Qcwh)| ≤ C⋆‖wh‖‖vh‖. (4.13)

As a corollary, we have |L(vh, Qcvh)| ≤ C⋆‖vh‖2.

Proof. We just need to estimate L(1)(wh, vh) again, which is defined in the proof

of Lemma 4.1. By Hprj(u) we denote the piecewise linear interpolation of H(u).

Since this matrix is symmetric, we can have

(wh)
⊤
x Hprjvh + (vh)

⊤
x Hprjwh =

[
w⊤

h Hprjvh

]

x
− w⊤

h (Hprj)xvh, (4.14)

where (Hprj)x|Ij
= [H(uj+ 1

2

) − H(uj− 1

2

)]/[xj+ 1

2

− xj− 1

2

]. As we have discussed in

section 4.1.2, we know that ‖(Hprj)x‖M is bounded for all x.

Since the solution is periodic or compactly-supported, we can solve the integration

in each element and obtain

L(1)(wh, vh) + L(1)(vh, wh) = Ξbry + Ξint, (4.15)

where

Ξbry =
∑

1≤j≤N

[
[[wh]]

⊤H(ub){{vh}} + [[vh]]
⊤H(ub){{wh}} − [[(wh)

⊤H(ub)vh]]
]

j+ 1

2

,

Ξint =

∫

I

{
(wh)

⊤
x

[
H − Hprj

]
vh + (vh)

⊤
x

[
H − Hprj

]
wh − w⊤

h (Hprj)xvh

}
dx.

It is easy to see that Ξbry = 0, since the term in the bracket is equal to zero.

Further, we have |Ξint| ≤ C⋆‖wh‖‖vh‖ by the inverse property (i), since the former

two matrices involved here are of the size O(h). Finally, by collecting up the above

analysis and (4.12) we complete the proof of this lemma. �

In this paper we would like to use the following compact notations to denote the

collection of jumps on the element boundary, like

[[p]]⊤〈H(ub)〉[[q]] =
∑

1≤j≤N

[
[[p]]⊤〈H(ub)〉[[q]]

]

j+ 1

2

, ∀p, ∀q. (4.17)

This kind of compact notations will also be used to the matrices A,S, etc..
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Lemma 4.3 There exists a constant C independent of h and τ , such that

|L(η, Qcvh)| ≤ ε[[vh]]
⊤〈H(ub)〉[[vh]] + ε‖vh‖

2 + Cε−1h2k+1, ∀vh ∈ Vh. (4.18)

Here ε is any given positive constant.

Proof. Similar to what we have done in Lemma 4.1, we move the focus of the

rotation matrix in definition (3.9a). This yields L(η, Qcvh) = L(3)(vh) + L(4)(vh),

where

L(3)(vh) =
∑

1≤j≤N

[
[[vh]]

⊤H(ub){{η}}
]

j+ 1

2

,

L(4)(vh) =

∫

I

(vh)
⊤
x Qc

[
f ′

u
(u) − f ′

u
(uc)

]
η dx +

∑

1≤j≤N

[
[[Mbvh]]

⊤f ′
u
(ub){{η}}

]

j+ 1

2

.

The first term is bounded by Cauchy-Schwarz inequality (2.8) and Young’s inequality.

The projection property (3.6a) yields that

|L(3)(vh)| ≤ ε[[vh]]
⊤〈H(ub)〉[[vh]] + Cε−1h2k+1. (4.20)

Since ‖f ′
u
(u)−f ′

u
(uc)‖M = O(h) holds for all x, as we have discussed in section 4.1.2,

we can bound the second term in the form

|L(4)(vh)| ≤ C
[
‖vh‖

2 + ‖η‖2 + h‖η‖2
Γh

]
≤ ε‖vh‖

2 + Cε−1h2k+1, (4.21)

using the inverse properties (i) and (ii), as well as the projection property (3.6a).

This completes the proof of this lemma. �

Remark 4.1 In the above discussion, the average {{η}} comes from the setting of

the reference vector and the local L2-projection. When the local Gauss-Radau projec-

tion is used to obtain optimal error estimate for upwind numerical fluxes, this term

will be changed into the new setting along the upwind direction. See section 5.6 for

details.

4.3 The nonlinear part

Now we turn to show that the nonlinear part does not cause serious trouble in the

error estimate. The conclusion is stated in the following lemma.

Lemma 4.4 There exists a constant C⋆ ≥ 0 independent of h and τ , such that

|N (Qcvh)| ≤ C⋆‖vh‖
2 + C⋆h

−2‖e‖2
∞

[
‖ξ‖2 + h2k+2

]
, ∀vh ∈ Vh. (4.22)
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Proof. Noticing (4.4), we can bound the nonlinear term N (Qcvh) in the form

|N (Qcvh)| ≤ C⋆

∑

1≤j≤N

[(
‖[[vh]]‖M‖{{e}}‖2

M

)
j+ 1

2

+

∫

Ij

‖(vh)x‖M‖e‖
2
M dx

]

≤ C⋆‖e‖∞
[
‖[[vh]]‖Γh

‖[[e]]‖Γh
+ ‖(vh)x‖‖e‖

]

≤ C⋆‖e‖∞
[
µ1/2h−1/2‖vh‖

[
µ1/2h−1/2‖ξ‖ + ‖η‖Γh

]
+ µh−1‖vh‖(‖ξ‖ + ‖η‖)

]

≤ C⋆h
−1‖e‖∞‖vh‖

[
‖ξ‖ + hk+1

]
.

Here we have used the inverse properties (i) and (ii), together with the projection

property (3.6a). This and Young’s inequality complete the proof of this lemma. �

4.4 The numerical viscosity part

In this subsection we consider the numerical viscosity part, which is an important

feature of the DG method.

4.4.1 A few propositions

The generalized numerical viscosity matrix A(f̂ ; uh) is not guaranteed to be positive

semidefinite, causing some inconvenience to the analysis. However, it follows from

assumptions A1 and A2 that there exists a positive semidefinite matrix M(f̂ ; p) such

that

S(f̂ ; uh) = A(f̂ ; uh) + M(f̂ ; uh) (4.23)

is a symmetric positive semidefinite matrix, and

‖M(f̂ ; uh)‖M ≤ C⋆‖[[uh]]‖M. (4.24)

The total numerical viscosity in the DG spatial discretization can be shown ex-

plicitly in the form

[[uh]]
⊤S[[uh]] =

∑

1≤j≤N

[
[[uh]]

⊤S(f̂ ; uh)[[uh]]
]

j+ 1

2

. (4.25)

Note that this treatment is not essential, but only for the analysis. For example, the

second Cauchy-Schwarz inequality in (2.8) holds for S(f̂ ; uh), but not for A(f̂ ; uh).

Associated with this issue, we will encounter another expression [[uh]]
⊤〈H(ub)〉[[uh]].

Below we would like to present some useful propositions between them.

Proposition 4.1 There exists a bounding constant C⋆ such that

1

2
[[uh]]

⊤〈H(ub)〉[[uh]] ≤ [[uh]]
⊤S[[uh]] + C(e)(‖ξ‖2 + h2k+2).

Note that the notation C⋆ is included in C(e); see (4.1).
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Proof. Noticing (4.23), a simple manipulation yields

1

2
[[uh]]

⊤〈H(ub)〉[[uh]] + [[uh]]
⊤℧[[uh]] = [[uh]]

⊤S[[uh]] + Λ3 + Λ4, (4.26)

where ℧ is the symmetric positive semidefinite matrix given in assumption A3, and

Λ3 =
1

2
[[uh]]

⊤
(
〈H(ub)〉 − 〈H({{uh}})〉 −M(f̂ ; uh)

)
[[uh]],

Λ4 = [[uh]]
⊤
(1

2
〈H({{uh}})〉 + ℧ −A(f̂ , uh)

)
[[uh]].

We can bound easily |Λ3| by using (4.3), (4.5) and (4.24). The bound of |Λ4| is given

by assumption A3, (4.6) and the inverse property (ii). Together with (4.6) again, we

have completed the proof of this proposition. �

Proposition 4.2 Let ε be any given positive constant. There holds

1

2
[[ξ]]⊤〈H(ub)〉[[ξ]] ≤ (1 + ε)[[uh]]

⊤S[[uh]] + C(ε; e)(‖ξ‖2 + h2k+1). (4.27)

Proof. Since 〈H〉 is a symmetric positive semidefinite matrix, we can use Cauchy-

Schwarz inequality and Young’s inequality to get

[[ξ]]⊤〈H(ub)〉[[ξ]] = [[η − uh]]
⊤〈H(ub)〉[[η − uh]]

≤ (1 + ε)[[uh]]
⊤〈H(ub)〉[[uh]] + (1 + ε−1)[[η]]⊤〈H(ub)〉[[η]]. (4.28)

Then we can finish the proof of this proposition by using the projection property of

the finite element space, together with Proposition 4.1. �

4.4.2 Boundedness

Let Fmax = max ‖Q−1/2(s)A(f̂ ; s, s)Q−1/2(s)‖M represent the maximum strength of

the numerical viscosity. Here the maximum is taken over all vectors in Rm. Due to

the smoothness assumptions H1–H3, we know that Fmax is a finite number.

The next lemma will show a rough amplification in each time-marching, for any

functions in the finite element space.

Lemma 4.5 Let ε ≤ 1 be any positive constant. For any vh ∈ Vh, there holds

|V(Qcvh)| ≤ εFmaxµh−1‖Q1/2
c vh‖

2 + Kε−1[[uh]]
⊤S[[uh]]

+ C⋆h
−1‖e‖∞

[
‖ξ‖2 + ‖vh‖

2 + h2k+2
]
. (4.29)
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Proof. Recall that r1 = u+
h and r2 = u−

h , with the local rotation positions s1 and

s2. It follows from the definition (2.14) that V(Qcvh) = V(1)(vh) + V(2)(vh), where

V(1)(vh) = [[vh]]
⊤A(f̂ ; uh)[[uh]], (4.30a)

V(2)(vh) = −
1

2

∑

κ=1,2

∑

1≤j≤N

[
[[Mκvh]]

⊤(f (rκ) − f̂ (uh))
]

j+ 1

2

. (4.30b)

Here Mκ = Q(uc) − Q(sκ) describes the focus shifting of the local rotation matrix.

Below we will estimate these terms one by one.

Noticing (4.23), an application of Cauchy-Schwarz inequality to the first term

yields the estimate

|V(1)(vh)| ≤ |[[vh]]
⊤S[[uh]]| + |[[vh]]

⊤M[[uh]]|

≤ Kε−1[[uh]]
⊤S[[uh]] + ε[[vh]]

⊤S[[vh]] + |[[vh]]
⊤M[[uh]]|. (4.31)

The second term is equal to the sum of V(1a) = ε[[vh]]
⊤A(f̂ ; {{uh}})[[vh]] and

V(1b) = ε[[vh]]
⊤
[
A(f̂ ; uh) −A(f̂ ; {{uh}}) + M(f̂ ; uh)

]
[[vh]], (4.32)

which are bounded by the inverse property (4.7b), and by assumption A2 and (4.24),

respectively. This gives

ε[[vh]]
⊤S[[vh]] ≤ εKFmaxµh−1‖Q1/2

c vh‖
2 + C⋆h

−1‖e‖∞‖vh‖
2, (4.33)

since ε ≤ 1. The last term can be bounded by using (4.24) and (4.6), which reads

|[[vh]]
⊤M[[uh]]| ≤ C⋆h

−1‖e‖∞
[
‖vh‖

2 + ‖ξ‖2 + h2k+2
]
. (4.34)

As we have shown in section 4.1.2, we know that both ‖Mκ‖M ≤ C⋆(h + ‖e‖∞)

and ‖f (u+
h )− f̂ (u−

h , u+
h )‖M ≤ C‖[[uh]]‖M hold at every element boundary point. The

inverse property (ii) and the projection property (3.6a) yield

|V(2)(vh)| ≤ C⋆h
−1‖e‖∞(‖ξ‖ + hk+1)‖vh‖. (4.35)

Finally, summing up the above estimates completes the proof of this lemma. For

convenience we use a new notation ε instead of εK in the final conclusion. �

Furthermore, for a special test function vh = ξ, we can show explicitly the total

numerical viscosity in the DG discretization. It is stated in the following lemma.

Lemma 4.6 For any given positive constant ε < 1, there holds

V(Qcξ) ≤ −(1 − ε)[[uh]]
⊤S[[uh]] + C(ε; e)

[
‖ξ‖2 + h2k+1

]
. (4.36)

22



Proof. At this time, we still use the splitting (4.30), and need to pay more

attention to the first term. It reads

V(1)(ξ) = [[ξ]]⊤A[[uh]] = [[η]]⊤S[[uh]] − [[ξ]]⊤M[[uh]] − [[uh]]
⊤S[[uh]], (4.37)

following (4.23) and (4.6). The first two terms on the right-hand side are denoted by

Λ1 and Λ2, respectively.

The definition (2.14) implies that every component in A are bounded uniformly,

owing to assumptions H2 and H3. Hence we have ‖S‖M ≤ C +C⋆‖e‖∞, due to (4.24)

and (4.6). Employing Young’s inequality, we get

|Λ1| ≤ ε[[uh]]
⊤S[[uh]] +

1

4ε
[[η]]⊤S[[η]] ≤ ε[[uh]]

⊤S[[uh]] + ε−1
[
C + C⋆‖e‖∞

]
‖[[η]]‖2

Γh
.

Using (4.24) and (4.6), as well as the inverse property (ii), we have

|Λ2| ≤ ‖M‖∞‖[[uh]]‖Γh
‖[[η]]‖Γh

≤ C⋆h
−1‖e‖∞

[
‖ξ‖2 + h‖[[η]]‖2

Γh

]
.

Substituting the above inequalities into (4.37) yields

V(1)(ξ) ≤ −(1 − ε)[[uh]]
⊤S[[uh]] + C(ε; e)

[
‖ξ‖2 + h2k+2

]
, (4.38)

where the projection property (3.6a) has been used.

The next term V(2)(ξ) can be bounded by (4.35). This completes the proof of this

lemma. �

Remark 4.2 Actually the numerical viscosity of the DG method can be shown by

another process. For example, if we use the reference vector along the upwind direction

at each element boundary point, the numerical viscosity can be shown explicitly by the

quantity [[uh]]
⊤〈H(ub)〉[[uh]]. When the local Gauss-Radau projection is used, the

numerical viscosity is shown to come mainly from the linear part. This complex line

of analysis is only necessary to obtain the optimal error estimate, when the upwind

numerical flux is used. In this case, the new viscosity part will basically disappear.

See section 5.6.

4.5 The time-marching part

By using the approximation property (3.6c), and the estimate of the local truncation

error in time, we can easily get the following conclusion.

Lemma 4.7 There exists a constant C > 0 independent of h and τ , such that

|T (Qcvh)| ≤ C
[
‖vh‖

2 + h2k+2 + τ 6
]
, ∀vh ∈ Vh. (4.39)

Proof. The proof is a simple application of Young’s inequality, so it is omitted.

�
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5 Proof of the theorem

In this section we come back to prove Theorem 2.1, under a standard CFL condition

max{Smax, Fmax}µτh−1 ≤ λmax, (5.1)

where Smax and Fmax have been defined in the previous section. Note that λmax ≤ 1

is a suitable CFL number, independent of h and τ .

5.1 Three useful differences

The following energy analysis depends strongly on three important differences, which

have been presented in [31] for the scalar case. They read

Gn
1ξ

n = ξn,1 − ξn, Gn
2ξn = 2ξn,2 − ξn,1 − ξn, Gn

3ξ
n = ξn+1 − 2ξn,2 + ξn. (5.2)

It is worthy to point out that the group {En
ℓ ξn}ℓ=1,2,3 and the group {Gn

ℓ ξn}ℓ=1,2,3

can be linearly expressed by each other.

It is convenient to understand Gn
ℓ as an operator acting on different objects defined

on time stage levels, for example, on matrix-valued functions, or on linear functionals.

If the object is the error in the finite element space, we would omit the object and

use a simplified notation Gn
ℓ = Gn

ℓ ξn, in this section and in the appendix.

The following conclusion shows that the above differences Gn
ℓ have a strong rela-

tionship to approximations of time derivatives.

Lemma 5.1 For the RKDG3 method (2.4) and ℓ = 0, 1, 2, we have

(Gn
ℓ+1, vh) =

τ

ℓ + 1
Gn

ℓ K
n(vh), vh ∈ Vh. (5.3)

Here Gn
0 is just the identity operator, namely Gn

0K
n = Kn.

The proof of this lemma is trivial by the suitable linear combinations of those

error equations in (3.7). The detailed process is omitted; we refer to [31]. Based on

this lemma, we can achieve easily a crude estimate for each stage in L2-norm within

one time step. The proof of the following lemma is given in the appendix.

Lemma 5.2 Let n be any time level and ℓ = 0, 1, 2. Assume ‖en,κ‖∞ ≤ h holds

for any κ ≤ ℓ. Then there holds

‖ξn,ℓ+1‖2 ≤ C
∑

0≤κ≤ℓ

‖ξn,κ‖2 + Ch2k+2 + Cτ 8, (5.4)

under the CFL condition (5.1), where the bounding constant C is independent of n, h

and τ . Here ξn,3 = ξn+1 for notational convenience.
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5.2 The energy equation

To carry out the energy analysis, we need to establish the energy equation. To this

end, we take three test functions Qn
c ξ

n, Qn,1
c ξn,1 and Qn,2

c ξn,2 in (3.7), for ℓ = 0, 1, 2,

respectively. Recall that the piecewise constant rotation matrix is given as

Qn,ℓ
c = Q(un,ℓ

c ), ℓ = 0, 1, 2. (5.5)

A simple manipulation yields the energy equation in the form

3‖(Qn+1
c )1/2ξn+1‖2 − 3‖(Qn

c )
1/2ξn‖2 = Π1 + Π2 + Π3, (5.6)

which are used to reflect the DG discretization, the TVDRK time-marching, and the

variation of the rotation matrix in time, respectively. In details, they read

Π1 = τ [Kn(Qn
c ξ

n) + Kn,1(Qn,1
c ξn,1) + 4Kn,2(Qn,2

c ξn,2)], (5.7a)

Π2 = (Gn
2 , Q

n
c Gn

2 ) + 3(Gn
1 , Q

n
c Gn

3 ) + 3(Gn
2 , Q

n
c Gn

3 ) + 3(Gn
3 , Q

n
c Gn

3 ), (5.7b)

Π3 = 3(ξn+1, Q̃n,3
c ξn+1) − (En,2ξn, Q̃n,1

c ξn,1) − 4(En,3ξn, Q̃n,2
c ξn,2). (5.7c)

Here Q̃n,ℓ
c = Qn,ℓ

c − Qn
c for ℓ = 1, 2, 3, reflect the focus shifting, with the notations

Qn,3
c = Qn+1

c and un,3
c = un+1

c for convenience.

Below we will estimate the above three terms one by one. For notational conve-

nience, we would like to use a macro notation

Ψn
κ1,κ2

=
∑

0≤ℓ≤κ1

C(en,ℓ)
[ ∑

0≤ℓ≤κ2

‖ξn,ℓ‖2 + h2k+1 + τ 6
]
, (5.8)

where κ1 and κ2 are either 2 or 3, and the notation C(en,ℓ) has been given in (4.1).

5.3 Estimates to the first term and the third term

The estimate to Π1 is straightforward, since the test function and the error functional

are taken at the same time stage level. Namely, we use Lemmas 4.2 and 4.3 for the

linear part, Lemma 4.4 for the nonlinear part, Lemma 4.6 for the viscosity part, and

Lemma 4.7 for the time-marching part. All the test functions are taken as vh = ξn,ℓ.

Then we use Proposition 4.2 and obtain

τKn,ℓ(Qn,ℓ
c ξn,ℓ) ≤ −(1 − ε)[[un,ℓ

h ]]⊤Sn,ℓ[[un,ℓ
h ]]τ + C(ε; en,ℓ)

[
‖ξn,ℓ‖2 + h2k+1 + τ 6

]
τ,

for ℓ = 0, 1, 2. By taking ε small enough, we achieve the estimate

Π1 ≤ −
3

4

∑

ℓ=0,1,2

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ + Ψn
2,2τ. (5.9)
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Note that the last term gives a very crude bound.

The estimate to Π2 is more complex, so we present the detailed discussion in the

next section. As for the third term, a simple application of Cauchy-Schwarz inequality

yields

Π3 ≤ C
[
‖ξn‖2 + ‖ξn,1‖2 + ‖ξn,2‖2 + ‖ξn+1‖2

]
τ. (5.10)

since ‖Q̃c‖M = ‖Qn,ℓ
c − Qn

c ‖M = O(τ) holds for all x, as we have discussed before.

5.4 Estimate to the second term

The four terms involved in Π2 are denoted by Π
(κ)
2 for κ = 1, 2, 3, 4. The estimates to

them are a little long and technical, depending strongly on the three differences (5.2)

and the relationships among them.

One main trick used here is that we consider the first two terms Π
(1)
2 and Π

(2)
2

together. By taking the test functions Qn
c Gn

2 and Qn
c Gn

1 , respectively, in Lemma 5.1

for ℓ = 1, 2, we have

Π
(1)
2 + Π

(2)
2 = − (Gn

2 , Q
n
c Gn

2 ) + 2(Gn
2 , Q

n
c Gn

2 ) + 3(Gn
3 , Q

n
c Gn

1 )

= − |||Gn
2 |||

2
n + τGn

1K
n(Qn

c Gn
2 ) + τGn

2K
n(Qn

c Gn
1 )

= − |||Gn
2 |||

2
n + Υ1 + Υ2 + Υ3 + Υ4. (5.11)

Note that the new norm |||wh|||n = ‖(Qn
c )

1/2wh‖ is used for convenience. Here the last

four terms represent respectively the linear part, the nonlinear part, the numerical

viscosity part and the time-marching part. For example,

Υ1 = τGn
1L

n(Qn
c Gn

2 ) + τGn
2L

n(Qn
c Gn

1 ). (5.12)

We will estimate them separately below.

The term Υ1 can be bounded along the same line as that for the linear part at

the given time stage. However, we need an additional treatment to deal with the

variation of the Jacobian matrix f ′
u
(un,ℓ) and the local setting of the local rotation

matrix Qn,ℓ
c . This again involves many applications of local shifting of the focus. A

key point in the technique is to fully use the approximate skew-symmetric property

(see Lemma 4.2). The complete proof is given in the appendix, and we just present

the conclusion here.

Lemma 5.3 There exists a bounding constant C, such that

|Υ1| ≤
1

8

∑

ℓ=0,1

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ + CΨn
2,2τ. (5.13)

26



Each term in Υ2 is bounded easily by using Lemma 4.4. Together with the triangle

inequalities to the norms ‖Gn
1‖ and ‖Gn

2‖, we have

|Υ2| ≤ CΨn
2,2τ. (5.14)

There are some minor troubles to estimate Υ3, since the generalized viscosity

matrix An,ℓ involves different time stages. Thanks to assumption A2, we have the

following result to dig out the complete information about |||Gn
2 |||n. The proof is again

postponed to the appendix.

Lemma 5.4 There exist bounding constants K and C, such that

|Υ3| ≤ Kλmax|||G
n
2 |||

2
n +

1

8

∑

ℓ=0,1

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ + CΨn
2,2τ. (5.15)

The last term Υ4 is easily estimated from Lemma 4.6. Together with the projection

property (3.6c) and the triangle inequality, we have

|Υ4| ≤ CΨn
2,2τ. (5.16)

Next we turn to estimate separately the remaining terms, Π
(3)
2 and Π

(4)
2 . It follows

from Lemma 5.1, with different test functions Qn
c Gn

2 and Qn
c Gn

3 , respectively, for

ℓ = 2, that

Π
(3)
2 = 3(Gn

3 , Q
n
c Gn

2 ) = τGn
2K

n(Qn
c Gn

2 ), Π
(4)
2 = 3|||Gn

3 |||
2
n = τGn

2K
n(Qn

c Gn
3 ). (5.17)

Both estimates depend on the boundedness of Gn
2K

n(Qn
c vh) for any vh ∈ Vh. This

property can be achieved along almost the same line as we have done in section 4.

However, in the discussion on the linear part, we will also encounter the trouble on

how to dig out the complete information about |||Gn
2 |||n. The final conclusion is stated

in the following lemma.

Lemma 5.5 There holds for any vh ∈ Vh, that

|τGn
2K

n(Qn
c vh)| ≤ ε|||vh|||

2
n +

∑

ℓ=0,1,2

C⋆h
−1‖en,ℓ‖∞‖vh‖

2τ + CΨn
2,2τ

+ Kε−1λmax

[
|||Gn

2 |||
2
n +

∑

ℓ=0,1,2

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ
]
, (5.18)

where ε is any small positive constant.
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We would like to postpone the proof to the appendix. Noticing (5.17), we take

vh = Gn
2 and ε = 1/4 in Lemma 5.5. Therefore,

|Π(3)
2 | ≤ CΨn

2,2τ +
[1

4
+ Kλmax

]
|||Gn

2 |||
2
n + Kλmax

∑

ℓ=0,1,2

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ. (5.19)

Here the triangle inequality to ‖Gn
2‖ is used. The estimate to Π

(4)
2 can be achieved by

using the same lemma with vh = Gn
3 , and small enough parameter ε. Thus we can

get from this process that

|Π(4)
2 | ≤ CΨn

2,3τ + Kλmax

[
|||Gn

2 |||
2
n +

∑

ℓ=0,1,2

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ
]
. (5.20)

Here we use the bigger bound Ψn
2,3, since Gn

3 involves the information about ξn+1.

Finally, we collect all of the above estimates, namely, identity (5.11), inequalities

(5.13)–(5.16), (5.19) and (5.20). This gives an estimate

Π2 ≤ −
[3

4
−K1λmax

]
|||Gn

2 |||
2
n +

[1

4
+K2λmax

] ∑

ℓ=0,1,2

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ +CΨn
2,3τ, (5.21)

where K1 and K2 solely depend on the inverse constant µ. We have now estimated

every term on the right-hand side of the energy equation (5.6).

5.5 The energy estimate

In this subsection we would like to complete the proof of Theorem 2.1. To deal

with the nonlinearity of the flux function f (u), we would like first make the a priori

assumption that, for all n, if nτ < T , we have

‖en,ℓ‖∞ ≤ h, ℓ = 0, 1, 2, (5.22)

which holds for h small enough. We note that, for the linear flux f (u) = Au with the

constant matrix A, this a priori assumption is not necessary. Later, we will verify

the correctness of this a priori assumption for the piecewise polynomials of degree

k ≥ 2.

The assumption (5.22) implies that C(en,ℓ) ≤ C for any n satisfying nτ < T and

ℓ = 0, 1, 2, where the bounding constant C is independent of n, h and τ . Substitute

(5.9), (5.21) and (5.10) into the energy identity (5.6). By employing Lemma 5.2, we

finally obtain for any n satisfying nτ < T that

3‖(Qn+1
c )1/2ξn+1‖2 − 3‖(Qn

c )
1/2ξn‖2 + Θn

RKDG ≤ C‖ξn‖2τ + Ch2k+1τ + Cτ 7, (5.23)
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where the bounding constant C is independent of n, h and τ , and

Θn
RKDG =

(1

2
− K1λmax

)
|||Gn

2 |||
2
n +

(1

2
− K2λmax

) ∑

ℓ=0,1,2

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ, (5.24)

with the constants K1 and K2 defined in (5.21). Suppose that the CFL condition

(5.1) holds under the restriction

λmax ≤ min((2K1)
−1, (2K2)

−1), (5.25)

there holds Θn
RKDG ≥ 0 to reflect the numerical stability of the RKDG3 method.

Summing up the estimate (5.23) from 0 to n yields

‖ξn+1‖2 ≤ C

n∑

n′=0

‖ξn′

‖2τ + C
[
‖ξ0‖2 + h2k+1 + τ 6

]
, ∀n : nτ < T, (5.26)

where the bounding constant C > 0 is independent of n, h and τ . Here we have used

the uniform equivalence among the norms ‖ · ‖ and ‖(Qn
c )

1/2 · ‖ ≡ ||| · |||n for any n,

due to the uniform boundedness of Qn
c ; see assumption H3.

It follows from the setting of the initial solution that ξ0 = 0. An application of the

discrete Gronwall lemma yields the error estimate for the fully-discrete DG scheme

with TVDRK3 time-marching, in the form

‖ξn+1‖2 ≤ Ch2k+1 + Cτ 6, ∀n : nτ < T, (5.27)

where the bounding constant C is independent of n, h and τ . This inequality together

with the projection property (3.6a) yields the conclusion of this theorem.

To complete the proof of this theorem for the generalized E-flux, we need to verify

the a priori assumption (5.22), by using an induction process, as well as the inverse

property (iii) and the projection property (3.6b). Obviously there holds ‖e0‖∞ ≤ h,

owing to the setting of the initial solution. An application of Lemma 5.2 yields

‖ξ0,1‖ ≤ Chk+1. Thus it follows that

‖e0,1‖∞ ≤ µh− 1

2‖ξ0,1‖ + ‖η0,1‖∞ ≤ Chk+ 1

2 ≤ h, (5.28)

if h is small enough, since k ≥ 2. Repeating this discussion shows ‖e0,2‖∞ ≤ h. Next,

we will prove the a priori assumption (5.22) by induction. Assume it holds on all

time level from 0 to n. We can achieve the inequality (5.27) along the above analysis

line, which follows

‖en+1‖∞ ≤ Cµh−1/2‖ξn+1‖ + ‖ηn+1‖∞ ≤ Chk + h−1/2τ 3 ≤ h, (5.29)

if h is small enough. As we have done for the initial time level, we can employ Lemma

5.2 to get ‖en+1,1‖∞ ≤ h and ‖en+1,2‖∞ ≤ h. Thus the assumption (5.22) is also true

for n + 1, and we complete the proof of the theorem.
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Remark 5.1 The main technique used in this paper is the energy analysis. The

energy technique does not require a uniform mesh and can be easily generalized to

arbitrary triangulation in multi-dimensions and for linear equations with variable co-

efficients, as well as to some types of non-periodic boundary conditions. We have

discussed in [28] the inflow boundary condition for the scalar hyperbolic equation.

Remark 5.2 For linear conservation laws, the error estimates hold for any piece-

wise polynomials, if the exact solution is smooth enough. However, for nonlinear

conservation laws, the error estimates only hold for piecewise polynomials with de-

gree k ≥ d/2 + 1, where d is the spatial dimension. This restriction is solely used to

ensure the a priori assumption (5.22). As a result, in this paper we do not consider

the piecewise linear polynomials, which are rarely used together with the third order

TVDRK time-marching.

5.6 Optimal error estimate for upwind fluxes

In this subsection, we would like to upgrade the error estimate to be optimal for the

upwind numerical fluxes, as we have stated in Theorem 2.1. Since almost the same

analysis line is used here, we would like in this subsection to only point out the new

techniques and main differences to the above.

To obtain the optimal error estimate, we would need to use some standard tricks

in the DG analysis, as we have done in [30,31]. These consist of two main ingredients,

both of which are carried out by the help of eigenvector decomposition. Let λi(u)

be the eigenvalues of the Jacobian matrix f ′
u
(u), which has the left eigenvector li(u)

and the right eigenvector ri(u). It is assumed that λi(u), li(u) and ri(u) are smooth

mapping which for strictly hyperbolic system follows from the regularity assumption

of f . Furthermore, we assume for any space point x ∈ I that λi(u(x, t)) does not

change its sign for any t ∈ [0, T ].

The first one is the local Gauss-Radau projection, denoted by Qhu
n,ℓ, instead of

the local L2-projection, where un,ℓ is the reference stage solution as we have defined

in section 3.1. In each element Ij , this process involves three steps.

1. Transform un,ℓ to the characteristics fields. This is achieved by left multiplying

this by the matrix whose rows are the left eigenvectors of f ′
u
(un

c ).

2. Apply the scalar Gauss-Radau projection to each of the components of the trans-

formed vector-valued function, which depends on the sign of the corresponding

eigenvalue of f ′
u
(un

c ). If the eigenvalue is not smaller than zero, we demand the

exact collocation of the corresponding component on the right boundary point.

Otherwise, we demand the exact collocation on the left boundary point.
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3. The result is transformed back to the original space by left multiplying the

matrix whose columns are the right eigenvectors ri(u
n
c ).

For this projection, the projection properties given in section 3.2 still hold. The

advantage of this projection is that we can correct the order reduction in the element

boundary.

The other one is the upwind setting of the reference vector for the numerical

solution at each element boundary point, denoted by (un,ℓ
h )upw, which is the so-called

upwind direction we have referred to before. This treatment is similar as the above

and use the eigenvector decomposition of the Jacobian matrix f ′
u
(un

b ). At the element

boundary point xj+1/2, this process involves three steps.

1. Transform the two limits of u
n,ℓ
h to the characteristics fields of f ′

u
(un

b ).

2. Apply the scalar upwind setting to each of the components of the transformed

vector, which depends on the sign of the corresponding eigenvalue of f ′
u
(un

b ).

If the eigenvalue is not smaller than zero, we take the left limit. Otherwise, we

take the right limit.

3. The result is transformed back to the original space.

Then we change the definition of the linear part (3.9a), where {{w}} is replaced by

wupw. It follows from the new linear part that the total numerical viscosity is shown

explicitly in the term [[un,ℓ
h ]]⊤〈H(un,ℓ

b )〉[[un,ℓ
h ]].

Also we change the definitions of the nonlinear part (3.9b) and the viscosity part

(3.9c), where {{f (un,ℓ
h )}} is replaced by f ((un,ℓ

h )upw). Note that we do not need to use

the generalized numerical matrix. In this case, the new viscosity part is very small.

The corresponding result is modified from the conclusion in Lemma 4.5, where only

the last term on the right-hand side is left. It is worthy to point out that this new

viscosity part is equal to zero for the special cases that each eigenvalue keeps the

sign in the considered range for the exact solution and the numerical solution. If the

sign changes locally, there must exist locally a zero eigenvalue. We refer to [31] for

the detailed discussions for the scalar case. This is the key ingredient of the upwind

numerical flux.

6 Concluding remarks

In this paper we present quasi-optimal or optimal error estimates to the RKDG

scheme with the explicit third order TVDRK time discretization, to solve a sym-

metrizable system of conservation laws with sufficiently smooth solution. Symmetriz-
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able but not symmetric systems have several difficult issues. Although many nu-

merical fluxes have been used successively in practical computation, the theoretical

framework for error analysis has not been clear. In this paper we attempt to set an

abstract framework to handle these difficulties, and to establish the so-called general-

ized numerical viscosity matrix. Another difficulty is related to the local variation of

the numerical viscosity, which can be handled by the definition of the local rotation

matrix. We remark that this local rotation matrix causes complexity in the analy-

sis. The abstract framework established in this paper includes many commonly used

numerical fluxes and is flexible to use for our analysis.

In this paper the exact solution of the conservation laws is assumed to be suf-

ficiently smooth. However, generic solutions of nonlinear conservation laws contain

discontinuities. In future work, we will consider piecewise smooth solutions and at-

tempt to analyze the error in smooth regions away from discontinuities, extending

the preliminary results for one-dimensional linear equations in [32].

7 Appendix

7.1 Verification for the Lax-Friedrichs flux

In this subsection we would like to show that the (global/local) Lax-Friedrichs flux

is a generalized E-flux, and the corresponding generalized numerical viscosity matrix

satisfies assumptions A2-A3. The (global/local) Lax-Friedrichs flux is defined as

follows:

f̂LF(p−, p+) =
1

2

[
f (p−) + f (p+) − α[[p]]

]
, with α = max

p

̺(f ′
u
(p)), (7.1)

where the maximum is taken locally or globally.

Let s1 be any point in the super-rectangle with the vertexes p±, and define

Y LF
1 =

1

2

∫ 1

0

(
Q(s) − Q(s1)

)
(f ′

u
(s) + αI)ds,

where I is the identity matrix, and s = p− + s[[p]]. Every element in Y LF
1 is bounded

by O(‖[[p]]‖M), since v′
u

is Lipschitz continuous and ‖s − s1‖M ≤ ‖[[p]]‖M. A simple

manipulation yields

[[p]]⊤v′
u
(s1)(f (p+) − f̂LF(p−, p+)) + [[p]]⊤Y LF

1 [[p]] = [[p]]⊤Ỹ LF
1 [[p]] ≥ 0, (7.2)

where

Ỹ LF
1 =

1

2

∫ 1

0

Q(s)(f ′
u
(s) + αI)ds,
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is a symmetric positive semidefinite matrix, following (2.6) and (7.1). Similar discus-

sion can be done for κ = 2. So the Lax-Friedrichs flux is a generalized E-flux.

Next we would like to verify assumption A2. We still consider κ = 1 as an example.

In fact, it follows from the definition of the Lax-Friedrichs flux that

(
Df̂ (1)[p−, p+]

)

ij
=

1

2

[∂fi

∂pj
(p̃ij) + α

]
, i, j = 1, 2, . . . , m, (7.3)

where p̃ij is a mean point lying near {{p}}. Since s1 = s1(p
−, p+) also lies near

{{p}}, it follows from the Lipschitz continuity of f ′
u

and Q, that A1(f̂ ; p) is Lipschitz

continuous. Similar discussion for A2(f̂ ; p) implies assumption A2.

To verify assumption A3, we take ℧ = 1
2
Q1/2[αI − K({{p}})]Q1/2, which is a

symmetric positive semidefinite matrix. Noticing (2.17), a simple manipulation yields

LHS of (2.16c) =
∣∣∣ −

1

2

∑

κ=1,2

[[p]]⊤
[
Q(sκ) − Q({{p}})

][
f (rκ) − f̂LF(p−, p+)

]∣∣∣. (7.4)

Noticing the Lipschitz continuity of Q and f̂LF, we can complete the verification of

assumption A3.

7.2 Proof of Lemma 5.2

We can obtain this lemma by an induction process, to bound ‖Gn
ℓ+1‖ by ‖Gn

ℓ ‖ and the

others. This can be established by Lemma 5.1, with the test function vh = Qn
c Gn

ℓ+1.

The key here is to estimate the error functional Gn
ℓ K(Qn

c vh) for any test function

in the finite element space. Similar analysis will been given in the proof of Lemma

5.5, so the detail is omitted here. The only difference is that after we bound the

numerical viscosity part by Lemma 4.5, we amplify deeply those jumps by the inverse

property (ii). Namely, for any vh ∈ Vh,

|V(uh; Q
n
c vh)| ≤ KFmaxµh−1

[
ε‖(Qn

c )
1/2vh‖

2 + ε−1‖(Qn
c )

1/2ξ‖2
]

+ C⋆h
−1‖e‖∞

[
‖ξ‖2 + ‖vh‖

2 + h2k+2
]
. (7.5)

Here ε is any given small positive constant.

Finally, we just need to use the CFL condition (5.1) and the assumption to simplify

the obtained conclusion. This will yield the conclusion of this lemma. �
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7.3 Proof of Lemma 5.3

We can prove this lemma from the properties of the linear part and the equivalent

expression Υ1 = ΦDG + Φprj + ΦRK, where

ΦDG = τLmain(f
′
u
(un); Gn

1 , Q
n
c Gn

2 ) + τLmain(f
′
u
(un); Gn

2 , Q
n
c Gn

1 ),

Φprj = − τLmain(f
′
u
(un); Gn

1η
n, Qn

c Gn
2 ) − τLmain(f

′
u
(un); Gn

2η
n, Qn

c Gn
1 ),

ΦRK = τLmain(N
n,1; en,1, Qn

c Gn
2 − Qn

c Gn
1 ) + 2τLmain(N

n,2; en,2, Qn
c Gn

1 ).

Here Nn,ℓ = f ′
u
(un,ℓ)−f ′

u
(un) for ℓ = 1, 2. Below we will estimate them one by one.

It follows from Lemma 4.2 that

|ΦDG| ≤ C⋆‖Gn
1‖‖Gn

2‖τ ≤ C⋆

[
‖Gn

1‖
2 + ‖Gn

2‖
2
]
τ. (7.6)

This is the key step in the proof. Each term in Φprj can be bounded by Lemma 4.3

and Proposition 4.2. That is to say

|Φprj| ≤ ε
∑

ℓ=1,2

[[Gn
ℓ ]]⊤〈H(un

b )〉[[Gn
ℓ ]]τ + ε

∑

ℓ=1,2

‖Gn
ℓ ‖

2τ + Ch2k+1τ

≤ Kε(1 + ε)
∑

ℓ=0,1

[[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]τ +
∑

ℓ=0,1

C(ε; en,ℓ)(‖ξn,ℓ‖2 + h2k+1)τ, (7.7)

where the triangle inequalities are used for ‖Gn
1‖ and ‖Gn

2‖. Since ‖Nn,ℓ‖M = O(τ) =

O(h) holds for all x, along almost the same line as that in Lemmas 4.1 and 4.3, we

have

|ΦRK| ≤ C⋆

[
‖ξn‖2 + ‖ξn,1‖2 + ‖ξn,2‖2 + ‖ξn+1‖2 + h2k+2 + τ 6

]
τ. (7.8)

Finally we collect up the above estimates and take small enough ε to complete

the proof of this lemma. �

7.4 Proof of Lemma 5.4

Recalling the definition of generalized E-fluxes, we need to move the focus of Q from

the element center un
c to the rotation position sn,ℓ

κ , for κ = 1, 2. After this is done, the

term Υ3 is changed to Υ̃3. The difference between them is easy to bound. Since at

every element boundary point there holds ‖Q(un
c )−Q(sn,ℓ

κ )‖M ≤ C[h+ τ + ‖en,ℓ‖∞],

as stated in Section 4.1.2, the inverse properties (i) and (ii) imply that

|Υ3 − Υ̃3| ≤ CΨn
2,2τ, (7.9)

due to τ = O(h), where Ψn
2,2 has been given in (5.8). Hence we only need to estimate

the new term Υ̃3, which has the decomposition Υ̃3 = Υ̃3(η) − Υ̃3(uh). Here

Υ̃3(q) = τ [[Gn
2qn]]⊤Gn

1 (An[[un
h]]) + τ [[Gn

1qn]]⊤Gn
2 (An[[un

h]]). (7.10)
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Below we will estimate them separately.

The typical term in Υ̃3(η) is [[Gκη]]⊤An,ℓ[[un,ℓ
h ]], where κ = 1, 2 and ℓ = 0, 1, 2.

Recall that all the elements in An,ℓ ≡ A(f̂ ; un,ℓ
h ) are bounded uniformly. Using the

Cauchy-Schwarz inequality and the inverse property (ii), it is easy to see that

|τ [[Gκη]]⊤An,ℓ[[un,ℓ
h ]]| ≤ C‖Gn

κηn‖Γh

[
‖ξn,ℓ‖Γh

+ ‖ηn,ℓ‖Γh

]
τ ≤ C

[
‖ξn,ℓ‖ + h2k+2

]
τ,

due to τ = O(h), where the projection properties (3.6a) and (3.6c) are used also.

Hence we will have

|Υ̃3(η)| ≤ C

[
∑

ℓ=0,1,2

‖ξn,ℓ‖2 + h2k+2

]
τ ≤ CΨn

2,2τ. (7.11)

In order to estimate sharply the term Υ̃3(uh), we have to dig out the complete

information about G2, and cope with the difficulties resulting from the changing of

An,ℓ at different time stages. Define Bn,ℓ = An,ℓ −An. A simple manipulation yields

that

Υ̃3(uh) = −Υ̃
(1)
3 + Υ̃

(2)
3 + Υ̃

(3)
3 ,

where

Υ̃
(1)
3 = τ [[un

h]]⊤An[[Gn
2un

h]] + τ [[Gn
2un

h]]
⊤An[[un

h]], (7.12a)

Υ̃
(2)
3 = τ [[Gn

2un
h]]⊤An,1[[un,1

h ]] + τ [[un,1
h ]]⊤An,1[[Gn

2un
h]], (7.12b)

Υ̃
(3)
3 = 2τ [[Gn

1un
h]]⊤Bn,2[[un,2

h ]] − τ [[Gn
1un

h]]
⊤Bn,1[[un,1

h ]] − τ [[un,1
h ]]⊤Bn,1[[Gn

2un
h]]. (7.12c)

The first two terms include every term in the same sup-index between the matrices

at least once. Here we do not use the symmetric property of An,ℓ.

Since An,ℓ = Sn,ℓ −Mn,ℓ, an application of Young’s inequality yields

|Υ̃(1)
3 | ≤ ε[[un

h]]⊤Sn[[un
h]]τ + Kε−1[[Gn

2 ]]⊤Sn[[Gn
2 ]]τ + CΨn

2,2τ

≤ ε[[un
h]]⊤Sn[[un

h]]τ + Kε−1µFmaxτh−1|||Gn
2 |||

2
n + CΨn

2,2τ. (7.13)

The above analysis is almost the same as that in Lemma 4.5. The second term Υ̃
(2)
3

can be bounded similarly. It follows from assumption A2 and the continuity of the

reference stage solutions that

‖Bn,ℓ‖M ≤ C⋆‖(u
n,ℓ
h − un

h)±‖M ≤ C⋆(‖e
n,ℓ‖∞ + ‖en‖∞ + τ), ℓ = 1, 2.

Then the inverse property (ii) implies |Υ̃(3)
3 | ≤ CΨn

2,2τ .

Finally, collecting up the above conclusions completes the proof of this lemma. �
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7.5 Proof of Lemma 5.5

The proof is almost the same as that for the error functional with respect to the

single DG discretization; see section 4. The key here is the estimate to the linear

part, where the information about Gn
2 ≡ Gn

2ξn will be found explicitly.

Along the same line as in Lemma 5.3, we fix the flow speed to be the same and

rewrite the linear part in the equivalent form Gn
2L

n(Qnvh) = Ω1 − Ω2 + Ω3, where

Ω1 = Lmain(f
′
u
(un); Gn

2 , Q
n
c vh), (7.14a)

Ω2 = Lmain(f
′
u
(un); Gn

2η
n, Qn

c vh), (7.14b)

Ω3 = 2Lmain(N
n,2; en,2, Qn

c vh) −Lmain(N
n,1; en,1, Qn

c vh). (7.14c)

Here Nn,ℓ = f ′
u
(un,ℓ) − f ′

u
(un) for ℓ = 1, 2, as stated in Section 7.3. There holds

‖Nn,ℓ‖∞ = O(τ).

Using Lemmas 4.1, it follows from Cauchy-Schwarz inequality and Young’s in-

equality, that

|τΩ1| ≤ Kε−1λ2
max|||G

n
2 |||

2
n + ε|||vh|||

2
n + C⋆

[
‖Gn

2‖
2 + ‖vh‖

2
]
τ. (7.15)

Along the same line, we can get |τΩ2| ≤ ε|||vh|||2n+C⋆‖vh‖2τ +Ch2k+2τ 2. Furthermore,

we can estimate Ω3 along the same line as that for Lemmas 4.1 and 4.3. Using

the inverse properties (i) and (ii), together with approximation property (3.6a), we

have |τΩ3| ≤ C⋆(‖vh‖2 + ‖ξn,1‖2 + ‖ξn,2‖2 + h2k+2)τ . Finally, the sum of the three

inequalities above gives the result to the linear part. Namely,

τGn
2L

n(Qn
c vh) ≤ ε|||vh|||

2
n + Kε−1λ2

max|||G
n
2 |||

2
n + C⋆‖vh‖

2τ + CΨn
2,2τ. (7.16)

The next three parts are easy to estimate. Lemma 4.4 gives the estimate to the

nonlinear part in the form

τGn
2N

n(Qn
c vh) ≤ C‖vh‖

2τ + CΨn
2,2τ. (7.17)

In order to estimate the viscosity part, the focus of the local rotation matrix Q will

be moved from un
c to u

n,ℓ
b , and then be moved back. Using mainly Lemma 4.5, we

have

τGn
2V

n(Qn
c vh) ≤ ε|||vh|||

2
n + Cε−1Fmaxµτh−1

∑

ℓ=0,1,2

τ [[un,ℓ
h ]]⊤Sn,ℓ[[un,ℓ

h ]]

+
∑

ℓ=0,1,2

C⋆h
−1‖en,ℓ‖∞

[ ∑

ℓ=0,1,2

‖ξn,ℓ‖2 + ‖vh‖
2 + h2k+2

]
τ. (7.18)
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Note that we have used a new parameter ε. It is easy to bound the time-marching

part, in the form

τGn
2T

n(Qn
c vh) ≤ ε‖vh‖

2τ + C(h2k+2 + τ 6)τ. (7.19)

Here we have also lost a factor τ , since τ < 1 as we have assumed.

Finally, we collect up the above four estimates and complete the proof of this

lemma, since λmax ≤ 1. �
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