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Abstract

In this paper, we develop a class of nonlinear compact schemes based on our previous

linear central compact schemes with spectral-like resolution [X. Liu, S. Zhang, H. Zhang

and C-W. Shu, A new class of central compact schemes with spectral-like resolution I: Lin-

ear schemes, Journal of Computational Physics 248 (2013) 235-256]. In our approach, we

compute the flux derivatives on the cell-nodes by the physical fluxes on the cell nodes and

numerical fluxes on the cell centers. To acquire the numerical fluxes on the cell centers, we

perform a weighted hybrid interpolation of an upwind interpolation and a central interpola-

tion. Through systematic analysis and numerical tests, we show that our nonlinear compact

scheme has high order, high resolution and low dissipation, and has the same ability to cap-

ture strong discontinuities as regular weighted essentially non-oscillatory (WENO) schemes.

It is a good choice for the simulation of multiscale problems with shock waves.
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1 Introduction

There are two challenges in the design of high order numerical schemes for computational

fluid dynamics, especially for high speed flows. The first is the possible presence of discon-

tinuities or sharp transition layers. The second is the appearance of multiscale problems

such as turbulence and aeroacoustics. The compressible turbulent flows are characterized by

shocks or shocklets that result in a sudden change of fluid properties. All possible turbulent

length scales and time scales must be resolved by the numerical method for the direct numer-

ical simulation (DNS) of compressible turbulence. Thus, DNS requires numerical schemes

that simultaneously have high-order accuracy and robust shock-capturing capability. The

property of minimal dissipation and dispersion errors is likely to be significant for complex

structures including smooth components such as vortices and acoustic waves, where the

acoustic signals may be several orders of magnitude less energetic than the mean flow and

could become confused with oscillations generated by stationary shock waves [2].

Traditional low order numerical methods, such as first order Godunov scheme [9] or Roe

scheme [29], can resolve the discontinuities monotonically without spurious numerical oscilla-

tions. However, they often smear some of these discontinuities excessively. They also contain

relatively large numerical dissipation in the smooth part of the solution. Hence many grid

points are required to resolve complicated smooth structures such as vortices and acoustic

waves, especially for long time simulation. The weighted essentially non-oscillatory (WENO)

scheme is a popular high order numerical scheme for solving hyperbolic conservation laws.

It is designed based on the essentially non-oscillatory (ENO) scheme in [11, 32, 33]. The

WENO scheme was first proposed by Liu, Osher and Chan [19]. In this pioneering work,

finite volume WENO schemes up to fourth order were designed. In 1996, Jiang and Shu

[14] proposed a general framework to construct arbitrary order accurate finite difference

WENO schemes, which are more efficient for multidimensional calculations. Both ENO and

WENO use the idea of adaptive stencils in the reconstruction procedure based on the lo-

cal smoothness of the numerical solution to automatically achieve high order accuracy and
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non-oscillatory property near discontinuities. ENO uses just one (the smoothest one in some

sense) of several candidate stencils in the reconstruction, while WENO uses a convex combi-

nation of all the candidate stencils, each being assigned a nonlinear weight which depends on

the local smoothness of the numerical solution based on that stencil. WENO improves upon

ENO in more efficiency, better smoothness of fluxes, and better steady state convergence.

For more details of ENO and WENO schemes, we refer to the lecture notes and review paper

by Shu [34, 35]. WENO schemes have two desirable properties that they capture disconti-

nuities and maintain high order accuracy. It has been applied to many problems containing

discontinuous solutions.

Even though the accuracy order of WENO schemes can be designed to be arbitrarily

high, such as up to the eleventh order WENO schemes developed by Balsara and Shu [3],

the resolution to short waves is not ideal, due to the numerical dispersion errors in these

schemes. To overcome this drawback, there are efforts in the literature to modify the linear

combination coefficients of a finite difference scheme to improve its dispersion properties, at

the expense of lowering the order of accuracy. Based on this strategy, Tam and Webb [38]

developed a dispersion relation preserving (DRP) finite difference scheme. Wang and Chen

[40], Ponziani et al. [27] and Martin et al. [22] developed optimal WENO schemes.

The second drawback of these WENO schemes is that the numerical dissipation is rel-

atively high, due to the upwind-biased stencil as well as the extra numerical dissipation

provided through the nonlinear weights. The WENO methods provide sharp shock cap-

turing, but overwhelms the physical dissipation and underpredicts approximately the upper

three quarters of the resolvable wavenumbers for broadband problems [16]. Generally speak-

ing, there are two methods to decrease the excessive dissipation of WENO schemes. One

strategy is to use a hybrid scheme, i.e., in conjunction with low-dissipative algorithms for

smooth parts of the flow. A key role for the success of hybrid methods is played by shock

sensors that should be able to localize the necessary amount of numerical dissipation around

shock waves. Adams and Shariff [1] first considered a truly adaptive hybrid discretization,
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consisting of a compact upwind scheme coupled with a fifth-order ENO scheme. The method

was expanded by Pirozzoli [24], who developed a fully conservative formulation by hybridiz-

ing a fifth-order compact upwind numerical flux with a seventh-order WENO flux, the switch

being based on the local density gradient. Further improvements to hybrid WENO schemes

were introduced by Ren et al. [28], in which the weight function is designed so that the abrupt

transition from one sub-scheme to another is avoided and the resulting hybrid scheme is es-

sentially oscillation free near the flow discontinuities. Another strategy is to use the central

symmetrical stencils, other than upwind stencils, by including the contribution of the most

downwind stencil. In the WENO-SYMBO schemes [22], the central symmetrical WENO

scheme is used for better bandwidth efficiency with the optimal linear weights, however,

the order of the WENO-SYMBO schemes in smooth regions of the solution may degenerate

near certain critical points. Henrick et al. [12] devised a mapping function and applied it

to the smoothness indicator of the original WENO scheme [14]. Compared to the original

WENO scheme, the improved fifth-order WENO scheme (WENO-M) can achieve the opti-

mal convergence order at critical points of smooth parts, reduce the numerical dissipation,

and obtain sharper results near discontinuities. In [4], Borges et al. introduced another ver-

sion of the fifth-order WENO scheme (WENO-Z) with a new smoothness indicator which is

constructed by incorporating a global higher order smoothness measurement into the weights

of the WENO scheme [14]. This method allows us to obtain the optimal convergence order at

the critical points of smooth regions of the solution and captures shock in a physically sharp

manner while maintaining stability and the essentially non-oscillatory behavior. Yamaleev

and Carpenter [42, 43] proposed a family of energy stable WENO schemes, in which the

central symmetrical stencils were used with the methodology of energy stable modifications.

In [13], Hu et al. developed a sixth-order WENO-CU6 scheme, which used the nonlinear

weighting relationship with a global smoothness indicator of the optimal higher order stencil.

The above approaches of modifying WENO schemes can achieve less numerical dissipa-

tion than the classical WENO schemes. However, these modified WENO schemes are still
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considerably more dissipative than their linear counterparts. To simulate multiscale tur-

bulence and acoustic waves, a good choice is the linear compact scheme, which has better

dispersion behavior than an explicit finite difference scheme at the same order of accuracy.

The most influential compact schemes for derivatives, interpolation and filtering were pro-

posed by Lele [18]. Through systematic Fourier analysis, it is shown that these compact

schemes have spectral-like resolution for short waves. The wave resolution of cell-centered

compact schemes proposed by Lele [18] is much better than the resolution of cell-noded

compact schemes. Through coupling the second derivatives, Mahesh [21] developed a family

of compact schemes with good spectral-like resolution. Shukla and Zhong [36] developed

a compact scheme for non-uniform meshes. Upwind compact schemes were also developed

[7] for solving nonlinear hyperbolic problems. Nagarajan et al. [23] and Boersma [5] de-

veloped staggered compact schemes. However, the staggered compact schemes contain the

cell-centered values, which should be obtained through interpolation from the values on cell

nodes. Lele [18] proposed a compact interpolation to compute the values on the half-grid.

In [20], Liu et al. developed a class of linear compact schemes based on the cell centered

compact scheme of Lele [18]. These schemes equate a weighted sum of the nodal derivatives

to a weighted sum of the function on both the cell-nodes and the cell-centers. This approach

increases the memory requirement, however it does not increase the computational cost in

the one-dimensional operator. Both the accuracy order and the wave resolution property are

improved significantly.

Linear compact schemes have been widely used in the literature, especially for wave

propagation problems in which nonlinearities are weak. However, it is known that application

of standard central discretizations to high-Reynolds number fluid turbulence typically leads

to numerical instability, owing to the accumulation of the aliasing errors resulting from

discrete evaluation of the nonlinear convective terms. Linear compact schemes usually have

no or low numerical dissipation. This is an advantage for the simulation of turbulence and

acoustic waves, but it also causes problems for nonlinear hyperbolic problems with shock
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waves or sharp gradients in the solution.

Filtering the computed solution is a commonly used practice to cure nonlinear instabilities

of central schemes, while retaining high-order accuracy. High-order filters were introduced

by Lele [18] and used by Visbal and Gaitonde [39] for the solution of conservation laws on

stretched, curvilinear, and deforming meshes. Introducing WENO ideas to central schemes

is another commonly used practice to cure nonlinear instabilities.

Based on the linear cell-centered compact scheme of Lele [18] and WENO schemes of Jiang

and Shu [14], Deng et al. [8] and Jiang et al. [15] developed two types of WENO interpolation

compact schemes. Zhang et al. [44] developed an increasingly higher order accuracy WENO

interpolation method and formed a family of shock-capturing WENO compact schemes, for

which the resolution of short waves is improved and numerical dissipation is reduced.

In this paper, we develop a new class of nonlinear compact schemes based on our previ-

ously developed linear central compact schemes with spectral-like resolution [20]. To acquire

the numerical fluxes at cell centers, we perform a hybrid weighted nonlinear interpolation,

which adapts between the central and upwind schemes smoothly by a new weighting strategy

based on weighted factors and smoothness indicators. The new nonlinear compact schemes

have higher spectral resolution than standard WENO schemes because they use more com-

pact stencil information, and they have lower dissipation errors owing to the hybrid weighted

upwind and central interpolation. Through a systematic analysis, tests and comparison, we

show that the new nonlinear compact schemes have the same ability to capture strong dis-

continuities as the classical WENO schemes, while the resolution for high frequency waves

in the solution is improved.

This paper is organized as follows. In Section 2, we derive the formulae for the hybrid

weighted nonlinear schemes. The time advancement method is shown in Section 3. The

numerical accuracy tests are performed in Section 4. In Section 5, we systemically analyze the

dispersion and dissipation characteristics of the schemes. Numerical experiments including

strong shock waves are shown in Section 6. Section 7 contains concluding remarks.

6



2 Scheme formulation

In this section, we present the methodology to develop our nonlinear compact schemes. We

consider numerical approximations to the solution of the conservation law

∂u

∂t
+

∂f(u)

∂x
= 0 (2.1)

A semidiscrete finite difference can be represented as

(

∂u

∂t

)

j

= −f ′
j (2.2)

where f ′
j is the approximation to the spatial derivative ∂f(u)

∂x
at the grid node xj . We start

our work from the linear central compact schemes [20]. Then we extend these linear schemes

to nonlinear schemes.

2.1 Linear central compact schemes

In [20], we proposed a class of central compact schemes with spectral-like resolution (CC-

SSR), which are linear schemes termed CCSSR-L and has the following form

βf ′
j−2 + αf ′

j−1 + f ′
j + αf ′

j+1 + βf ′
j+2

=a
f

j+
1
2
− f

j−1
2

∆x
+ b

fj+1 − fj−1

2∆x
+ c

f
j+

3
2
− f

j−3
2

3∆x

+d
fj+2 − fj−2

4∆x
+ e

f
j+

5
2
− f

j−5
2

5∆x

(2.3)

In this paper, we denote the central compact schemes with spectral-like resolution as

“CCSSR” rather than “CCS” in our previous paper [20]. The relationships among the

coefficients α, β, a, b, c, d and e are derived by matching the Taylor series coefficients of

various orders. The detailed relationships of these coefficients are listed in [20]. The accuracy

order of these schemes ranges from second to fourteenth. The stencil of the CCSSR-L schemes

is shown in Figure 2.1.

In this paper, we focus on two tridiagonal schemes.

1. The fourth order linear scheme:
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Figure 2.1: The stencil of the CCSSR schemes

The fourth order CCSSR-L4 has the following form

αf ′
j−1 + f ′

j + αf ′
j+1 = a

f
j+

1
2
− f

j−1
2

∆x
+ b

fj+1 − fj−1

2∆x
(2.4)

At the inner points, we choose α = 1
22

, a = 12
11

, b = 0. At the boundary points, we choose

α = 0, a = 4
3
, b = −1

3
.

2. The sixth order linear scheme:

The sixth order CCSSR-L6 has the following form

αf ′
j−1 + f ′

j + αf ′
j+1 = a

f
j+

1
2
− f

j−1
2

∆x
+ b

fj+1 − fj−1

2∆x
+ c

f
j+

3
2
− f

j−3
2

3∆x
(2.5)

At the inner points, we choose α = − 1
12

, a = 16
9
, b = −17

18
, c = 0. At the boundary points,

we choose α = 0, a = 3
2
, b = −3

5
, c = 1

10
.

The derivatives f ′
j can be obtained by solving the linear systems of (2.3), (2.4) or (2.5).

Equation (2.3) is a pentadiagonal system and equations (2.4) and (2.5) are tridiagonal sys-

tems. Hence, the fourth-order scheme (2.4) and sixth-order scheme (2.5) are more efficient

and economical comparing with the pentadiagonal scheme (2.3), because they require only

a tridiagonal matrix solver such as the Thomas algorithm that is easy and fast for actual

computation. Both the fourth order and the sixth order schemes contain the values on the

cell-centers fj+ 1
2
, which are unknown. There are many methods to compute the values on

the cell-centers. High order linear compact interpolation [18] and WENO interpolation [44]

are two typical examples. In our linear scheme [20], we used the same scheme as that for

the node to compute the derivatives at cell centers and the physical values on cell centers by

marching the physical equation. In this paper, we propose a new hybrid nonlinear interpola-

tion to achieve the goal of computing flows with discontinuities and shock waves in a stable

fashion.
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2.2 Hybrid weighted nonlinear interpolation

2.2.1 Basic idea of the weighted interpolation

In [44], Zhang et al. proposed a method to weighted interpolate the physical values on cell

interfaces. Here, we give a brief review for the process of the WENO interpolation.

The value on a cell center can be interpolated locally from the values on a stencil. In

general, we can get a (2r− 1)-th order approximation based on the flux function in a stencil

S2r−1 = (xi−r+1, ..., xi+r−1). Using this stencil, the flux at any point can be evaluated as an

interpolating polynomial:

f̂ 2r−1(x) = fi +

2(r−1)
∑

l=1

al(x − xi)
l (2.6)

Evaluating the function at the cell center xi+ 1
2
, the (2r− 1)-th order approximation is given

by

f̂L
i+ 1

2
= q2r−1(fi−r+1, ..., fi+r−1) (2.7)

For the WENO interpolation in [30, 6], based on the WENO reconstruction idea in [14],

the stencil S2r−1 can be divided into r sub-stencils

S2r−1
k = (xi+k−r+1, xi+k−r+2, ..., xi+k), k = 0, 1, ..., r − 1

In each of these substencils, the r-th order approximation can be obtained

f̂
(k)

i+ 1
2

= qr
k(fi+k−r+1, ..., fi+k) (2.8)

where

qr
k(g0, ..., gr−1) =

r−1
∑

l=0

ar
k,lgl

Here, ar
k,l, 0 ≤ k, l ≤ r − 1, are constant coefficients.

The value f̂L
i+ 1

2

can also be obtained by a linear combination of f̂
(k)

i+ 1
2

q2r−1(fi−r+1, ..., fi+r−1) =

r−1
∑

k=0

dr
kq

r
k(fi+k−r+1, ..., fi+k) (2.9)
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The approximation (2.9) is linear. The resulting scheme can not capture shock waves

and other discontinuities without oscillations. Adopting the WENO idea, we use nonlinear

weights ωr
k to replace the linear weights dr

k and obtain a nonlinear approximation

f̂i+ 1
2

=
r−1
∑

k=0

ωr
kq

r
k(fi+k−r+1, ..., fi+k) (2.10)

where the nonlinear weight ωr
k for the stencil S2r−1

k is given by:

ωr
k =

αr
k

αr
0 + αr

1 + ... + αr
r−1

(2.11)

with

αr
k =

dr
k

(ǫ + ISr
k)

p
, k = 0, 1, ..., r − 1

Here ǫ is a small positive number which is introduced to avoid the denominator becoming

zero. ISk is the smoothness indicator of the flux function in the k-th substencil which adopts

the formulae given by Jiang and Shu [14] as

ISr
k =

r−1
∑

l=1

∫ x
i+ 1

2

x
i−

1
2

△x2l−1

(

∂lf (r)(x)

∂lx

)2

dx. (2.12)

2.2.2 Fourth order hybrid weighted nonlinear interpolation

The three second order interpolations in the substencils are

f̂
(0)

j+ 1
2

= 1
2
(−fj−1 + 3fj)

f̂
(1)

j+ 1
2

= 1
2
(fj + fj+1)

f̂
(2)

j+ 1
2

= 1
2
(3fj+1 − fj+2)

(2.13)

The linear third order upwind interpolation in the upwind stencil is given by

f̂upwind

j+
1
2

=
1

8
(−fj−1 + 6fj + 3fj+1) (2.14)

The linear fourth order central interpolation in the central stencil is given by

f̂ central

j+
1
2

=
1

16
(−fj−1 + 9fj + 9fj+1 − fj+2) (2.15)
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The upwind interpolation has better stability, while the central interpolation has lower

dissipation. In this paper, we use the hybrid method of Ren et al. [28] to balance the

stability and dissipation of the scheme. Let the hybrid weighted linear interpolation in the

central global stencil be

f̂hybrid

j+
1
2

= (1 − σ) f̂upwind

j+
1
2

+ σf̂ central

j+
1
2

=

2
∑

r=0

drf̂
(r)

j+ 1
2

(2.16)

That is

f̂hybrid

j+
1
2

= −d0

2
fj−1 +

3d0 + d1

2
fj +

d1 + 3d2

2
fj+1 −

d2

2
fj+2 (2.17)

The linear weights are

d0 =
2 − σ

8
, d1 =

6

8
, d2 =

σ

8
(2.18)

The weight 0 ≤ σ ≤ 1, which controls the contribution of the upwind or central inter-

polation. If σ = 1, the interpolation is completely central. It is completely upwind when

σ = 0. Ren et al. [28] gave a definition of σ as follows

σ = min

(

1,
r
j+

1
2

rc

)

(2.19)

where r
j+

1
2

= min (rj, rj+1), and rj is defined by

rj =
|2 (fj+1 − fj) (fj − fj−1)| + δ

(fj+1 − fj)
2 + (fj − fj−1)

2 + δ
(2.20)

where the positive parameter δ is given by

δ =
0.9rc

1 − 0.9rc

× 10−6 (2.21)

The constant rc is a threshold. The larger its value, the more dissipation the numerical

scheme becomes. In this paper, we set rc = 0.5 for all the numerical examples.

The smoothness indicators are

IS0 = fj−1 (fj−1 − 2fj) + f 2
j

IS1 = fj (fj − 2fj+1) + f 2
j+1

IS2 =
1

2880
[fj−1 (6649fj−1 − 30414fj + 23094fj+1 − 5978fj+2)

+ 3fj (13667fj − 23534fj+1 + 6338fj+2)

+ 3fj+1 (11147fj+1 − 6458fj+2) + 3169f 2
j+2]

(2.22)
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With these smoothness indicators, we can compute the nonlinear weights by [4, 13]

ωr =
αr

2
∑

s=0

αs

, αr = dr

(

C +
τ4

ǫ + ISr

)

, r = 0, ..., 2 (2.23)

where ǫ is a small positive number used to avoid the denominator becoming zero. We take

it as ǫ = 10−40. Eq. (2.23) has a similar form as the WENO-CU6 scheme of Hu et al.

[13]. A parameter C is introduced to increase the contribution of the optimal linear weights.

It can be found that, increasing or decreasing the value of C only changes the numerical

dissipation slightly. The larger the value of C is, the less numerical dissipation the numerical

scheme has. However, since excessively large values of C may lead to numerical instabilities

for problems with strong shock waves [13], we set C = 5 for all the numerical examples.

The reference smoothness indicator is defined by

τ4 = IS2 −
1

2
(IS0 + IS1) (2.24)

For the regular WENO scheme [14], Henrich et al. [12] pointed out that the nonlinear weights

with the smoothness indicator in [14] may lose accuracy at certain smooth extrema. To solve

this problem, they introduced a mapping function

gr(ω) =
ω(dr + d2

r − 3drω + ω2)

d2
r + ω(1 − 2dr)

(2.25)

which recovers the approximating accuracy order of ωr to the linear weights dr at critical

points. gr(ω) is a non-decreasing monotone function with the following properties:

1. 0 ≤ gr(ω) ≤ 1, gr(0) = 0 and gr(1) = 1.

2. gr(ω) ≈ 0 if ω ≈ 0; gr(ω) ≈ 1 if ω ≈ 1.

3. gr(dr) = dr, g′
r(dr) = g′′

r (dr) = 0.

In this paper, we also use the mapping function for the nonlinear interpolation. The

modified nonlinear weights are

ωM
r =

αM
r

2
∑

s=0

αM
s

, αM
r = gr(ωr), r = 0, · · · , 2
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Here a superscript (M) has been added to signify the weights using the mapping function.

Numerical results in [12] confirmed the usefulness of the mapping, since with the modified

weights the resulting WENO-M scheme recovered the formal order of convergence at critical

points of a smooth solution.

The final fourth order hybrid weighted nonlinear mapping interpolation is defined by

f̂
j+

1
2

=
2
∑

r=0

ωM
r f̂

(r)

j+ 1
2

= −ωM
0

2
fj−1 +

3ωM
0 + ωM

1

2
fj +

ωM
1 + 3ωM

2

2
fj+1 −

ωM
2

2
fj+2 (2.26)

Substituting this fourth order hybrid weighted interpolation into the fourth order linear

scheme (2.4), we can obtain a fourth order nonlinear compact scheme. We mark it as

CCSSR-HW4.

2.2.3 Sixth order hybrid weighted nonlinear interpolation

The four third order interpolations in the substencils are

f̂
(0)

j+ 1
2

= 1
8
(3fj−2 − 10fj−1 + 15fj)

f̂
(1)

j+ 1
2

= 1
8
(−fj−1 + 6fj + 3fj+1)

f̂
(2)

j+ 1
2

= 1
8
(3fj + 6fj+1 − fj+2)

f̂
(3)

j+ 1
2

= 1
8
(15fj+1 − 10fj+2 + 3fj+3)

(2.27)

The fifth order upwind interpolation in the upwind stencil is given by

f̂upwind

j+
1
2

=
1

128
(3fj−2 − 20fj−1 + 90fj + 60fj+1 − 5fj+2) (2.28)

The sixth order central interpolation in the central stencil is given by

f̂ central

j+
1
2

=
1

256
(3fj−2 − 25fj−1 + 150fj + 150fj+1 − 25fj+2 + 3fj+3) (2.29)

We let the hybrid weighted linear interpolation in the central stencil be

f̂hybrid

j+
1
2

= (1 − σ) f̂upwind

j+
1
2

+ σf̂ central

j+
1
2

=

3
∑

r=0

drf̂
(r)

j+ 1
2

(2.30)

That is

f̂hybrid

j+
1
2

=
3d0

8
fj−2 −

10d0 + d1

8
fj−1 +

15d0 + 6d1 + 3d2

8
fj

+
3d1 + 6d2 + 15d3

8
fj+1 −

d2 + 10d3

8
fj+2 +

3d3

8
fj+3

(2.31)
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The linear weights are

d0 =
2 − σ

32
, d1 =

5 (4 − σ)

32
, d2 =

5 (2 + σ)

32
, d3 =

σ

32
(2.32)

The weight σ controls the upwind or central interpolation, which is a continuous function

as Eq.(2.19), where r
j+

1
2

= min (rj−1, rj, rj+1, rj+2). The larger the threshold value of rc is,

the more numerical dissipation the numerical scheme has. Like that in fourth order scheme,

we again set rc = 0.5 for all numerical examples in this paper. rj is defined as Eq.(2.20).

The positive parameter δ is given as Eq.(2.21).

The smoothness indicators are

IS0 = 1
3
[fj−2 (4fj−2 − 19fj−1 + 11fj) + fj−1 (25fj−1 − 31fj) + 10f 2

j ]
IS1 = 1

3
[fj−1 (4fj−1 − 13fj + 5fj+1) + 13fj (fj − fj+1) + 4f 2

j+1]
IS2 = 1

3
[fj (10fj − 31fj+1 + 11fj+2) + fj+1 (25fj+1 − 19fj+2) + 4f 2

j+2]

IS3 =
1

232243200
[fj−2(525910327fj−2 − 4562164630fj−1 + 7799501420fj

− 6610694540fj+1 + 2794296070fj+2 − 472758974fj+3) + 5fj−1(2146987907fj−1

− 7722406988fj + 6763559276fj+1 − 2926461814fj+2 + 503766638fj+3)

+ 20fj (1833221603fj − 3358664662fj+1 + 1495974539fj+2 − 263126407fj+3)

+ 20fj+1 (1607794163fj+1 − 1486026707fj+2 + 268747951fj+3)

+ 5fj+2 (1432381427fj+2 − 536951582fj+3) + 263126407f 2
j+3]

(2.33)

The nonlinear weights are

ωr =
αr

3
∑

s=0

αs

, αr = dr

(

C +
τ6

ǫ + ISr

)

, r = 0, ..., 3 (2.34)

Here, we take ǫ = 10−40. Following the fourth order interpolation, we set C = 5 for all

numerical examples.

The reference smoothness indicator is defined by

τ6 = IS3 −
1

8
(IS0 + 6IS1 + IS2) (2.35)

Using the mapping function as Eq.(2.25), the mapped nonlinear weights are

ωM
r =

αM
r

3
∑

s=0

αM
s

, αM
r = gr(ωr), r = 0, · · · , 3 (2.36)
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The final sixth order hybrid weighted nonlinear mapping interpolation is

f̂
j+

1
2

=
3
∑

r=0

ωM
r f̂

(r)

j+ 1
2

=
3ωM

0

8
fj−2 −

10ωM
0 + ωM

1

8
fj−1 +

15ωM
0 + 6ωM

1 + 3ωM
2

8
fj

+
3ωM

1 + 6ωM
2 + 15ωM

3

8
fj+1 −

ωM
2 + 10ωM

3

8
fj+2 +

3ωM
3

8
fj+3

(2.37)

Substituting this sixth order hybrid weighted interpolation into the sixth order linear scheme

(2.5), we can obtain a sixth order nonlinear compact scheme. We mark it as CCSSR-HW6.

2.2.4 Flux splitting

The purpose of flux splitting is to introduce correct upwinding. In general, the flux can be

split into two parts:

f (u) = f+ (u) + f− (u)

where

df+ (u)

du
≥ 0 ,

df− (u)

du
≤ 0

We would need the positive and negative fluxes f± (u) to have as many derivatives as

the order of the scheme. In this paper, we use the Lax-Friedrichs flux splitting

f±(u) =
1

2
(f(u) ± αu) (2.38)

where α is taken as α = max
u

{|f ′ (u)|} over the relevant range of u. For Euler equations,

the α is chosen differently for each characteristic field as the maximum of the corresponding

eigenvalue of the Jacobian in that field. We refer to [14] for the details.

During the weighted interpolation for the cell-centered value, we use the upwind biased

stencil to get the value of mid-cell fi+ 1
2
. That is the value f+

i+ 1
2

is interpolated from the point

value in the stencil S+ = (xi−r+1, ..., xi+r−1) and the value f−
i+ 1

2

from S− = (xi−r+2, ..., xi+r).

We have only described how f̂+
i+ 1

2

is approximated because the formulas for the negative

part of the split flux are symmetric to the positive part with respect to x = xi+ 1
2
. Also, for

simplicity, we have dropped the ‘+’ sign in the superscript.
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3 Time advancement

After the spatial derivative is discretized, we obtain a system of initial value problems of

ordinary differential equations (ODEs),

dU

dt
= L(U) (3.1)

where the operator L(U) is an approximation to the spatial derivative in the partial differ-

ential equations (PDEs). This set of ODEs can be discretized by the optimal third order

TVD Runge-Kutta method [32, 10], which is given as follows:

U (1) = Un + ∆tL(Un)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1))

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2))

(3.2)

This optimal third order TVD Runge-Kutta method can apply to general initial value

problems of PDEs in any spatial dimensions. Higher order versions of such time discretiza-

tions can of course also be used.

4 Numerical accuracy tests

In this section, we test the numerical accuracy of the CCSSR-HW6 schemes for both scalar

equations and Euler equations.

4.1 Scalar equation

We solve the following linear scalar equation:

ut + ux = 0, −1 ≤ x ≤ 1

u(x, t = 0) = u0(x)
(4.1)

with periodic boundary condition and two different initial conditions: u0(x) = sin(πx),

u0(x) = sin(πx − sin(πx)/π).
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Schemes N L1 error L1 order L∞ error L∞ order

CCSSR-HW6

10 0.359E-02 – 0.554E-02 –

20 0.543E-04 6.05 0.147E-03 5.23

40 0.927E-06 5.87 0.354E-05 5.38

80 0.160E-07 5.86 0.810E-07 5.45

160 0.189E-09 6.40 0.898E-09 6.49

Table 4.1: L1 and L∞ errors and numerical orders of accuracy on ut + ux = 0 with u0(x) =
sin(πx). N is the total number of grid points in a uniform mesh. t = 1.

Schemes N L1 error L1 order L∞ error L∞ order

CCSSR-HW6

10 0.342E-01 – 0.763E-01 –

20 0.114E-02 4.90 0.323E-02 4.56

40 0.297E-04 5.27 0.112E-03 4.85

80 0.802E-06 5.21 0.475E-05 4.56

160 0.149E-07 5.75 0.150E-06 4.99

Table 4.2: L1 and L∞ errors and numerical orders of accuracy on ut + ux = 0 with u0(x) =
sin(πx − sin(πx)/π). N is the total number of grid points in a uniform mesh. t = 2.

The grid is progressively refined from 10 points to 160 points for the convergence analysis.

The initial CFL is 0.5 for the 10-points grid and is reduced by a factor of 2
(3−r)

3 for r-th order

scheme at each refinement.

In Tables 4.1-4.2, the L1 and L∞ errors and numerical orders of accuracy are given for the

CCSSR-HW6 scheme for the different initial conditions. We can observe that the designed

orders of accuracy are achieved in all cases, at least in L1 norm. If we use quadruple precision

and continue further refining the mesh, we can see the designed sixth order of accuracy for

both the L1 and the L∞ norms eventually. We do not present these results to save space.
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Schemes N L1 error L1 order L∞ error L∞ order

CCSSR-HW6

10 0.170E-03 – 0.259E-03 –

20 0.386E-05 5.46 0.854E-05 4.92

40 0.616E-07 5.97 0.183E-06 5.54

80 0.495E-09 6.96 0.777E-09 7.88

160 0.773E-11 6.00 0.121E-10 6.00

Table 4.3: L1 and L∞ errors and numerical orders of accuracy for one-dimensional Euler
equation with CCSSR-HW6 scheme. N is the total number of grid points in a uniform mesh.
t = 1.

4.2 Euler equations

The advection of a smooth density wave over a periodic domain is considered for the one

dimensional Euler equations. The pressure and velocity are constants, thus reducing the

Euler equations to a linear advection equation for the density, with the advection speed as

the freestream velocity. The exact solution is given by:

(ρ, u, p) = (1 + 0.1 sin [π (x − t)] , 1, 1)

The computational domain is taken to be [0, 2]. We solve the equations up to t = 1 with

periodic boundary condition. The grid is progressively refined from 10 points to 160 points

for the convergence analysis. The initial CFL is 0.5 for the 10-points grid and is reduced by

a factor of 2
(3−r)

3 for r-th order scheme at each refinement.

In Table 4.3, the L1 and L∞ errors of density and numerical orders of accuracy are

given for the CCSSR-HW6 schemes. We can observe that the designed order of accuracy is

achieved.

For the two dimensional Euler equation, the test function is:

(ρ, u, v, p) = (1 + 0.2 sin [π (x + y − 2t)] , 1, 1, 1)

The computational domain is taken to be [0, 2]×[0, 2]. We solve the equation up to

t = 0.5 with periodic boundary condition. The grid is progressively refined from 10 × 10

18



Schemes N × N L1 error L1 order L∞ error L∞ order

CCSSR-HW6

10 × 10 0.340E-03 – 0.518E-03 –

20 × 20 0.782E-05 5.44 0.174E-04 4.90

40 × 40 0.150E-06 5.70 0.480E-06 5.18

80 × 80 0.119E-08 6.98 0.255E-08 7.55

160 × 160 0.155E-10 6.27 0.243E-10 6.72

Table 4.4: L1 and L∞ errors and numerical orders of accuracy for two-dimensional Euler
equation with CCSSR-HW6 scheme. N is the total number of grid points in a uniform mesh.
t = 0.5.

points to 160×160 points for the convergence analysis. The initial CFL is 0.5 for the 10×10

points grid and is reduced by a factor of 2
(3−r)

3 for r-th order scheme at each refinement.

In Table 4.4, the L1 and L∞ errors of density and numerical orders of accuracy are

given for the CCSSR-HW6 schemes. We can observe that the designed order of accuracy is

achieved.

5 The analysis of the dispersion and dissipation char-

acteristics

In this section, we analyze the dispersion and dissipation characteristics of CCSSR-HW. It

is well known that the order of the truncation error of a numerical scheme only provides

information on the asymptotic convergence rate to the exact solution, but it does not convey

any information on the actual error on a finite computational grid; rather, wave-propagation

characteristics of a difference scheme provide information on all the Fourier components

supported on the grid [25].

For the purpose of the analysis of the spectral properties, let us consider the one-

dimensional propagation of small disturbances in a periodic domain [0, 2π], governed by the

linear advection equation, with monochromatic sinusoidal initial conditions of wavelength λ
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and wavenumber k =2π
λ

,

∂f

∂t
+ c

∂f

∂x
= 0, x ∈ [0, 2π] , f (x, 0) = f̂0e

ikx (5.1)

where i =
√
−1 and c > 0 . We consider a semi-discrete approximation of Eq. (5.1) on a

grid with uniform spacing h = 2π
N

and nodes xj = j · h, j = 0, · · · , N ,

dfj

dt
+ cf ′

j = 0, fj (0) = f̂0e
ijw (5.2)

where w = k · h is the so-called reduced wavenumber [18]. If one assumes a linear compact

finite-difference approximation for the spatial derivative of f

∑

p

bpf
′
j+p =

1

h

∑

q

aqfj+q (5.3)

then we could change the Eq. (5.2) to the form

d

dt

(

∑

p

bpfj+p

)

+ c

(

∑

p

bpf
′
j+p

)

= 0 (5.4)

In response to the Eq. (5.3) and Eq. (5.4), we can obtain the exact solution [25] of the Eq.

(5.2)

fj (t) = f̂0e
ijwe−i ct

h
w′

(5.5)

and w′ is the “modified wavenumber” associated with the space discretization (5.3),

w′ (w) =

∑

q

aqe
iqw

i
∑

p

bpeipw
(5.6)

where w′ (w) = w′
r (w)+ iw′

i (w), w′
r (w) is the real part of modified wavenumber, and w′

i (w)

is the imaginary part of modified wavenumber. In order to analyze the dispersion and

dissipation characteristics, we substitute the real and imaginary part of modified wavenumber

to Eq. (5.5),

fj (t) = f̂0e
ijwe−i ct

h
w′

= f̂0e
ijwe−i ct

h
(w′

r+iw′

i
) = f̂0e

i(jw− ct

h
w′

r)e
ct

h
w′

i (5.7)
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According to the Eq. (5.7), we can conclude that the real part of modified wavenumber is

associated with the dispersion property of the discretization scheme, while the imaginary

part of modified wavenumber is related to its dissipation property. Spectral schemes have

w′ (w) = w, in other words, w′
r (w) = w and w′

i (w) = 0. Therefore the modified wavenumber

w′ (w) can be usefully interpreted as a measure of the relative dispersion and dissipation

error associated with the finite-difference discretization. The smaller the error |w′
r (w) − w|

is, the smaller the dispersion error is, in other words, the discretization schemes have better

spectral resolution. The smaller the error |w′
i (w) − 0| is, the smaller the dissipation error is.

The analysis of shock-capturing schemes is very difficult for their inherent nonlinearity,

which prevents the straightforward application of the tools extensively used to evaluate linear

schemes, for example Fourier analysis [18]. Nonlinearity also makes comparison of the relative

quality of different methods, other than a case-by-case basis, almost impossible. Generally,

classical shock-capturing schemes have linear counterparts that are used as guidance to

improve their spectral behavior [44]. For example, freezing the nonlinear weights turns

WENO schemes into linear upwind schemes, whose spectral transfer function has been used

in the development of the optimized-WENO schemes [40, 27, 22]. However, numerical tests

show that the nonlinear features have a dramatic impact on the performance of numerical

schemes, and their actual behavior may be quite different from linear predictions [26].

For a nonlinear scheme, no analytical formula of the spectral relations can be obtained.

However, the modified wavenumber of the nonlinear scheme in terms of the approximate

dispersion relation (ADR) can be obtained using the technique of Pirozzoli [25].

The main results of the CCSSR-HW4, CCSSR-HW6 and WENO5 schemes using the

ADR method [25] are reported in Figure 5.1, in terms of the real and the imaginary part

of the modified wavenumber (w′). The spectral properties (both dispersion and dissipation)

of nonlinear schemes are dramatically deteriorated upon activation of the nonlinear weights,

and linear analysis brings little information on the actual solution behavior. For comparison

purposes, we also report the ADR of the linear counterparts of the CCSSR-HW4, CCSSR-
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Figure 5.1: Approximate dispersion relation for the CCSSR-HW schemes and comparison
with the WENO5 scheme. Left: real part of the modified wavenumber w′; Right: imaginary
part of the modified wavenumber w′.

HW6 and WENO5 schemes in Figure 5.2.

In Figure 5.1, we also give the comparison for WENO5 scheme with the results of Pirozzoli

[25]. We can observe that our results agree very well with the results of Pirozzoli [25]. From

Figure 5.1, we can observe that the resolution of CCSSR-HW6 is better than CCSSR-HW4,

and the resolution of CCSSR-HW4 is much better than the WENO5 scheme. Furthermore,

the dissipation of CCSSR-HW6 is smaller than CCSSR-HW4, and the dissipation of CCSSR-

HW4 is much smaller than the WENO5 scheme.

6 Numerical experiments

In this section, we apply CCSSR-HW to simulate scalar and Euler equations for some canon-

ical problems. The optimal third order TVD Runge-Kutta method is used to evolve the

solution in time.

6.1 Scalar cases

(1) Burgers’ equation (e.g. [44])
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Figure 5.2: Approximate dispersion relation for the linear CCSSR-HW schemes and com-
parison with the linear WENO5 scheme. Left: real part of the modified wavenumber w′;
Right: imaginary part of the modified wavenumber w′.

The first example is the following nonlinear scalar Burgers’ equation

ut +

(

u2

2

)

x

= 0

with periodic boundary condition and the initial condition u(x, 0) = 0.5 + sin(πx). The

computational domain is taken to be [0, 2]. The solution is computed up to t = 1.5
π

with

100 points. The CFL number is set to 0.5. The exact solution is smooth up to t = 1
π
, then

it develops a moving shock which interacts with a rarefaction wave. Figure 6.1 shows the

results with several different schemes. We observe that both CCSSR-HW4 and CCSSR-HW6

schemes perform as good as the WENO5 scheme. From this test, it can be concluded that

the shock-capturing method proposed in this paper performs well for nonlinear problems.

(2) Buckley-Leverett problem (e.g. [14])

Our second scalar example is the Buckley-Leverett problem that is governed by the

equation

ut +

(

4u2

4u2 + (1 − u)2

)

x

= 0

with periodic boundary condition. The computational domain is taken to be [-1, 1], and the
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Figure 6.1: Burgers’ equation, 100 points, t = 1.5
π

. Left: The results of CCSSR-HW4,
CCSSR-HW6 and WENO5; Right: Locally zoomed region of the left figure.

initial condition is u = 1 for −1
2
≤ x ≤ 0 and u = 0 elsewhere. The solution is computed

up to t = 0.4 with 80 points. The CFL number is set to 0.5. The exact solution is a shock-

rarefaction-contact discontinuity mixture. Figure 6.2 shows the results with several different

schemes. We can see that all schemes converge to the correct entropy solution and give a

sharp shock profile, and the sharpness of the shock profile obtained by CCSSR-HW schemes

are as good as that obtained by the WENO schemes.

6.2 One-dimensional Euler equations

(1) The Lax problem [17]

The initial condition is given by

(ρ, u, p) =

{

(0.445, 0.698, 3.528) , −5 ≤ x < 0

(0.500, 0.000, 0.571) , 0 ≤ x ≤ 5

We solve the equations up to t = 1.3 with 100 points. The CFL number is set to 0.5.

Zero time variation of the conservative variables has been specified at the left and right

boundaries, which is appropriate for the time interval under interest. The numerical results

for the density profiles are displayed in Figure 6.3. The CCSSR-HW schemes provide good
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Figure 6.2: Buckley-Leverett problem, 80 points, t = 0.4. Left: The results of CCSSR-HW4,
CCSSR-HW6 and WENO5; Right: Locally zoomed region of the left figure.

shock-capturing properties, and produce less numerical dissipation than the classical WENO

schemes, especially near the discontinuities.

(2) The Sod problem [37]

The initial condition is given by

(ρ, u, p) =

{

(1.000, 0.000, 1.000) , −5 ≤ x < 0

(0.125, 0.000, 0.100) , 0 ≤ x ≤ 5

We solve the equations up to t = 2 with 100 points. The CFL number is set to 0.5.

Zero time variation of the conservative variables has been specified at the left and right

boundaries, which is appropriate for the time interval under interest. The numerical results

for the density profiles are displayed in Figure 6.4. Again, we observe that the CCSSR-HW

schemes provide good shock-capturing properties, and produce less numerical dissipation

than the classical WENO schemes, especially near the discontinuities.

(3) Two interacting blast waves [41]

The initial condition is given by

(ρ, u, p) =











(1, 0, 1000) , 0 ≤ x < 0.1

(1, 0, 0.01) , 0.1 ≤ x < 0.9

(1, 0, 100) , 0.9 ≤ x ≤ 1
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Figure 6.3: Lax problem, 100 points, t = 1.3. Left: The results of CCSSR-HW4, CCSSR-
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Figure 6.5: Two interacting blast waves, 400 points, t = 0.038. Left: The results of CCSSR-
HW4, CCSSR-HW6 and WENO5; Right: Locally zoomed region of the left figure.

The reflective boundary conditions are applied at both x = 0 and x = 1. Since the exact

solution is unknown, the reference solution (which can be regarded as the exact solution)

is obtained by using the fifth-order WENO scheme [14] with 4000 grid points. We solve

the equation up to t = 0.038 with 400 points. The CFL number is set to 0.5. Notice that

the contact discontinuity results from the collision of the two strong shocks. Figure 6.5

compares the numerical results for density profiles with the reference solution. Again, good

agreement with the reference solution is observed. Due to a smaller numerical dissipation,

the CCSSR-HW schemes show an improved solution, especially near the valley and the

peak, compared to the results of classical fifth-order WENO scheme. We also observe that

the result of CCSSR-HW6 is better than that of WENO5, while WENO5 have a better

resolution than CCSSR-HW4 at the right peak region, where the order of accuracy of scheme

is more important.

(4) The Shu-Osher problem [33]

In this problem, a right-moving supersonic (Mach 3) shock wave interacts with sine

waves in a density disturbance that generates a flow field with both smooth structures and
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Figure 6.6: Shu-Osher problem, 400 points, t = 1.8. Left: The results of CCSSR-HW4,
CCSSR-HW6 and WENO5; Right: Locally zoomed region of the left figure.

discontinuities. The initial condition is given by

(ρ, u, p) =

{

(

27
7
, 4

√
35

9
, 31

3

)

, −5 ≤ x < −4
(

1 + 1
5
sin (5x) , 0, 1

)

, −4 ≤ x ≤ 5

This test case is particularly severe because the solution includes smooth regions with a

rich structure consisting of receding acoustic waves (that steepen and give rise to shocklets)

as well as entropy waves propagating downstream of the shock. This is a model problem

for shock-turbulence interaction. Since the exact solution is unknown, the reference solution

(which can be regarded as the exact solution) is obtained by using the fifth-order WENO

scheme [14] with 4000 grid points. We solve the equation up to t = 1.8 with 400 points. The

CFL number is set to 0.5. Zero time variation of the conservative variables has been specified

at the left and right boundaries, which is appropriate for the time interval under interest.

Figure 6.6 compares the numerical results for density profiles with the exact solutions. It

is clear that the CCSSR-HW6 scheme demonstrates superior resolution over the WENO5

scheme in reproducing the correct flow features downstream of the shock. However, the

result of WENO5 scheme is better than that of the CCSSR-HW4 scheme.
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6.3 Two-dimensional Euler equations

(1) Double Mach reflection of a strong shock [41]

The domain of the problem is [0, 4]×[0, 1] and a Mach 10 shock in air (γ = 1.4) which

initially makes a π
3

angle with the horizontal axis. The undisturbed air ahead of the shock has

density ρ = 1.4, pressure p = 1.0, and velocity u = 0.0, v = 0.0. Along the bottom boundary

at y = 0, the short region [0, 1
6
] is always assigned values for the initial post-shock flow, and

reflecting boundary conditions are applied to the interval [1
6
,4]. This boundary condition

forces the reflected shock to be “attached” to the reflecting wall. The left-hand boundary

is also assigned values for the initial post-shock flow, and at the right-hand boundary, at

x = 4, all gradients are set to zero. The values along the top boundary are set to describe

the exact motion of the initial Mach 10 shock. Since there is no physical viscosity in the

compressible Euler equations solved here, the developed shear layer (slip line) are purely

governed by numerical viscosity. The amount of small vortices in shear layer is a good

qualitative indicator of the amount of numerical viscosity, the more small vortices indicates

less numerical viscosity introduced by the scheme.

We will only show the solutions on part of the domain: [0, 3] ×[0, 1], where most of

the flow features are located. We use two grids: 960 × 240 points and 1920 × 480 points,

which are uniform both in the x and y directions. The CFL number is set to 0.5. The final

simulation time is t = 0.2. Figure 6.7 and Figure 6.9 show the density contours obtained by

the CCSSR-HW4, CCSSR-HW6 and WENO5 schemes on the two grids. We can clearly see

that the CCSSR-HW schemes have almost the same ability to capture strong shock waves

as the regular WENO scheme. As shown in a close-up view of the “blow-up” region (Figure

6.8 and Figure 6.10), the CCSSR-HW schemes resolve considerably finer vortical structures.

From these figures, it is evident that the CCSSR-HW schemes achieve higher resolution in

the numerical results than the WENO5 scheme, especially in the region near the Mach stems

where the CCSSR-HW schemes can capture the rollup of the slip line more clearly. We also

observe that the result of CCSSR-HW6 is much better than that of CCSSR-HW4.
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Figure 6.7: Double Mach reflection, 30 equally spaced contours for the density from 1.731
to 20.92 with uniform grid 960 × 240 points, t = 0.2. From top to bottom: CCSSR-HW4,
CCSSR-HW6 and WENO5.
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Figure 6.8: Close-up view of the “blow-up” region of Figure 6.7. From top to bottom:
CCSSR-HW4, CCSSR-HW6 and WENO5.
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Figure 6.9: Double Mach reflection, 30 equally spaced contours for the density from 1.731
to 20.92 with uniform grid 1920 × 480 points, t = 0.2. From top to bottom: CCSSR-HW4,
CCSSR-HW6 and WENO5.
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Figure 6.10: Close-up view of the “blow-up” region of Figure 6.9. From top to bottom:
CCSSR-HW4, CCSSR-HW6 and WENO5.
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(2) Forward facing step problem [41]

The problem is initialized by a right-going Mach 3 flow in a wind tunnel containing

a step. The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2

length units high and is located 0.6 length units from the left-hand end of the tunnel. At

the left is a flow-in boundary condition. Because the exit velocity is always supersonic, the

exit boundary condition has no effect on the flow. Initially the wind tunnel is filled with a

gamma-law gas, with γ = 1.4, which everywhere has density ρ = 1.4, pressure p = 1.0, and

velocity u = 3.0, v = 0.0. Gas with this density, pressure, and velocity is continually fed in

from the left-hand boundary. Reflective boundary conditions are applied along the walls of

the tunnel. The corner of the step is the center of a rarefaction fan and hence is a singular

point of the flow. For the treatment of the singularity at the corner of the step, we adopt

the same technique used in [41], which is based on the assumption of a nearly steady flow in

the region near the corner.

We use two grids: 480× 160 points and 960× 320 points, which are uniform both in the

x and y direction. The CFL number is set to 0.5. The final simulation time is t = 4. In

Figures 6.11-6.12, we show the density component in the wind tunnel obtained by all three

schemes on the two grids. From these figures, we can conclude that the CCSSR-HW schemes

achieve higher resolution in the numerical results than the WENO5 scheme, especially in

the shear layer region where the CCSSR-HW schemes can capture the rollup of the vortices

more clearly. We also observe that the result of CCSSR-HW6 is much better than that of

CCSSR-HW4.

(3) Rayleigh-Taylor instability (e.g. [31])

This problem is used as a test case with the following initial data:

(ρ, u, v, p) =

{

(2, 0,−0.025a · cos(8πx), 2y + 1), 0 ≤ y < 1
2

(1, 0,−0.025a · cos(8πx), y + 3
2
), 1

2
≤ y ≤ 1

where a is the sound speed, a =
√

γp

ρ
. The computational domain is taken to be [0, 1

4
]×[0,

1]. The ratio of specific heat γ = 5
3
. A source term S = (0, 0, ρ, ρv) is added to the
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Figure 6.11: Forward facing step problem, 60 equally spaced contours for the density from
0.2568 to 6.607 with uniform grid 480×160 points, t = 4. From top to bottom: CCSSR-HW4,
CCSSR-HW6 and WENO5.
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Figure 6.12: Forward facing step problem, 60 equally spaced contours for the density from
0.2568 to 6.607 with uniform grid 960×320 points, t = 4. From top to bottom: CCSSR-HW4,
CCSSR-HW6 and WENO5.
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two dimensional Euler equations. Reflective boundary conditions are implemented at the

left and right boundaries. At the top boundary, the flow values are set as (ρ, u, v, p) =

(1, 0, 0, 2.5). At the bottom boundary, the flow values are set as (ρ, u, v, p) = (2, 0, 0, 1).

The realistic solution of this problem should contain a rich flow structure caused by the

instability. This may be achieved by solving the Navier-Stokes equations numerically with

small numerical viscosity. Therefore, this problem is very important for determining the

magnitude of numerical dissipation of various high-order shock-capturing schemes. The

appearance of a fine structure by solving the Euler equations with such shock-capturing

scheme gives an idea of how well the scheme is performing.

We use two grids: 60 × 240 points and 120 × 480 points, which are uniform both in the

x and y direction. The CFL number is set to 0.5. The final simulation time is t = 1.95.

In Figures 6.13-6.14, we show the density component obtained by all three schemes on the

two grids. From these figures, we can conclude that the CCSSR-HW schemes achieve higher

resolution numerical results as compared to the WENO5 scheme, especially in the shear

layer region where the CCSSR-HW schemes can capture the rollup of the vortices and the

small features with increased grid resolution more clearly. We also observe that the result

of CCSSR-HW6 is much better than that of CCSSR-HW4.

7 Concluding remarks

In this paper, we develop our previous linear central compact schemes [20] to nonlinear

compact schemes by introducing a hybrid weighted interpolation of an upwind interpolation

and a central interpolation. Through systematical analysis of the dispersion and dissipation

characteristics by approximating dispersion relation (ADR) technique of Pirozzoli [25], we

show that the present nonlinear compact schemes have higher resolution and lower dissipation

than regular WENO schemes, while their ability to compute strong shock wave is almost the

same with that of regular WENO schemes.

Numerical tests to a series of typical problems including nonlinear scalar equations, shock
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Figure 6.13: Rayleigh-Taylor instability, 15 equally spaced contours for the density from
0.952269 to 2.14589 with uniform grid 60×240 points, t = 1.95. From left to right: CCSSR-
HW4, CCSSR-HW6 and WENO5.
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Figure 6.14: Rayleigh-Taylor instability, 15 equally spaced contours for the density from
0.952269 to 2.14589 with uniform grid 120 × 480 points, t = 1.95. From left to right:
CCSSR-HW4, CCSSR-HW6 and WENO5.
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tube problems, double Mach reflection, forward facing step problem and Rayleigh-Taylor in-

stability are implemented by solving one-dimensional and two-dimensional Euler equations.

A systematic comparison with regular WENO schemes is made. The results of the numer-

ical experiments show that the present scheme is a suitable candidate for direct numerical

simulation of multiscale problems such as turbulent flows and aeroacoustics.
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