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Abstract

In this paper, we adapt a simple weighted essentially non-oscillatory (WENO) lim-

iter, originally designed for discontinuous Galerkin (DG) schemes on two-dimensional un-

structured triangular meshes [39], to the correction procedure via reconstruction (CPR)

framework for solving nonlinear hyperbolic conservation laws on two-dimensional un-

structured triangular meshes with straight or curved edges. This is an extension of our

earlier work [4] in which the WENO limiter was designed for the CPR framework on

regular meshes. The objective of this simple WENO limiter is to simultaneously main-

tain uniform high order accuracy of the CPR framework in smooth regions and control

spurious numerical oscillations near discontinuities. The WENO limiter we adopt in this

paper uses information only from the target cell and its immediate neighbors. Hence, it

is particularly simple to implement and will not harm the conservativeness and compact-

ness of the CPR framework. Since the CPR framework with this WENO limiter does

not in general satisfy the positivity preserving property, we also extend the positivity-

preserving limiters [36, 26] to the CPR framework. Numerical results for both scalar

equations and Euler systems of compressible gas dynamics are provided to illustrate the

good behavior of this procedure.
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1 Introduction

In this paper, we consider the following two-dimensional hyperbolic conservation law

{

ut + ∇ · ~F (u) = 0,
u(x, y, 0) = u0(x, y),

(1)

where u is the state vector, ~F = (f, g) is the flux vector, and ∇ = ( ∂
∂x

, ∂
∂y

), to be solved

on unstructured triangular meshes. There has been a surge of recent research activities

on high-order methods capable of solving conservation laws on unstructured meshes,

such as the discontinuous Galerkin (DG) method [22, 2, 3], the spectral and spectral-

element type methods [8, 14], the spectral volume (SV) [27, 30, 31, 34] and spectral

difference (SD) methods [18, 20, 32]. In this paper, we consider a correction procedure

via reconstruction (CPR) framework developed more recently.

The CPR framework was originally developed in [9] to solve hyperbolic conservation

laws on structured meshes, under the name of flux reconstruction (FR). In [28, 29], this

method was extended to two-dimensional triangular and mixed grids, and the idea of flux

reconstruction was generalized into a lifting collocation penalty (LCP) approach. Later,

the FR and LCP methods were renamed the correction procedure via reconstruction or

CPR in short. When performing the CPR method, one need to evaluate the divergence

of the flux vector. Compared with the original more straight-forward Lagrange poly-

nomial (LP) approach, the chain-rule (CR) approach suggested in [28] produces a one

order higher approximation to the flux divergence, when the convective flux is nonlinear.

However, the conservativeness of the CPR method will be harmed when using the CR

approach for the interior flux divergence evaluation. In [6], Gao and Wang provided a

fix by adding a correction term into the CPR formulation and obtained a conservative

CPR formulation with the chain-rule divergence evaluation. In [33], the CPR framework

was combined with a PNPM method. The CPR framework can also be used to solve

diffusion problems [10] and Navier-Stokes equations [5, 7]. In [16], it was also extended

to compute broad-band waves.
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The CPR formulation on unstructured meshes has some nice properties. With differ-

ent choices of lifting coefficients, the CPR approach recovers several well-known methods

in the framework, including DG, SV and SD methods and leads to more efficient versions

of these methods, at least for linear equations. Compared with the original DG formu-

lation based on volume and surface integral quadratures, the CPR framework solves the

conservation laws in a nodal differential form. The extension of the CPR method to

meshes with curved boundaries is straightforward because no surface or volume integrals

are required. The reconstruction of solution polynomials to calculate the residual can

be completely avoided through a judicious selection of solution and flux points. More-

over, the CPR method is compact because only immediate face neighbors play a role in

updating the solutions in the current cell. Therefore, the complexity of implementation

for multi-dimensional meshes including unstructured meshes can be reduced.

The main difficulty in solving conservation laws (1) is that solutions may contain

discontinuities even if the initial conditions are smooth. However, the CPR method on

unstructured meshes is only a high-order linear scheme, hence it may generate spurious

oscillations for problems containing strong discontinuities. These spurious oscillations

may lead to nonlinear instability and eventual blow-ups of the codes. Therefore, we need

to apply nonlinear limiters to control these oscillations.

To achieve the full potential of high order accuracy and efficiency of the CPR method,

we would like to find a robust high order limiting procedure to simultaneously maintain

uniform high order accuracy in smooth regions and control spurious numerical oscillations

near discontinuities. Limiters based on the WENO methodology [17, 13, 11] would serve

such a purpose. Zhu et al. [38] designed limiters using the usual WENO reconstruction

for the DG methods on two-dimensional unstructured meshes. They use the cell averages

in an adaptive stencil to reconstruct the values of the solutions at certain points in

the target cell. However, the reconstruction stencil contains not only the immediate

neighboring cells of the target cell but also the neighbors’ neighbors. To reduce the
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width of the reconstruction stencil, a Hermite type WENO procedure for DG methods

on unstructured meshes is adopted in [19], which uses not only the cell averages but

also the first derivative or first order moment information in the stencil. However the

information of neighbors’ neighbors is still needed for higher order methods. Also, it

is complicated to perform the usual WENO procedure or the Hermite type WENO

procedure on unstructured meshes, with the possibility of negative linear weights, as

we would need to use extra special treatments to handle them [23]. To maintain the

compactness of the CPR framework, we would like to find another limiting procedure

that uses the information only from the target cell and its immediate neighboring cells,

with only positive linear weights in the WENO procedure if possible.

Very recently, a new and simple WENO limiter [39] was designed for the Runge-Kutta

discontinuous Galerkin (RKDG) methods on two-dimensional triangulations. This is an

extension of an earlier work [37] designed for RKDG methods on regular meshes. This

WENO limiter attempts to reconstruct the entire polynomial on the target cell, instead

of reconstructing point values or moments in the classical WENO reconstructions. In

fact, the entire reconstruction polynomial is just a convex combination of polynomials

on the target cell and its immediate neighboring cells (with suitable adjustments for

conservation). Hence, it will not harm the compactness of the CPR framework. Also,

the linear weights are always positive.

Recently, we have adapted the new WENO limiter in [37] to the CPR framework on

structured meshes [4], to make it more robust for shocked flows while maintaining high

order accuracy. In this paper, we will extend this WENO limiter to the CPR framework

on two-dimensional unstructured triangular meshes with straight or curved edges along

the lines of [39] for RKDG methods.

An important property of the entropy solution of a scalar conservation law is that it

satisfies a strict maximum principle, i.e., if

M = max
(x,y)

u0(x, y), m = min
(x,y)

u0(x, y), (2)
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then u(x, y, t) ∈ [m, M ] for any (x, y) and t. In particular, the solution will not be

negative if u0(x, y) > 0. For hyperbolic conservation law systems, the entropy solutions

generally do not satisfy the maximum principle. However, for the Euler equations for

compressible flows, the density ρ and the pressure p should both be positive physically.

The failure of preserving positivity of density or pressure may cause blow-ups of the

numerical algorithm. In [36], a maximum-principle-satisfying and positivity-preserving

high order DG scheme on triangular meshes was developed. [26] further discussed an

extension to design arbitrarily high order positivity-preserving DG schemes for reac-

tive Euler equations and presented a simpler and more robust implementation of the

positivity-preserving limiter in [36].

In this paper, the CPR framework with the WENO limiter does not in general satisfy

a strict positivity-preserving property. Hence, we also extend the limiters designed for

the DG method in [36] and [26] to the CPR framework to get a positivity-preserving

CPR method. This is done in our previous work [4] for the structured meshes.

This paper is organized as follows. We first review the CPR formulation on unstruc-

tured meshes in Section 2. In Section 3, we describe the details of how to introduce the

WENO limiting procedure to the CPR framework. In Section 4, we describe the detailed

procedure to construct a positivity-preserving CPR framework. In Section 5, numerical

experiments are provided to verify the accuracy and stability of the CPR scheme with

these limiters. Finally, concluding remarks are provided in Section 6.

2 Formulation of the CPR framework

In this section, we give an overview of the formulation of the CPR framework on two-

dimensional unstructured triangular meshes for solving hyperbolic conservation law (1),

which can be either a scalar equation or a system of equations. In Section 2.1, we give

the formulation on unstructured triangular meshes with straight edges. The extension

to curved boundary cells will be given in Section 2.2.
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2.1 Triangular meshes with straight edges

Let the domain of calculation be divided into N non-overlapping elements with the i-

th element denoted by Vi. By multiplying Eq. (1) with a test function w and integrating

over Vi, the weighted residual of Eq. (1) can be written as

∫

Vi

(

ut + ∇ · ~F (u)
)

wdxdy =

∫

Vi

utwdxdy +

∫

∂Vi

w~F (u) · ~νds −

∫

Vi

∇w · ~F (u)dxdy = 0,

(3)

where ~ν is the outward unit normal vector on the element interface. We assume that the

numerical solution belongs to P k (the space of polynomials of degree k or less) within each

element without continuity requirement across element interfaces. Let ui(x, y) ∈ P k(Vi)

be an approximate solution to u in element Vi, called the solution polynomial. It is

required to satisfy the following equation

∫

Vi

(ui)twdxdy +

∫

∂Vi

wF̂ (ui, ui+, ~ν)ds −

∫

Vi

∇w · ~F (ui)dxdy = 0. (4)

Since the solution is discontinuous across element interfaces, we use a common normal

flux in the equation above

F̂ (ui, ui+, ~ν) ≈ ~F (ui) · ~ν, (5)

where ui+ is the solution outside the current element Vi. Applying integration by parts

again to the last term of Eq. (4), we obtain

∫

Vi

(ui)twdxdy +

∫

Vi

w∇ · ~F (ui)dxdy +

∫

∂Vi

w
(

F̂ (ui, ui+, ~ν) − ~F (ui) · ~ν
)

ds = 0. (6)

Here F̂ is the common numerical flux defined in (5), while ~F (ui) · ~ν is the boundary

flux calculated only from the current cell Vi. Denote [F ν ] = F̂ (ui, ui+, ~ν) − ~F (ui) · ~ν to

be the normal flux difference. It represents the influence of the data in the immediate

neighboring cells. Here we require that the space of the test functions have the same

dimension as the solution space. The test space is chosen in a manner to guarantee that

a unique solution exists for (6).
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Next, we try to eliminate the test function w and transform the integral formulation

into a differential one. By the introduction of a “correction field” δi ∈ P k,

∫

Vi

wδidxdy =

∫

∂Vi

w[F ν ]ds, (7)

the boundary integral is cast as a volume integral. The above equation is sometimes

referred to as the “lifting operator”. Substituting Eq. (7) into Eq. (6), we get

∫

Vi

[(ui)t + ∇ · ~F (ui) + δi]wdxdy = 0. (8)

In general, ∇· ~F (ui) is not an element of P k(Vi). Here we approximate it by its projection

onto P k(Vi), denoted by Π(∇ · ~F (ui)). In the case that the flux vector ~F is linear in u,

we have Π(∇ · ~F (ui)) = ∇ · ~F (ui). We will deal with the nonlinear case later. Now the

term (ui)t + Π(∇ · ~F (ui)) + δi belongs to P k(Vi). Because the test space is selected to

ensure a unique solution, (8) is reduced to

(ui)t + Π(∇ · ~F (ui)) + δi = 0, (9)

which is satisfied everywhere in Vi. Hence, we have reduced the weighted residual for-

mulation to an equivalent differential form, which involves no integrals. Note that for δi

defined by (7), if w ∈ P k, Eq. (9) is equivalent to the DG formulation; if w varies in

another space, we will get a different method. We refer to [28] for more details.

Let the degrees-of-freedom be the solution values at a set of points ~ri,j (j = 1, · · · , K =

(k+1)(k+2)
2

), called solution points (SPs). Denote the numerical solution values on cell Vi

at these solution points as ui,j(t), j = 1, · · · , K. Note that each numerical solution value

ui,j(t) depends on t, and that ui,j(t
n) is the numerical solution at time level n. For

simplicity, ui,j(t
n) is abbreviated to ui,j when there is no confusion. Eq. (9) must be

true at the SPs, i.e.,

(ui,j)t + Π(∇ · ~F (ui,j)) + δi,j = 0, j = 1, · · · , K. (10)

Let us now deal with the term δi,j which can be computed by (7). Along each edge

m, we need to define k + 1 points named flux points. For efficiency, the solution points
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are chosen to coincide with the flux points along cell edges. The normal flux difference

values [F ν ]m,l, l = 1, · · · , k + 1 at the flux points along edge m define a one dimensional

polynomial of degree k, denoted by [F ν ]m. Eq. (7) can then be written as

∫

Vi

wk

K
∑

j=1

Ljδi,jdxdy =
∑

m∈∂Vi

∫

m

wk[F
ν ]mds. (11)

Here Lj , j = 1, · · · , K are the two dimensional Lagrange polynomials, and wk is the test

function. For example, we can let wk = Lk, and this equation yields a linear system as

k varies form 1 to K. The resulting formulation is equivalent to the DG method. The

unknowns δi,j can be easily solved in terms of the normal flux difference values at the

flux points, i.e.,

δi,j =
1

|Vi|

∑

m∈∂Vi

k+1
∑

l=1

αj,m,l[F
ν ]m,lSm, (12)

where αj,m,l are constants independent of the solution, j is the index for the solution

points, i is the cell index, m is the edge index, l is the index of the flux points, Sm is the

length of edge m and |Vi| is the area of cell Vi. Substituting (12) into (10), we obtain

the following CPR formulation

(ui,j)t + Π(∇ · ~F (ui,j)) +
1

|Vi|

∑

m∈∂Vi

k+1
∑

l=1

αj,m,l[F
ν ]m,lSm = 0, j = 1, · · · , K. (13)

For more details of the selection of the solution points and flux points and the compu-

tation of coefficients αj,m,l for various schemes, we refer to [28].

Now let us deal with the term Π(∇ · ~F (ui)). To compute this projection, two ap-

proaches can be used: Lagrange polynomial (LP) and chain-rule (CR). For the LP

approach, the flux function is projected onto the P k space with Lagrange polynomial

reconstruction:

ΠLP

(

∇ · ~F (ui)
)

= ∇ ·
∑

j∈SPs

Lj
~F (ui,j). (14)

However, for nonlinear fluxes, the LP approach can cause the accuracy to deteriorate

by about half an order due to the aliasing error [12]. The aliasing error could also
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induce instabilities [12]. To remedy this accuracy loss and possible instabilities, the CR

approach can be used instead. The idea is to obtain the exact divergence of the fluxes

at solution points, based on the degree k solution polynomial. Then the divergences at

the solution points are projected onto the P k space:

ΠCR

(

∇ · ~F (ui)
)

=
∑

j∈SPs

Lj(
∂ ~F

∂u
· ∇ui)j . (15)

When using the CR approach, the CPR method is not fully conservative. In [6], this

conservation issue is fixed by adding a source term to account for the conservation error.

Define the source term as

Sc,i = −

∫

Vi
ΠCR

(

∇ · ~F (ui)
)

dxdy −
∫

∂Vi

~F (ui) · ~νds

|Vi|
, (16)

then the fixed CPR formulation is

(ui,j)t + ΠCR

(

∇ · ~F (ui,j)
)

+ δi,j + Sc,i = 0, j = 1, · · · , K, (17)

which can be solved by various time discretizations such as a Runge-Kutta method. We

will use this fixed CPR formulation in the rest of this paper. Integrating Eq. (17) over

cell Vi with test function w = 1, we can obtain
∫

Vi

(ui)tdxdy +

∫

∂Vi

F̂ (ui, ui+, ~ν)ds = 0, (18)

which means Eq. (17) is fully conservative. For more details of the conservation issue,

we refer to [6].

2.2 Triangular meshes with curved boundary

Figure 1: Transformation of a curved boundary triangle to a standard element
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We first transform the curved boundary element from the physical domain (x, y) into

the computational domain which is a standard element with the variables (ξ, η) as shown

in Figure 1. The transformation can be written as

(

x
y

)

=

L
∑

l=1

Ml(ξ, η)

(

xl

yl

)

, (19)

where L is the number of points used to define the curved boundary element, (xl, yl) are

the Cartesian coordinates of these points, and Ml(ξ, η) are the shape functions. Denote

the Jacobian matrix of this transformation as

J =
∂(x, y)

∂(ξ, η)
=

[

xξ xη

yξ yη

]

. (20)

Assuming the transformation is non-singular so that the inverse matrix J−1 exists, we

get that

J−1 =
∂(ξ, η)

∂(x, y)
=

[

ξx ξy

ηx ηy

]

, (21)

where

ξx = yη/|J |, ξy = −xη/|J |, ηy = −yξ/|J |, ηy = xξ/|J |. (22)

Here, |J | is the Jacobian determinant of J and is assumed to be positive. By replacing

the variables (x, y) with (ξ, η), we transform Eq. (1) on the physical domain into the

following equation on the standard element which has straight edges,

ũt + ∇̃ · ~̃F = 0, (23)

where ∇̃ = ( ∂
∂ξ

, ∂
∂η

), ~̃F = (f̃ , g̃) and

ũ = |J |u,

f̃ = |J |(ξxf + ξyg),
g̃ = |J |(ηxf + ηyg).

(24)

We now introduce the CPR formulation for the curved boundary element, for ex-

ample, the i-th element Vi. Let us denote the standard element as Ṽ . Note that the

Jacobian matrix of the transformation from Vi to Ṽ depends on the shape of Vi. Here,
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we assume that the new solution polynomial ũi(ξ, η) is a member in P k(Ṽ ). Hence, we

can obtain ũi(ξ, η) by interpolating ũi,j = |J |ui,j, j = 1, · · · , K in Ṽ . We then apply the

CPR formulation (17) to the transformed equation on the standard triangle. Now, the

formulation becomes

(ũi,j)t + ΠCR

(

∇̃ · ~̃F
)

+ δ̃i,j + S̃c,i = 0, j = 1, · · · , K, (25)

where the superscript ∼ means the variables or operations computed by the transformed

equation on the standard triangular element. For example,

δ̃i,j = 2
∑

m∈∂Ṽ

k+1
∑

l=1

αj,m,l[F̃
ν̃ ]m,lS̃m, (26)

where ν̃ is the outward unit normal vector of Ṽ , [F̃ ν̃ ]m,l are the normal jumps of the

transformed fluxes across the edges of Ṽ , and S̃m, m ∈ ∂Ṽ are the lengths of the edges

of Ṽ .

3 The WENO limiter

In this section, we attempt to adapt the WENO limiter in [39] to the CPR framework

to control the oscillations for shocked flows as well as maintain the original high order

accuracy in smooth regions. As mentioned in the introduction, the CPR method is

compact because only immediate face neighbors play a role in updating the solutions in

the current cell. For convenient, we label the target cell and its immediate neighboring

cells as shown in Figure 2. When performing the WENO limiting procedure on Vi, we

use the same stencil S = {Vi, Vi1, Vi2, Vi3}. Hence, the WENO limiter can maintain the

compactness of CPR. For the target cell Vi, we first use the WENO limiter to get a

new reconstructed function unew
i (x, y) if the original solution ui(x, y) contains possible

shocks, then perform the normal CPR procedure on the new numerical solutions unew
i,j =

unew
i (~ri,j), j = 1, · · · , K at the solution points instead of ui,j, j = 1, · · · , K.
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Figure 2: The stencil S = {Vi, Vi1, Vi2, Vi3}

In Sections 3.1 and 3.2, we assume that all the edges in the stencil S are straight.

Hence, the solutions on those cells in S are approximated by the solution polynomials

on the physical domain (x, y) by interpolating the numerical solutions at the solution

points. We will discuss the extensions to the curved boundary cells in Section 3.3.

3.1 The WENO limiting procedure for the scalar case

Consider conservation laws as shown in Eq. (1), where u, f and g are scalars. For

convenience, we denote the solution polynomials on cell Vi, Vi1, Vi2, Vi3 as

p0(x, y) = ui(x, y) ∈ P k(Vi), pl(x, y) = uil(x, y) ∈ P k(Vil), l = 1, 2, 3. (27)

As in [39], we first use the KXRCF shock detection technique [15] to check whether

the cell Vi is a troubled cell, namely, whether p0(x, y) contains possible shocks and needs

the limiting procedure. We divide the boundary ∂Vi into two parts: ∂V −
i and ∂V +

i ,

where the flow is into (~F ′(u) · ~ν < 0) and out of (~F ′(u) · ~ν > 0) Vi respectively. The

target cell Vi is identified as a troubled cell when

|
∫

∂V −

i

(

p0(x, y) − pl(x, y)
)

ds|

h
k+1

2 |∂V −
i | · ‖p0‖

> Ck, (28)

where Ck is a constant, h is the radius of the circumscribed circle in Vi, pl(x, y) denote

the solution polynomials on the neighboring cells sharing the edge(s) in ∂V −
i , and ‖ · ‖ is
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the standard L2 norm in the cell Vi. We remark that the KXRCF troubled cell indicator

is just one of the many possibilities and may not be the best one (see [21] for a detailed

discussion). We use it here for its simplicity, as our main focus of this paper is not on

troubled cell indicators.

Assuming that the cell Vi is a troubled cell, we now introduce the WENO limit-

ing procedure in [39] to reconstruct the solution polynomial on it. We need to use

the solution polynomials on the target cell and its three neighboring cells, namely,

pl(x, y), l = 0, 1, 2, 3. In order to maintain the original cell average of p0(x, y) in cell

Vi, which is essential to keep the conservativeness of the original CPR framework, we

make the following modifications:

p̃l(x, y) = pl(x, y) −
1

|Vi|

∫

Vi

pl(x, y)dxdy +
1

|Vi|

∫

Vi

p0(x, y)dxdy, l = 1, 2, 3. (29)

For notational consistency we also denote p̃0(x, y) = p0(x, y). The final nonlinear WENO

reconstruction polynomial unew
i (x, y) on cell Vi is defined by a convex combination of

these four modified polynomials:

unew
i (x, y) = ω0p̃0(x, y) + ω1p̃1(x, y) + ω2p̃2(x, y) + ω3p̃3(x, y). (30)

From Eq. (30), we know that unew
i (x, y) has the same cell average as p0(x, y) as long

as ω0 + ω1 + ω2 + ω3 = 1. Hence, we define the normalized nonlinear weights as

ωl =
ω̃l

∑3
m=0 ω̃m

, l = 0, 1, 2, 3, (31)

where the non-normalized nonlinear weights ω̃l are defined as

ω̃l =
γl

(ε + βl)2
, l = 0, 1, 2, 3. (32)

Here ε > 0 is introduced to avoid the denominator to become 0. We take ε = 10−6 in

all our numerical tests. The linear weights γl, l = 0, 1, 2, 3 are a set of positive numbers

adding up to one. Note that since p̃l(x, y) for l = 0, 1, 2, 3, are all (k + 1)-th order

approximations to the exact solution in smooth regions, there are no extra requirements
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on the linear weights in order to maintain the original high order accuracy. As discussed

in [39], since for smooth solutions the central cell is usually the best one, we put a larger

linear weight on the central cell than on the neighboring cells. As in [39], we take

γ0 = 0.997, γ1 = γ2 = γ3 = 0.001, (33)

which can maintain the original high order in smooth regions and can keep essentially

non-oscillatory shock transitions in our numerical examples. βl is the smoothness indi-

cator, which measures how smooth the function p̃l(x, y) is on the target cell Vi. As in

[13, 1], we define βl as

βl =

k
∑

|s|=1

|Vi|
|s|−1

∫

Vi

( ∂|s|

∂xs1∂ys2
p̃l(x, y)

)2
dxdy, (34)

where s = (s1, s2).

For each cell Vi, i = 1, · · · , N , if it is a troubled cell, we replace the entire solution

polynomial ui(x, y) with the new reconstructed polynomial unew
i (x, y), which is a convex

combination of polynomials on this cell and its immediate neighboring cells. If the cell

Vi is not a troubled cell, we just let unew
i (x, y) = ui(x, y). Now we can get the new

solutions at the solution points unew
i,j = unew

i (~ri,j), j = 1, · · · , K. After the WENO

limiter procedure, we just use the original CPR procedure to march to the next time

level by using the new numerical solutions unew
i,j , j = 1, · · · , K.

3.2 The WENO limiting procedure for the Euler system

Let us consider the two-dimensional Euler system which is given by

ut + f(u)x + g(u)y = 0,

u =









ρ
m
n
E









, f(u) =









m
ρu2 + p

ρuv
u(E + p)









, g(u) =









n
ρuv

ρv2 + p
v(E + p)









.
(35)

Here, ρ is the density, (u, v)T is the velocity vector, m = ρu and n = ρv are the momenta.

E is the total energy, and p is the pressure, with

p(u) = (γ − 1)
(

E −
1

2
ρ(u2 + v2)

)

. (36)
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We present the WENO limiting procedure for the Euler system in this subsection. For

convenience, we also denote the solution polynomials on cell Vi, Vi1, Vi2, Vi3 as

p0(x, y) = ui(x, y), pl(x, y) = uil(x, y), l = 1, 2, 3, (37)

respectively. Each of them is a 4-component vector.

As in the scalar case, we first identify the troubled cells using the KXRCF technique.

We divide the boundary ∂Vi into two parts: ∂V −
i and ∂V +

i , where the flow is into

((u, v)T · ~ν < 0) and out of ((u, v)T · ~ν > 0) Vi respectively. In the system case, we take

both the density ρ and the total energy E as the indicator variables. The target cell Vi

is identified as a troubled cell when

|
∫

∂V −

i

(

ρ0(x, y) − ρl(x, y)
)

ds|

h
k+1

2 |∂V −
i | · ‖ρ0‖

> Ck, (38)

or

|
∫

∂V −

i

(

E0(x, y) − El(x, y)
)

ds|

h
k+1

2 |∂V −
i | · ‖E0‖

> Ck, (39)

where ρl(x, y) and El(x, y) denote the density polynomials and the total energy polyno-

mials on the neighboring cells sharing the edge(s) in ∂V −
i .

Assuming that the cell Vi is a troubled cell, we now perform the WENO limiting

procedure on it. To maintain the original cell average of p0(x, y) in cell Vi, we compute

as before the four modified solution polynomials on the target cell and its three immediate

neighboring cells:

p̃l(x, y) = pl(x, y) −
1

|Vi|

∫

Vi

pl(x, y)dxdy +
1

|Vi|

∫

Vi

p0(x, y)dxdy, l = 0, 1, 2, 3, (40)

each of them being a 4-component vector and each component of the vector is a k-th

degree polynomial. In order to achieve better non-oscillatory qualities, the WENO limiter

is used with a local characteristic field decomposition. Denote the Jacobian matrix as
(

f ′(u), g′(u)
)T

· ~νl, where ~νl = (nlx, nly)
T , l = 1, 2, 3 are the outward unit normal vectors

15



to different edges of the target cell Vi. Then the matrix with the left eigenvectors of such

Jacobian matrix as rows is

Ll =









B2+(unlx+vnly)/c

2
−B1u+nlx/c

2
−

B1v+nly/c

2
B1

2

nlyu − nlxv −nly nlx 0
1 − B2 B1u B1v −B1

B2−(unlx+vnly)/c

2
−B1u−nlx/c

2
−

B1v−nly/c

2
B1

2









, (41)

and the matrix with the right eigenvectors as columns is

Rl =









1 0 1 1
u − cnlx −nly u u + cnlx

v − cnly nlx v v + cnly

H − c(unlx + vnly) −nlyu + nlxv
u2+v2

2
H + c(unlx + vnly)









, (42)

where c =
√

γp/ρ, B1 = (γ − 1)/c2, B2 = B1(u
2 + v2)/2 and H = (E + p)/ρ.

Now we perform the characteristic-wise WENO limiting procedure in each ~νl direction

with the associated Jacobian
(

f ′(u), g′(u)
)T

· ~νl to reconstruct a new polynomial vector

(p0)
new
l . We first project the modified polynomial vectors p̃m, m = 0, 1, 2, 3 into the

characteristic fields:

p̄m = Ll · p̃m, m = 0, 1, 2, 3. (43)

Then we perform the scalar WENO limiting procedure that has been specified in the last

subsection on each component of these vectors, and obtain a 4-component vector p̄new
0 .

The new polynomial vector (p0)
new
l in the ~νl direction is then computed by projecting

p̄new
0 back into the physical space:

(p0)
new
l = Rl · p̄

new
0 . (44)

The final new 4-component solution polynomial vector on the troubled cell Vi is defined

as

unew
i =

∑3
l=1(p0)

new
l |Vil|

∑3
l=1 |Vil|

. (45)

For each cell Vi, i = 1, · · · , N , if it is a troubled cell, we perform the characteristic-

wise WENO limiting procedure discussed above in each ~νl direction separately and get
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three reconstructed new polynomial vectors (p0)
new
l , l = 1, 2, 3. We replace the entire

solution polynomial ui(x, y) with the final new 4-component solution polynomial vector

unew
i (x, y) as in (45), which is a combination of these three reconstructed polynomials.

If the cell Vi is not a troubled cell, we just let unew
i (x, y) = ui(x, y). Then we compute

the new numerical solutions unew
i,j = unew

i (~ri,j), j = 1, · · · , K. We now use the normal

CPR procedure to march to the next time level by using the new numerical solutions

unew
i,j , j = 1, · · · , K.

3.3 Extension to curved cells

Figure 3: The case that only the neighboring cells have curved edges

We now turn to the cases that the reconstruction stencil S contains triangle(s) with

curved edges. We first consider the case that only one or more of the neighboring cells, say

Vi1, has curved edges, as shown in Fig. 3. Note that in the CPR framework, we transform

Vi1 into the standard element Ṽ and assume that the transformed solution polynomial

ũi1(ξ, η) = |J |ui1 (it is a 4-component vector in the system case) is a member in P k(Ṽ ).

Hence, ui1 = ũi1/|J | is no longer a polynomial in the physical element. However, in the

WENO limiting procedure, we can simply obtain a polynomial p1(x, y) by interpolating

the numerical solution values ui1,j = ũi1,j/|J |, j = 1, · · · , K in the physical element Vi1

and extend it to the cell Vi. The remaining procedure remains exactly the same as in

the case with all straight edges.
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Figure 4: The case that the target cell has curved edges

Now we consider the case that the target cell Vi itself has curved edges as shown in

Fig. 4. In the CPR framework, we transform (x, y) ∈ Vi into (ξ, η) ∈ Ṽ using Eq. (19).

The Jacobian J of this transformation is a function of (ξ, η). Note that the transformed

solution ũi(ξ, η) = |J |ui is a polynomial in P k(Ṽ ). Hence, ui = ũi/|J | is no longer a

polynomial in the physical element (x, y). However, we still let p0(x, y) = ui(x, y). The

WENO limiter for this case has actually the same form as in the straight edges case,

except that p0(x, y) is no longer a polynomial (or a vector of four polynomials in the

system case) in the physical domain Vi. Hence, we need to be careful when doing the

computations with p0. Also, since Vi has curved edges, we need to transform it into Ṽ

when computing integrals on it. For example, we use the following equation to compute

the cell averages on Vi:

1

|Vi|

∫

Vi

pl(x, y)dxdy =
1

|Vi|

∫

Ṽ

pl(ξ, η)|J |(ξ, η)dξdη. (46)

For l = 0, we know that p0(ξ, η)|J |(ξ, η) = ũi(ξ, η) is a polynomial in P k(Ṽ ). Hence

the above integral is easy to compute. For l = 1, 2, 3, we know the expression of pl(x, y)

which is a polynomial in (x, y). Using Eq. (19) which describes the relationship between

(x, y) and (ξ, η), we can obtain the expression of pl(ξ, η) as well. Hence, we can compute

the above integral.
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4 Positivity-preserving limiter

In this section, we extend the positivity-preserving limiters originally designed for

the DG schemes in [26, 36] to the CPR framework on triangular meshes. At each time

level of the CPR framework, we first reconstruct the solution functions using the WENO

limiter described in Section 3 to control oscillations, and thus can obtain a new set of

numerical solutions at the solution points. Now we further modify these solution values

in each cell to enforce the positivity of the solutions. The other procedures will remain

the same as in the original CPR framework. As shown in [36] and [26], these limiters

will not harm the original high order accuracy of CPR.

In Sections 4.1 and 4.2, we also assume that all the edges of the cell are straight. We

will discuss the extensions to the curved boundary cells in Section 4.3.

4.1 Positivity-preserving limiter for scalar conservation laws

As shown in Equation (18), the CPR framework is conservative. Note that we only

reconstruct the solution polynomials during the WENO limiting procedure and use the

same CPR procedure thereafter. Hence, the solution after the WENO limiting procedure

is also conservative. Assuming that unew
i,j , j = 1, · · · , K are the new solution values

in Vi modified by the WENO limiter and unew
i (x, y) is the new solution polynomial

interpolating them, we have

∫

Vi

(unew
i )tdxdy +

∫

∂Vi

F̂ (unew
i , unew

i+ , ~ν)ds = 0, (47)

Considering the Euler forward time discretization of this equation, we can get

ūn+1
i = ūn

i −
∆t

|Vi|

∫

∂Vi

F̂ (unew
i , unew

i+ , ~ν)ds, (48)

where ūn
i denotes the cell average of unew

i on Vi at time level n:

ūn
i =

1

|Vi|

∫

Vi

unew
i dxdy. (49)
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Note that Equation (48) is the same as the scheme satisfied by the cell averages of a DG

method. Hence, we can extend the limiters in [36] and [26] designed for the DG method

easily to the CPR framework. Here we can choose the global Lax-Friedrichs flux

F̂ (u, v, ~ν) =
1

2

(

~F (u) · ~ν + ~F (v) · ~ν − a(v − u)
)

, (50)

where a = maxu,~ν |~F
′(u) · ~ν|.

Assuming ūn
i > 0 and the edge integral in Equation (48) is approximated by the

(k+1)-point Gauss quadrature, a sufficient condition of the positivity property ūn+1
i > 0

is that each unew
i (x, y) satisfies unew

i (x, y) > 0, ∀(x, y) ∈ Qi, under the CFL condition

a
∆t

|Vi|

3
∑

l=1

Sl 6
2

3
ω̂1. (51)

Here ω̂1 = 1
6

for k = 2, 3 and ω̂1 = 1
12

for k = 4, 5. In the barycentric coordinates, the

set Qi can be written as

Qi = {
(1

2
+ vβ, (

1

2
+ ûα)(

1

2
− vβ), (

1

2
− ûα)(

1

2
− vβ)

)

, (52)

(

(
1

2
− ûα)(

1

2
− vβ),

1

2
+ vβ, (

1

2
+ ûα)(

1

2
− vβ)

)

,

(

(
1

2
+ ûα)(

1

2
− vβ), (

1

2
− ûα)(

1

2
− vβ),

1

2
+ vβ

)

:

α = 1, · · · , M ; β = 1, · · · , k + 1},

where M is the smallest integer such that 2M − 3 > k, {ûα : α = 1, · · · , M} denote

the Gauss-Lobatto quadrature points on [−1
2
, 1

2
] and {v̂β : β = 1, · · · , k + 1} denote the

Gauss quadrature points on [−1
2
, 1

2
]. For more details of this conclusion, we refer to see

[36].

We now modify the solution polynomial unew
i (x, y) to get ˜̃ui(x, y) such that ˜̃ui(x, y) >

0, ∀(x, y) ∈ Qi. For all i, assume ūn
i > 0, we define the following modified polynomial

˜̃ui(x, y) = θ(unew
i (x, y) − ūn

i ) + ūn
i , θ = min

{∣

∣

∣

∣

ūn
i

ūn
i − mi

∣

∣

∣

∣

, 1

}

, (53)

with mi = min(x,y)∈Qi
unew

i (x, y). In the case of mi > 0, we have θ = 1 and ˜̃ui(x, y) =

unew
i (x, y) > mi > 0, ∀(x, y) ∈ Qi. In the case of mi < 0, we have θ =

ūn
i

ūn
i −mi

and
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˜̃ui(x) > θ(mi − ūn
i ) + ūn

i = 0, ∀(x, y) ∈ Qi. Then we replace the numerical solutions

unew
i,j , j = 1, · · · , K by the modified numerical solutions ˜̃ui(~ri,j), j = 1, · · · , K for all

i. The other procedures remain unchanged as in the original CPR framework with the

WENO limiter.

We can also use SSP high order time discretization and it will keep the positivity-

preserving property because of the convexity. In this case, we need to perform the

procedure above in each stage for a Runge-Kutta method or in each step for a multistep

method.

4.2 Positivity-preserving limiter for the Euler equations

Consider the two-dimensional Euler system which is given by Equation (35). We

define the set of admissible states as

G =















u =









ρ
m
n
E









∣

∣

∣

∣

∣

∣

∣

∣

ρ > 0 and p(u) > 0















. (54)

Denote the solution polynomial reconstructed by the WENO limiter in the cell Vi at

time level n as unew
i (x, y) =

(

ρi(x, y), mi(x, y), ni(x, y), Ei(x, y)
)T

with the cell average

ūn
i =

(

ρ̄n
i , m̄

n
i , n̄

n
i , Ē

n
i

)T
. Since the CPR method is conservative, the scheme satisfied by

the cell averages in the CPR method with Euler forward time discretization is

ūn+1
i = ūn

i −
∆t

|Vi|

∫

∂Vi

F̂(unew
i ,unew

i+ , ~ν)ds = 0. (55)

Here, we also consider the Lax-Friedrichs flux

F̂(u,v, ~ν) =
1

2

(

F(u) · ~ν + F(v) · ~ν − a(v − u)
)

, (56)

where F = (f , g)T , a = max{‖(|u|+ c)‖∞, ‖(|v|+ c)‖∞}.

Assuming the edge integral is approximated by the (k + 1)-point Gauss quadrature,

a sufficient condition of the positivity property ūn+1
i ∈ G is that each unew

i (x, y) satisfies

unew
i (x, y) ∈ G, ∀(x, y) ∈ Qi, where Qi is defined in (52), under the CFL condition (51).
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We use the following algorithm to get a new modified solution polynomial ˜̃ui(x, y)

such that ˜̃ui(x, y) ∈ G, ∀(x, y) ∈ Qi.

1. In each cell, we enforce the positivity of density first. Set up a small number ε > 0

such that ρ̄n
i > ε for all i. In practice, we can choose ε = 10−13. Replace ρi(x, y)

by

ρ̂i(x, y) = θ1

(

ρi(x, y) − ρ̄n
i

)

+ ρ̄n
i , θ1 = min{

ρ̄n
i − ε

ρ̄n
i − ρmin

, 1}, (57)

with ρmin = min(x,y)∈Qi
ρi(x, y). Now we have ρ̂i(x, y) > ε > 0, ∀(x, y) ∈ Qi. This

fact is proved in [36].

2. The second step is to enforce the positivity of the pressure. Define ûi(x, y) =
(

ρ̂i(x, y), mi(x, y), ni(x, y), Ei(x, y)
)T

. For each (x, y) ∈ Qi, if p(ûi(x, y)) > 0, set

θx,y = 1; otherwise, set

θx,y =
p(ūn

i )

p(ūn
i ) − p(ûi(x, y))

. (58)

Then we get the limited polynomial

˜̃ui(x, y) = θ2(ûi(x, y) − ūn
i ) + ūn

i , θ2 = min
(x,y)∈Qi

θx,y. (59)

The proof of p(˜̃ui(x, y)) > 0, ∀(x, y) ∈ Qi can be found in [26]. It can be shown

that this limiter does not destroy accuracy for smooth solutions [26].

We replace unew
i,j , j = 1, · · · , K in Vi by the modified solutions ˜̃ui(~ri,j), j = 1, · · · , K for

all i. The other procedures remain unchanged as in the original CPR framework with

the WENO limiter.

We can also use SSP high order time discretization and it will keep the positivity-

preserving property because of the convexity. In this case, we need to perform the

procedure above in each stage for a Runge-Kutta method or in each step for a multistep

method.
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4.3 Extension to curved boundary cells

In this subsection, we consider the cell with curved edges, for example, Vi. Assume

that the new solutions in Vi modified by the WENO limiter are unew
i,j , j = 1, · · · , K

(scalars or vectors). As described in Section 2.2, we transform Vi into the standard ele-

ment Ṽ with the Jacobian denoted by J and then perform the normal CPR procedure on

the transformed solutions ũnew
i,j = |J |unew

i,j , j = 1, · · · , K in Ṽ using Eq. (25). Integrating

Eq. (25) over cell Ṽ with test function w = 1, we can obtain
∫

Ṽ

(ũnew
i )tdξdη +

∫

∂Ṽ

ˆ̃F newds = 0, (60)

where ũnew
i (ξ, η) is a polynomial in P k(Ṽ ) interpolating ũnew

i,j , j = 1, · · · , K and ˆ̃F new

is the transformed common normal flux in Ṽ . This equation has the same form as the

equation satisfied by unew
i (x, y) in Vi.

Replacing unew
i (x, y) with ũnew

i (ξ, η), we transform the problem on Vi into a problem

on Ṽ which has straight edges. Now we only need to use the same positivity-preserving

limiter described in Section 4.1 for the scalar case or the limiter described in Section 4.2

for the system case to modify ũnew
i (ξ, η) in Ṽ . For the scalar case, we can get ¯̃un+1

i > 0

after the limiting procedure, where ¯̃un+1
i denotes the cell average of ũnew

i on Ṽ at time

level n + 1:

¯̃un+1
i =

1

|Ṽ |

∫

Ṽ

ũnew
i dξdη. (61)

Note the fact that

ūn+1
i =

1

|Vi|

∫

Vi

unew
i dxdy =

1

|Vi|

∫

Ṽ

unew
i |J |dξdη =

1

|Vi|

∫

Ṽ

ũnew
i dξdη =

1

2|Vi|
¯̃un+1

i . (62)

Hence, we also have ūn+1
i > 0.

For the system case, although the transformed equation is no longer an Euler equa-

tion, the numerical flux can still be computed using the flux of the original Euler equation.

Suppose ~̃ν = (ν̃ξ, ν̃η) is the unit outward normal vector of Ṽ . Note that

f̃ = ξx|J |f(u) + ξy|J |g(u)
= ξxf(ũ) + ξyg(ũ)

(63)
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and

g̃ = ηxf(ũ) + ηyg(ũ), (64)

we have

F̃ · ~̃ν = (f̃ , g̃) · ~̃ν =
(

ξxf(ũ) + ξyg(ũ), ηxf(ũ) + ηyg(ũ)
)

· ~̃ν
=

(

f(ũ), g(ũ)
)

· ~r,
(65)

where ~r(ξ, η) = (ν̃ξξx + ν̃ηηx, ν̃
ξξy + ν̃ηηy). Hence, the numerical flux of the transformed

equation can be computed by the flux of the Euler equation multiplying |~r|:

ˆ̃Fnew = F̂(ũnew
i , ũnew

i+ ,
~r

|~r|
) |~r|. (66)

Now, the scheme satisfied by the cell averages of the transformed solution with Euler

forward time discretization is

¯̃un+1
i = ¯̃un

i −
∆t

|Ṽ |

∫

∂Ṽ

F̂(ũnew
i , ũnew

i+ ,
~r

|~r|
) |~r|ds. (67)

By denoting {(ξl,β, ηl,β) : β = 1, · · · , k + 1} as the Gauss quadrature points on the l− th

edge of Ṽ , we can get ¯̃un+1
i ∈ G under the CFL condition

a
∆t

|Ṽ |
max

β

3
∑

l=1

S̃l|~r(ξl,β, ηl,β)| 6
2

3
ω̂1. (68)

We omit the details of the proof since it is almost the same as in [36]. Since ūn+1
i =

1
2|Vi|

¯̃un+1
i , we also have ūn+1

i ∈ G.

5 Numerical results

In this section, we provide numerical experiments to demonstrate the performance of

the WENO limiter for the CPR framework on unstructured meshes.

We use the third order TVD Runge-Kutta method [25] for the time discretization.

Second, third and fourth order CPR schemes with the WENO limiter are tested in

the accuracy test examples where the CFL numbers are set to be 0.3. Since the time

discretization is only third order accurate, we take ∆t ∼ ∆x4/3 to obtain the fourth

order accurate results for the accuracy test examples. For the examples containing
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discontinuities, the positivity-preserving limiter is used for the third order scheme. To

satisfy the CFL condition (51) in case the positivity-preserving limiter is used, we use

the CFL number 0.1 in all the examples containing discontinuities.

For all the numerical experiments, we use a non-uniform triangulation. The refine-

ment is performed by a structured refinement (we simply break each triangle into four

similar smaller triangles for each level of the refinement).

As we know, there are several different kinds of methods in the CPR framework. For

δi defined by (7), if the test function w varies on different spaces, we obtain formulations

corresponding to different methods [29]. In all our numerical examples, we choose w ∈

P k, which result in a method similar to the DG formulation.

For the purpose of artificially generating a larger percentage of troubled cells in order

to test accuracy when the WENO reconstruction procedure is enacted in more cells, we

adjust the constant Ck in different examples when using KXRCF technique to identify

troubled cells. We list in each table the percentage of troubled cells among all the cells.

Example 1. Consider the two-dimensional nonlinear scalar Burgers equation

ut + (
u2

2
)x + (

u2

2
)y = 0, 0 ≤ x, y ≤ 2π, (69)

with the initial condition u(x, y, 0) = 0.5 + sin(x + y) and periodic boundary conditions

in both directions. For this test case the coarsest mesh we have used is shown in Figure

5. We show the errors and numerical orders of accuracy for the CPR method with the

WENO limiter comparing with the original CPR method without limiter at t = 0.25

(smooth solution) in Table 1. We list in the last column of the table the percentage of

troubled cells among all the cells. We can see that the WENO limiter keeps the designed

order of accuracy, even when a large percentage of good cells are artificially identified as

troubled cells.

At t = 0.5, a shock begins to appear in the solution. We plot the solution surfaces at

t = 0.75 in Figure 6. We can see that the schemes give non-oscillatory shock transitions

for this problem.
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Table 1: 2D Burgers equation at t = 0.25.

cell CPR without limiter CPR with WENO limiter (Ck = 0.01)
length L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

2nd order (Ck = 0.01)

2π/10 2.51E-02 – 1.68E-01 – 4.01E-02 – 3.88E-01 – 83.75%
2π/20 6.01E-03 2.06 5.49E-02 1.61 8.44E-03 2.25 8.67E-02 2.16 79.48%
2π/40 1.54E-03 1.97 1.88E-02 1.55 1.80E-03 2.23 1.86E-02 2.22 59.22%
2π/80 3.93E-04 1.97 8.74E-03 1.10 4.09E-04 2.14 8.64E-03 1.11 41.20%
2π/160 1.00E-04 1.97 4.21E-03 1.05 1.00E-04 2.03 4.17E-03 1.05 17.60%

3rd order (Ck = 0.01)

2π/10 2.58E-03 – 7.06E-02 – 2.57E-03 – 7.08E-02 – 17.92%
2π/20 3.97E-04 2.70 1.43E-02 2.30 3.96E-04 2.70 1.44E-02 2.30 5.83%
2π/40 5.96E-05 2.74 2.68E-03 2.42 5.92E-05 2.74 2.71E-03 2.41 1.38%
2π/80 8.89E-06 2.75 4.87E-04 2.46 8.89E-06 2.74 4.87E-04 2.48 0.06%
2π/160 1.30E-06 2.78 7.20E-05 2.76 1.30E-06 2.78 7.20E-05 2.76 0.00%

4th order (Ck = 0.001)

2π/10 4.52E-04 – 1.92E-02 – 4.55E-04 – 1.92E-02 – 21.67%
2π/20 3.40E-05 3.73 2.69E-03 2.83 3.37E-05 3.76 2.70E-03 2.83 5.83%
2π/40 2.22E-06 3.94 2.72E-04 3.31 2.19E-06 3.94 2.73E-04 3.31 1.46%
2π/80 1.46E-07 3.92 1.62E-05 4.07 1.45E-07 3.92 1.62E-05 4.07 0.08%
2π/160 1.02E-08 3.85 1.08E-06 3.91 1.01E-08 3.84 1.08E-06 3.91 0.00%
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Figure 5: Burgers equation. The coarsest mesh. The mesh points on the
boundary are uniformly distributed with cell length 2π/10.
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Figure 6: 2D Burgers solution at t = 0.75.

Example 2. Let us consider the two-dimensional Euler system (35). The initial con-

dition is set to be ρ(x, y, 0) = 1 + 0.2 sin(x + y), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3 and

p(x, y, 0) = 1, 0 ≤ x, y ≤ 2π. The boundary conditions are periodic. γ = 1.4 is used in

the computation. The exact solution is ρ(x, y, t) = 1 +0.2 sin(x + y− t), u(x, y, t) = 0.7,

v(x, y, t) = 0.3 and p(x, y, t) = 1. For this test case, we use the same mesh as in Exam-

ple 1. The coarsest mesh is show in Figure 5. Table 2 shows the L1 and L∞ errors and

numerical orders of accuracy of the density at t = 2π. Similar to the previous example,

we can see that the WENO limiter again keeps the designed order of accuracy.
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Table 2: 2D Euler equation with initial condition ρ(x, y, 0) = 1+0.2 sin(x+y), u(x, y, 0) =
0.7, v(x, y, 0) = 0.3 and p(x, y, 0) = 1 at t = 2π.

cell CPR without limiter CPR with WENO limiter
length L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

2nd order (Ck = 0.01)

2π/10 3.60E-03 – 1.16E-02 – 7.84E-03 – 3.19E-02 – 17.92%
2π/20 6.41E-04 2.49 3.43E-03 1.76 6.79E-04 3.53 3.92E-03 3.02 1.15%
2π/40 1.42E-04 2.17 9.42E-04 1.86 1.42E-04 2.25 9.42E-04 2.06 0.00%
2π/80 3.41E-05 2.06 2.61E-04 1.85 3.41E-05 2.06 2.61E-04 1.85 0.00%
2π/160 8.41E-06 2.02 6.89E-05 1.92 8.41E-06 2.02 6.89E-05 1.92 0.00%

3rd order (Ck = 0.0001)

2π/10 4.59E-04 – 3.94E-03 – 6.04E-04 – 4.89E-03 – 93.33%
2π/20 6.17E-05 2.89 6.51E-04 2.60 1.10E-04 2.46 6.71E-04 2.87 84.58%
2π/40 7.53E-06 3.03 9.16E-05 2.83 1.66E-05 2.72 1.14E-04 2.56 60.52%
2π/80 9.09E-07 3.05 1.23E-05 2.89 1.12E-06 3.89 2.07E-05 2.45 3.89%
2π/160 1.11E-07 3.04 1.60E-06 2.94 1.11E-07 3.34 1.60E-06 3.69 0.00%

4th order (Ck = 0.00001)

2π/10 1.52E-05 – 1.97E-04 – 1.44E-04 – 8.26E-04 – 88.75%
2π/20 8.46E-07 4.17 1.45E-05 3.76 1.08E-05 3.73 1.45E-04 2.51 43.33%
2π/40 5.15E-08 4.04 8.92E-07 4.02 1.48E-07 6.19 3.29E-06 5.46 2.16%
2π/80 3.18E-09 4.02 5.68E-08 3.97 3.17E-09 5.54 5.69E-08 5.85 0.00%
2π/160 1.97E-10 4.01 3.58E-09 3.99 1.97E-10 4.01 3.59E-09 3.99 0.00%

Example 3. Consider the two-dimensional vortex evolution problem, which is an ideal-

ized problem for the 2D Euler equations [24]. The set up of this problem is: The mean

flow is ρ = 1, p = 1 and (u, v) = (1, 1) (diagonal flow). We add, to this mean flow, an

isentropic vortex (perturbation in (u, v) and the temperature T = p
ρ
, no perturbation in

the entropy S = p
ργ ):

(δu, δv) =
ǫ

2π
e0.5(1−t2)(−ȳ, x̄), δT = −

(γ − 1)ǫ2

8γπ2
e1−r2

, δS = 0, (70)

where (x̄, ȳ) = (x− 7, y− 7), r2 = x̄2 + ȳ2, and the vortex strength ǫ = 5. The computa-

tional domain is taken as [0, 14] × [0, 14], extended periodically in both directions. It is

clear that the exact solution of the Euler equation with the above initial and boundary

conditions is just the passive convection of the vortex with the mean velocity. For this

test case the coarsest mesh we have used is shown in Figure 7. The errors and orders of

accuracy for the density at t = 0.2 are shown in Table 3. We can see that the WENO
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limiter maintains both the designed order of accuracy and the magnitude of the errors

of the original CPR method.
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Figure 7: 2D Euler system of the smooth vortex evolution problem. The
coarsest mesh. The mesh points on the boundary are uniformly distributed
with cell length 14/10.

Table 3: 2D Euler system of the smooth vortex evolution problem at t = 0.2.

cell CPR without limiter CPR with WENO limiter
length L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

2nd order (Ck = 0.01)

14/10 2.81E-03 – 6.93E-02 – 2.69E-03 – 1.42E-01 – 8.97%
14/20 6.10E-04 2.20 2.03E-02 1.77 7.11E-04 1.92 4.36E-02 1.71 7.16%
14/40 1.23E-04 2.31 4.91E-03 2.05 1.30E-04 2.45 7.30E-03 2.58 2.80%
14/80 2.91E-05 2.09 1.56E-03 1.65 2.91E-05 2.16 1.55E-03 2.23 0.75%
14/160 7.21E-06 2.01 5.55E-04 1.49 7.20E-06 2.01 5.57E-04 1.48 0.20%

3rd order (Ck = 0.001)

14/10 6.40E-04 – 2.51E-02 – 6.76E-04 – 2.53E-02 – 16.24%
14/20 1.13E-04 2.50 7.82E-03 1.68 1.11E-04 2.61 7.86E-03 1.69 10.26%
14/40 1.76E-05 2.68 1.98E-03 1.98 1.73E-05 2.68 1.98E-03 1.99 4.78%
14/80 2.89E-06 2.61 2.96E-04 2.75 2.85E-06 2.60 3.00E-04 2.72 1.36%
14/160 4.67E-07 2.63 5.16E-05 2.52 4.67E-07 2.61 5.16E-05 2.54 0.00%

4th order (Ck = 0.0001)

14/10 1.64E-04 – 1.34E-02 – 9.15E-04 – 9.94E-02 – 25.64%
14/20 1.15E-05 3.84 1.15E-03 3.55 3.21E-05 4.83 4.98E-03 4.32 12.18%
14/40 7.94E-07 3.86 8.39E-05 3.77 1.43E-06 4.49 1.43E-04 5.12 3.77%
14/80 5.14E-08 3.95 5.90E-06 3.83 6.15E-08 4.54 9.23E-06 3.95 0.40%
14/160 3.09E-09 4.06 2.93E-07 4.33 3.09E-09 4.31 2.93E-07 4.98 0.00%
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Example 4. We test the double Mach reflection problem. The computational domain is

sketched in Figure 8. This problem is initialized by sending a horizontally moving Mach

10 shock into a solid wall inclined by a 30◦ angle. In order to impose the no-penetration

boundary condition by the reflection technique, people usually solve an equivalent prob-

lem that puts the wall horizontal and puts the shock 60◦ angle inclined to the wall. We

solve the original problem in this example. Initially the right-moving shock is positioned

at (0, 0). The initial pre-shock condition is

(ρ, p, u, v) = (1.4, 1, 0, 0), (71)

and the post-shock condition is

(ρ, p, u, v) = (8, 116.5, 8.25, 0). (72)

At y = 0, the exact post-shock condition is imposed. At the solid wall, a reflective

boundary condition is used. At the top boundary, the flow values are set to describe the

exact motion of the Mach 10 shock. Supersonic inflow and outflow boundary conditions

are used at the left and right boundary, respectively. A sample mesh coarser than what is

used is shown in Figure 9. Ck = 0.01 is used in this example. We compute the solutions

of the second order and third order schemes up to t = 0.2. Figure 10 shows the density

contours. The “zoomed-in” pictures around the double Mach stem to show more details

are given in Figure 11. In all the plots, we use 29 contours equally distributed from

ρ = 1.3 to 23. We can see that the resolution around the double Mach region improves

with an increasing k.
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Figure 8: The computational domain (solid line) of the double Mach reflec-
tion problem. The dashed line indicates the computational domain of the
equivalent problem that puts the wall horizontal.
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Figure 9: Double Mach refection problem. Sample mesh. The mesh points
on the boundary are uniformly distributed with cell length 0.08.
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Figure 10: Double Mach reflection problem. Top: second order (k = 1);
bottom: third order (k = 2). 29 equally spaced density contours from 1.3
to 23. The mesh points on the boundary are uniformly distributed with cell
length 1/200.
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Figure 11: Double Mach reflection problem. Zoom-in pictures around the
Mach stem. Left: second order (k = 1); right: third order (k = 2). 29 equally
spaced density contours from 1.3 to 23.

Example 5. A Mach 3 wind tunnel with a step. The setup of the problem is as follows.

The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length

units high and is located 0.6 length units from the left-hand end of the tunnel. The

problem is initialized by a right-moving Mach 3 flow. Reflective boundary conditions are

applied along the wall of the tunnel and inflow/outflow boundary conditions are applied

at the entrance/exit. At the corner of the step, there is a singularity. For the second

order scheme, we do not modify the scheme or refine the mesh near the corner. For the

third order scheme, we adopt the Woodward-Collela fix technique [35] at the corner of

the step. We present a sample triangulation coarser than what is used in Figure 12.

Ck = 0.01 is used in this example. The results are shown at t = 4 in Figure 13. In all

the plots, we use 30 contours equally distributed from 0.32 to 6.15. We can see that the

third order scheme gives better resolution than the second order scheme.
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Figure 12: Forward step problem. Sample mesh. The mesh points on the
boundary are uniformly distributed with cell length 1
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Figure 13: Forward step problem. Top: second order (k = 1); bottom: third
order (k = 2). 30 equally spaced density contours from 0.32 to 6.15. The mesh
points on the boundary are uniformly distributed with cell length 1/100.

Example 6. Let consider the problem of a shock passing a backward facing corner

(diffraction). The setup is the following: the computational domain is the union of

[0, 1]× [6, 11] and [1, 13]× [0, 11]; the initial condition is a pure right-moving Mach 5.09
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shock, initially located at x = 0.5 and 6 6 y 6 11, moving into undisturbed air ahead of

the shock with a density of 1.4 and pressure of 1. The boundary conditions are inflow at

x = 0, 6 6 y 6 11, outflow at x = 13, 0 6 y 6 11 and 1 6 x 6 13, y = 0, and reflective

at the walls 0 6 x 6 1, y = 6 and x = 1, 0 6 y 6 6. At the top boundary, we use

the exact solution of a free-moving Mach 5.09 shock. We present a sample triangulation

coarser than what is used in Figure 14. Ck = 0.0001 is used in this example. The density

and pressure at t = 2.3 are presented in Figure 15.
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Figure 14: Shock diffraction problem. Sample mesh. The mesh points on the
boundary are uniformly distributed with cell length 1

4
.
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Figure 15: Shock diffraction problem. Top: second order (k = 1); bottom:
third order (k = 2). Left: density, 20 equally spaced contour lines from
0.066227 to 7.0668; right: pressure, 40 equally spaced contour lines from
0.091 to 37. The mesh points on the boundary are uniformly distributed
with cell length 1/16.

Example 7. A shock wave diffracts at a convex corner. Here we study a Mach 10 shock

diffracting at a 120◦ convex corner. The initial condition is a pure right-moving Mach

10 shock, initially located at x = 3.4 and 6 6 y 6 11, moving into undisturbed air ahead

of the shock with a density of 1.4 and pressure of 1. We present a sample triangulation

coarser than what is used in Figure 16. Ck = 0.0001 is used in this example. The contour

plots of density and pressure at T = 0.9 are given in Figure 17. The high order CPR

method without the positivity limiter may blow up since the lowest density is very close
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to zero.
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Figure 16: Mach 10 Shock diffracting at a 120◦ corner. Sample mesh. The
mesh points on the boundary are uniformly distributed with cell length 0.4.
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Figure 17: Mach 10 Shock diffracting at a 120◦ corner. Top: second order
(k = 1); bottom: third order (k = 2). Left: density, 20 equally spaced contour
lines from 0.07 to 8.1; right: pressure, 40 equally spaced contour lines from
0.8 to 115. The mesh points on the boundary are uniformly distributed with
cell length 1/20.

Example 8. We consider inviscid Euler transonic flow past a single NACA0012 airfoil

configuration with Mach number M = 0.8, angle of attack α = 1.25 and with M = 0.85,

angle of attack α = 1. The computational domain is [−15, 15]×[−15, 15]. The mesh used

in the computation is shown in Figure 18, consisting of 5780 elements with the maximum

diameter of the circumcircle being 0.8857 and the minimum diameter being 0.00042 near

the airfoil. The mesh uses curved cells near the airfoil. The second order and third order

CPR schemes with the WENO limiter are used in the numerical experiments. Mach
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number distributions are shown in Figure 19.

x/c

y/
c

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 18: NACA0012 airfoil mesh zoom in.
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Figure 19: NACA0012 airfoil. Mach number. Top: second order (k = 1);
bottom: third order (k = 2). Left: M∞ = 0.8, angle of attack α = 1.25◦, 30
equally spaced Mach number contours from 0.172 to 1.325; right: M∞ = 0.85,
angle of attack α = 1◦, 30 equally spaced Mach number contours from 0.158
to 1.357.

6 Concluding remarks

In this paper, we adapt a WENO limiter [39] original designed for DG method to

the CPR framework for solving hyperbolic conservation laws on two-dimensional un-

structured triangular meshes with straight or curved edges to make it more robust for

shocked flows and uniformly high order accurate. Also, we extend the limiters in [26, 36]

to the CPR framework and get a positivity-preserving CPR framework. On each time

level, we first use the WENO limiter to reconstruct the solutions on those troubled cells,
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then use the positivity-preserving limiter to modify the solution polynomials in each

cell if necessary. Finally, we update the numerical values at the solution points, and

perform the normal CPR procedure to march to the next time level. Since the WENO

limiter uses information only from immediate neighbors, it is very simple to implement

and can maintain the compactness of the CPR framework. Also, we only perform this

WENO limiter on the solution polynomials which can be discontinuous among adjacent

cells, thus the conservativeness of the CPR framework will not be harmed. Numerical

results are provided to show that this WENO limiting procedure can simultaneously

maintain uniform high order accuracy of the CPR framework in smooth regions and

control spurious numerical oscillations near discontinuities.
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