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Abstract. The main purpose of this paper is to analyze the stability and error estimates
of the local discontinuous Galerkin (LDG) methods coupled with carefully chosen implicit-explicit
(IMEX) Runge-Kutta time discretization up to third order accuracy, for solving one-dimensional
linear advection-diffusion equations. In the time discretization the advection term is treated explicitly
and the diffusion term implicitly. There are three highlights of this work. The first is that we establish
an important relationship between the gradient and interface jump of the numerical solution with
the independent numerical solution of the gradient in the LDG methods. The second is that, by aid
of the aforementioned relationship and the energy method, we show that the IMEX LDG schemes
are unconditionally stable for the linear problems, in the sense that the time-step τ is only required
to be upper-bounded by a constant which depends on the ratio of the diffusion and the square of
the advection coefficients and is independent of the mesh-size h, even though the advection term is
treated explicitly. The last is that under this time step condition, we obtain optimal error estimates
in both space and time for the third order IMEX Runge-Kutta time-marching coupled with LDG
spatial discretization. Numerical experiments are also given to verify the main results.
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1. Introduction. In this paper we perform a fully-discrete analysis on advection-
diffusion problems. For simplicity, we concentrate on a linear advection-diffusion
problem with periodic boundary condition in one dimension. In order to alleviate
the stringent time step restriction of explicit time discretization for diffusion terms,
we consider a class of implicit-explicit time discretization which treats the advection
terms explicitly and the diffusion terms implicitly. The spatial discretization is the
standard local discontinuous Galerkin (LDG) method.

The LDG method was introduced by Cockburn and Shu for solving convection-
diffusion problems in [9], motivated by the work of Bassi and Rebay [3] for solving the
compressible Navier-Stokes equations. This scheme shares some of the advantages of
the Runge-Kutta discontinuous Galerkin (RKDG) schemes for solving hyperbolic con-
servation laws [10], such as high order accuracy, flexibility of h-p adaptivity, flexibility
on complex geometry, and so on. Besides, it is locally solvable, that is, the auxiliary
variables approximating the gradient of the solution can be locally eliminated [19, 5].

Over the past years, there has been extensive study of the LDG methods, such
as for elliptic problems [5], convection-diffusion problems [6], the Stokes system [8],
the KdV type equations [21], Hamilton-Jacobi equations [20], time-dependent fourth
order problems [12], etc.. More recently, there has been analysis on the fully dis-
cretized LDG schemes, e.g. in [22, 17]. The time discretization used in [22, 17] is the
third order explicit total variation diminishing Runge-Kutta (TVDRK) time march-

†Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province,
P. R. China. E-mail: hjwang@smail.nju.edu.cn; qzh@nju.edu.cn. Research supported by NSFC
grant 11271187.

‡Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A. E-mail:
shu@dam.brown.edu. Research supported by DOE grant DE-FG02-08ER25863 and NSF grant DMS-
1112700.

1



2 H. J. WANG, C.-W. SHU, AND Q. ZHANG

ing. Such explicit methods are stable, efficient and accurate for solving hyperbolic
conservation laws and convection-dominated problems, but for convection-diffusion
equations which are not convection-dominated, explicit time discretization will suf-
fer from a stringent time step restriction for stability [18]. When it comes to such
problems, a natural consideration to overcome the small time step restriction is to use
implicit time marching. However, in many applications the convection terms are often
nonlinear, hence it would be desirable to treat them explicitly while using implicit
time discretization only for the diffusion terms. Such time discretizations are called
implicit-explicit (IMEX) time discretizations [1]. Even for nonlinear diffusion terms,
IMEX time discretizations would show their advantages in obtaining an elliptic alge-
braic system, which is easy to solve by many iterative methods. If both convection
and diffusion are treated implicitly, the resulting algebraic system will be far from
elliptic and convergence of many iterative solvers will suffer.

There are many IMEX schemes designed for different purposes in the literature,
such as [1, 2, 4, 15, 11, 14, 16, 25]. Among them, the schemes in [2, 14] are multistep
schemes, the remaining are Runge-Kutta (RK) type IMEX methods. In [11] the
authors constructed pairs of additive Runge-Kutta methods up to order four which
are combinations of explicit RK methods and implicit A-stable RK methods, and they
use the maximum number of zero diagonal elements for the implicit part to ensure
A-stability. However, these methods do not satisfy the necessary stability condition
presented in [4], where a Fourier analysis was given to study the stability property
of IMEX RK methods for solving linear advection-diffusion problems. The property
given in [4] is an extension of the concept of L-stability, which ensures the stability of
the scheme when refining the spatial mesh provided that the time step τ ≤ τ0, where
τ0 only depends on the coefficients of the advection and diffusion terms. The schemes
of Pareschi and Russo [16] treat the explicit part by a strong-stability-preserving
scheme [13] and the implicit part by an L-stable diagonally implicit RK method.
Their schemes have good asymptotic preserving property, however, several of this
type of schemes use more stages for the implicit part than the minimum required for
the designed accuracy, thus affecting their efficiency.

In this paper, we will consider three specific Runge-Kutta type IMEX schemes
given in [1] and [4], from first to third order accuracy. Coupling with the LDG spatial
discretization, we give the stability analysis by the energy method. Our analysis
indicates that the corresponding IMEX LDG methods are all stable, provided the
time step τ is bounded by a positive constant which is proportional to d/c2, where c
and d are the advection and diffusion coefficients respectively, regardless of the mesh
size h. We also perform error estimates for the LDG scheme with the third order
IMEX RK time marching, showing optimal convergence rates in both space and time,
when the time step τ and the mesh size h go to zero independently. Our analysis
relies heavily on a crucial relationship that we establish in Lemma 2.4.

The paper is organized as follows. In Section 2 we present the semi-discrete
LDG scheme for the model problem and give some preliminary results. Section 3 is
devoted to the presentation of several IMEX Runge-Kutta schemes, and to the proof
of stability of the corresponding IMEX LDG schemes. In Section 4 we give optimal
error estimates for the third order scheme. Several numerical results are presented in
Section 5 to verify the main results. Finally, we give concluding remarks in Section 6.

2. The LDG method and some preliminaries.
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2.1. The semi-discrete LDG scheme. In this subsection we present the def-
inition of semi-discrete LDG schemes for the linear advection-diffusion problem

Ut + cUx − dUxx = 0, (x, t) ∈ QT = (a, b) × (0, T ],(2.1a)

U(x, 0) = U0(x), x ∈ Ω = (a, b),(2.1b)

with periodic boundary condition, where d > 0 is the diffusion coefficient and c is the
velocity of the flow field. Without loss of generality, we assume c > 0 in this paper.
The initial solution U0(x) is assumed to be in L2(Ω).

Let Q =
√

dUx and define (hU , hQ) := (cU −
√

dQ,−
√

dU). The LDG scheme
starts from the following equivalent first-order differential system

(2.2) Ut + (hU )x = 0, Q + (hQ)x = 0, (x, t) ∈ QT ,

with the same initial condition (2.1b) and boundary condition.
Let Th = {Ij = (xj−1

2

, xj+1

2

)}N
j=1 be the partition of Ω, where x 1

2

= a and xN+1

2

= b
are the two boundary endpoints. Denote the cell length as hj = xj+1

2

− xj−1

2

for
j = 1, . . . , N , and define h = maxj hj . We assume Th is quasi-uniform in this paper,
that is, there exists a positive constant ρ such that for all j there holds hj/h ≥ ρ, as
h goes to zero.

Associated with this mesh, we define the discontinuous finite element space

(2.3) Vh =
{

v ∈ L2(Ω) : v|Ij
∈ Pk(Ij), ∀j = 1, . . . , N

}
,

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k ≥ 1. Note
that the functions in this space are allowed to have discontinuities across element
interfaces. At each element interface point, for any piecewise function p, there are
two traces along the right-hand and left-hand, denoted by p+ and p−, respectively.
As usual, the jump is denoted by [[p]] = p+ − p−.

The semi-discrete LDG scheme is defined as follows: for any t > 0, find the
numerical solution w(t) := (u(t), q(t)) ∈ Vh × Vh (where the argument x is omitted),
such that the variational forms

(ut, v)j = cH−
j (u, v) −

√
dH+

j (q, v);(2.4a)

(q, r)j = −
√

dH−
j (u, r),(2.4b)

hold in each cell Ij , j = 1, 2, . . . , N , for any test functions z = (v, r) ∈ Vh × Vh. Here
(·, ·)j is the usual inner product in L2(Ij) and

(2.5) H±
j (v, r) = (v, rx)j − v±

j+1

2

r−
j+1

2

+ v±
j−1

2

r+
j−1

2

.

The alternating numerical flux [9] and the upwind numerical flux for the advection
part are used here. In (2.4) and below, we drop the argument t if there is no confusion.
In the later analysis, we will also use the following equivalent form of H±

j :

(2.6) H−
j (v, r) = −[(vx, r)j + [[v]]j−1

2

r+
j−1

2

], H+
j (v, r) = −[(vx, r)j + [[v]]j+1

2

r−
j+1

2

].

The initial condition u(x, 0) can be taken as any approximation of the given
initial solution U0(x), for example, the local Gauss-Radau projections of U0(x). These
projections are defined in Subsection 2.2, equation (2.12). We have now defined the
semi-discrete LDG scheme.
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For the convenience of analysis, we denote by (q, r) =
∑N

j=1(q, r)j the inner

product in L2(Ω). Summing up the variational formulations (2.4) over j = 1, 2, . . . , N ,
we can write the above semi-discrete LDG scheme in the global form: for any t > 0,
find the numerical solution w = (u, q) ∈ Vh × Vh such that the variation equations

(ut, v) = cH−(u, v) −
√

dH+(q, v);(2.7a)

(q, r) = −
√

dH−(u, r),(2.7b)

hold for any z = (v, r) ∈ Vh × Vh. Here H± =
∑N

j=1 H±
j . Furthermore, for the

simplicity of notations, we would like to denote

(2.8) H = cH−, L = −
√

dH+, and K = −
√

dH−.

Then the variational formulation becomes

(ut, v) =H(u, v) + L(q, v);(2.9a)

(q, r) =K(u, r).(2.9b)

2.2. Preliminaries. In this section, we first present some notations and norms
which will be used throughout this paper, and then we will present some properties
of the finite element space and the LDG spatial discretizations.

2.2.1. Notations and norms. We use the standard norms and semi-norms in
Sobolev spaces. For example, for any integer s ≥ 0, we use Hs(D) to represent
the space equipped with the norm ‖ · ‖Hs(D), in which the function itself and the
derivatives up to the s-th order are all in L2(D). In particular, H0(D) = L2(D) and
the associated L2-norm is denoted as ‖ · ‖D for simplicity of notation. If D = Ω, we
omit the subscript Ω for convenience. We also use the notation L∞(0, T ; Hs(D)) to
represent the set of functions v such that max0≤t≤T ‖v(·, t)‖Hs(D) < ∞. Furthermore,
we would like to consider the (mesh-dependent) broken Sobolev space

(2.10) H1(Th) =
{
φ ∈ L2(Ω) : φ|Ij

∈ H1(Ij), ∀j = 1, . . . , N
}
,

which contains the discontinuous finite element space Vh. Associated with the space
H1(Th), we would like to define a so called “jump semi-norm” |[v]|2 =

∑N
j=1[[v]]2

j−1

2

, for

arbitrary v ∈ H1(Th).

2.2.2. The inverse and projection properties. Now we present the following
inverse property with respect to the finite element space Vh. For any function v ∈ Vh,
there exists a positive constant µ > 0 independent of v, h and j such that

‖v‖∂Ij
≤
√

µh−1‖v‖Ij
,(2.11)

where ‖v‖∂Ij
=
√

(v+
j−1

2

)2 + (v−
j+1

2

)2 is the L2-norm on the boundary of Ij . We call µ

the inverse constant.
In this paper we will use two Gauss-Radau projections, from H1(Th) to Vh, de-

noted by π−
h and π+

h respectively. For any function p ∈ H1(Th), the projection π±
h p

is defined as the unique element in Vh such that, in each element Ij = (xj−1

2

, xj+1

2

)

(π−
h p − p, v)Ij

= 0, ∀v ∈ Pk−1(Ij), (π−
h p)−

j+1

2

= p−
j+1

2

;(2.12a)

(π+
h p − p, v)Ij

= 0, ∀v ∈ Pk−1(Ij), (π+
h p)+

j−1

2

= p+
j−1

2

.(2.12b)
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In view of the exact collocation on one endpoint of each element, the Gauss-Radau
projections provide a great help to obtain the optimal error estimates.

Denote by η = p− π±
h p the projection error. By a standard scaling argument [7],

it is easy to obtain the following approximation property

(2.13) ‖η‖Ij
+ h1/2‖η‖∂Ij

≤ Chmin(k+1,s)‖p‖Hs(Ij), ∀j,

where the bounding constant C > 0 is independent of h and j.
In what follows we will mainly use the inverse inequalities (2.11) and the approxi-

mation property (2.13) in the global form by summing up the above local inequalities
over every j = 1, 2, . . . , N . The conclusions are almost the same as their local coun-
terparts, so they are omitted here.

2.2.3. The properties of the LDG spatial discretization. We will first
present several properties of the operators H± defined in Subsection 2.1. The proofs
are routine so we omit them to save space; for readers who are interested in the details,
we refer to [22].

Lemma 2.1. For any w, v ∈ H1(Th), there hold the equalities

H−(v, v) = −1

2
|[v]|2,(2.14)

H−(w, v) = −H+(v, w).(2.15)

Lemma 2.2. For any w, v ∈ Vh, there hold the following inequalities

|H−(w, v)| ≤
(

‖wx‖ +
√

µh−1|[w]|
)

‖v‖,(2.16a)

|H−(w, v)| ≤
(

‖vx‖ +
√

µh−1|[v]|
)

‖w‖.(2.16b)

Lemma 2.3. For any w ∈ H1(Th) and v ∈ Vh, there hold

H±(π±
h w − w, v) = 0.(2.17)

The next lemma establishes the important relationship between ‖ux‖, |[u]| and
‖q‖, which plays a key role in obtaining the good stability of the IMEX LDG scheme
in the next section.

Lemma 2.4. Suppose w = (u, q) ∈ Vh × Vh is the solution of the scheme (2.9),
then there exists a positive constant Cµ, which is independent of h and d but may
depend on the inverse constant µ, such that

(2.18) ‖ux‖ +
√

µh−1|[u]| ≤ Cµ√
d
‖q‖.

Proof. Let Lk be the standard Legendre polynomial of degree k in [−1, 1], we
have Lk(−1) = (−1)k and Lk is orthogonal to any polynomials with degree at most
k − 1. First we take

r(x)|Ij
= ux(x) − (−1)ku+

x (xj−1

2

)Lk(ξ),

in (2.4b), with ξ =
2(x−xj)

hj
. Clearly, there hold r+

j−1

2

= 0, and (ux, r)j = (ux, ux)j

since (ux, Lk)j = 0. Hence by (2.6) we have

(q, r)j =
√

d
[

(ux, r)j + [[u]]j−1

2

r+
j−1

2

]

=
√

d‖ux‖2
Ij

.
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Thus

‖ux‖2
Ij

≤ 1√
d
‖q‖Ij

(

‖ux‖Ij
+ |u+

x (xj−1

2

)|‖Lk(ξ)‖Ij

)

≤ Cµ√
d
‖q‖Ij

‖ux‖Ij
,

where the first inequality is obtained by using the Cauchy-Schwarz inequality and the
second is derived by using the inverse inequality (2.11) and the fact that

‖Lk(ξ)‖2
Ij

=

∫

Ij

Lk(ξ)2dx ≤ hj max
ξ∈[−1,1]

|Lk(ξ)|2 ≤ Chj ≤ Ch.

Therefore

(2.19) ‖ux‖Ij
≤ Cµ√

d
‖q‖Ij

.

Next we take r = 1 in (2.4b) and again by (2.6) we can obtain

[[u]]j−1

2

=
1√
d
(q, 1)j − (ux, 1)j .

As a consequence, by the Cauchy-Schwarz inequality and (2.19) we have

(2.20) |[[u]]j−1

2

| ≤ h1/2

(
1√
d
‖q‖Ij

+ ‖ux‖Ij

)

≤ Cµh1/2

√
d

‖q‖Ij
.

Finally, by summing over all elements we get the desired result (2.18).

3. The IMEX RK fully discrete schemes and their stability analysis.

Instead of adopting explicit Runge-Kutta time marching schemes to solve the semi-
discrete LDG scheme introduced in the above section, we prefer a type of implicit-
explicit Runge-Kutta methods, which can not only relax the severe time step restric-
tion due to the implicit integrator for the linear diffusion part, but also be easy to
implement for potentially nonlinear convection part since we use explicit discretization
for this term.

Typically, implicit schemes coupled with proper spatial discretizations (such as
finite difference discretizations) are unconditionally stable for solving the pure dif-
fusion equation. For IMEX schemes coupled with an LDG spatial discretization for
solving convection-diffusion problems, in which we treat the diffusion term implicitly
and the convection term explicitly, we can reasonably expect that the schemes are
stable under the standard CFL condition for explicit RKDG schemes for convection
equations, τ ≤ Ch for a constant C, where τ is the time step. However, we would
like to have stability under a much weaker condition τ ≤ C, where the constant C
depends only on the diffusion and advection coefficients and not on the mesh size h.
In this section, we would like to explore a kind of IMEX Runge-Kutta schemes which
would allow us to achieve such stability.

For a detailed introduction to IMEX RK schemes, we refer the readers to [1]
and [4]. In this paper, we would like to adopt the forms given in [4]. To give a
brief introduction of the scheme, let us consider the system of ordinary differential
equations

(3.1)
dy

dt
= L(t,y) + N(t,y), y(t0) = y0,
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where y = [y1, y2, · · · , yd]
⊤, L(t,y) is derived from the spatial discretization of the

diffusion term, and N(t,y) arises from the discretization of the convection term. By
applying the general s-stage IMEX RK time marching scheme, the solution of (3.1)
advanced from time tn to tn+1 = tn + ∆t is given by:

Y1 = yn,

Yi = yn + ∆t

i∑

j=2

aijL(tjn,Yj) + ∆t

i−1∑

j=1

âijN(tjn,Yj), 2 ≤ i ≤ s + 1,

yn+1 = yn + ∆t
s+1∑

i=2

biL(tin,Yi) + ∆t
s+1∑

i=1

b̂iN(tin,Yi),

where Yi denotes the intermediate stages, ci =
∑i

j=2 aij =
∑i−1

j=1 âij , and tjn =

tn + cj∆t. Denote A = (aij), Â = (âij) ∈ R
(s+1)×(s+1), b⊤ = [0, b2, · · · , bs+1], b̂

⊤ =

[b̂1, · · · , b̂s+1] and c⊤ = [0, c2, · · · , cs+1], then we can express the general s-stage IMEX
RK scheme as the following Butcher tableau

(3.2)
c A Â

b⊤ b̂⊤

In the above tableau, the pair (A | b) determines an s-stage diagonally implicit

Runge-Kutta method and (Â | b̂) defines an (s+1)-stage (s-stage if b̂s+1 = 0) explicit
Runge-Kutta method. In this paper, we call the scheme an s-stage scheme if it has s
stages for the implicit part. We will not distinguish whether it has one more explicit
stage or not. Generally, an s-stage scheme does not necessarily have order s, especially
for s ≥ 4. In this work, we only consider three specific s-stage s-th order schemes,
for s = 1, 2, 3. Among them, the scheme has s explicit stages for s = 1, 2. For s = 3,
we have not been able to find a third order scheme with 3 explicit stages to fit our
purpose, therefore we use one with 4 stages for the explicit part.

The first order IMEX method is taking the forward Euler discretization for the
explicit part and the backward Euler discretization for the implicit part. The second
order scheme that we consider is the L-stable, two-stage, second-order DIRK(2,2,2)
scheme given in Ascher et al. [1]. The third order scheme we adopt is from Calvo et
al. [4]. In the following we present them in the form (3.2).

First order:

(3.3)
0 0 0 0 0
1 0 1 1 0

0 1 1 0

Second order:

(3.4)

0 0 0 0 0 0 0
γ 0 γ 0 γ 0 0
1 0 1 − γ γ δ 1 − δ 0

0 1 − γ γ δ 1 − δ 0

where γ = 1 −
√

2
2 and δ = 1 − 1

2γ .
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Third order:

(3.5)

0 0 0 0 0 0 0 0 0
γ 0 γ 0 0 γ 0 0 0

1+γ
2 0 1−γ

2 γ 0 1+γ
2 − α1 α1 0 0

1 0 β1 β2 γ 0 1 − α2 α2 0
0 β1 β2 γ 0 β1 β2 γ

In this scheme, γ is the middle root of 6x3−18x2+9x−1 = 0, γ ≈ 0.435866521508459.
β1 = − 3

2γ2 + 4γ − 1
4 , β2 = 3

2γ2 − 5γ + 5
4 . The parameter α1 is chosen as −0.35 in [4]

and α2 =
1

3
−2γ2−2β2α1γ

γ(1−γ) .

In what follows, we would like to analyze the stability of the above three schemes
with the LDG spatial discretization. Let {tn = nτ}M

n=0 be the uniform partition of
the time interval [0, T ], with time step τ . The time step could actually change from
step to step, but in this paper we take the time step as a constant for simplicity.
Given un, hence (un, qn), we would like to find the numerical solution at the next
time level tn+1, (maybe through several intermediate stages tn,ℓ), by the above IMEX
RK methods.

3.1. First order scheme. The LDG scheme with the first order IMEX time-
marching scheme (3.3) is given in the following form:

(un+1, v) = (un, v) + τH(un, v) + τL(qn+1, v);(3.6a)

(qn+1, r) =K(un+1, r),(3.6b)

for any function (v, r) ∈ Vh × Vh.
Proposition 3.1. There exists a positive constant τ0 independent of h, such that

if τ ≤ τ0, then the solution of scheme (3.6) satisfies

(3.7) ‖un‖ ≤ ‖u0‖, ∀n.

Proof. Taking v = un+1 in (3.6a), we get

(3.8) (un+1 − un, un+1) = τH(un, un+1) − τ‖qn+1‖2,

where we have used the property

(3.9) L(q, u) = −K(u, q) = −‖q‖2,

due to (2.15) and (2.9b). Noting that

(un+1 − un, un+1) =
1

2
‖un+1‖2 +

1

2
‖un+1 − un‖2 − 1

2
‖un‖2.

Then (3.8) is equivalent to

1
2‖u

n+1‖2 − 1
2‖u

n‖2 + 1
2‖u

n+1 − un‖2 + τ‖qn+1‖2

︸ ︷︷ ︸

LHS

= τH(un, un+1)
︸ ︷︷ ︸

RHS

.(3.10)

This provides two stability terms 1
2‖un+1−un‖2 and τ‖qn+1‖2, which can be used to

estimate the only remaining term RHS. We add and subtract a term τH(un+1, un+1)
to obtain

RHS = τH(un+1, un+1) − τH(un+1 − un, un+1)

= − c

2
τ |[un+1]|2 − τH(un+1 − un, un+1),
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where the last equality holds by the property (2.14). Thus by (2.16b), we have

(3.11) RHS ≤ τ |H(un+1 − un, un+1)| ≤ cτ
(

‖un+1
x ‖ +

√

µh−1|[un+1]|
)

‖un+1 − un‖.

Then exploiting Lemma 2.4 and the Young’s inequality directly, we obtain

(3.12) RHS ≤ Cµc√
d

τ‖qn+1‖‖un+1 − un‖ ≤ τ‖qn+1‖2 +
C2

µc2

4d
τ‖un+1 − un‖2.

Consequently, if
C2

µc2

4d τ ≤ 1
2 , i.e, τ ≤ τ0 = 2d

C2
µc2 , then we have

RHS ≤ τ‖qn+1‖2 +
1

2
‖un+1 − un‖2.

Hence from (3.10) we have ‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖.
Remark 3.1. From the proof we can see that τ0 is proportional to d/c2, where c, d
are the advection and diffusion coefficients, respectively. If we introduce the Reynolds
number Re which is proportional to c/d, then τ0 is proportional to 1/(c Re). We
use the notation τ0 as a generic time step bound for the stability analysis and error
estimates in this paper, it may have different values in each occurrence.

3.2. Second order scheme. The LDG scheme with the second order IMEX
time marching scheme (3.4) is given as:

(un,1, v) = (un, v) + γτH(un, v) + γτL(qn,1, v),(3.13a)

(un+1, v) = (un, v) + δτH(un, v) + (1 − δ)τH(un,1, v)

+ (1 − γ)τL(qn,1, v) + γτL(qn+1, v);(3.13b)

(qn,ℓ, r) =K(un,ℓ, r), ℓ = 1, 2,(3.13c)

for any function (v, r) ∈ Vh × Vh, where γ = 1 −
√

2
2 , δ = 1 − 1

2γ . Here wn,2 = wn+1.
Proposition 3.2. Under the condition of Proposition 3.1, the solution of the

scheme (3.13) satisfies (3.7).
Proof. From (3.13a) and (3.13b), we get

(un,1 − un, v) = γτH(un, v) + γτL(qn,1, v),(3.14a)

(un+1 − un,1, v) = (δ − γ)τH(un, v) + (1 − δ)τH(un,1, v)

+ (1 − 2γ)τL(qn,1, v) + γτL(qn+1, v).(3.14b)

By taking v = un,1, un+1 in (3.14a) and (3.14b), respectively, and adding them
together, we obtain

1
2‖u

n+1‖2 − 1
2‖u

n‖2 + 1
2‖u

n+1 − un,1‖2 + 1
2‖u

n,1 − un‖2

︸ ︷︷ ︸

LHS

= R1 + R2,

where

R1 = γτH(un, un,1) + (δ − γ) τH(un, un+1) + (1 − δ)τH(un,1, un+1),

R2 = γτL(qn,1, un,1) + (1 − 2γ)τL(qn,1, un+1) + γτL(qn+1, un+1)

= − γτ‖qn,1‖2 − (1 − 2γ)τ(qn,1, qn+1) − γτ‖qn+1‖2.
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To obtain R2, we have used the property (3.9) and the similar property

(3.15) L(q1, u2) = −K(u2, q1) = −(q2, q1) = −(q1, q2),

for any pairs (u1, q1) and (u2, q2), also owing to (2.15) and (2.9b).

In order to use the stability terms provided by LHS and R2 to estimate R1, we
rewrite R1 in the following equivalent form:

R1 = γτH(un,1, un,1) + (1 − γ)τH(un+1, un+1) − γτH(un,1 − un, un,1)

− (1 − γ)τH(un+1 − un,1, un+1) − (δ − γ) τH(un,1 − un, un+1).

Noting that δ − γ = −1, and by the property (2.14) we have

R1 = − c

2
γτ |[un,1]|2 − c

2
(1 − γ)τ |[un+1]|2 − γτH(un,1 − un, un,1)

− (1 − γ)τH(un+1 − un,1, un+1) + τH(un,1 − un, un+1).

We will proceed in a similar argument as (3.11)-(3.12) to estimate R1. Exploiting
(2.16b), Lemma 2.4 and the Young’s inequality successively, we can derive

R1 ≤ γ

4
τ(‖qn,1‖2 + ‖qn+1‖2) +

CγC2
µc2

d
τ
(
‖un,1 − un‖2 + ‖un+1 − un,1‖2

)
,

where Cγ is a positive constant depending on γ. As a consequence, we obtain

LHS + S ≤
CγC2

µc2

d
τ
(
‖un,1 − un‖2 + ‖un+1 − un,1‖2

)
,

where

S =
3

4
γτ‖qn,1‖2 + (1 − 2γ)τ(qn,1, qn+1) +

3

4
γτ‖qn+1‖2.

We denote by x⊤ = (qn,1, qn+1), then S = τ
∫

Ω x⊤
Mxdx, with

M =

(
3
4γ 1

2 − γ
1
2 − γ 3

4γ

)

.

It is easy to check that M is positive definite, so S ≥ 0, which leads to

LHS ≤
CγC2

µc2

d
τ
(
‖un,1 − un‖2 + ‖un+1 − un,1‖2

)
.

Consequently, if
CγC2

µc2

d τ ≤ 1
2 , i.e, τ ≤ τ0 = d

2CγC2
µc2 , then we have

‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖.
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3.3. Third order scheme. The LDG scheme with the third order IMEX time
marching scheme (3.5) reads: for any function (v, r) ∈ Vh × Vh,

(un,1, v) = (un, v) + γτH(un, v) + γτL(qn,1, v),(3.16a)

(un,2, v) = (un, v) +

(
1 + γ

2
− α1

)

τH(un, v) + α1τH(un,1, v)

+
1 − γ

2
τL(qn,1, v) + γτL(qn,2, v),(3.16b)

(un,3, v) = (un, v) + (1 − α2)τH(un,1, v) + α2τH(un,2, v)

+ β1τL(qn,1, v) + β2τL(qn,2, v) + γτL(qn,3, v),(3.16c)

(un+1, v) = (un, v) + β1τH(un,1, v) + β2τH(un,2, v) + γτH(un,3, v)

+ β1τL(qn,1, v) + β2τL(qn,2, v) + γτL(qn,3, v);(3.16d)

(qn,ℓ, r) =K(un,ℓ, r), ℓ = 1, 2, 3(3.16e)

where the coefficients are given below the tableau (3.5).
For the convenience of analysis, we would like to introduce a series of notations

E1w
n = wn,1 − wn, E2w

n = wn,2 − 2wn,1 + wn,

E3w
n = 2wn,3 + wn,2 − 3wn,1, E4w

n = wn+1 − wn,3,(3.17)

for arbitrary w, and rewrite the above scheme into the following compact form. In
the following we denote un = (un, un,1, un,2, un,3) and qn = (qn,1, qn,2, qn,3).

(Eℓu
n, v) = Φℓ(u

n, v) + Ψℓ(q
n, v), for ℓ = 1, 2, 3, 4;(3.18a)

(qn,ℓ, r) =K(un,ℓ, r), for ℓ = 1, 2, 3(3.18b)

where (noting that β1 + β2 + γ = 1)

Φ1(u
n, v) = γτH(un, v),(3.19a)

Φ2(u
n, v) =

(
1 − 3γ

2
− α1

)

τH(un, v) + α1τH(un,1, v),(3.19b)

Φ3(u
n, v) =

(
1 − 5γ

2
− α1

)

τH(un, v) + (2(1 − α2) + α1)τH(un,1, v)

+ 2α2τH(un,2, v),(3.19c)

Φ4(u
n, v) = (α2 − β2 − γ)τH(un,1, v) + (β2 − α2)τH(un,2, v)

+ γτH(un,3, v);(3.19d)

and

Ψ1(q
n, v) = γτL(qn,1, v),(3.20a)

Ψ2(q
n, v) = γτL(qn,2 − 2qn,1, v) +

1 − γ

2
τL(qn,1, v),(3.20b)

Ψ3(q
n, v) = 2γτL(qn,3, v) + 2

(

1 − β1 −
γ

2

)

τL(qn,2 − 2qn,1, v)

+ 2

(
9

4
− 11

4
γ − β1

)

τL(qn,1, v),(3.20c)

Ψ4(q
n, v) = 0.(3.20d)
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Proposition 3.3. Under the condition of Proposition 3.1, the solution of the
scheme (3.16) satisfies (3.7).

Proof. The proof is a bit more tricky than that for the first and second order
cases. By taking v = un,1, un,2 − 2un,1, un,3 and 2un+1 in (3.18), for ℓ = 1, 2, 3, 4,
respectively, we can derive:

1

2
‖un,1‖2 +

1

2
‖un,1 − un‖2 − 1

2
‖un‖2 = Φ1(u

n, un,1) + Ψ1(q
n, un,1),(3.21a)

1

2
‖un,2 − 2un,1‖2 +

1

2
‖un,2 − 2un,1 + un‖2 − 1

2
‖un‖2

= Φ2(u
n, un,2 − 2un,1) + Ψ2(q

n, un,2 − 2un,1),(3.21b)

‖un,3‖2 +
1

2
‖un,3 + un,2 − 2un,1‖2 +

1

2
‖un,3 − un,1‖2

− 1

2
‖un,2 − 2un,1‖2 − 1

2
‖un,1‖2 = Φ3(u

n, un,3) + Ψ3(q
n, un,3),(3.21c)

‖un+1‖2 + ‖un+1 − un,3‖2 − ‖un,3‖2 = 2Φ4(u
n, un+1) + 2Ψ4(q

n, un+1).(3.21d)

To obtain (3.21c), we have divided E3u
n into two parts: un,3 + un,2 − 2un,1 and

un,3 − un,1, with the purpose of canceling the terms 1
2‖un,1‖2 and 1

2‖un,2 − 2un,1‖2

with (3.21a) and (3.21b).
Adding (3.21) together leads to

(3.22) ‖un+1‖2 − ‖un‖2 + S = Tc + Td,

where

S = ‖un+1 − un,3‖2 +
1

2
‖un,3 + un,2 − 2un,1‖2 +

1

2
‖un,3 − un,1‖2

+
1

2
‖un,2 − 2un,1 + un‖2 +

1

2
‖un,1 − un‖2(3.23a)

provides one part of the stability for the scheme. The terms Tc and Td are related
to the advection and diffusion discretizations, respectively, which have the following
forms:

Tc = Φ1(u
n, un,1) + Φ2(u

n, un,2 − 2un,1) + Φ3(u
n, un,3) + 2Φ4(u

n, un+1),(3.23b)

Td = Ψ1(q
n, un,1) + Ψ2(q

n, un,2 − 2un,1) + Ψ3(q
n, un,3) + 2Ψ4(q

n, un+1).(3.23c)

We will first consider the term Td. By the properties (3.9) and (3.15) we have

Td = − γτ‖qn,1‖2 − γτ‖qn,2 − 2qn,1‖2 − 2γτ‖qn,3‖2 − 1 − γ

2
τ(qn,1, qn,2 − 2qn,1)

− 2

(
9

4
− 11

4
γ − β1

)

τ(qn,1, qn,3) − 2
(

1 − β1 −
γ

2

)

τ(qn,2 − 2qn,1, qn,3).(3.24)

We denote w⊤ = (qn,1, qn,2 − 2qn,1, qn,3), then

(3.25) Td = −τ

∫

Ω

w⊤
Aw dx,

where

(3.26) A =





γ 1−γ
4

9
4 − 11

4 γ − β1
1−γ

4 γ 1 − β1 − γ
2

9
4 − 11

4 γ − β1 1 − β1 − γ
2 2γ



 .
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It can be verified that A is positive definite by verifying the principal minor determi-
nants of A are all positive, so Td ≤ 0, which implies that if c = 0 then the scheme is
unconditionally stable, since in this case Tc = 0. Note that Td provides another part
of stability for the scheme.

For the general case c 6= 0, towards the goal of estimating the term Tc, we will
follow the approach in the estimate for the RHS term in the proof of Proposition
3.1, adding and subtracting some terms to rewrite the operators Φi into the following
equivalent forms, for the purpose of using the stability provided by S and Td.

Φ1(u
n, v) = γτH(un,1, v) − γτH(un,1 − un, v),(3.27a)

Φ2(u
n, v) =

3γ − 1

2
τH(un,2 − 2un,1, v) + α1τH(un,1 − un, v)

+
1 − 3γ

2
τH(un,2 − 2un,1 + un, v),(3.27b)

Φ3(u
n, v) =

5(1 − γ)

2
τH(un,3, v) +

(

α1 + 2α2 −
1 − 5γ

2

)

τH(un,1 − un, v)

+ 2α2τH(un,2 − 2un,1 + un, v) − 5(1 − γ)

2
τH(un,3 − un,1, v),(3.27c)

Φ4(u
n, v) = (β2 − α2)τH(un,1 − un, v) + (β2 − α2)τH(un,2 − 2un,1 + un, v)

+ γτH(un,3 − un,1, v).(3.27d)

In addition, to deal with the last term Φ4(u
n, un+1) in Tc, we add and subtract a

term Φ4(u
n, un,3) to obtain

Φ4(u
n, un+1) = Φ4(u

n, un,3) + Φ4(u
n, un+1 − un,3),

for the same purpose. Then after some tedious manipulation, we can rewrite Tc as:

Tc = γτH(un,1, un,1) +
3γ − 1

2
τH(un,2 − 2un,1, un,2 − 2un,1)

+
5(1 − γ)

2
τH(un,3, un,3) +

3∑

i=1

Ti

= − c

2
τ

(

|[un,1]|2 +
3γ − 1

2
|[un,2 − 2un,1]|2 +

5(1 − γ)

2
|[un,3]|2

)

+

3∑

i=1

Ti ,(3.28)

where we have used the property (2.14), and Ti are given as

T1 = 2(β2 − α2 − γ)τH(un,1, un+1 − un,3) − γτH(un,1 − un, un,1),

T2 = 2(β2 − α2)τH(un,2 − 2un,1, un+1 − un,3) + α1τH(un,1 − un, un,2 − 2un,1),

+
1 − 3γ

2
τH(un,2 − 2un,1 + un, un,2 − 2un,1)

T3 = 2γτH(un,3, un+1 − un,3) + 2β2H(un,2 − 2un,1 + un, un,3)

+

(

α1 + 2β2 −
1 − 5γ

2

)

τH(un,1 − un, un,3) − 5 − 9γ

2
τH(un,3 − un,1, un,3).

Denote C⋆ as the maximum of the absolute value of all the coefficients in the
expression of Ti for i = 1, 2, 3, and denote

T0 = ‖un+1 − un,3‖ + ‖un,1 − un‖ + ‖un,2 − 2un,1 + un‖ + ‖un,3 − un,1‖,
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then by the aid of Lemmas 2.2 and 2.4, we can derive

|T1| ≤ C⋆cτ
(

‖(un,1)x‖ +
√

µh−1|[un,1]|
)

T0 ≤ C⋆Cµc√
d

τ‖qn,1‖T0.

Similarly,

|T2| ≤
C⋆Cµc√

d
τ‖qn,2 − 2qn,1‖T0, |T3| ≤

C⋆Cµc√
d

τ‖qn,3‖T0.

Then using the Young’s inequality, we obtain

|
3∑

i=1

Ti| ≤
γ

4
τ
(
‖qn,1‖2 + ‖qn,2 − 2qn,1‖2 + ‖qn,3‖2

)
+ 3

C2
⋆C2

µc2

dγ
τT 2

0

≤ γ

4
τ
(
‖qn,1‖2 + ‖qn,2 − 2qn,1‖2 + ‖qn,3‖2

)
+ 24

C2
⋆C2

µc2

dγ
τS,(3.29)

where S is defined in (3.23a). Owing to (3.22), (3.25), (3.28) and (3.29) we have

(3.30) ‖un+1‖2 − ‖un‖2 + S ≤ −τ

∫

Ω

w⊤(A − B)w dx + 24
C2

⋆C2
µc2

dγ
τS,

where B = γ
4 I, with I being the identity matrix. It can also be verified that A − B

is positive definite by the same way as for A. Thus ‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖, if

24
C2

⋆C2

µc2

dγ τ ≤ 1, that is, τ ≤ τ0 = dγ
24C2

⋆C2
µc2 .

Remark 3.2. We remark that C⋆ depends on the choice of the parameter α1. After
a simple manipulation we know that, if α1 ∈ (−0.481,−0.108), then C⋆ attains its
minimum value C⋆ = |2β2| ≈ 1.2887.

4. Error estimates. With the stability result in the previous section, it is
conceptually straightforward, although still technical, to obtain error estimates for
smooth solutions. We will only give the error estimates for the third order IMEX
LDG scheme (3.16) as an example. Following [24], we introduce four reference func-
tions, denoted by W (ℓ) = (U (ℓ), Q(ℓ)), ℓ = 0, 1, 2, 3, associated with the third order
IMEX RK time discretization (3.5). In detail, U (0) = U is the exact solution of the
problem (2.1) and then we define

U (1) = U (0) − γτcU (0)
x + γτ

√
dQ(1)

x ,(4.1a)

U (2) = U (0) −
(

1 + γ

2
− α1

)

τcU (0)
x − α1τcU (1)

x

+
1 − γ

2
τ
√

dQ(1)
x + γτ

√
dQ(2)

x ,(4.1b)

U (3) = U (0) − (1 − α2)τcU (1)
x − α2τcU (2)

x

+ β1τ
√

dQ(1)
x + β2τ

√
dQ(2)

x + γτ
√

dQ(3)
x ;(4.1c)

where

(4.2) Q(ℓ) =
√

dU (ℓ)
x , for ℓ = 1, 2, 3.

For any indexes n and ℓ under consideration, the reference function at each stage time
level is defined as W n,ℓ = (Un,ℓ, Qn,ℓ) = W (ℓ)(x, tn).
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At each stage time, we denote the error between the exact (reference) solution
and the numerical solution by en,ℓ = (en,ℓ

u , en,ℓ
q ) = (Un,ℓ − un,ℓ, Qn,ℓ − qn,ℓ). As the

standard treatment in finite element analysis, we would like to divide the error in the
form e = ξ − η, where

(4.3) η = (ηu, ηq) = (π−
h U − U, π+

h Q − Q), ξ = (ξu, ξq) = (π−
h U − u, π+

h Q − q),

here we have dropped the superscripts n and ℓ for simplicity.
We would like to assume that the exact solution U has the following smoothness,

(4.4) U ∈ L∞(0, T ; Hk+2), DtU ∈ L∞(0, T ; Hk+1), and D4
t U ∈ L∞(0, T ; L2),

where Dℓ
tU is the ℓ-th order time derivative of U .

By the smoothness assumption (4.4), it follows from (2.13) and the linearity of
the projections π±

h that the stage projection errors and their evolutions satisfy

(4.5) ‖ηn,ℓ
u ‖ + ‖ηn,ℓ

q ‖ ≤ Chk+1, ‖Eℓ+1η
n
u‖ ≤ Chk+1τ,

for any n and ℓ = 0, 1, 2, 3 under consideration. Here the bounding constant C > 0
depends solely on the smoothness of the exact solution and is independent of n, h, τ .
In the remaining of this section, we also use C to represent a generic positive constant
which is independent of c, d and n, h, τ , if there is no special explanation. It may have
a different value in each occurrence.

In what follows we will focus our attention on the estimate of the error in the
finite element space, say, ξ ∈ Vh × Vh. To this end, we need to set up the error
equations about ξn,ℓ. This process is based on the following lemma.

Lemma 4.1. Let W = (U, Q) be the sufficiently smooth solution of problem (2.1).
Assume U satisfies the smoothness assumption (4.4). Denote Qn = (Qn,1, Qn,2, Qn,3)
and Un = (Un, Un,1, Un,2, Un,3). Then for any function (v, r) ∈ Vh × Vh, there hold
the following variational forms

(EℓU
n, v) = Φℓ(U

n, v) + Ψℓ(Q
n, v) + δ4ℓ(ζ

n, v), for ℓ = 1, 2, 3, 4;(4.6a)

(Qn,ℓ, r) =K(Un,ℓ, r) for ℓ = 1, 2, 3.(4.6b)

Here δ4ℓ is the Kronecker symbol and ζn is the local truncation error in each step
of the third order IMEX RK time-marching (4.1). Besides, there exists a bounding
constant C > 0 depending on the regularity of U , independent of n, h and τ , such that

(4.7) ‖ζn‖ ≤ Cτ4.

Proof. The proof is trivial by the considered PDE and the definitions of the
reference functions (4.1), so we omit it. Similar analysis can be found in [23].

Subtracting those variational forms in Lemma 4.1 from those in the scheme (3.18),
in the same order, we will obtain the following error equations

(Eℓξ
n
u , v) = Φℓ(ξ

n
u
, v) + Ψℓ(ξ

n
q
, v) + (Eℓη

n
u + δ4ℓζ

n, v), for ℓ = 1, 2, 3, 4;(4.8a)

(ξn,ℓ
q , r) =K(ξn,ℓ

u , r) + (ηn,ℓ
q , r), for ℓ = 1, 2, 3,(4.8b)

since the projection error related terms in Φℓ, Ψℓ and K vanish by Lemma 2.3.
The above error equations are critical to obtain the final error estimate. The

process is the similar to but more complicated than the stability analysis. Towards
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the goal of the final error estimate for the scheme (3.16), we would like to give the
following two lemmas.

Lemma 4.2. There exist positive constant C independent of n, h, τ , and τ0 inde-
pendent of h, such that, if τ ≤ τ0, then

(4.9) ‖ξn+1
u ‖2 − ‖ξn

u‖2 ≤ τ
4∑

ℓ=1

‖ξn,ℓ
u ‖2 +

C

τ

4∑

ℓ=1

‖Eℓη
n
u + δ4ℓζ

n‖2 + Cτ
3∑

ℓ=1

‖ηn,ℓ
q ‖2,

where ξn,4
u = ξn+1

u .
Proof. Similar to the proof of Proposition 3.3, we take v = ξn,1

u , ξn,2
u − 2ξn,1

u , ξn,3
u

and 2ξn+1
u in (4.8), for ℓ = 1, 2, 3, 4 respectively, and add them together, to obtain

the energy equation

(4.10) ‖ξn+1
u ‖2 − ‖ξn

u‖2 + S′ = T ′
c + T ′

d + Tp,

where S′, T ′
c and T ′

d are replacing (u, un, qn) with (ξu, ξn
u
, ξn

q
) in S, Tc and Td, which

are defined in (3.23). Tp is related to the projection errors which is given as

(4.11) Tp = (E1η
n
u , ξn,1

u ) + (E2η
n
u , ξn,2

u − 2ξn,1
u ) + (E3η

n
u , ξn,3

u ) + (E4η
n
u + ζn, 2ξn+1

u ).

A simple use of the Cauchy-Schwarz inequality and the Young’s inequality leads to

(4.12) Tp ≤ τ

4∑

ℓ=1

‖ξn,ℓ
u ‖2 +

C

τ

4∑

ℓ=1

‖Eℓη
n
u + δ4ℓζ

n‖2.

The estimate for T ′
d is a little different from the estimate of Td in (3.24). Similar

as the properties (3.9) and (3.15), we have

L(ξq, ξu) = −K(ξu, ξq) = −‖ξq‖2 + (ηq, ξq);(4.13)

L(ξ1
q , ξ2

u) = −K(ξ2
u, ξ1

q ) = −(ξ2
q , ξ1

q ) + (η2
q , ξ1

q ),(4.14)

for any pairs of (ξu, ξq), (ξ1
u, ξ1

q ) and (ξ2
u, ξ2

q ), due to (2.15) and (4.8b). Hence, by
using (4.13) and (4.14) to estimate T ′

d , we get

(4.15) T ′
d = −τ

∫

Ω

v⊤
Av dx + V,

where v⊤ = (ξn,1
q , ξn,2

q − 2ξn,1
q , ξn,3

q ), A is defined in (3.26) and V is related to the
projection errors in the form:

V = γτ(ηn,1
q , ξn,1

q ) + γτ(ηn,2
q − 2ηn,1

q , ξn,2
q − 2ξn,1

q ) + 2γτ(ηn,3
q , ξn,3

q )

+
1 − γ

2
τ(ηn,2

q − 2ηn,1
q , ξn,1

q ) + 2

(
9

4
− 11

4
γ − β1

)

τ(ηn,3
q , ξn,1

q )

+ 2
(

1 − β1 −
γ

2

)

τ(ηn,3
q , ξn,2

q − 2ξn,1
q ).

A simple use of the Cauchy-Schwarz and the Young’s inequalities leads to

V ≤ ετ

∫

Ω

v⊤v dx + Cετ
3∑

ℓ=1

‖ηn,ℓ
q ‖2,



STABILITY AND ERROR ESTIMATES OF IMEX LDG METHODS 17

for arbitrary ε > 0, where Cε is a positive constant only depending on ε. As a
consequence,

(4.16) T ′
d ≤ −τ

∫

Ω

v⊤(A − εI)v dx + Cετ

3∑

ℓ=1

‖ηn,ℓ
q ‖2.

Note that T ′
c has the similar expression as Tc defined in (3.28), replacing u with

ξu. We denote the corresponding terms to Ti as T ′
i . We use Lemma 2.2 again and the

relationship

(4.17) ‖(ξu)x‖ +
√

µh−1|[ξu]| ≤ Cµ√
d
(‖ξq‖ + ‖ηq‖),

which is similar to (2.18), to estimate T ′
i . This process gives rise to

(4.18) T ′
c ≤ |

3∑

i=1

T ′
i | ≤ τ

∫

Ω

v⊤
Bv dx + Cτ

3∑

ℓ=1

‖ηn,ℓ
q ‖2 +

CC2
µc2

d
τS′,

where B = γ
4 I has been defined in Subsection 3.3.

As a result, from (4.10), (4.12), (4.16) and (4.18) we have

(4.19) ‖ξn+1
u ‖2 − ‖ξn

u‖2 + S′ ≤ −τ

∫

Ω

v⊤(A − B − εI)v dx +
CC2

µc2

d
τS′ + P ,

where

P = τ

4∑

ℓ=1

‖ξn,ℓ
u ‖2 +

C

τ

4∑

ℓ=1

‖Eℓη
n
u + δ4ℓζ

n‖2 + Cτ

3∑

ℓ=1

‖ηn,ℓ
q ‖2.

Choosing ε small enough, for example ε = γ
12 , we can verify A−B− εI is also positive

definite. Noting that S′ ≥ 0, hence if τ ≤ τ0 = d
CC2

µc2 , we have

‖ξn+1
u ‖2 − ‖ξn

u‖2 ≤ P .

The estimate for the stage values ‖ξn,ℓ
u ‖ emerging in the first term of P can be

obtained along the similar argument as the proof for Lemma 4.2. So we omit the
details and only state it in the following lemma.

Lemma 4.3. Under the condition of Lemma 4.2, we have, for ℓ = 1, 2, 3, 4

(4.20) ‖ξn,ℓ
u ‖2 ≤ C

(

‖ξn
u‖2 +

4∑

ℓ=1

‖Eℓη
n
u + δ4ℓζ

n‖2 + τ
3∑

ℓ=1

‖ηn,ℓ
q ‖2

)

.

Combining Lemmas 4.2 and 4.3 and by the aid of the discrete Gronwall’s inequal-
ity, we can derive

(4.21) ‖ξn
u‖2 ≤ eCnτ

(

‖ξ0
u‖2 +

n−1∑

m=0

{

1

τ

4∑

ℓ=1

‖Eℓη
m
u + δ4ℓζ

m‖2 + τ
3∑

ℓ=1

‖ηm,ℓ
q ‖2

})

,

provided that τ is small enough such that τ ≤ τ0.
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Noting that ξ0
u = 0, and owing to (4.5), (4.7) and the triangle inequality, we get

the main error estimate, which is presented in the following Theorem.
Theorem 4.4. Let u be the numerical solution of scheme (3.16). The finite

element space Vh is the space of piecewise polynomials with degree k ≥ 1 on the quasi-
uniform triangulations of Ω = (a, b). Let U be the exact solution of problem (2.1)
which satisfies the smoothness assumption (4.4), then there exists a positive constant
τ0 depending only on the advection and diffusion coefficients and not on h, such that
if τ ≤ τ0, there holds the following error estimate

(4.22) max
nτ≤T

‖U(tn) − un‖ ≤ C(hk+1 + τ3),

where T is the final computing time and the bounding constant C > 0 is independent
of h and τ .

5. Numerical experiments. The purpose of this section is to numerically val-
idate the stability for the three IMEX LDG schemes given in Section 3, and error
estimates for the second and third order IMEX LDG schemes (3.13) and (3.16). For
the third order scheme, we take the parameter α1 = −0.35 as the choice in [4].

First we consider the exact solution

(5.1) u(x, t) = e−dt sin(x − ct),

for the problem (2.1), in the interval (a, b) = (−π, π). The periodic boundary con-
dition is given by the exact solution. The finite element space is piecewise constant,
piecewise linear and piecewise quadratic polynomials for the first, second and third
order schemes, respectively. Table 1 lists the maximum time step τ0 which can be

Table 1

The maximum time step τ0 to ensure that the L2-norm decreases with time for the schemes.

d = 0.01 c = 0.5 ν

scheme c = 0.05 c = 0.1 c = 0.2 d = 0.01 d = 0.02 d = 0.04

first (3.6) 8.537 2.119 0.550 0.099 0.179 0.341 2.119

second (3.13) 5.540 1.385 0.346 0.055 0.110 0.221 1.385

third (3.16) 19.45 4.862 1.215 0.194 0.388 0.777 4.862

chosen to ensure the stability of the schemes (in the sense that the L2-norm decreases
with time) for solving this problem on uniform meshes, with mesh size h = (b−a)/N ,
where N is the number of cells. In this test, we take N = 640. The final computing
time is T = 5000 in the cases of the d = 0.01 column and T = 2000 in the cases of
the c = 0.5 column. The result shows that τ0 ≈ νd/c2 for some constant ν, which
validate our stability properties stated in Propositions 3.1, 3.2 and 3.3.

Tables 2 and 3 are the L2 errors and orders of accuracy for the schemes (3.13) and
(3.16) for solving (2.1) on nonuniform meshes, respectively. The nonuniform meshes
are obtained by randomly perturbing each node in the uniform mesh by up 20%. We
take τ = h in all the tests. We can clearly observe the designed orders of accuracy
from both tables.

Next we consider the viscous Burgers’ equation with a source term

Ut + UUx = dUxx + g(x, t), (x, t) ∈ QT = (−π, π) × (0, T ],(5.2a)

U(x, 0) = sin(x), x ∈ Ω = (−π, π),(5.2b)
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Table 2

The second order scheme, T = 10, k = 1.

d = 0.1 c = 1 c = 0.1 c = 0.01

N L2 error order L2 error order L2 error order

40 2.89E-02 - 1.14E-03 - 1.10E-03 -

80 6.76E-03 2.09 2.73E-04 2.06 2.75E-04 1.99

160 1.69E-03 2.00 6.77E-05 2.01 6.84E-05 2.01

320 4.23E-04 2.00 1.71E-05 1.98 1.72E-05 1.99

640 1.06E-04 2.00 4.36E-06 1.98 4.32E-06 2.00

Table 3

The third order scheme, T = 10, k = 2.

d = 0.1 c = 1 c = 0.1 c = 0.01

N L2 error order L2 error order L2 error order

40 6.12E-04 - 1.53E-05 - 1.61E-05 -

80 7.80E-05 2.97 1.95E-06 2.97 1.90E-06 3.09

160 9.84E-06 2.99 2.44E-07 3.00 2.40E-07 2.99

320 1.24E-06 2.99 3.06E-08 3.00 3.04E-08 2.98

640 1.55E-07 3.00 3.80E-09 3.01 3.87E-09 2.97

where g(x, t) = 1
2e−2dt sin(2x). The exact solution of (5.2) is

(5.3) U(x, t) = e−dt sin(x).

We list the L2 errors and orders of accuracy for the schemes (3.13) and (3.16) for
solving (5.2) on nonuniform meshes in Tables 4 and 5. The nonuniform meshes are
obtained in the same way as before. We take τ = h in all the tests except for the case
d = 0.01 in Tables 4 and 5, where we take τ = 0.3h, because if larger τ is taken in this
case, it will be beyond the maximum time step to ensure the stability when the mesh
is not fine enough. We can again clearly observe the designed orders of accuracy from
both tables.

Table 4

Burgers’ equation. The second order scheme, T = 10, k = 1.

d = 1 d = 0.1 d = 0.01

N L2 error order L2 error order L2 error order

40 8.77E-06 - 1.13E-03 - 2.23E-03 -

80 2.12E-07 5.37 2.56E-04 2.12 5.51E-04 2.02

160 5.21E-08 2.02 6.58E-05 1.96 1.40E-04 1.98

320 1.29E-08 2.01 1.69E-05 1.96 3.70E-05 1.92

640 3.22E-09 2.01 4.26E-06 1.99 9.71E-06 1.93

At the end, we would like to test the errors and orders of accuracy in time for
the type of problems whose exact solution is exponentially increasing with respect to
time. For this purpose, we consider the problem

Ut + Ux = dUxx + g(x, t), (x, t) ∈ QT = (−π, π) × (0, T ],(5.4a)

U(x, 0) = sin(x), x ∈ Ω = (−π, π),(5.4b)
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Table 5

Burgers’ equation. The third order scheme, T = 10, k = 2.

d = 1 d = 0.1 d = 0.01

N L2 error order L2 error order L2 error order

40 7.35E-08 - 1.57E-05 - 3.39E-05 -

80 9.63E-09 2.93 1.97E-06 3.00 4.44E-06 2.93

160 1.23E-09 2.97 2.54E-07 2.96 5.75E-07 2.95

320 1.56E-10 2.98 3.06E-08 3.05 7.28E-08 2.98

640 1.96E-11 2.99 3.90E-09 2.97 9.25E-09 2.98

with the exact solution U(x, t) = edt sin(x), where g(U) = edt(2d sin(x) + cos(x)) .

In order to test the orders of accuracy with respect to time, we take N = 1280
and use a higher order approximation in space, i.e, we use the space of piecewise
polynomials of degree k for the k-th order time discretization, and we take proper
time steps such that the temporal error is dominant. In Tables 6 and 7 , we list the
L2 errors and orders of accuracy for the schemes (3.13) and (3.16) for solving (5.4),
with respect to time. Optimal orders of accuracy in time can be observed from both
tables.

Table 6

Equation (5.4). The second order scheme, T = 10, k = 2.

d = 0.1 d = 0.5 d = 1

τ L2 error order L2 error order L2 error order

0.2 4.56E-04 - 4.02E-01 - 1.62E+02 -

0.1 1.15E-04 1.98 1.03E-01 1.97 4.15E+01 1.96

0.05 2.89E-05 1.99 2.62E-02 1.98 1.05E+01 1.98

0.025 7.24E-06 2.00 6.53E-03 1.99 2.64E+00 1.99

0.0125 1.81E-06 2.00 1.64E-03 2.00 6.63E-01 2.00

Table 7

Equation (5.4). The third order scheme, T = 10, k = 3.

d = 0.1 d = 0.5 d = 1

τ L2 error order L2 error order L2 error order

0.2 5.08E-05 - 7.06E-02 - 5.44E+01 -

0.1 6.41E-06 2.99 9.16E-03 2.95 7.15E+00 2.93

0.05 8.06E-07 2.99 1.17E-03 2.97 9.18E-01 2.96

0.025 1.01E-07 3.00 1.47E-04 2.99 1.16E-01 2.98

0.0125 1.26E-08 3.00 1.85E-05 2.99 1.47E-02 2.99

6. Concluding remarks. We consider several specific implicit-explicit Runge-
Kutta time marching methods coupled with the LDG schemes for solving linear
advection-diffusion problems with periodic boundary conditions. In these methods
the diffusion terms are treated implicitly and the advection terms are treated explic-
itly. By establishing the important relationship between the numerical solution and
its gradient, and with the aid of energy techniques, we prove that the corresponding
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IMEX LDG schemes are stable under the time step restriction τ ≤ τ0, where the con-
stant τ0 only depends on the advection and diffusion coefficients and is independent
of the mesh size h. We also present optimal error estimates in both space and time,
under the same temporal condition τ ≤ τ0. The stability analysis and error estimates
can be extended to convection-diffusion problems with a nonlinear convection part,
and similar stability analysis and error estimates can also be carried out for multi-
step IMEX LDG schemes, both of which constitute our current work. In the future,
we would like to consider the IMEX LDG schemes for non-periodic boundary condi-
tions, for which we expect stability to be similarly obtainable, but accurate numerical
boundary conditions would require some work.
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