
A simple weighted essentially non-oscillatory limiter for the correction

procedure via reconstruction (CPR) framework

Jie Du1, Chi-Wang Shu2 and Mengping Zhang3

Abstract

In this paper, we adapt a simple weighted essentially non-oscillatory (WENO) lim-

iter, originally designed for discontinuous Galerkin (DG) schemes [45], to the correction

procedure via reconstruction (CPR) framework for solving conservation laws. The ob-

jective of this simple WENO limiter is to simultaneously maintain uniform high order

accuracy of the CPR framework in smooth regions and control spurious numerical oscil-

lations near discontinuities. The WENO limiter we adopt in this paper is particularly

simple to implement and will not harm the conservativeness of the CPR framework.

Also, it uses information only from the target cell and its immediate neighbors, thus can

maintain the compactness of the CPR framework. Since the CPR framework with the

WENO limiter does not in general preserve positivity of the solution, we also extend the

positivity-preserving limiters in [43, 44, 36] to the CPR framework. Numerical results in

one and two dimensions are provided to illustrate the good behavior of this procedure.
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1 Introduction

In this paper, we consider the following hyperbolic conservation law

ut + f(u)x = 0,
u(x, 0) = u0(x),

(1)

and its two-dimensional version

ut + f(u)x + g(u)y = 0,
u(x, y, 0) = u0(x, y),

(2)

where u, f(u) and g(u) can be either scalars or vectors. There has been a surge of recent

research activities on high-order methods capable of solving conservation laws, such as

the discontinuous Galerkin (DG) method [30, 8, 7, 6, 5, 9], the spectral and spectral-

element type methods [11, 4, 13, 18], the staggered-grid (SG) multi-domain spectral

method [21, 19, 20], the spectral volume (SV) [37, 39, 40, 42] and spectral difference

(SD) methods [24, 25]. The SD method can be viewed as the extension (or generaliza-

tion) of the SG method to triangular meshes. More recently, a new correction procedure

via reconstruction (CPR) framework [14, 15, 38, 10, 12] was developed. This method

was originally developed in [14] to solve conservation laws on structured meshes, under

the name of flux reconstruction. In [38, 10], the CPR framework was extended to 2D

triangular and mixed grids under lifting collocation penalty. In [12], CPR was further

extended to 3D hybrid meshes. The CPR formulation has some nice properties. By

choosing certain correction functions, the CPR framework can unify several well-known

methods such as the DG, SG and the SV/SD methods and leads to simplified versions of

these methods, at least for linear equations. The CPR framework is based on a nodal dif-

ferential form, with an element-wise discontinuous piecewise polynomial solution space.

It can be considered as the DG method with a suitable numerical quadrature for the

integration of the nonlinear terms. The advantage is that it solves the conservation laws

in a differential form, similar to a finite difference scheme. In the SG or SD method, two

groups of grid points are needed, i.e., the solution points and the flux points. However,
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the CPR framework involves only one group of grid points, namely, the solution points.

Hence, the CPR framework is easier to understand and more efficient to implement. The

CPR method is compact because only immediate face neighbors play a role in updating

the solutions in the current cell. Therefore, the complexity of implementation can be

reduced, especially for multi-dimensional meshes including unstructured meshes.

The main difficulty in solving conservation laws is that solutions may contain discon-

tinuities even if the initial conditions are smooth. However, the CPR method is only a

high-order linear scheme, hence it will generate spurious oscillations for problems con-

taining strong discontinuities. Therefore, we need to apply nonlinear limiters to control

these oscillations. There are many types of limiters, such as the minmod type total

variation bounded (TVB) limiter [8, 7, 6, 5, 9], the moment-based limiter [2] and the

improved moment limiter [3]. In [24, 41, 25], TVB and TVD (total variation dimin-

ishing) limiters are used in the SD method to control spurious oscillations. Although

these limiters can control spurious numerical oscillations near discontinuities, they tend

to degrade accuracy when mistakenly used in smooth regions of the solution. To achieve

the full potential of high order accuracy and efficiency of high order methods, we would

like to find a robust and high order limiting procedure to simultaneously maintain uni-

form high order accuracy in smooth regions and control spurious numerical oscillations

near discontinuities. Limiters based on the WENO methodology [23, 16, 31] would serve

such a purpose. Qiu and Shu [28] and Zhu et al. [46] designed limiters using the usual

WENO reconstruction for the DG methods. They need to reconstruct the values of the

solutions at certain Gaussian quadrature points in the target cell using the cell averages

of neighboring cells. This kind of limiters uses information from not only the immediate

neighboring cells but also neighbors’ neighbors. If we apply this limiter to the CPR

framework, the compactness of the original CPR framework will be destroyed. To re-

duce the spread of reconstruction stencils, the effort in [26, 27] attempts to construct

Hermite type WENO approximations. However the information of neighbors’ neighbors
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is still needed for higher order methods. Very recently, a new and simple WENO limiter

[45] was designed for the Runge-Kutta discontinuous Galerkin (RKDG) methods. This

simple WENO limiter attempts to reconstruct the entire polynomial in one shot, using

the information only from the target cell and its immediate neighbors. Extension to 2D

triangulations is studied in [47].

Since the CPR framework is relatively new, discussion about high order limiting

procedure in this framework is sparse. In this paper, we attempt to adapt the WENO

limiter in [45] to the CPR framework on structured meshes to make it more robust

for shocked flows while maintaining high order accuracy. Comparing with the usual

WENO reconstruction type limiters and the limiters based on Hermite type WENO

approximations, this new WENO limiter uses the information only from the target cell

and its immediate neighbors, thus it can maintain the compactness of the original CPR

method.

An important property of the entropy solution of scalar conservation laws is that

it satisfies a strict maximum principle. For example, considering the one-dimensional

scalar conservation law (1), if

M = max
x

u0(x), m = min
x

u0(x), (3)

then u(x, t) ∈ [m, M ] for any x and t. In particular, the solution will not be negative

if u(x, 0) > 0. In [43], a genuinely high order accurate maximum-principle-satisfying

scheme for scalar conservation laws was developed. For hyperbolic conservation law sys-

tems, the entropy solutions generally do not satisfy the maximum principle. However,

for the Euler equations, the density and pressure should both be positive physically. A

uniformly high order accurate DG scheme which preserve positivity of density and pres-

sure for Euler equations of compressible gas dynamics was constructed in [44], which can

be considered as a generalization of the maximum-principle-satisfying scheme in [43].

[36] further discussed an extension to design arbitrarily high order positivity-preserving

DG schemes for reactive Euler equations and presented a simpler and more robust im-
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plementation of the positivity-preserving limiter than the one in [44].

In this paper, the CPR framework with the WENO limiter does not in general sat-

isfy the positivity property. Hence, we extend the positivity-preserving limiters in [43],

[44] and [36] to the CPR framework. Note that the CPR framework is conservative,

and it can be written in a form similar to a scheme satisfied by the cell averages of a

DG method. Also, the WENO limiter will not harm the conservativeness of the CPR

framework. Hence, it is straightforward to extend the positivity-preserving limiter to

the CPR framework with the WENO limiter. However, there are still some differences.

For the two-dimensional conservation law, as we will see in this paper, there are two new

solution polynomials after we apply the WENO limiter. Hence, we need to apply the

positivity-preserving limiter to both of these two solution polynomials.

This paper is organized as follows. We first review the CPR formulation in Section

2. In Section 3, we review the details of the WENO limiting procedure and describe the

way to introduce it to the CPR framework. In Section 4, we describe the detailed pro-

cedure to perform the positivity-preserving limiter. In Section 5, numerical experiments

are provided to verify the accuracy and stability of these limiters. Finally, concluding

remarks are provided in Section 6.

2 Formulation of the CPR framework

In this section, we give an overview of the formulation of the CPR method for solv-

ing hyperbolic conservation laws (1) and (2) and give some comments on the order of

accuracy of the CPR framework.

2.1 Review of the CPR framework in one dimension

Consider the one-dimensional conservation law denoted by Equation (1), which can

be either a scalar equation or a system of equations. Assuming the calculation do-

main is x ∈ [a, b], we first divide it into N small cells, with the j-th cell defined by
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Ij = [xj− 1

2

, xj+ 1

2

], j = 1, · · · , N . Instead of dealing with each element cell, it is more

convenient to transform them into a standard element I = [−1, 1]. With ξ varying on I

and x varying on Ij, the mapping from I onto Ij is

x(ξ) = xj + ξhj/2, (4)

where xj = (xj− 1

2

+ xj+ 1

2

)/2 is the cell center of Ij and hj = xj+ 1

2

− xj− 1

2

is the width

of Ij . We further denote h = maxj=1,··· ,N hj. For convenience, we mainly deal with I for

the following discussions.

On each cell Ij, the solution is approximated by K pieces of data uj,k(t), k =

1, · · · , K, which are the numerical approximations to the exact solution at the K solu-

tion points xj,k, k = 1, · · · , K. In [14], Fourier (Von Neumann) analysis is provided to

get information on both stability and accuracy of the CPR scheme for one-dimensional

linear scalar equation. It is shown that Fourier stability and accuracy analysis are inde-

pendent of the solution points chosen. In other words, the results from Fourier analysis

will be the same by using another set of solution points. Here, we assume that the same

type of solution points is employed for all cells. Hence, by denoting the solution points

on I as ξk, k = 1, · · · , K, the solution points on Ij can be computed by

xj,k = xj + ξkhj/2, k = 1, · · · , K. (5)

Note that each numerical solution uj,k(t) depends on t, and that uj,k(t
n) is the numerical

solution at time level n. For simplicity, uj,k(t
n) is abbreviated to uj,k when there is

no confusion. For each time level n and cell Ij , supposing all the numerical solutions

uj,k, k = 1, · · · , K are known, we would need to compute
duj,k

dt
, k = 1, · · · , K at t = tn,

and then march in time, for example by a Runge-Kutta method to get uj,k(t
n+1), k =

1, · · · , K.

For each cell Ij , let us first approximate u by the following solution polynomial, which

is a polynomial of degree K − 1 interpolating uj,k, k = 1, · · · , K:

uj(ξ) =
K

∑

k=1

uj,kφk(ξ), ξ ∈ [−1, 1], (6)
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where

φk(ξ) =

K
∏

l=1,l 6=k

ξ − ξl

ξk − ξl
, k = 1, · · · , K (7)

are the Lagrange polynomials. Denote the values of uj(ξ) at the two cell boundaries as

u+
j− 1

2

= uj(−1), u−

j+ 1

2

= uj(1). (8)

Note that if the solution points contain the two cell boundaries, namely, ξ1 = −1 and

ξK = 1, then immediately we have

u+
j− 1

2

= uj,1, u−

j+ 1

2

= uj,K. (9)

Next, compute the fluxes at the K solution points using

fj,k = f(uj,k), k = 1, · · · , K, (10)

and interpolate them by

fj(ξ) =

K
∑

k=1

fj,kφk(ξ), ξ ∈ [−1, 1]. (11)

Obviously, fj(ξ) is a polynomial of degree K − 1. At each cell boundary xj+ 1

2

, we

generally have fj(1) 6= fj+1(−1). Hence, we refer to fj(ξ) as the discontinuous flux

function. To account for the data interaction between adjacent cells, a continuous flux

function denoted by Fj(ξ) is designed, which must satisfy the following conditions:

• The continuous flux function Fj(ξ) is required to take the Riemann fluxes at both

ends of the cell Ij , namely,

Fj(−1) = f̂j− 1

2

, Fj(1) = f̂j+ 1

2

, (12)

where f̂j+ 1

2

= f̂(u−

j+ 1

2

, u+
j+ 1

2

) is any Riemann flux given the two discontinuous solu-

tions at the left and right of the interface.

• In each cell Ij , the degree of Fj(ξ) should be K, i.e., one degree higher than the

solution polynomial uj(ξ). This requirement is explained in [14].
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• Fj(ξ) is required to approximate the discontinuous flux function fj(ξ) in some

sense. Hence, Fj(ξ) − fj(ξ) approximates the function 0.

Considering the above three conditions, the continuous flux polynomial is defined by

Fj(ξ) = fj(ξ) + [f̂j− 1

2

− fj(−1)]gLB(ξ) + [f̂j+ 1

2

− fj(1)]gRB(ξ), ξ ∈ [−1, 1]. (13)

Here, gLB is the correction function at the left boundary satisfying

gLB(−1) = 1, gLB(1) = 0; (14)

gRB is the correction function at the right boundary satisfying

gRB(−1) = 0, gRB(1) = 1. (15)

Both gLB and gRB are polynomials of degree K which approximate the function 0 in

some sense. The derivative of Fj(ξ) at the solution points ξk, k = 1, · · · , K can then be

computed by

(Fj)ξ(ξk) = (fj)ξ(ξk) + [f̂j− 1

2

− fj(−1)]g′
LB(ξk) + [f̂j+ 1

2

− fj(1)]g′
RB(ξk). (16)

Using the mapping defined by Equation (4), we know that the derivative of Fj(x) at the

solution point xj,k is

(Fj)x(xj,k) =
2

hj

(Fj)ξ(ξk) (17)

Finally, we update the numerical solutions using the following ODE

duj,k

dt
+

2

hj
(Fj)ξ(ξk) = 0, (18)

which can be solved by various time discretizations such as a Runge-Kutta method. In

[14], it is proved that Equation (18) is a conservative scheme in the sense of the following

equation:

∂

∂t

∫

Ij

uj(x, tn)dx = f̂j− 1

2

− f̂j+ 1

2

. (19)
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The continuity of Fj(ξ) between adjacent cells is crucial in the proof.

Note that the correction functions gLB(ξ) and gRB(ξ) have not been uniquely defined.

Because of symmetry, we only need to consider the correction function gLB. For simplicity

of notation, we denote gLB as g. We already know that g is a polynomial of degree K, and

that g(−1) = 1 and g(1) = 0. Hence, K − 1 additional conditions are required to define

g. By choosing different specific correction functions, the CPR framework successfully

recovers the DG, SG or SD/SV methods, at least for linear equations [14]. In fact, the

SV and SD methods are identical for one-dimensional conservation laws if the flux points

in the SD method coincide with the partition boundaries in the SV method [35]. We

will discuss the relationship between CPR and SG or SD method in Section 2.3 of this

paper. For more details about the choice of the correction functions and the relationship

between CPR and other methods including DG, we refer to [14].

2.2 Review of the CPR framework in two dimension

Consider the two-dimensional conservation law denoted by Equation (2), which can

be either a scalar equation or a system of equations. It is straight-forward to extend the

one-dimensional operations to two-dimensional rectangular cells. First, let the domain

of calculation be divided into uniform rectangular cells. We consider uniform cells for

the simplicity of presentation, the method itself works also for non-uniform meshes. The

(i, j)-th cell is denoted by Ii,j = [xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

], with the length hx, height hy,

and center (xi, yj). As in the one-dimensional case, we transform Ii,j onto the standard

cell [−1, 1]× [−1, 1], with (x, y) varying on Ii,j and (ξ, η) varying on [−1, 1]× [−1, 1]. Let

the solution points on ξ ∈ [−1, 1] be ξk, k = 1, · · · , K. For simplicity, the same solution

points in the η direction are used: ηl = ξl, l = 1, · · · , K. Then the solution points

on [−1, 1] × [−1, 1] are given by the tensor product of these one-dimensional solution

points, i.e., (ξk, ηl), k = 1, · · · , K, l = 1, · · · , K. Hence, the solution points on Ii,j can
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be computed by

(xi,k, yj,l) = (xi + ξkhx/2, yj + ηlhy/2), k = 1, · · · , K, l = 1, · · · , K. (20)

On Ii,j, the numerical solutions are K × K pieces of data ui,j;k,l, k = 1, · · · , K, l =

1, · · · , K at the solution points. The solution polynomial is then constructed by

ui,j(ξ, η) =

K
∑

k,l=1

ui,j;k,lφk(ξ)φl(η), (ξ, η) ∈ [−1, 1] × [−1, 1], (21)

where

φk(ξ) =
K
∏

m=1,m6=k

ξ − ξm

ξk − ξm
, φl(η) =

K
∏

m=1,m6=l

η − ηm

ηl − ηm
. (22)

At each solution point, we can evaluate the corresponding fluxes:

fi,j;k,l = f(ui,j;k,l), gi,j;k,l = g(ui,j;k,l). (23)

Then the discontinuous flux polynomials are given by

fi,j(ξ, η) =

K
∑

k,l=1

fi,j;k,lφk(ξ)φl(η), (ξ, η) ∈ [−1, 1] × [−1, 1], (24)

and

gi,j(ξ, η) =

K
∑

k,l=1

gi,j;k,lφk(ξ)φl(η), (ξ, η) ∈ [−1, 1] × [−1, 1]. (25)

To approximate f(u)x in Equation (2), we let the solution point ηl be fixed, say,

l = 2. The solution polynomial ui,j(ξ, η2) and the discontinuous polynomial fi,j(ξ, η2)

now become polynomials of degree K − 1 in ξ:

ui,j(ξ, η2) =

K
∑

k=1

ui,j,k,2φk(ξ), ξ ∈ [−1, 1], (26)

fi,j(ξ, η2) =

K
∑

k=1

fi,j,k,2φk(ξ). ξ ∈ [−1, 1]. (27)
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Now, the continuous flux polynomial along η = η2 can be constructed in the same way

as in one dimension:

Fi,j(ξ, η2) = fi,j(ξ, η2) + [f̂i− 1

2

(η2) − fi,j(−1, η2)]gLB(ξ) + [f̂i+ 1

2

(η2) − fi,j(1, η2)]gRB(ξ),

(28)

where f̂i+ 1

2

(η2) = f̂(ui,j(1, η2), ui+1,j(−1, η2)) is any Riemann flux. Then, f(u)x at the

point (ξk, η2) is approximated by 2
hx

(Fi,j)ξ(ξk, η2). The procedure to compute the con-

tinuous flux function Gi,j along the η direction is similar, we just fix the solution point

ξk and use the same algorithm along the η direction. We omit the details.

Finally, the numerical solutions in cell Ii,j are updated by the following ODE:

d

dt
ui,j;k,l(t) +

2

hx
(Fi,j)ξ(ξk, ηl) +

2

hy
(Gi,j)η(ξk, ηl) = 0. (29)

2.3 Comments on the order of accuracy of CPR

Recall the CPR procedure in one dimension. We can see that fj(ξ) is a Lagrange

interpolation polynomial of degree K − 1, and that the derivative values of it, i.e.,

(fj)ξ(ξk), k = 1, · · · , K are used in Equation (16). We denote this approach as the LP

(Lagrange polynomial) approach. Note that (fj)ξ(ξ) is a polynomial of degree K − 2,

namely, one degree lower than uj(ξ). Wang and Gao [38] have pointed out that this LP

approach will lead to a slight accuracy loss (half an order to one order). Instead of using

(fj)ξ(ξk) in Equation (16), they replace it by the following expression,

(fu)(uj,k) · (uj)ξ(ξk), (30)

which is derived using the chain-rule (the CR approach). Accuracy studies in [38] have

indicated that this CR approach is significantly more accurate than the traditional LP

approach. However, we generally have (fu)(uj,k) · (uj)ξ(ξk) 6= (fj)ξ(ξk) for a nonlinear

function f(u). In this case, (Fj)ξ computed by Eq. (16) using the CR approach can

be considered as derivative values of another function which is no longer continuous

between adjacent cells. Hence, the CR approach will harm the conservativeness of the
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original CPR framework. In this section, we attempt to show that, by requiring the

K − 1 solution points to coincide with the inner roots of the correction functions, the

SG/SD type CPR using the original LP approach will not lose accuracy and the scheme

is still conservative.

Let us first recall the algorithm of the SG/SD method in one dimension. Here, we

consider the standard cell I = [−1, 1]. Except for the set of solution points {ξk, k =

1, · · · , K}, an additional set of points is also needed, namely, the flux points:

ζl, l = 1, · · · , K + 1, (31)

which must contain the two end points of the cell, i.e., ζ1 = −1 and ζK+1 = 1. The

way to construct the solution polynomial uj(ξ) is the same as shown in Equation (6).

The main difference between the SG/SD method and the CPR framework is the way to

construct the continuous flux function. In the SG/SD method, the values of the solution

polynomial at the flux points are computed:

uj(ζl), l = 1, · · · , K + 1. (32)

Then, the K degree continuous flux polynomial F̃j(ξ) is an interpolation polynomial

required to satisfy:

F̃j(ζl) = f(uj(ζl)), l = 2, · · · , K, F̃j(−1) = f̂j− 1

2

, F̃j(1) = f̂j+ 1

2

. (33)

Finally, the numerical solutions are updated using

duj,k

dt
+

2

hj

(F̃j)ξ(ξk) = 0. (34)

We now consider the CPR framework. Note that we have only given the values of

the correction functions at the two end points of the cell, and that K − 1 additional

conditions are needed to determine the correction functions. If we require

gLB(ζl) = gRB(ζl) = 0, l = 2, · · · , K, (35)
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then the two correction functions can be determined. We call this kind of CPR as SG/SD

type CPR. From Equation (13), we can easily see that

Fj(ζl) = fj(ζl), l = 2, · · · , K, Fj(−1) = f̂j− 1

2

, Fj(1) = f̂j+ 1

2

. (36)

By comparing Equation (33) and Equation (36), we can see that the SG/SD method and

the SG/SD type CPR are almost the same. However, there are still some differences.

One can see that for a nonlinear function f(u), we generally have

fj(ζl) 6= f(uj(ζl)), l = 2, · · · , K. (37)

If we let K−1 solution points coincide with the inner roots of the correction functions,

for example, we can let ξk = ζk, k = 2, · · · , K, then we have

fj(ζl) = fj(ξl) = fj,l = f(uj,l) = f(uj(ξl)) = f(uj(ζl)), l = 2, · · · , K. (38)

Now, the SG/SD type CPR is exactly the same as the SG/SD method. Numerical results

in Section 5 show that the accuracy will not be lost using the original LP approach.

3 The WENO limiter

In this section, we attempt to adapt the simple WENO limiter in [45] to the CPR

framework to control the oscillations for shocked flows as well as maintain the original

high order accuracy. To maintain the conservativeness of the CPR framework, we only

use the WENO limiter to reconstruct the solution polynomials (not the flux polynomials)

on each cell. Since the WENO limiter uses information only from immediate neighbors,

it can maintain the compactness of the CPR framework.

3.1 The WENO limiting procedure for the one-dimensional
scalar case

In the one-dimensional scalar CPR framework, the solution u(x, t) on cell Ij is ap-

proximated by the solution polynomial uj(x), x ∈ Ij . As in [45], we first use the TVB
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minmod limiter [7] to check whether the cell Ij is a troubled cell, namely, whether

uj(x), x ∈ Ij contains possible shocks and needs the limiting procedure.

For the solution polynomial uj(x), we denote

ūj =
1

hj

∫

Ij

uj(x)dx, (39)

and

δ+uj = u−

j+ 1

2

− ūj, δ−uj = ūj − u+
j− 1

2

. (40)

We further denote

δ+u
(mod)
j = m̃(δ+uj, ∆+ūj, ∆−ūj), δ−u

(mod)
j = m̃(δ−uj, ∆+ūj, ∆−ūj), (41)

where ∆+ūj = ūj+1−ūj and ∆−ūj = ūj−ūj−1, with the TVB modified minmod function

m̃(a1, · · · , al) =

{

a1, if |a1| 6 Mh2,
m(a1, · · · , al), otherwise,

(42)

where the minmod function m is defined by

m(a1, · · · , al) =

{

s min1≤j≤l |aj|, if s = sign(a1) = · · · = sign(al),
0, otherwise.

(43)

Here the TVB parameter M has to be chosen adequately depending on the solution of

the problem. In smooth regions away from extrema, Taylor expansions reveal that the

minmod function will return the first argument. In the region near smooth extrema, the

condition |a1| 6 Mh2 will be satisfied with a suitable choice of M (which depends on

the second derivative of the function at the extrema) and hence the modified minmod

function will also return the first argument. A detailed analysis is given in [7] to show

that, if M is chosen suitably depending on the second derivative of the solution, the

modified minmod function will always return the first argument (that is, the limiter

will not take any effect) for smooth functions or for general functions in smooth regions.

Whenever one of the minmod functions in Equation (41) gets enacted (returns other than

the first argument), the cell Ij is marked as a troubled cell. We remark that the TVB
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troubled cell indicator is just one of the many possibilities for troubled cell indicators

and may not be the best one, see [29] for a detailed discussion. We use it here for its

simplicity, as our main focus of this paper is not on troubled cell indicators.

Assuming that the cell Ij is a troubled cell, we now introduce the WENO limiting

procedure in [45] to reconstruct the solution polynomial on it. We denote the solution

polynomials on the cells Ij−1, Ij , Ij+1 as p−1(x), p0(x), p1(x), respectively, i.e.,

pl(x) = uj−l(x), l = −1, 0, 1, (44)

and use them to reconstruct a new solution polynomial unew
j (x) on Ij . In order to make

sure that unew
j (x) maintains the original cell average of uj(x), which is essential to keep

the conservativeness of the original CPR framework, we make the following modifications:

p̃−1(x) = p−1(x) − p̄−1 + p̄0, p̃1(x) = p1(x) − p̄1 + p̄0, (45)

where

p̄−1 =
1

hj

∫

Ij

p−1(x)dx, p̄0 =
1

hj

∫

Ij

p0(x)dx, p̄1 =
1

hj

∫

Ij

p1(x)dx. (46)

In this way the new polynomials p̃−1(x) and p̃1(x) will have the same cell average as that

of uj(x) on cell Ij . The final nonlinear WENO reconstruction polynomial unew
j (x) is now

defined by a convex combination of these modified polynomials:

unew
j (x) = ω−1p̃−1(x) + ω0p0(x) + ω1p̃1(x). (47)

Following [16, 1], the normalized nonlinear weights are defined as

ωl =
ω̃l

∑

s ω̃s
, (48)

where the non-normalized nonlinear weights ω̃l are functions of the linear weights γl and

the so-called smoothness indicators βl defined as follows:

ω̃l =
γl

(ε + βl)2
. (49)
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Here ε > 0 is introduced to avoid the denominator to become 0. We take ε = 10−6 in all

our numerical tests. As in [16, 1], the smoothness indicator is defined by

βl =
K

∑

s=1

∫

Ij

∆x2s−1
j

( ∂s

∂xs
pl(x)

)2
dx. (50)

We can easily see that ω−1 + ω0 + ω1 = 1. From Equation (47), we know that unew
j (x)

has the same cell average and order of accuracy as uj(x). As discussed in [45], because

we have used the complete information of the three polynomials p−1(x), p0(x) and p1(x),

there is no extra requirements on the linear weights in order to maintain the original

high order accuracy. Since for smooth solutions the central cell is usually the best one,

we put a larger linear weight on the central cell than on the neighboring cells. In our

numerical tests, we take

γ−1 = 0.000001, γ0 = 0.999998, γ1 = 0.000001. (51)

Starting from uj,k(t
n), j = 1, · · · , N, k = 1, · · · , K at time level n, we summarize the

procedure to obtain uj,k(t
n+1), j = 1, · · · , N, k = 1, · · · , K as follows. For simplicity, we

consider the forward Euler time discretization of the semi-discrete scheme (18).

1. As shown in Section 2.1, we first get the solution polynomials uj(x), j = 1, · · · , N

by interpolating the numerical solutions at the solution points in each cell.

2. Using the TVB limiting procedure described above to find out those troubled cells.

3. For each cell Ij, j = 1, · · · , N , if it is a troubled cell, we replace the entire solution

polynomial uj(x), x ∈ Ij with the new polynomial unew
j (x), x ∈ Ij , which is a

convex combination of polynomials on this cell and its immediate neighboring

cells. If the cell Ij is not a troubled cell, we just let unew
j (x) = uj(x), x ∈ Ij.

4. For each cell Ij, j = 1, · · · , N , compute unew
j,k = unew

j (xj,k), k = 1, · · · , K. We now

use the original CPR procedure (see Section 2.1) to construct the continuous flux

polynomial by using the new numerical solutions unew
j,k , and denote it as F new

j (x).
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5. We march in time and get the numerical solutions at time level n + 1 by

uj,k(t
n+1) − unew

j,k

∆t
+ (F new

j )x(xj,k) = 0. (52)

For simplicity, we have only considered the forward Euler time discretization in the

above illustration, while higher order methods, such as the TVD Runge-Kutta time

discretization [33] which is just a convex combination of such Euler forward steps, could

be applied.

Note that we have only reconstructed the solution polynomials in those troubled cells,

and the remaining procedures are exactly the same as the original CPR. Hence, the new

polynomials F new
j (x) are also continuous between adjacent cells. Using the same proof

as in [14], we can prove that

∂

∂t

∫

Ij

unew
j (x, tn)dx = f̂new

j− 1

2

− f̂new
j+ 1

2

, (53)

where f̂new
j− 1

2

and f̂new
j− 1

2

are the new common numerical fluxes at the cell boundaries. Hence,

the WENO limiting procedure will not harm the conservation property of the original

CPR.

3.2 WENO limiting procedure for the one-dimensional system
case

Consider the one-dimensional conservation law system as shown in Equation (1),

where u and f are vectors with m components. Denote the Jacobian matrix by Aj =

df
du
|ūj

, and the left and right eigenvectors of Aj by l
(p)
j , r

(p)
j , p = 1, · · · , m, normalized

so that l
(p)
j · r

(q)
j = δpq. Let R(ūj) be the m × m matrix with the right eigenvectors as

columns, i.e.,

R(ūj) = (r
(1)
j , r

(2)
j , · · · , r

(m)
j ). (54)

Clearly, R−1(ūj) is a m × m matrix with the left eigenvectors as rows, i.e.,

R−1(ūj) = (l
(1)
j , l

(2)
j , · · · , l

(m)
j )T . (55)
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As in [45], we first identify the troubled cells using the following characteristic-wise

TVB minmod limiter. For cell Ij, we denote

∆+v̄j = R−1(ūj+1 − ūj), ∆−v̄j = R−1(ūj − ūj−1), (56)

and

δ+vj = R−1(u−

j+ 1

2

− ūj), δ−vj = R−1(ūj − u+
j− 1

2

). (57)

We compute

δ+v
(mod)
j = m̃(δ+vj , ∆+v̄j, ∆−v̄j), δ−v

(mod)
j = m̃(δ−vj , ∆+v̄j , ∆−v̄j), (58)

with the modified minmod function m̃ defined in Equation (42) for each component of

the vectors. If

δ+v
(mod)
j = δ+vj & δ−v

(mod)
j = δ−vj, (59)

then Ij is not a troubled cell and we simply let unew
j (x) = uj(x).

Assuming the cell Ij is a troubled cell, we project the solution polynomials uj−1(x),

uj(x) and uj+1(x) into the characteristic fields as

vj−1(x) = R−1uj−1(x), vj(x) = R−1uj(x), vj+1(x) = R−1uj+1(x). (60)

Then, we perform the WENO limiting procedure as in the one-dimensional scalar case

for each component of vj(x) which is a troubled component, namely the corresponding

component makes the condition (59) not satisfied, and obtain the updated vector vnew
j (x).

Finally, the reconstructed solution polynomials on cell Ij is computed by

unew
j (x) = Rvnew

j (x). (61)

Starting from uj,k(t
n), j = 1, · · · , N, k = 1, · · · , K at time level n, we also use Equa-

tion (52) to get the numerical solutions at time level n + 1. We omit the details since it

is similar to the one-dimensional scalar case.
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3.3 WENO limiting procedure for the two-dimensional scalar

and system cases

Consider the conservation laws as shown in Equation (2), where u, f and g can be ei-

ther scalars or vectors. As explained in Section 2.2, the procedure in the two-dimensional

CPR framework on rectangular meshes is as simple as in the one-dimensional case. In

fact, we just fix one of the variables, and deal with another variable in the same way as in

the one-dimensional case. Hence, we only need to use the one-dimensional WENO limit-

ing procedure to reconstruct the solution polynomials along different directions, namely,

x and y, respectively. We show the details below.

Starting from the numerical solutions on the cell Ii,j at time level n, i.e., ui,j;k,l(t
n), k =

1, · · · , K, l = 1, · · · , K, we now show the procedure to obtain ui,j;k,l(t
n+1), k = 1, · · · , K, l =

1, · · · , K.

We first perform the procedure in the x-direction. For each fixed l, say l = 2, the

numerical solutions along the x-direction become ui,j;k,2(t
n), k = 1, · · · , K. We now

attempt to compute a set of new numerical solutions ux,new
i,j;k,2, k = 1, · · · , K as follows:

1. We first interpolate ui,j;k,2(t
n), k = 1, · · · , K to get the solution polynomial ui,j(x, yj,2),

which is a polynomial of degree K − 1 in x.

2. For the scalar case, we use the TVB minmod limiter introduced in Section 3.1 to

identify whether the solution function ui,j(x, yj,2) contains shocks and needs the

limiting procedure. For the system case, we use the characteristic-wise TVB limiter

described in Section 3.2. Be careful that the Jacobian matrix we use now is ∂f
∂u

.

3. If the solution function ui,j(x, yj,2) does not need the limiting procedure, we just

let ux,new
i,j (x, yj,2) = ui,j(x, yj,2). Otherwise, we use the polynomials ui−1,j(x, yj,2),

ui,j(x, yj,2) and ui+1,j(x, yj,2) to reconstruct a new polynomial ux,new
i,j (x, yj,2) and

replace the entire solution polynomial ui,j(x, yj,2) with it. The WENO limiting

procedure we use here is exactly the same as in the one-dimensional case.
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4. Compute ux,new
i,j;k,2 = ux,new

i,j (xi,k, yj,2), k = 1, · · · , K.

After doing all these procedures for each fixed l (l = 1, · · · , K), we get a new set of

numerical solutions ux,new
i,j;k,l , k = 1, · · · , K, l = 1, · · · , K.

Next, we perform a similar procedure along the y-direction to get uy,new
i,j;k,l , k = 1, · · · , K, l =

1, · · · , K. We omit the details, and only caution that, for the system case, the Jacobian

matrix we use now is ∂g
∂u

.

Finally, we compute ui,j;k,l(t
n+1), k = 1, · · · , K, l = 1, · · · , K at time level n + 1 by

ui,j;k,l(t
n+1) − unew

i,j;k,l

∆t
+ (F x,new

i,j )x(xi,k, yj,l) + (Gy,new
i,j )y(xi,k, yj,l) = 0, (62)

where unew
i,j;k,l = 1

2
(ux,new

i,j;k,l + uy,new
i,j;k,l ), the continuous flux function F x,new

i,j is computed by

using ux,new
i,j;k,l , k = 1, · · · , K, l = 1, · · · , K and Gy,new

i,j is computed by using uy,new
i,j;k,l , k =

1, · · · , K, l = 1, · · · , K. For simplicity, we have only considered the forward Euler time

discretization in the above procedure, while higher order methods, such as Runge-Kutta

time discretization could be applied.

4 The positivity-preserving limiter

In this section, we extend the positivity-preserving limiters in [43, 44, 36] to the CPR

framework. At each time level, we first reconstruct the solution polynomials using the

WENO limiter described in Section 3 to control oscillations, and then use the positivity-

preserving limiter to further modify the solution polynomials in each cell. The other

procedures will remain the same as in the original CPR framework. As shown in [43,

44, 36], these positivity-preserving limiters can enforce positivity without compromising

the original high order accuracy.

4.1 Positivity-preserving limiter for the one-dimensional scalar

case

Consider the M-point Legendre Gauss-Lobatto quadrature rule on the interval Ij =

[xj− 1

2

, xj+ 1

2

], which is exact for the integral of polynomials of degree up to 2M − 3. We
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denote these quadrature points on Ij as Sj. Here we choose M to be the smallest integer

satisfying 2M − 3 > K − 1.

At each time level, we can obtain a new solution polynomial unew
j (x) in Ij during the

WENO limiting procedure. We now use it to construct a modified solution polynomial

ũj(x) such that ũj(x) > 0 for all x ∈ Sj :

ũj(x) = θ(unew
j (x) − ūn

j ) + ūn
j , θ = min

{∣

∣

∣

∣

ūn
j

ūn
j − mj

∣

∣

∣

∣

, 1

}

, (63)

with mj = minx∈Sj
unew

j (x). Here ūn
j is the cell average of the solution polynomial as

defined in Equation (39) with ūn
j > 0. We add the superscript n to denote the time level.

In the case of mj > 0, we have θ = 1 and ũj(x) = unew
j (x) > mj > 0, ∀x ∈ Sj . In the

case of mj < 0, we have θ =
ūn

j

ūn
j −mj

and ũj(x) > θ(mj − ūn
j ) + ūn

j = 0, ∀x ∈ Sj . Then we

replace unew
j (x) by the modified polynomial ũj(x) for all j. The other procedure remains

unchanged as in the original CPR framework with the WENO limiter.

We have described the bound-preserving limiter for the simple case in which the only

bound to preserve is the lower bound zero (positivity-preserving). The procedure for

other lower bound and/or upper bound is similar. We refer to [43, 44, 36] for more

details.

4.2 Positivity-preserving limiter for the one-dimensional Euler

system

Consider the one-dimensional Euler system of compressible gas dynamics

ut + f(u)x = 0,

u =





ρ
m
E



 , f(u) =





m
ρv2 + p
v(E + p)



 .
(64)

Here ρ is the density, v is the velocity, m = ρv is the momentum, E is the total energy,

and p is the pressure, with

p(u) = (γ − 1)(E −
1

2
ρv2); (65)
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γ = 1.4 for the air.

At time level n, assume that the solution polynomial reconstructed by the WENO

limiter in cell Ij is unew
j (x) =

(

ρj(x), mj(x), Ej(x)
)T

, and that the cell average of unew
j (x)

is ūn
j =

(

ρ̄n
j , m̄

n
j , Ē

n
j

)T
. We use the following algorithm to get a new modified solution

polynomial ũj(x) and use it instead of unew
j (x).

1. In each cell, we modify the density first. Assume there exists a small number ε > 0

such that ρ̄n
j > ε for all j. In practice, we can choose ε = 10−13. Replace ρj(x) by

ρ̂j(x) = θ1

(

ρj(x) − ρ̄n
j

)

+ ρ̄n
j , θ1 = min{

ρ̄n
j − ε

ρ̄n
j − ρmin

, 1}, (66)

with ρmin = minx∈Sj
ρj(x). Now we have ρ̂j(x) > ε > 0, ∀x ∈ Sj . This fact is

proved in [22].

2. We then enforce the positivity of the pressure. Define ûj(x) =
(

ρ̂j(x), mj(x), Ej(x)
)T

.

For each x ∈ Sj , if p(ûj(x)) > 0, set θx = 1; otherwise, set

θx =
p(ūn

j )

p(ūn
j ) − p(ûj(x))

. (67)

Then we obtain the limited polynomial

ũj(x) = θ2(ûj(x) − ūn
j ) + ūn

j , θ2 = min
x∈Sj

θx. (68)

The proof of p(ũj(x)) > 0, ∀x ∈ Sj can be found in [36]. It can be shown that this

limiter does not destroy accuracy for smooth solutions [36, 44].

4.3 Positivity-preserving limiter for the two-dimensional scalar
case

In this section, we need to use the Gauss quadrature with L points, which is exact for

single variable polynomials of degree K−1. We assume Sx
i denote the Gauss quadrature

points on [xi− 1

2

, xi+ 1

2

], and Sy
j denote the Gauss quadrature points on [yj− 1

2

, yj+ 1

2

]. We

still need to use the Gauss-Lobatto quadrature rule. We assume Ŝx
i denote the Gauss-

Lobatto quadrature points on [xi− 1

2

, xi+ 1

2

], and Ŝy
j denote the Gauss-Lobatto quadrature
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points on [yj− 1

2

, yj+ 1

2

]. We use × to denote the Cartesian product, for instance, Sx
i ×Sy

j =

{(a, b)|a ∈ Sx
i , b ∈ Sy

j }. Define the sets Sx
i,j and Sy

i,j as

Sx
i,j = Ŝx

i × Sy
j , Sy

i,j = Sx
i × Ŝy

j . (69)

During the WENO limiting procedure, we get two solution polynomials ux,new
i,j (x, y)

and uy,new
i,j (x, y). Note that the WENO limiter does not change the cell average of

the original solution polynomial. Hence, the cell averages of both of these two solu-

tion polynomials are ūn
i,j. To preserve the positivity of the cell averages of the solu-

tion polynomials at the next time level, we need ux,new
i,j (x, y) > 0, ∀(x, y) ∈ Sx

i,j and

uy,new
i,j (x, y) > 0, ∀(x, y) ∈ Sy

i,j for all i and j. The proof is similar to that in [44] and is

omitted.

We now construct the modified solution polynomial ũx
i,j(x, y) as

ũx
i,j(x, y) = θ(ux,new

i,j (x, y) − ūn
i,j) + ūn

i,j, θ = min

{∣

∣

∣

∣

ūn
i,j

ūn
i,j − mi,j

∣

∣

∣

∣

, 1

}

, (70)

with mi,j = min(x,y)∈Sx
i,j

ux,new
i,j (x, y), and construct the modified solution polynomial

ũy
i,j(x, y) as

ũy
i,j(x, y) = θ(uy,new

i,j (x, y) − ūn
i,j) + ūn

i,j, θ = min

{∣

∣

∣

∣

ūn
i,j

ūn
i,j − mi,j

∣

∣

∣

∣

, 1

}

, (71)

with mi,j = min(x,y)∈Sy
i,j

uy,new
i,j (x, y). In each cell Ii,j, we replace ux,new

i,j (x, y) and uy,new
i,j (x, y)

by the two modified polynomials ũx
i,j(x, y) and ũy

i,j(x, y), respectively. The other proce-

dure remain unchanged as in the CPR framework with the WENO limiter.

4.4 Positivity-preserving limiter for two-dimensional Euler sys-
tem

Let us consider the two-dimensional Euler system which is given by

ut + f(u)x + g(u)y = 0,

u =









ρ
m
n
E









, f(u) =









m
ρu2 + p

ρuv
u(E + p)









, g(u) =









n
ρuv

ρv2 + p
v(E + p)









.
(72)
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Here, ρ is the density, (u, v) is the velocity, m = ρu and n = ρv are the momenta. E is

the total energy, and p is the pressure, with

p(u) = (γ − 1)
(

E −
1

2
ρ(u2 + v2)

)

. (73)

At time level n, assume that the two solution polynomials reconstructed by the

WENO limiter in cell Ii,j are ux,new
i,j (x, y) =

(

ρx
i,j(x, y), mx

i,j(x, y), nx
i,j(x, y), Ex

i,j(x, y)
)T

and uy,new
i,j (x, y) =

(

ρy
i,j(x, y), my

i,j(x, y), ny
i,j(x, y), Ey

i,j(x, y)
)T

, and the cell averages of

them are both ūn
i,j =

(

ρ̄n
i,j, m̄

n
i,j, n̄

n
i,j, Ē

n
i,j

)T
. We first use the following algorithm to get a

new modified solution polynomial ũx
i,j(x, y).

1. In each cell, we modify the density first. Set up a small number ε such that ρ̄n
i,j > ε

for all cell Ii,j. In practice, we can choose ε = 10−13. Replace ρx
i,j(x, y) by

ρ̂x
i,j(x, y) = θ1

(

ρx
i,j(x, y) − ρ̄n

i,j

)

+ ρ̄n
i,j , θ1 = min{

ρ̄n
i,j − ε

ρ̄n
i,j − ρx

min

, 1}, (74)

with ρx
min = min(x,y)∈Sx

i,j
ρx

i,j(x, y).

2. Define ûx
i,j(x, y) =

(

ρ̂x
i,j(x, y), mx

i,j(x, y), nx
i,j(x, y), Ex

i,j(x, y)
)T

. For each (x, y) ∈

Sx
i,j, if p(ûx

i,j(x, y)) > 0, set θx,y = 1; otherwise ,set

θx,y =
p(ūn

i,j)

p(ūn
i,j) − p(ûx

i,j(x, y))
. (75)

Then get the limited polynomial

ũx
i,j(x, y) = θ2(û

x
i,j(x, y) − ūn

i,j) + ūn
i,j, θ2 = min

(x,y)∈Sx
i,j

θx,y, (76)

with p(ũx
i,j(x, y)) > 0, ∀(x, y) ∈ Sx

i,j . See [36] for the proof of the positivity of the

pressure.

Next, we compute the modified solution polynomial ũy
i,j(x, y).

1. In each cell, we modify the density first. Replace ρy
i,j(x, y) by

ρ̂y
i,j(x, y) = θ1

(

ρy
i,j(x, y) − ρ̄n

i,j

)

+ ρ̄n
i,j , θ1 = min{

ρ̄n
i,j − ε

ρ̄n
i,j − ρy

min

, 1}, (77)

with ρy
min = min(x,y)∈Sy

i,j
ρy

i,j(x, y).
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2. Define ûy
i,j(x, y) =

(

ρ̂y
i,j(x, y), my

i,j(x, y), ny
i,j(x, y), Ey

i,j(x, y)
)T

. For each (x, y) ∈

Sy
i,j, if p(ûy

i,j(x, y)) > 0, set θx,y = 1; otherwise ,set

θx,y =
p(ūn

i,j)

p(ūn
i,j) − p(ûy

i,j(x, y))
. (78)

Then get the limited polynomial

ũy
i,j(x, y) = θ2(û

y
i,j(x, y) − ūn

i,j) + ūn
i,j, θ2 = min

(x,y)∈Sy
i,j

θx,y, (79)

with p(ũy
i,j(x, y)) > 0, ∀(x, y) ∈ Sy

i,j. See [36] for the proof.

In each cell Ii,j, we replace ux,new
i,j (x, y) and uy,new

i,j (x, y) by the two modified polynomials

ũx
i,j(x, y) and ũy

i,j(x, y), respectively.

5 Numerical results

In this section, we provide numerical experiments to demonstrate the performance of

the WENO limiter for the CPR framework. We use the third order TVD Runge-Kutta

method [33] for the time discretization. Third (K = 3), fourth (K = 4) and fifth (K = 5)

order CPR schemes with the WENO limiter are tested. Since the time discretization is

only third order accurate, we take ∆t ∼ ∆xK/3 to obtain the high order accurate results

for the accuracy test examples.

For all the numerical experiments, uniform meshes are tested. In several of them,

we also show the results of non-uniform meshes. The non-uniform meshes are obtained

from a 40% random perturbation of each node of the uniform mesh. Here, 40% denotes

the total range of possible variation of the perturbation of the point position, i.e., 20%

to the left and 20% to the right.

As we know, there are several different kinds of correction functions in the CPR

framework. In our computation, the numerical results for different correction functions

are similar, so we just give the results of one specific correction function. To demonstrate

the correctness of our comments in Section 2.3, we provide the results with the SG/SD
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type correction function in this section. Here, we let the solution points coincide with

the inner roots of the correction functions and use the original LP approach. We can see

that the order of accuracy will not be lost.

In general, there is no universal way to automatically choose the TVB constant M .

A lemma for the the choice of M in the one-dimensional scalar case is given in [7]. For

all the accuracy tests, in order to see the effect of the WENO limiter on the accuracy of

the CPR method, we use the TVB minmod limiter with a small TVB constant M = 0.01

to identify troubled cells, resulting in many good cells being identified as troubled cells.

We list in each table the percentage of troubled cells among all the cells. For the figures,

the solid lines are for the exact solutions or grid converged reference solutions, and the

symbols are for the numerical solutions (just one point per cell is plotted).

Example 1. We first test the performance of the WENO limiter on the one-dimensional

linear scalar problem

ut + ux = 0, 0 6 x 6 2π, (80)

with the initial condition u(x, 0) = sin(x) and a 2π-periodic boundary condition. The

exact solution is u(x, t) = sin(x − t). The errors at t = 2π are listed in Tables 1 and 2.

We list in the last column of each table the percentage of troubled cells among all the

cells. We can see that the WENO limiter maintains both the designed order of accuracy

and the magnitude of the errors of the original CPR method.

Example 2. We consider the Burgers equation

ut + (
u2

2
)x = 0, 0 6 x 6 2π, (81)

with the initial condition u(x, 0) = 0.5 + sin(x) and periodic boundary conditions. The

errors at t = 0.5 when the solution is smooth are listed in Tables 3 and 4. We can see that

the WENO limiter maintains both the designed order of accuracy and the magnitude

of the errors of the original CPR method. In Figure 1, we show the numerical results
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Table 1: 1D linear equation with initial condition u(x, 0) = sin(x) at t = 2π. Uniform
meshes.

N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20 9.17E-05 – 2.76E-04 – 9.17E-05 – 2.76E-04 – 20.00%
40 9.87E-06 3.22 3.15E-05 3.13 9.87E-06 3.22 3.15E-05 3.13 10.00%
80 1.16E-06 3.09 3.73E-06 3.08 1.16E-06 3.09 3.73E-06 3.08 5.00%
160 1.41E-07 3.04 4.53E-07 3.04 1.41E-07 3.04 4.53E-07 3.04 2.50%
320 1.74E-08 3.02 5.57E-08 3.02 1.74E-08 3.02 5.57E-08 3.02 1.25%

4th order

20 1.37E-05 – 4.03E-05 – 1.37E-05 – 4.03E-05 – 20.00%
40 8.56E-07 4.00 2.54E-06 3.99 8.56E-07 4.00 2.54E-06 3.99 10.00%
80 5.36E-08 4.00 1.59E-07 4.00 5.36E-08 4.00 1.59E-07 3.99 5.00%
160 3.35E-09 4.00 9.93E-09 4.00 3.35E-09 4.00 1.00E-08 3.99 2.50%
320 2.09E-10 4.00 6.21E-10 4.00 2.09E-10 4.00 6.34E-10 3.98 1.25%

5th order

20 4.07E-06 – 6.46E-06 – 4.07E-06 – 6.47E-06 – 20.00%
40 1.28E-07 5.00 2.01E-07 5.00 1.28E-07 5.00 2.02E-07 5.00 10.00%
80 3.99E-09 5.00 6.28E-09 5.00 3.99E-09 5.00 6.29E-09 5.00 5.00%
160 1.25E-10 5.00 1.96E-10 5.00 1.25E-10 5.00 1.97E-10 5.00 2.50%
320 3.91E-12 4.99 6.22E-12 4.98 3.91E-12 4.99 6.21E-12 4.99 1.25%

using 80 cells at t = 1.5 , when a shock has already appeared in the solution. We can

see that the schemes of all orders perform well in capturing this discontinuity without

oscillations.
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Figure 1: 1D Burgers equation at t = 1.5 with N = 80 cells

Example 3. Consider the one-dimensional Euler system described in Equation (64).

The initial condition is set to be ρ(x, 0) = 1 + 0.2 sin(x), v(x, 0) = 1, p(x, 0) = 1, with
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Table 2: 1D linear equation with initial condition u(x, 0) = sin(x) at t = 2π. Non-
uniform meshes.

N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20 1.27E-04 – 4.50E-04 – 1.27E-04 – 4.50E-04 – 20.00%
40 1.64E-05 3.33 6.61E-05 3.13 1.64E-05 3.33 6.61E-05 3.13 12.50%
80 2.18E-06 3.15 9.43E-06 3.04 2.18E-06 3.15 9.43E-06 3.04 6.25%
160 2.61E-07 2.97 1.02E-06 3.12 2.61E-07 2.97 1.02E-06 3.12 3.12%
320 3.29E-08 3.03 1.26E-07 3.06 3.29E-08 3.03 1.26E-07 3.06 1.56%

4th order

20 2.95E-05 – 8.51E-05 – 2.95E-05 – 8.51E-05 – 20.00%
40 2.53E-06 4.01 6.88E-06 4.11 2.53E-06 4.01 6.88E-06 4.11 10.50%
80 1.94E-07 4.01 5.20E-07 4.02 1.94E-07 4.01 5.20E-07 4.02 5.00%
160 1.12E-08 4.00 3.01E-08 4.00 1.12E-08 4.00 3.01E-08 4.00 2.50%
320 7.26E-10 4.00 2.06E-09 3.92 7.26E-10 4.00 2.06E-09 3.92 1.25%

5th order

20 1.10E-05 – 1.74E-05 – 1.10E-05 – 1.74E-05 – 20.00%
40 5.14E-07 5.00 8.11E-07 5.00 5.14E-07 5.00 8.11E-07 5.00 10.00%
80 2.08E-08 5.00 3.27E-08 5.00 2.08E-08 5.00 3.27E-08 5.00 5.00%
160 5.89E-10 5.00 9.26E-10 5.00 5.89E-10 5.00 9.27E-10 5.00 2.50%
320 1.92E-11 5.00 3.02E-11 5.00 1.92E-11 5.00 3.03E-11 5.00 1.25%

a 2π-periodic boundary condition. The exact solution is ρ(x, t) = 1 + 0.2 sin(x − t),

v(x, t) = 1 and p(x, t) = 1. The errors for the density at t = 2π are listed in Tables 5

and 6. We can see that the WENO limiter maintains both the designed order of accuracy

and the magnitude of the errors of the original CPR method.

Example 4. We consider two well-known problems of the Euler equations (64) with the

following Riemann type initial conditions

u(x, 0) =

{

uL, −5 6 x < 0,
uR, 0 6 x 6 5.

(82)

The first one is the Sod problem in which the initial condition is

(ρL, vL, pL) = (1, 0, 1); (ρR, vR, pR) = (0.125, 0, 0.1). (83)

The second one is the Lax problem in which the initial condition is

(ρL, vL, pL) = (0.445, 0.698, 3.528); (ρR, vR, pR) = (0.5, 0, 0.571). (84)
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Table 3: 1D Burgers equation with initial condition u(x, 0) = 0.5 + sin(x) at t = 0.5.
Uniform meshes.

N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20 1.93E-04 – 1.90E-03 – 1.93E-04 – 1.90E-03 – 35.00%
40 2.17E-05 3.15 3.09E-04 2.62 2.17E-05 3.15 3.09E-04 2.62 20.00%
80 2.39E-06 3.18 4.75E-05 2.70 2.39E-06 3.18 4.75E-05 2.70 10.00%
160 2.66E-07 3.17 6.36E-06 2.90 2.66E-07 3.17 6.36E-06 2.90 5.63%
320 3.06E-08 3.12 8.21E-07 2.95 3.06E-08 3.12 8.21E-07 2.95 2.81%

4th order

20 1.74E-05 – 4.87E-04 – 1.74E-05 – 4.87E-04 – 30.00%
40 9.17E-07 4.24 6.40E-05 2.93 9.17E-07 4.24 6.40E-05 2.93 17.50%
80 5.03E-08 4.19 4.57E-06 3.81 5.03E-08 4.19 4.57E-06 3.81 8.75%
160 2.68E-09 4.23 3.11E-07 3.88 2.68E-09 4.23 3.11E-07 3.88 4.38%
320 1.44E-10 4.22 2.03E-08 3.93 1.44E-10 4.22 2.03E-08 3.93 2.19%

5th order

20 1.49E-06 – 8.32E-05 – 1.49E-06 – 8.32E-05 – 30.00%
40 4.36E-08 5.10 5.09E-06 4.03 4.36E-08 5.10 5.09E-06 4.03 15.00%
80 1.17E-09 5.21 1.83E-07 4.79 1.17E-09 5.21 1.83E-07 4.79 7.50%
160 2.99E-11 5.30 6.89E-09 4.73 2.99E-11 5.30 6.89E-09 4.73 3.75%
320 7.97E-13 5.23 2.30E-10 4.90 7.97E-13 5.23 2.30E-10 4.90 1.88%

The numerical results of the Sod problem at t = 2 and the results of the Lax problem

at t = 1.3 are shown in Figures 2 and 3. To save space, we only show the plots for

density. For the TVB constant M = 0.01, we can see that there is no oscillation near the

discontinuities, however we also observe rather severe smearing, due to the strong WENO

limiter. The results become more accurate by relaxing the limiting through adjusting

M . For the Sod problem, we relax the limiting by taking M = 5, 5, 10 for K = 3, 4, 5

respectively. For the Lax problem, we relax the limiting by taking M = 10, 15, 30 for

K = 3, 4, 5 respectively.
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Table 4: 1D Burgers equation with initial condition u(x, 0) = 0.5 + sin(x) at t = 0.5.
Non-uniform meshes.

N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20 2.37E-04 – 1.20E-03 – 2.37E-04 – 1.20E-03 – 35.00%
40 2.50E-05 3.39 2.49E-04 2.38 2.50E-05 3.39 2.49E-04 2.38 20.00%
80 2.58E-06 3.01 5.99E-05 1.89 2.58E-06 3.01 5.99E-05 1.89 11.25%
160 3.18E-07 3.15 1.18E-05 2.44 3.18E-07 3.15 1.18E-05 2.44 5.63%
320 3.84E-08 3.10 1.87E-06 2.71 3.84E-08 3.10 1.87E-06 2.71 2.81%

4th order

20 1.98E-05 – 1.20E-03 – 1.98E-05 – 1.20E-03 – 30.00%
40 1.28E-06 4.14 7.81E-05 4.12 1.28E-06 4.14 7.81E-05 4.12 17.50%
80 5.79E-08 4.10 5.74E-06 3.46 5.79E-08 4.10 5.74E-06 3.46 8.75%
160 3.63E-09 4.16 6.86E-07 3.19 3.63E-09 4.16 6.86E-07 3.19 4.38%
320 1.98E-10 4.27 3.66E-08 4.30 1.98E-10 4.27 3.66E-08 4.30 2.19%

5th order

20 2.68E-06 – 1.91E-04 – 2.68E-06 – 1.91E-04 – 30.00%
40 5.30E-08 5.93 3.22E-06 6.16 5.30E-08 5.93 3.22E-06 6.16 17.50%
80 1.73E-09 4.54 2.69E-07 3.29 1.73E-09 4.54 2.69E-07 3.29 7.50%
160 5.26E-11 5.25 1.77E-08 4.09 5.26E-11 5.25 1.77E-08 4.09 4.38%
320 1.62E-12 5.11 7.97E-10 4.55 1.62E-12 5.11 7.97E-10 4.55 1.88%
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Figure 2: Sod problem at t = 2 with N = 100 cells.
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Table 5: 1D Euler equation with initial condition ρ(x, 0) = 1 + 0.2 sin(x), v(x, 0) = 1,
p(x, 0) = 1 at t = 2π. Errors for the density. Uniform meshes.

N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20 2.37E-05 – 1.00E-04 – 2.37E-05 – 1.00E-04 – 30.00%
40 2.71E-06 3.13 1.28E-05 2.96 2.71E-06 3.13 1.28E-05 2.96 20.00%
80 3.16E-07 3.10 1.60E-06 3.01 3.16E-07 3.10 1.60E-06 3.01 10.00%
160 3.78E-08 3.06 1.98E-07 3.01 3.78E-08 3.06 1.98E-07 3.01 5.63%
320 4.61E-09 3.04 2.46E-08 3.01 4.61E-09 3.04 2.46E-08 3.01 2.81%

4th order

20 3.14E-07 – 3.26E-06 – 3.14E-07 – 3.26E-06 – 30.00%
40 1.95E-08 4.01 2.02E-07 4.01 1.95E-08 4.01 2.02E-07 4.01 17.50%
80 1.22E-09 4.00 1.26E-08 4.00 1.22E-09 4.00 1.27E-08 3.99 8.75%
160 7.60E-11 4.00 7.88E-10 4.00 7.60E-11 4.00 8.05E-10 3.98 4.38%
320 4.75E-12 4.00 4.93E-11 4.00 4.74E-12 4.00 5.19E-11 3.96 2.19%

5th order

20 2.95E-08 – 1.35E-07 – 2.95E-08 – 1.35E-07 – 30.00%
40 9.21E-10 5.00 4.20E-09 5.01 9.21E-10 5.00 4.20E-09 5.01 15.00%
80 2.87E-11 5.00 1.29E-10 5.02 2.87E-11 5.00 1.29E-10 5.02 7.50%
160 8.93E-13 5.01 4.03E-12 5.00 9.14E-13 4.98 4.11E-12 4.98 3.75%
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Figure 3: Lax problem at t = 1.3 with N = 100 cells.
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Table 6: 1D Euler equation with initial condition ρ(x, 0) = 1 + 0.2 sin(x), v(x, 0) = 1,
p(x, 0) = 1 at t = 2π. Errors for the density. Non-uniform meshes.

N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20 2.96E-05 – 1.38E-04 – 2.97E-05 – 1.38E-04 – 35.00%
40 3.19E-06 3.37 1.77E-05 3.11 3.19E-06 3.37 1.77E-05 3.11 20.00%
80 3.49E-07 2.93 1.95E-06 2.92 3.49E-07 2.93 1.95E-06 2.92 10.00%
160 4.22E-08 3.17 2.74E-07 2.95 4.22E-08 3.17 2.74E-07 2.95 5.63%
320 5.18E-09 3.08 3.72E-08 2.93 5.18E-09 3.08 3.72E-08 2.93 2.81%

4th order

20 4.33E-07 – 1.26E-05 – 4.31E-07 – 1.26E-05 – 30.00%
40 1.84E-08 4.77 7.35E-07 4.29 1.84E-08 4.76 7.35E-07 4.29 17.50%
80 9.26E-10 3.96 3.80E-08 3.93 9.28E-10 3.96 3.80E-08 3.93 8.75%
160 5.87E-11 4.14 2.86E-09 3.89 5.87E-11 4.14 2.86E-09 3.89 4.38%
320 3.67E-12 4.07 2.06E-10 3.86 3.70E-12 4.06 2.04E-10 3.87 2.19%

5th order

20 2.21E-08 – 3.48E-07 – 2.22E-08 – 3.48E-07 – 30.00%
40 7.74E-10 5.06 9.76E-09 5.40 7.74E-10 5.07 9.76E-09 5.40 15.00%
80 1.83E-11 4.97 2.47E-10 4.87 1.83E-11 4.97 2.47E-10 4.87 7.50%
160 6.46E-13 5.02 9.47E-12 4.90 6.63E-13 4.98 9.40E-12 4.91 3.75%

Example 5. To demonstrate the advantage of higher order methods, we use the Euler

equation (64) with the initial condition

u(x, 0) =

{

uL, x < −4,
uR, x > −4,

(85)

where (ρL, vL, pL) = (3.857143, 2.629369, 10.333333) and (ρR, vR, pR) = (1+0.2 sin(5x), 0, 1).

This example describes the interaction of a Mach 3 shock with a density wave [34]. A

Mach 3 shock is initially located at x = −4 and moves to the right. A sine wave is

superimposed to the density in the right region of the shock. It contains both shocks

and fine structures in smooth regions. The numerical results at t = 1.8 are shown in

Figure 4. For K = 4 and K = 5, we add the positivity-preserving limiter to avoid

negative density or negative pressure during the time evolution. The solid lines are the

reference “exact” solution, which is a converged solution computed by the fifth order

finite difference WENO scheme [16] with 2000 grid points. We use the TVB constants

M = 0.01 and M = 300, respectively. For M = 0.01, we can observe some smearing.
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The results become better as M increases.
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Figure 4: The shock density wave interaction problem. t = 1.8. N = 110.
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Example 6. Now we consider the interaction of blast waves of the Euler equations (64)

with the initial condition

u(x, 0) =







uL, 0 ≤ x < 0.1,
uM , 0.1 ≤ x < 0.9,
uR, 0.9 ≤ x < 1,

(86)

where (ρL, vL, pL) = (1, 0, 103), (ρM , vM , pM) = (1, 0, 10−2) and (ρR, vR, pR) = (1, 0, 102).

A reflecting boundary condition is applied to both ends. The numerical results at t =

0.038 with M = 0.01 and M = 200 are plotted in Figure 5. The solid lines are the

reference “exact” solution, which is a converged solution computed by the fifth order

finite difference WENO scheme [16] with 16000 grid points. The positivity-preserving

limiter is added to the schemes of all orders. We can see that the results are well resolved

and we have not noticed any significant difference for taking M from 0.01 to 200.
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Figure 5: The blast wave problem at t = 0.038. N = 400.

Example 7. Consider the LeBlanc shock tube problem of the Euler equations (64) with
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the initial condition

u(x, 0) =

{

uL, −10 6 x < 0,
uR, 0 6 x < 10,

(87)

where (ρL, vL, pL) = (2, 0, 109) and (ρR, vR, pR) = (0.001, 0, 1). The positivity-preserving

limiter is added to the schemes of all orders. The numerical solutions with N = 2400

and N = 19200 are shown in Figures 6-8. For N = 2400 grid points, the TVB constant

M = 200 is used. For N = 19200 grid points, we use M = 500, M = 800 and M = 10000

for K = 3, K = 4 and K = 5 respectively. We can see that the results with N = 2400

are well resolved. As we increase the number of the grid point N and the TVB constant

M , the results become better resolved. For this extreme Riemann problem, there are

slight over- and under-shoots near the contact discontinuity, which also exist when using

other WENO schemes, e.g. in [17].
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Figure 6: LeBlanc problem at t = 0.0001. Log plot of density.
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Figure 7: LeBlanc problem at t = 0.0001. Log plot of pressure.
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Figure 8: LeBlanc problem at t = 0.0001. Plot of velocity.
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Example 8. Consider the two-dimensional linear equation

ut + aux + buy = 0, 0 6 x, y 6 2π, (88)

with the initial condition u(x, y, 0) = sin(x + y) and a 2π-periodic boundary condition.

Here, a and b are constants. We take a = 1 and b = −2 in the computation. The errors

at t = 2π are listed in Tables 7 and 8. We can see that the WENO limiter maintains

both the designed order of accuracy and the magnitude of the errors of the original CPR

method.

Table 7: 2D linear equation with initial condition u(x, y, 0) = sin(x + y) at t = 2π.
Uniform meshes.

N × N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20×20 8.13E-05 – 2.75E-04 – 8.13E-05 – 2.75E-04 – 23.46%
40×40 8.50E-06 3.26 3.05E-05 3.17 8.50E-06 3.26 3.05E-05 3.17 11.92%
80×80 9.70E-07 3.13 3.59E-06 3.09 9.70E-07 3.13 3.59E-06 3.09 6.00%

160×160 1.16E-07 3.07 4.34E-07 3.05 1.16E-07 3.07 4.34E-07 3.05 3.00%
320×320 1.41E-08 3.03 5.34E-08 3.02 1.41E-08 3.03 5.34E-08 3.02 1.50%

4th order

20×20 9.98E-07 – 2.06E-05 – 9.98E-07 – 2.06E-05 – 23.25%
40×40 5.94E-08 4.07 1.29E-06 4.00 5.94E-08 4.07 1.29E-06 4.00 11.74%
80×80 3.66E-09 4.02 8.05E-08 4.00 3.66E-09 4.02 8.06E-08 4.00 5.88%

160×160 2.28E-10 4.01 5.03E-09 4.00 2.28E-10 4.01 5.07E-09 3.99 2.93%
320×320 1.50E-11 3.93 3.15E-10 4.00 1.50E-11 3.92 3.21E-10 3.98 1.46%

5th order

20×20 7.04E-08 – 3.98E-07 – 7.04E-08 – 3.97E-07 – 23.13%
40×40 2.19E-09 5.01 1.21E-08 5.04 2.19E-09 5.01 1.21E-08 5.04 11.68%
80×80 6.85E-11 5.00 3.75E-10 5.01 6.85E-11 5.00 3.75E-10 5.01 5.85%

160×160 2.58E-12 4.73 9.92E-12 5.24 2.63E-12 4.71 9.92E-12 5.24 2.92%

Example 9. Consider the two-dimensional nonlinear Burgers equation

ut + (
u2

2
)x + (

u2

2
)y = 0, 0 6 x, y 6 2π, (89)

with the initial condition u(x, y, 0) = 0.5 + sin(x + y) and periodic boundary conditions.

We show the errors at t = 0.25 (smooth solution) in Tables 9 and 10. Again, we can see
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Table 8: 2D linear equation with initial condition u(x, y, 0) = sin(x + y) at t = 2π.
Non-uniform meshes.

N × N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20×20 1.05E-04 – 6.47E-04 – 1.05E-04 – 6.47E-04 – 23.46%
40×40 1.02E-05 3.11 6.10E-05 3.15 1.02E-05 3.11 6.10E-05 3.15 11.92%
80×80 1.23E-06 3.16 8.51E-06 2.94 1.23E-06 3.16 8.51E-06 2.94 6.00%

160×160 1.50E-07 3.09 1.08E-06 3.03 1.50E-07 3.09 1.08E-06 3.03 3.00%
320×320 1.83E-08 3.15 1.42E-07 3.05 1.83E-08 3.15 1.42E-07 3.05 1.50%

4th order

20×20 2.20E-06 – 7.25E-05 – 2.20E-06 – 7.25E-05 – 24.09%
40×40 1.00E-07 4.12 3.95E-06 3.88 1.00E-07 4.12 3.95E-06 3.88 12.00%
80×80 6.31E-09 4.13 2.45E-07 4.14 6.31E-09 4.13 2.45E-07 4.14 6.04%

160×160 3.99E-10 4.05 1.68E-08 3.94 3.99E-10 4.05 1.68E-08 3.93 3.02%
320×320 2.61E-11 4.08 1.19E-09 3.96 2.61E-11 4.08 1.19E-09 3.96 1.50%

5th order

20×20 5.88E-08 – 1.69E-06 – 5.90E-08 – 1.69E-06 – 23.75%
40×40 1.31E-09 5.07 4.46E-08 4.85 1.32E-09 5.07 4.46E-08 4.85 11.86%
80×80 4.48E-11 5.04 1.40E-09 5.16 4.48E-11 5.04 1.40E-09 5.16 5.98%

160×160 1.74E-12 4.76 4.84E-11 4.94 1.79E-12 4.72 4.84E-11 4.94 2.99%

that the WENO limiter maintains both the designed order of accuracy and the magnitude

of the errors of the original CPR method. At t = 0.5, a shock begins to form. We plot

the solution surfaces at t = 0.75 in Figure 9 and the solution cuts in the diagonal cells

in Figure 10. We can see that the shocks are well resolved without spurious oscillations.

(a) K = 3 (b) K = 4 (c) K = 5

Figure 9: 2D Burgers solution at t = 0.75 with 80 × 80 cells.
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Table 9: 2D Burgers equation at t = 0.25. Uniform meshes.

N × N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20×20 2.24E-04 – 2.06E-03 – 2.24E-04 – 2.06E-03 – 24.83%
40×40 2.87E-05 2.96 4.78E-04 2.11 2.87E-05 2.96 4.78E-04 2.11 12.46%
80×80 3.63E-06 2.99 7.88E-05 2.60 3.63E-06 2.99 7.88E-05 2.60 6.21%

160×160 4.53E-07 3.00 1.17E-05 2.75 4.53E-07 3.00 1.17E-05 2.75 3.08%
320×320 5.62E-08 3.01 1.57E-06 2.89 5.62E-08 3.01 1.57E-06 2.89 1.54%

4th order

20×20 2.08E-05 – 6.07E-04 – 2.08E-05 – 6.07E-04 – 24.50%
40×40 1.28E-06 4.02 8.42E-05 2.85 1.28E-06 4.02 8.42E-05 2.85 12.09%
80×80 7.84E-08 4.03 7.39E-06 3.51 7.84E-08 4.03 7.39E-06 3.51 5.97%

160×160 4.65E-09 4.08 5.54E-07 3.74 4.65E-09 4.08 5.54E-07 3.74 2.97%
320×320 2.76E-10 4.07 3.81E-08 3.86 2.76E-10 4.07 3.81E-08 3.86 1.47%

5th order

20×20 2.39E-06 – 6.65E-05 – 2.39E-06 – 6.65E-05 – 24.10%
40×40 8.14E-08 4.88 6.05E-06 3.46 8.14E-08 4.88 6.05E-06 3.46 11.94%
80×80 2.35E-09 5.11 2.59E-07 4.55 2.35E-09 5.11 2.59E-07 4.55 5.89%

160×160 6.84E-11 5.10 1.13E-08 4.52 6.84E-11 5.10 1.13E-08 4.52 2.93%
320×320 2.04E-12 5.07 4.17E-10 4.76 2.04E-12 5.07 4.17E-10 4.76 1.46%
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Figure 10: 2D Burgers solution that cuts along the diagonal at t = 0.75 with
80 × 80 cells.

Example 10. Consider the two-dimensional Euler system described in Equation (72).

The initial condition is set to be ρ(x, y, 0) = 1+0.2 sin(x+y), u(x, y, 0) = 0.7, v(x, y, 0) =

0.3 and p(x, y, 0) = 1. The boundary conditions are periodic. The exact solution is

ρ(x, y, t) = 1+0.2 sin(x+ y− t), u(x, y, t) = 0.7, v(x, y, t) = 0.3 and p(x, y, t) = 1. Table

11 shows the L1 and L∞ errors for the density at t = 2π. We can see that the WENO
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Table 10: 2D Burgers equation at t = 0.25. Non-uniform meshes.

N × N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20×20 2.86E-04 – 4.62E-03 – 2.86E-04 – 4.62E-03 – 26.25%
40×40 3.49E-05 2.81 7.63E-04 2.40 3.49E-05 2.81 7.63E-04 2.40 12.78%
80×80 4.57E-06 3.03 1.51E-04 2.42 4.57E-06 3.03 1.51E-04 2.42 6.43%

160×160 5.71E-07 3.05 2.54E-05 2.61 5.71E-07 3.05 2.54E-05 2.61 3.22%
320×320 6.99E-08 3.15 3.62E-06 2.92 6.99E-08 3.15 3.62E-06 2.92 1.61%

4th order

20×20 3.45E-05 – 1.45E-03 – 3.45E-05 – 1.45E-03 – 25.72%
40×40 1.88E-06 3.88 1.64E-04 2.91 1.88E-06 3.88 1.64E-04 2.91 12.45%
80×80 1.24E-07 4.05 1.83E-05 3.27 1.24E-07 4.05 1.83E-05 3.27 6.18%

160×160 7.72E-09 4.08 1.64E-06 3.55 7.72E-09 4.08 1.64E-06 3.55 3.07%
320×320 4.71E-10 4.19 1.13E-07 4.01 4.71E-10 4.19 1.13E-07 4.01 1.53%

5th order

20×20 6.95E-06 – 2.34E-04 – 6.95E-06 – 2.34E-04 – 25.30%
40×40 1.81E-07 4.87 1.24E-05 3.92 1.81E-07 4.87 1.24E-05 3.92 12.23%
80×80 6.17E-09 5.04 8.80E-07 3.95 6.17E-09 5.04 8.80E-07 3.95 6.07%

160×160 1.98E-10 5.05 4.38E-08 4.40 1.98E-10 5.05 4.38E-08 4.40 3.02%
320×320 6.54E-12 5.11 1.63E-09 4.93 6.54E-12 5.11 1.63E-09 4.93 1.50%

limiter maintains both the designed order of accuracy and the magnitude of the error of

the original CPR method.

Example 11. Consider the two-dimensional vortex evolution problem, which is an

idealized problem for the 2D Euler equations [32]. The setup of this problem is: The

mean flow is ρ = 1, p = 1 and (u, v) = (1, 1) (diagonal flow). We add, to this mean flow,

an isentropic vortex (perturbation in (u, v) and the temperature T = p
ρ
, no perturbation

in the entropy S = p
ργ ):

(δu, δv) =
ǫ

2π
e0.5(1−t2)(−ȳ, x̄), δT = −

(γ − 1)ǫ2

8γπ2
e1−r2

, δS = 0, (90)

where (x̄, ȳ) = (x − 7, y − 7), r2 = x̄2 + ȳ2, and the vortex strength ǫ = 5. Since the

mean flow is in the diagonal direction, the vortex movement is not aligned with the mesh

direction. The computational domain is taken as [0, 14] × [0, 14], extended periodically

in both directions. It is clear that the exact solution of the Euler equation with the

above initial and boundary conditions is just the passive convection of the vortex with
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Table 11: 2D Euler equation with initial condition ρ(x, y, 0) = 1 + 0.2 sin(x + y),
u(x, y, 0) = 0.7, v(x, y, 0) = 0.3 and p(x, y, 0) = 1 at t = 2π. Uniform meshes.

N × N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20×20 1.83E-05 – 8.90E-05 – 2.29E-05 – 9.63E-05 – 23.46%
40×40 2.14E-06 3.10 1.09E-05 3.02 2.43E-06 3.24 1.14E-05 3.07 11.91%
80×80 2.58E-07 3.05 1.36E-06 3.01 2.76E-07 3.14 1.39E-06 3.04 6.00%

160×160 3.16E-08 3.03 1.69E-07 3.01 3.27E-08 3.08 1.71E-07 3.02 2.96%

4th order

20×20 4.68E-07 – 8.79E-06 – 3.26E-07 – 8.13E-06 – 23.13%
40×40 2.07E-08 4.50 5.17E-07 4.09 1.97E-08 4.05 5.11E-07 3.99 11.70%
80×80 1.20E-09 4.11 3.18E-08 4.03 1.23E-09 4.00 3.24E-08 3.98 5.85%

160×160 7.44E-11 4.01 1.99E-09 4.00 7.75E-11 3.99 2.09E-09 3.96 2.91%

5th order

20×20 3.24E-08 – 1.88E-07 – 9.42E-08 – 2.44E-07 – 22.93%
40×40 1.03E-09 4.97 6.06E-09 4.95 2.91E-09 5.02 7.32E-09 5.06 11.61%
80×80 3.14E-11 5.04 1.79E-10 5.08 9.01E-11 5.01 2.23E-10 5.03 5.82%

160×160 9.75E-13 5.01 5.74E-12 4.96 2.81E-12 5.00 7.16E-12 4.96 2.89%

the mean velocity. The errors and orders of accuracy for the density at t = 0.2 are shown

in Table 12. We can see that the WENO limiter maintains both the designed order of

accuracy and the magnitude of the error of the original CPR method.

Example 12. We consider the double Mach reflection problem. The computational

domain is set to be [0, 4] × [0, 1]. The reflection wall lies at the bottom of the computa-

tional domain starting from x = 1
6
. Initially a right-moving Mach 10 shock is positioned

at x = 1
6
, y = 0 and makes a 60◦ angle with the x-axis. For the bottom boundary, the

exact post-shock condition is imposed for the part from x = 0 to x = 1
6
, and a reflective

boundary condition is used for the rest. At the top boundary of the computational do-

main, the flow values are set to describe the exact motion of the Mach 10 shock. The

initial pre-shock condition is

(ρ, p, u, v) = (1.4, 1, 0, 0), (91)
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Table 12: 2D Euler system of the smooth vortex evolution problem at t = 0.2. Uniform
meshes.

N × N CPR without limiter CPR with WENO limiter (M=0.01)
L1 norm order L∞ norm order L1 norm order L∞ norm order percentage

3rd order

20×20 6.90E-05 – 3.21E-03 – 8.18E-05 – 4.01E-03 – 16.46%
40×40 8.98E-06 2.94 4.50E-04 2.83 8.98E-06 3.19 4.46E-04 3.17 7.90%
80×80 1.19E-06 2.92 6.51E-05 2.79 1.19E-06 2.92 6.51E-05 2.78 4.90%

160×160 1.37E-07 3.12 7.99E-06 3.03 1.37E-07 3.12 7.99E-06 3.03 3.33%
320×320 1.52E-08 3.17 1.04E-06 2.94 1.52E-08 3.17 1.04E-06 2.94 2.47%

4th order

20×20 1.46E-05 – 3.15E-03 – 1.84E-05 – 4.03E-03 – 16.38%
40×40 8.69E-07 4.07 1.32E-04 4.57 8.72E-07 4.40 1.32E-04 4.93 7.96%
80×80 4.05E-08 4.42 9.25E-06 3.84 4.05E-08 4.43 9.25E-06 3.84 4.89%

160×160 2.16E-09 4.23 8.00E-07 3.53 2.16E-09 4.23 8.00E-07 3.53 3.33%
320×320 1.15E-10 4.24 5.13E-08 3.96 1.15E-10 4.24 5.13E-08 3.96 2.46%

5th order

20×20 1.45E-06 – 2.85E-04 – 6.97E-06 – 7.04E-03 – 16.35%
40×40 3.95E-08 5.20 8.83E-06 5.01 3.94E-08 7.47 8.82E-06 9.64 7.90%
80×80 1.23E-09 5.00 3.26E-07 4.76 1.23E-09 5.00 3.26E-07 4.76 4.86%

160×160 3.17E-11 5.28 9.64E-09 5.08 3.17E-11 5.28 9.57E-09 5.09 3.32%
320×320 7.98E-13 5.31 2.95E-10 5.03 8.01E-13 5.31 2.94E-10 5.02 2.45%

and the post-shock condition is

(ρ, p, u, v) = (8, 116.5, 8.25 cos(30◦),−8.25 sin(30◦)). (92)

We compute the solution of the 3rd order scheme up to t = 0.2 with 960 × 240 grid

points. The density with TVB parameter M = 0.01 is plotted in Figure 11 and the

density with M = 200 is plotted in Figure 12. In all the plots, we use 29 contours

equally distributed from ρ = 1.3 to 23. Figures 13 and 14 show the blown-up portion

around the double Mach region. We can see that the resolution around the double Mach

region is high. Also, the resolution is slightly better as M increases from M = 0.01 to

M = 200, however, this difference is not significant.
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Figure 11: Double Mach reflection problem. 960 × 240 cells. Twenty-nine
equally spaced density contours from 1.3 to 23. M = 0.01.
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Figure 12: Double Mach reflection problem. 960 × 240 cells. Twenty-nine
equally spaced density contours from 1.3 to 23. M = 200.
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Figure 13: Zoomed-in figure. Double Mach reflection problem. 960×240 cells.
Twenty-nine equally spaced density contours from 1.3 to 23. M = 0.01.
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Figure 14: Zoomed-in figure. Double Mach reflection problem. 960×240 cells.
Twenty-nine equally spaced density contours from 1.3 to 23. M = 200

6 Concluding remarks

In this paper, we adapt a WENO limiter [45] to the CPR framework solving hyper-

bolic conservation laws to make it more robust for shocked flows and uniformly high

order accurate. Also, we extend the positivity-preserving limiter in [43, 44, 36] to the

CPR framework. On each time level, we first use the WENO limiter to reconstruct the

solution polynomials on those troubled cells, then use the positivity-preserving limiter

to modify the solution polynomials in each cell if necessary. Finally, we update the nu-

merical values at the solution points, and perform the normal CPR procedure to march

to the next time level. Since this WENO limiter uses information only from immediate

neighbors, it is very simple to implement and can maintain the compactness of the CPR

framework. Also, we only perform this WENO limiter on the solution polynomials which

can be discontinuous among adjacent cells, thus the conservativeness of the CPR frame-

work will not be harmed. Numerical results in one and two dimensions are provided

to show that this WENO limiting procedure can simultaneously maintain uniform high

order accuracy of the CPR framework in smooth regions and control spurious numerical

oscillations near discontinuities. In future work we will extend the WENO limiter to

CPR framework on unstructured meshes along the lines of [47].
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