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Abstract

In applications such as astrophysics and inertial confinement fusion, there are many three-

dimensional cylindrical-symmetric multi-material problems which are usually simulated by

Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of sim-

ulation, a critical issue for the schemes is to keep spherical symmetry in the cylindrical

coordinate system if the original physical problem has this symmetry. In the past decades,

several Lagrangian schemes with such symmetry property have been developed, but all of

them are only first order accurate. In this paper, we develop a second order cell-centered

Lagrangian scheme for solving compressible Euler equations in cylindrical coordinates, based

on the control volume discretizations, which is designed to have uniformly second order ac-

curacy and capability to preserve one-dimensional spherical symmetry in a two-dimensional

cylindrical geometry when computed on an equal-angle-zoned initial grid. The scheme main-

tains several good properties such as conservation for mass, momentum and total energy, and

the geometric conservation law. Several two-dimensional numerical examples in cylindrical

coordinates are presented to demonstrate the good performance of the scheme in terms of

accuracy, symmetry, non-oscillation and robustness. The advantage of higher order accuracy

is demonstrated in these examples.
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1 Introduction

The class of Lagrangian methods, which have the mesh moving with the local fluid velocity, is

one of the main classes of numerical methods for simulating multi-material fluid flows. Since

it has the distinguished advantage in capturing material interfaces automatically and sharply,

it is widely used in many fields for multi-material flow simulations such as astrophysics,

inertial confinement fusion (ICF) and computational fluid dynamics (CFD).

In many application fields such as ICF and astrophysics, there exist many three-dimensional

cylindrical-symmetric models such as sphere-shape capsules and cylinder-shape hohlraum.

This kind of models is usually simulated by Lagrangian methods in the two-dimensional

cylindrical coordinates. For a Lagrangian scheme applied in these problems, one critical

issue is how to maintain the spherical symmetry property in a cylindrical coordinate sys-

tem, if the original physical problem has this symmetry. For example, in the simulation

of implosions, a small deviation from spherical symmetry caused by numerical errors may

be amplified by physical or numerical instabilities which may lead to unpredicted large er-

rors. Numerous studies exist in the literature on this issue. In the past several decades,

first order spherical-symmetry-preserving Lagrangian methods in two-dimensional cylindri-

cal coordinates were well investigated. Among them, the most widely used method that

keeps spherical symmetry exactly on an equal-angle-zoned grid in cylindrical coordinates is

the area-weighted method, e.g. [20, 25, 24, 2, 4, 15, 1, 16, 19]. In this approach, in order

to obtain the spherical symmetry property, a Cartesian form of the momentum equation is

used in the cylindrical coordinate system, hence integration is performed on area rather than

on the true volume in cylindrical coordinates. The main flaw of this kind of area-weighted

schemes is that they may not maintain conservation for the momentum. Differently from the

area-weighted schemes, Browne [3] presented a Lagrangian scheme termed “integrated total

average” which is discretized on the true control volume. The scheme has been proven to be

able to preserve the desired spherical symmetry in the two dimensional cylindrical geometry

for equal-angle zoning. Unfortunately, this scheme can not keep the conservation of momen-
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tum and total energy either. Margolin and Shashkov used a curvilinear grid to construct

symmetry-preserving discretizations for Lagrangian gas dynamics [17]. In our recent work [7],

a cell-centered Lagrangian scheme has been developed which is based on the control volume

discretization. By compatible discretizations of the source term in the momentum equation,

the scheme is designed to preserve one-dimensional spherical symmetry in a two-dimensional

cylindrical geometry when computed on an equal-angle-zoned initial grid. A distinguished

feature of the scheme is that it can keep both the properties of symmetry and conservation.

In [8], we apply the methodology proposed in [7] to the first order control volume scheme of

Maire in [15] to obtain the spherical symmetry property. The modified scheme can preserve

several good properties such as symmetry, conservation and the geometric conservation law

(GCL).

Although the issue on the symmetry-preserving property of the Lagrangian schemes has

been well investigated, the situation is less satisfactory in terms of accuracy. Up to now, all

the existing symmetry-preserving Lagrangian schemes are only first order accurate. In fact,

to design a scheme with the preservation of spherical symmetry, not only the nodal velocity

but also all the variables appearing in the integral of the numerical flux should be calculated

symmetrically, which is especially difficult for a high order scheme to achieve. Moreover, a

careful treatment must be performed on the source term, which has been the biggest obstacle

for a Lagrangian scheme to be symmetry-preserving, even in the case of first order accuracy,

and this is exactly the reason for most people to adopt the area-weighted schemes. It is quite

challenging to design a higher than first order Lagrangian scheme with both the properties

of spherical symmetry and conservation.

In this paper, we design a second order cell-centered Lagrangian scheme for solving

Euler equations of compressible gas dynamics in cylindrical coordinates. The scheme is

based on the control volume discretizations. It is uniformly second order accurate and

is able to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical

geometry when computed on an equal-angle-zoned initial grid, and meanwhile it has many
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other good properties such as conservation for mass, momentum and total energy and the

GCL. Several two-dimensional numerical examples in cylindrical coordinates are presented

to demonstrate the good performance of the scheme in terms of accuracy, symmetry, non-

oscillation and robustness. The advantage of higher order accuracy is demonstrated in the

numerical examples.

An outline of the rest of this paper is as follows. In Section 2, we describe our new second

order symmetry-preserving Lagrangian scheme in two-dimensional cylindrical coordinates.

In Section 3, we prove the symmetry-preserving property of the scheme. In Section 4,

numerical examples are given to demonstrate the performance of the new Lagrangian scheme.

In Section 4 we will give concluding remarks.

2 The design of a second order cell-centered symmetry-

preserving Lagrangian scheme in cylindrical coordi-

nates

2.1 The compressible Euler equations in a Lagrangian formulation

in cylindrical coordinates

The compressible inviscid flow is governed by the Euler equations in the cylindrical coordi-

nates which have the following integral form in the Lagrangian formulation



















d
dt

∫∫

Ω(t)
ρrdrdz = 0,

d
dt

∫∫

Ω(t)
ρuzrdrdz = −

∫

Γ(t)
Pnzrdl,

d
dt

∫∫

Ω(t)
ρurrdrdz = −

∫

Γ(t)
Pnrrdl +

∫∫

Ω(t)
Pdrdz,

d
dt

∫∫

Ω(t)
ρErdrdz = −

∫

Γ(t)
Pu · nrdl,

(2.1)

where z and r are the axial and radial directions respectively. ρ is density, P is pressure, E

is the specific total energy. u = (uz, ur) where uz and ur are the velocity components in the

z and r directions respectively, and n = (nz, nr) is the unit outward normal to the boundary

Γ(t) in the z-r coordinates. The equations present the conservation of mass, momentum and

total energy.

The set of equations is completed by the addition of an equation of state (EOS) with the
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following general form

P = P (ρ, e),

where e = E − 1
2
|u|2 is the specific internal energy. Especially, if we consider the ideal gas,

then the equation of state has a simpler form

P = (γ − 1)ρe,

where γ is a constant representing the ratio of specific heat capacities of the fluid.

The geometric conservation law refers to the fact that the rate of change of a Lagrangian

volume should be computed consistently with the node motion, which can be formulated as

d

dt

∫∫

Ω(t)

dV =

∫

Γ(t)

u · nds. (2.2)

2.2 The second order cell-centered symmetry-preserving Lagrangian

scheme in cylindrical coordinates

2.2.1 Notations and assumptions

In this paper, we design our second order cell-centered Lagrangian scheme based on the

framework of the first order cell-centered Lagrangian scheme developed in [15, 8]. We will

also adopt notations in [15, 8]. The 2D spatial domain Ω is partitioned into quadrilateral

computational cells. Each quadrilateral cell is denoted by Ωc with a unique index c. The

boundary of the cell Ωc is denoted as ∂Ωc. Each vertex of the grid is appointed a unique

index p and the counterclockwise ordered list of the vertices of the cell Ωc is denoted by p(c).

Ac denotes the area of the cell Ωc, and Vc denotes the volume of the cell obtained by rotating

this cell around the azimuthal z-axis (without the 2π factor).

Based on these notations, we can rewrite the set of equations (2.1)-(2.2) in the following
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Figure 2.1: Denotation for the nodal variables.

control volume formulation

mc

d

dt

(

1

ρc

)

=

∫

∂Ωc

u · nrdl,

mc

d

dt
uc

z = −
∫

∂Ωc

Pnzrdl,

mc

d

dt
uc

r = −
∫

∂Ωc

Pnrrdl +

∫∫

Ωc

Pdrdz,

mc

d

dt
Ec = −

∫

∂Ωc

Pu · nrdl, (2.3)

where mc =
∫∫

Ωc
ρrdrdz denotes the mass in the cell Ωc, which keeps constant during the

time marching according to the first equation in (2.1). The first equation of (2.3) represents

the geometric conservation law. ρc, uc = (uc
z, u

c
r) and Ec represent the cell averages of

density, velocity and total energy in the cell Ωc which are defined as follows

ρc =
1

Vc

∫∫

Ωc

ρrdrdz, uc
z =

1

mc

∫∫

Ωc

ρuzrdrdz,

uc
r =

1

mc

∫∫

Ωc

ρurrdrdz, Ec =
1

mc

∫∫

Ωc

ρErdrdz. (2.4)

The coordinates and velocity of the vertex p are denoted as (zp, rp) and up = (uz
p, u

r
p)

respectively. lpp− and lpp+ denote the lengths of the edges [p−, p] and [p, p+], and npp− and

npp+ are the corresponding unit outward normals, where p− and p+ are the two neighboring

vertices of the vertex p, see Figure 2.1.

Two nodal pressures at each vertex p are introduced to calculate the discrete gradient

operators over the cell Ωc which are denoted as πc
p and πc

p respectively, see Figure 2.1. These
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two pressures are related to the two edges sharing the vertex p. The half lengths and the

unit outward normals of the edges connected to the vertex p are denoted as follows

lcp =
1

2
lpp−, lcp =

1

2
lpp+,

nc
p = npp−, nc

p = npp+. (2.5)

The pseudo radii rc
p and rc

p are defined as

rc
p =

1

3
(2rp + rp−), rc

p =
1

3
(2rp + rp+) (2.6)

with which the GCL can be rewritten as the first equation of the following semi-discrete

scheme (2.8) for the equations (2.3) [15].

Similarly, we denote

zc
p =

1

3
(2zp + zp−), zc

p =
1

3
(2zp + zp+),

ξc
p =

√

(zc
p)

2 + (rc
p)

2, ξc
p =

√

(zc
p)

2 + (rc
p)

2. (2.7)

2.2.2 Spatial discretization

The semi-discrete finite volume scheme for the governing equations (2.3) is described as

follows,

mc

d

dt

(

1

ρc

)

−
∑

p∈p(c)

(rc
pl

c
pn

c
p + rc

pl
c
pn

c
p) · up = 0,

mc

d

dt
uc

z +
∑

p∈p(c)

(rc
pl

c
pπ

c
pn

c,z
p + rc

pl
c
pπ

c
pn

c,z
p ) = 0,

mc

d

dt
uc

r +
∑

p∈p(c)

(rc
pl

c
pπ

c
pn

c,r
p + rc

pl
c
pπ

c
pn

c,r
p ) − AcPs = 0,

mc

d

dt
Ec +

∑

p∈p(c)

(rc
pl

c
pπ

c
pn

c
p + rc

pl
c
pπ

c
pn

c
p) · up = 0, (2.8)

where nc
p = (nc,z

p , nc,r
p ) and nc

p = (nc,z
p , nc,r

p ). In order to design a Lagrangian scheme with

second order accuracy in space, all the variables such as πc
p, πc

p, up and Ps appearing in

(2.8) should be approximated by second order reconstructions which will be discussed in the

following subsection.
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2.2.3 Computation of nodal pressure and velocity

The nodal pressures πc
p and πc

p are determined in the following way,

πc
p = P c

p − zc
p(up − uc

p) · nc
p,

πc
p = P c

p − zc
p(up − uc

p) · nc
p, (2.9)

where P c
p and P c

p are the pressure values at the vertex p which are determined by the

nodal vectors {ρc
p,u

c
p, E

c
p} and {ρc

p,u
c
p, E

c
p} respectively. {ρc

p,u
c
p, E

c
p} and {ρc

p,u
c
p, E

c
p} will be

obtained by a weighted essentially non-oscillatory (WENO) reconstruction, to be introduced

in the next subsection. zc
p and zc

p are the mass fluxes swept by the waves which can be

determined in several ways. In this paper, we will use the acoustic approach, that is

zc
p = ρc

pa
c
p, zc

p = ρc
pa

c
p, (2.10)

where ac
p and ac

p are the local isentropic speeds of sound at the vertex p which are obtained

by {ρc
p,u

c
p, E

c
p} and {ρc

p,u
c
p, E

c
p} respectively.

In order to ensure the scheme to be conservative for the momentum and total energy, the

following sufficient condition should be satisfied [15],

∑

c∈c(p)

(rc
pl

c
pπ

c
pn

c,r
p + rc

pl
c
pπ

c
pn

c,r
p ) = 0, (2.11)

where c(p) is the set of cells around the vertex p. From (2.9) and (2.11), we can get the

following specific formula to calculate the nodal velocity,

up = M−1
p

∑

c∈c(p)

{rc
pl

c
p[P

c
pn

c
p + zc

pu
c
p(n

c
p ⊗ nc

p)] + rc
pl

c
p[P

c
pn

c
p + zc

pu
c
p(n

c
p ⊗ nc

p)]}, (2.12)

where the 2 × 2 matrices Mpc and Mp are denoted as

Mpc = zc
pr

c
pl

c
p(n

c
p ⊗ nc

p) + zc
pr

c
pl

c
p(n

c
p ⊗ nc

p), Mp =
∑

c∈c(p)

Mpc. (2.13)

Once the nodal velocity up at vertex p is determined, the cell vertex will move with the

following local kinematic equation

d

dt
xp = up, xp(0) = x0

p, (2.14)
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where xp = (zp, rp) denotes the position of vertex p at t > 0 and x0
p denotes its initial

position.

To design a high order Lagrangian scheme with the spherical symmetry property, there

are two key points that should be carefully considered. One is how to maintain the spherical

symmetry property of the nodal variables such as pressure and velocity in the process of

reconstruction. The other one is how to calculate the source term in a compatible way with

the numerical flux so as to keep the momentum (cell-centered velocity) at the angular di-

rection to be always zero when a one-dimensional spherical-symmetric problem is simulated.

In the following two subsections, we will give a detailed description on these two issues.

Remark 1: For the nodes located on the z axis, due to the situation of r = 0, the

determinant of the matrix Mp defined by (2.13) may become zero on a rectangular Cartesian

grid. In this case, the system (2.12) for calculating the nodal velocity becomes unsolvable. To

deal with this problem, we embed the boundary condition ur
p = 0 into (2.12) directly when

we calculate the velocity of nodes on the z axis. Then the system (2.12) can be simplified

as a scalar nonsingular algebraic equation by which uz
p is uniquely determined.

2.2.4 WENO reconstruction

In this paper, we will use the weighted essentially non-oscillatory (WENO) idea [14, 10] to

reconstruct polynomial functions on each Ωc based on the cell-average information of the cell

Ωc and its neighbors, by which the variables such as πc
p, πc

p, up and Ps shown in (2.8) can be

approximated with second order accuracy.

Suppose we consider a one-dimensional spherical symmetric problem simulated on an

equal-angled polar grid (see Figure 2.2), then we know the cell averages Uc = (ρc,uc, Ec)
T

in the cell Ωc are symmetric, that is, ρc, Ec and the component of uc in the radial direction

are the same in all cells with the same radial position, while the component of uc in the cell’s

angular direction is zero for all cells. Our goal is to reconstruct these variables to get second

order approximation and meanwhile keep their symmetry property. In practice, unfortu-

nately we find the symmetry is not easy to achieve especially in the cylindrical coordinates.
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Figure 2.2: The local ξ-θ coordinates used in the WENO reconstruction.

The difficulties mainly lie in two aspects. One is that the components of uc in the z and r

directions are not symmetric, which leads to a lack of symmetry for the candidate stencils

used for the reconstruction. The other aspect is that the usual reconstruction is based on the

integral of the conserved variables over the control volume which will involve the parameter

r in the cylindrical coordinates (see the right hand side of (2.4)). As the r coordinate in the

cells with the same radial position and different angular positions are different, the symmetry

in the reconstruction cannot be maintained.

To overcome these difficulties, we take the following two procedures in the reconstruction.

First, along each edge of the cell, we transform the cell averages of the variables in its

neighboring cells which are involved in the reconstruction from its usual (z, r) coordinates

to the local polar coordinates (ξ, θ), where ξ is the radial direction passing through the

center of this edge and the origin, and θ is the angular direction which is counter-clockwisely

orthogonal to ξ, see Figure 2.2 for an illustration. Secondly, to determine the coefficients

of the reconstructed polynomials, we perform the integral on the area rather than on the

volume so that the parameter r will not appear in the integral. This treatment will limit

the reconstruction approximation to at most second order accuracy, but it will keep the

symmetry of the reconstructed variables, and meanwhile it will not destroy the conservation

property of the scheme since the sufficient condition (2.11) for conservation is still satisfied,
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by which the nodal pressure and velocity πc
p, π

c
p,up are determined.

To be more specific, the reconstruction is implemented in the left and right cells along

each edge, by which the left and right values of the corresponding variables at the two

vertices of this edge can be obtained. Suppose the reconstructed linear polynomial Uc
e(z, r) =

(ρc
e(z, r), u

c,ξ
e (z, r), uc,θ

e (z, r), Ec
e(z, r))

T in the cell Ωc along one of its edges e, e = 1, ..., 4 (we

define the sequence of the cell’s edges as those connecting the vertices “1” and “4”, “2” and

“3”, “1” and “2”, “3” and “4” respectively) is of the following form

Uc
e(z, r) = ac

e(z − zc) + bc
e(r − rc) + cc

e,

where (zc, rc) denotes the coordinates of the cell center, and the coefficient vector {ac
e, bc

e, c
c
e}

is determined by agreeing with the given cell averages on a 3-cell stencil including Ωc, for

example by

∫∫

Ωb

Uc
e(z, r)dzdr = UbAb,

∫∫

Ωc

Uc
e(z, r)dzdr = UcAc, (2.15)

∫∫

Ωl

Uc
e(z, r)dzdr = UlAl,

where Ac, Ab, Al are the areas of the cells Ωc, Ωb and Ωl (see Figure 2.2) respectively, and

Uc = (ρc,uc, Ec)
T , Ub = (ρb,ub, Eb)

T and Ul = (ρl,ul, El)
T . Notice that the integral in

(2.15) is performed on the area rather than on the usual control volume in order to maintain

the symmetry of the reconstructed variables. This kind of reconstruction can be at most

second order accurate.

In order to have an essentially non-oscillatory and symmetry-preserving algorithm, we

use the idea of a simple WENO reconstruction. For the reconstruction on the cell Ωc, we

consider the following four sets of nonsingular stencils:

{1 : Ωb, Ωc, Ωl}; {2 : Ωl, Ωc, Ωt}; {3 : Ωt, Ωc, Ωr}; {4 : Ωr, Ωc, Ωb}.

Denote {ac
e,i,b

c
e,i, c

c
e,i, i = 1, ..., 4} to be the coefficients of linear polynomials reconstructed by

the above four stencils respectively, then the coefficients {ac
e,b

c
e, c

c
e} of the final reconstructed
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polynomials are determined by

ac
e =

4
∑

i=1

wia
c
e,i, bc

e =

4
∑

i=1

wib
c
e,i, cc

e =

4
∑

i=1

wic
c
e,i,

where the weights wi are chosen as

wi =
w̃i

∑4
j=1 w̃j

, w̃j =
1

[(|ac
e,j|2 + |bc

e,j|2)Ac + ǫ]2
(2.16)

with ǫ = 10−6. This crude WENO reconstruction, which does not theoretically increase

the accuracy of each candidate stencil but is very easy to compute and can preserve the

symmetry, also performs nicely in our numerical experiments.

The density, velocity and energy at the four vertices of the cell Ωc are then obtained by

the reconstructed polynomials {Uc
e(z, r), e = 1, ..., 4}, that is,















(ρc
1,u

c
1, E

c
1) = Uc

1(z
c
1, r

c
1), (ρc

4
,uc

4
, Ec

4
) = Uc

1(z
c
4, r

c
4),

(ρc
2
,uc

2
, Ec

2
) = Uc

2(z
c
2, r

c
2), (ρc

3,u
c
3, E

c
3) = Uc

2(z
c
3, r

c
3),

(ρc
1
,uc

1
, Ec

1
) = Uc

3(z
c
1, r

c
1), (ρc

2,u
c
2, E

c
2) = Uc

3(z
c
2, r

c
2),

(ρc
3
,uc

3
, Ec

3
) = Uc

4(z
c
3, r

c
3), (ρc

4,u
c
4, E

c
4) = Uc

4(z
c
4, r

c
4).

Similarly, we can get the reconstructed polynomials in the cell at the other side of the

edge from which we can get the density, velocity and energy at its vertices. For a one-

dimensional spherical symmetric problem simulated on an equal-angled polar grid, due to

the symmetric structure of the stencils and the way to determine the coefficients (2.16), the

following symmetry relationships for the nodal variables hold by the previously described

WENO reconstruction,















ρc
1 = ρc

4
= ρb

1 = ρb
4
, ρc

1
= ρc

4 = ρb
1

= ρb
4,

ρc
2 = ρc

3
= ρb

2 = ρb
3
, ρc

2
= ρc

3 = ρb
2

= ρb
3,

Ec
1 = Ec

4
= Eb

1 = Eb
4
, Ec

1
= Ec

4 = Eb
1

= Eb
4,

Ec
2 = Ec

3
= Eb

2 = Eb
3
, Ec

2
= Ec

3 = Eb
2

= Eb
3,

(2.17)

and














(uξ)c
1 = (uξ)c

4
= (uξ)b

1 = (uξ)b
4
, (uξ)c

1
= (uξ)c

4 = (uξ)b
1

= (uξ)b
4,

(uξ)c
2

= (uξ)c
3 = (uξ)b

2
= (uξ)b

3, (uξ)c
2 = (uξ)c

3
= (uξ)b

2 = (uξ)b
3
,

(uθ)c
1 = (uθ)c

4
= (uθ)b

1 = (uθ)b
4

= 0, (uθ)c
1

= (uθ)c
4 = (uθ)b

1
= (uθ)b

4 = 0,
(uθ)c

2 = (uθ)c
3

= (uθ)b
2 = (uθ)b

3
= 0, (uθ)c

2
= (uθ)c

3 = (uθ)b
2

= (uθ)b
3 = 0,

(2.18)
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Figure 2.3: The local ξ-θ coordinates used for the proof of symmetry preservation for the
conserved variables on the equal-angular polar grid.

where (ξ, θ) denotes the cell’s local polar coordinates (see Figure 2.3) which are the same

as those for the edges ’1’ and ’2’ for an equal-angled polar grid. As to {zc
p, z

c
p, P

c
p , P c

p}, since

they are determined by {ρc
p, ρ

c
p,u

c
p,u

c
p, E

c
p, E

c
p}, they also have the same symmetry property.

Remark 2: In the procedure of the WENO reconstruction, for some test problems with

strong discontinuities, the method of local characteristic decomposition should be applied

to avoid the appearance of spurious oscillation. We refer to [23] for the details of the Roe-

type characteristic decomposition that we have used in this paper. The method of local

characteristic decomposition should be performed along the normal direction of the cell’s

edges, that is why we accomplish the previous WENO reconstruction along each edge of

the cell. The application of these local characteristic decompositions does not affect the

symmetry-preserving property.

2.2.5 Computation of the source term

In order to design a control volume Lagrangian scheme with the spherical symmetry property,

the source term should be carefully discretized. For a second order Lagrangian scheme, Ps

in the source term should be determined as

Ps =
ξc
1
πc

1
+ ξc

2π
c
2 + ξc

3
πc

3
+ ξc

4π
c
4

ξc
1
+ ξc

2 + ξc
3
+ ξc

4

, (2.19)
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where πc
1
, πc

2, πc
3

and πc
4 are the values of pressure related to the two radial edges of the cell

Ωc (see Figure 2.3). ξc
1
, ξc

2, ξ
c
3

and ξc
4 are defined as (2.7). In the next section we will prove

that the scheme with such choice of the source term can keep spherical symmetry.

2.2.6 Time discretization

The Euler forward time discretization for the equation of nodal movement (2.14) is given as

follows

zn+1
p = zn

p + ∆tnuz,n
p ,

rn+1
p = rn

p + ∆tnur,n
p , (2.20)

where uz,n
p , ur,n

p are the z and r components of up at the n-th time step.

By the semi-discrete scheme (2.8), the following fully discretized scheme can be obtained

by the Euler forward time discretization,

mc











1
ρn+1

c
− 1

ρn
c

uz,n+1
c − uz,n

c

ur,n+1
c − ur,n

c

E
n+1

c − E
n

c











(2.21)

= ∆tn











−











−
∑

p∈p(c)(r
c,n
p lc,np nc,n

p + rc,n
p lc,np n

c,n
p ) · un

p
∑

p∈p(c)(r
c,n
p lc,np πc,n

p nc,z,n
p + rc,n

p lc,np πc,n
p nc,z,n

p )
∑

p∈p(c)(r
c,n
p lc,np πc,n

p nc,r,n
p + rc,n

p lc,np πc,n
p nc,r,n

p )
∑

p∈p(c)(r
c,n
p lc,np πc,n

p nc,n
p + rc,n

p lc,np πc,n
p n

c,n
p ) · un

p











+









0
0

An
c P n

s

0



















.

Here the variables with the superscripts “n” and “n + 1” represent the values of the cor-

responding variables at the n-th and (n + 1)-th time steps respectively. πc
p, π

c
p,up, Ps are

obtained by the WENO reconstruction introduced in the previous subsection. The scheme

(2.21) then has first order accuracy in time and second order accuracy in space.

To design a Lagrangian scheme with uniformly second order accuracy both in space and

time, the time marching is implemented by a second order total variation diminishing (TVD),

or strong stability preserving (SSP) Runge-Kutta type method [22] which has the following

form in the Lagrangian formulation [6].
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Stage 1,

z(1)
p = zn

p + ∆tnuz,n
p , r(1)

p = rn
p + ∆tnur,n

p ,

U
(1)

c = U
n

c +
∆tn

mc

L(U
n

c ); (2.22)

Stage 2,

zn+1
p =

1

2
zn

p +
1

2
[z(1)

p + ∆tnuz,(1)
p ], rn+1

p =
1

2
rn
p +

1

2
[r(1)

p + ∆tnur,(1)
p ],

U
n+1

c =
1

2
U

n

c +
1

2
[U

(1)

c +
∆tn

mc

L(U
(1)

c )]; (2.23)

where Uc = ( 1
ρc

, uc
z, u

c
r, Ec)

T and L is the numerical spatial operator representing the right

hand of the scheme (2.21).

Notice that the SSP Runge-Kutta scheme is a convex combination of Euler forward time

stepping, and is hence conservative, stable and symmetry-preserving whenever the Euler

forward time stepping is conservative, stable and symmetry-preserving.

The time step ∆tn is controlled by both the CFL condition and the criterion on the

variation of the volume. The CFL condition is satisfied as follows

∆te = Ce min
c
{lnc /(|un

c | + an
c )},

where lnc is the length of the shortest edge of the cell Ωc, and an
c is the sound speed determined

by the cell averages within this cell. Ce is the Courant number which is set to be 0.5 unless

otherwise stated in the following tests.

The criterion on the variation of the volume is determined by

∆tv = Cv

{

V n
c

| d
dt

Vc(tn)|

}

,

where d
dt

Vc(t
n) = V n+1

c −V n
c

∆tn
. The parameter Cv = 0.1 is used in the numerical simulations.

Finally, the time step ∆tn is given by

∆tn = min(∆te, ∆tv).

15



3 The proof of the spherical-symmetry-preserving prop-

erty

In this section, we will prove the scheme (2.22)-(2.23) can keep the spherical symmetry

property computed on an equal-angle-zoned initial grid.

Theorem: The scheme (2.22)-(2.23) can keep the one-dimensional spherical symmetry

property computed on an equal-angle zoned initial grid. That is, if the solution has one-

dimensional spherical symmetry at the initial time, then the computational solution will keep

this symmetry with the time marching.

Proof: Since the SSP Runge-Kutta scheme (2.22)-(2.23) is a convex combination of Euler

forward time stepping, it is symmetry-preserving if the scheme (2.21) is symmetry-preserving.

Thus we only need to prove the scheme (2.21) is symmetry-preserving. Without loss of

generality, we only need to prove the solution of the scheme (2.21) can keep the spherical

symmetry at the (n + 1)-th time step, if it is known to be spherical symmetric at the n-

th time step. Notice that, for the Lagrangian solution, symmetry preserving refers to the

evolution of both the conserved variables and the grid. For the convenience of notation, we

adopt the convention that variables without the superscript “n + 1” are those at the n-th

time step.

To facilitate the proof of the symmetry property, in the following, we simplify the vertex

indices of all the cells as p = 1, 2, 3, 4 (shown in Figure 3.1 and Figure 2.3).

1. The proof of grid symmetry preservation.

Without loss of the generality, we consider the velocity of the vertex p which connects

the cells Ωc, Ωb, Ωlb and Ωl (see Figure 3.1). For the convenience of proof, in the

following, we will project all the variables relative to the determination of the nodal

velocity to its local polar coordinates (see Figure 3.1). Thus the outward normal

direction of the four edges connected to the vertex p in the local ξ-θ coordinates can
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Figure 3.1: The local ξ-θ coordinates used for the proof of grid symmetry preservation on
the equal-angular polar grid.

be written as

nl
2 = −nc

1 =

(

cos
∆θ

2
, sin

∆θ

2

)

, nlb
3 = −nb

4 =

(

cos
∆θ

2
,− sin

∆θ

2

)

,

nlb
3 = nb

4 = −nc
1 = −nl

2 = (0, 1),

where ∆θ is the angle between the two neighboring radial edges.

Assume that at the n-th time step the grid is a polar grid with equal angles and the

cell averages of the conserved variables including density, momentum (velocity) and

total energy are symmetric on this grid, namely these variables in the cells with the

same radial position are identical. By the relationship (2.17)-(2.18) obtained by the

precess of the WENO reconstruction, we can get symmetric reconstructed values of

the variables at the vertex p in its four connected cells in the local ξ-θ coordinates.

Specifically we denote them as,






ρc
1 = ρb

4
= ρ1, ρc

1
= ρb

4 = ρ2, ρlb
3

= ρl
2 = ρl

3, ρlb
3 = ρl

2
= ρl

4,
zc
1 = zb

4
= z1, zc

1
= zb

4 = z2, zlb
3

= zl
2 = zl

3, zlb
3 = zl

2
= zl

4,
P c

1 = P b
4

= P1, P c
1

= P b
4 = P2, P lb

3
= P l

2 = P l
3, P lb

3 = P l
2

= P l
4,

(3.1)

and














uc
1 = u1(cos ∆θ

2
, sin ∆θ

2
), ub

4
= u1(cos ∆θ

2
,− sin ∆θ

2
),

uc
1

= u2(cos ∆θ
2

, sin ∆θ
2

), ub
4 = u2(cos ∆θ

2
,− sin ∆θ

2
),

ul
2 = ul

3(cos ∆θ
2

, sin ∆θ
2

), ulb
3

= ul
3(cos ∆θ

2
,− sin ∆θ

2
),

ul
2

= ul
4(cos ∆θ

2
, sin ∆θ

2
), ulb

3 = ul
4(cos ∆θ

2
,− sin ∆θ

2
),

(3.2)
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where {ρi, zi, Pi, ui, i = 1, 2} and {ρl
i, z

l
i, P

l
i , u

l
i, i = 3, 4} only depend on the ξ coordinate

and not on the θ coordinate.

In the case of a one-dimensional spherical flow computed on an equal angled polar grid,

substituting (3.1)-(3.2) into (2.12)-(2.13), then we can get the velocity at the vertex p

in its local ξ-θ coordinates in the following form

uξ
p =

z1u1 + zl
4u

l
4 − (P1 − P l

4)

(z1 + zl
4) cos ∆θ

2

, uθ
p = 0. (3.3)

Since uθ
p = 0 and uξ

p depends only on the ξ coordinate, we can conclude that the vertex

velocity is symmetric.

2. The proof of symmetry preservation for the conserved variables.

We would need to prove the symmetry preservation of the evolved variables such as

density, cell velocity and total energy.

We first rewrite the momentum equations in (2.8) and (2.21) along the cell’s local ξ-θ

coordinates (see Figure 2.3). The rewritten semi-discrete scheme is of the following

form

mc

d

dt

(

1

ρc

)

=
∑

p=1,4

(rc
pl

c
pn

c
p + rc

pl
c
pn

c
p) · up,

mc

d

dt
uξ

c = −
∑

p=1,4

(rc
pl

c
pπ

c
pn

c,ξ
p + rc

pl
c
pπ

c
pn

c,ξ
p ) + AcPs sin θc,

mc

d

dt
uθ

c = −
∑

p=1,4

(rc
pl

c
pπ

c
pn

c,θ
p + rc

pl
c
pπ

c
pn

c,θ
p ) + AcPs cos θc,

mc

d

dt
Ec = −

∑

p=1,4

(rc
pl

c
pπ

c
pn

c
p + rc

pl
c
pπ

c
pn

c
p) · up, (3.4)

where ξ is the radial direction passing through the cell center and the origin, and θ

is the angular direction which is counter-clockwisely orthogonal to ξ. uξ
c and uθ

c are

values of the velocity components in the local ξ and θ directions respectively, nc,ξ
p , nc,ξ

p

and nc,θ
p , nc,θ

p are the components of nc
p and nc

p along the ξ and θ directions respectively.

θc is set to be the angle between the local ξ direction and the z coordinate.
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In the following, we will project all the variables relative to the determination of the

nodal pressure and velocity to the cell’s local ξ-θ coordinates for the convenience of

proof. Thus the outward normal direction of the cell’s four edges in the local ξ-θ

coordinates are as follows

n12 =

(

− sin
∆θ

2
,− cos

∆θ

2

)

, n23 = (1, 0),

n34 =

(

− sin
∆θ

2
, cos

∆θ

2

)

, n41 = (−1, 0).

Denote the length of the four edges of the cell Ωc as

l41 = l1, l23 = l2, l12 = l3, l34 = l4.

Also denote the radial distances of the four vertices as {ξi, i = 1, ..., 4}. For the equal-

angled grid, we have l4 = l3 and ξ4 = ξ1, ξ3 = ξ2.

From (2.17)-(2.18), we can denote the reconstructed values of the variables at the cell’s

four vertices as,







ρc
1 = ρc

4
= ρ1, ρc

1
= ρc

4 = ρ2, ρc
2 = ρc

3
= ρ3, ρc

2
= ρc

3 = ρ4,
zc
1 = zc

4
= z1, zc

1
= zc

4 = z2, zc
2 = zc

3
= z3, zc

2
= zc

3 = z4,
P c

1 = P c
4

= P1, P c
1

= P c
4 = P2, P c

2 = P c
3

= P3, P c
2

= P c
3 = P4,

(3.5)

{

uc
1 = uc

4
= u1(1, 0), uc

1
= uc

4 = u2(1, 0),
uc

2 = uc
3

= u3(1, 0), uc
2

= uc
3 = u4(1, 0).

(3.6)

Similarly, the nodal values of the corresponding variables in the neighboring cells can

also be denoted as,

{

ρl
2

= ρl
4, zl

2
= zl

4, P l
2

= P l
4, ul

2
= ul

4(1, 0),
ρr

1 = ρr
1, zr

1 = zr
1, P r

1 = P r
1 , ur

1 = ur
1(1, 0),

(3.7)

where {ρi, Pi, zi, ui, i = 1, ..., 4} and {ρl
4, P

l
4, z

l
4, u

l
4, ρ

r
1, P

r
1 , zr

1, u
r
1} depend only on the ξ

coordinate and not on the θ coordinate, due to the symmetry-preserving process of the

WENO reconstruction.

19



Similar to the formula (3.3), we can rewrite the velocity of the cell’s four vertices in

the local ξ-θ coordinates,

u1 =
z1u1 + zl

4u
l
4 − (P1 − P l

4)

(z1 + zl
4) cos ∆θ

2

(

cos
∆θ

2
,− sin

∆θ

2

)

,

u2 =
z4u4 + zr

1u
r
1 − (P r

1 − P4)

(z4 + zr
1) cos ∆θ

2

(

cos
∆θ

2
,− sin

∆θ

2

)

,

u3 =
z4u4 + zr

1u
r
1 − (P r

1 − P4)

(z4 + zr
1) cos ∆θ

2

(

cos
∆θ

2
, sin

∆θ

2

)

, (3.8)

u4 =
z1u1 + zl

4u
l
4 − (P1 − P l

4)

(z1 + zl
4) cos ∆θ

2

(

cos
∆θ

2
, sin

∆θ

2

)

.

Next we will try to write out each variable which appears at the right-hand side of

(3.4) in details based on the previous denotations. By a simple manipulation, the

nodal pressures appearing on the right hand side of the scheme (3.4) can be obtained

as follows,

πc
1 = P c

1 − zc
1(u1 − uc

1) · n41 =
z1P

l
4 + zl

4P1 − z1z
l
4(u1 − ul

4)

z1 + zl
4

,

πc
1 = P c

1 − zc
1(u1 − uc

1) · n12 = P2 − z2u2 sin
∆θ

2
. (3.9)

Thus we can denote

πc
4 = πc

1 = P2 − z2u2 sin
∆θ

2
,

πc
2 = πc

3 = P3 − z3u3 sin
∆θ

2
,

πc
4 = πc

1 =
z1P

l
4 + zl

4P1 − z1z
l
4(u1 − ul

4)

z1 + zl
4

,

πc
2 = πc

3 =
zr
1P4 + z4P

r
1 − zr

1z4(u
r
1 − u4)

z4 + zr
1

. (3.10)
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For the simplicity of description, we denote

P c
2 = P2 − z2u2 sin

∆θ

2
,

P c
3 = P3 − z3u3 sin

∆θ

2
,

P c
1 =

z1P
l
4 + zl

4P1 − z1z
l
4(u1 − ul

4)

z1 + zl
4

,

P c
4 =

zr
1P4 + z4P

r
1 − zr

1z4(u
r
1 − u4)

z4 + zr
1

,

uc
1 =

z1u
l
4 + zl

4u1 − (P1 − P l
4)

z1 + zl
4

,

uc
4 =

zr
1u4 + z4u

r
1 − (P r

1 − P4)

z4 + zr
1

.

By the formula (2.19), we have

Ps =
(2ξ1 + ξ2)P

c
2 + (ξ1 + 2ξ2)P

c
3

3(ξ1 + ξ2)
. (3.11)

Other variables appearing at the right hand side of (3.4) can be described in the

following details

lc1 = lc4 =
1

2
l1, lc1 = lc2 = lc3 = lc4 =

1

2
l3, lc2 = lc3 =

1

2
l2,

(nc,ξ
1 , nc,θ

1 ) = (nc,ξ

4
, nc,θ

4
) = n41 = (−1, 0),

(nc,ξ
2 , nc,θ

2 ) = (nc,ξ

1
, nc,θ

1
) = n12 = (− sin

∆θ

2
,− cos

∆θ

2
),

(nc,ξ
3 , nc,θ

3 ) = (nc,ξ

2
, nc,θ

2
) = n23 = (1, 0),

(nc,ξ
4 , nc,θ

4 ) = (nc,ξ

3
, nc,θ

3
) = n34 = (− sin

∆θ

2
, cos

∆θ

2
),

rc
1 + rc

4 = 2ξ1 sin θc cos
∆θ

2
, rc

2 + rc
3 = 2ξ2 sin θc cos

∆θ

2
,

rc
1 = (

2

3
ξ1 +

1

3
ξ2) sin(θc −

∆θ

2
), rc

2 = (
1

3
ξ1 +

2

3
ξ2) sin(θc −

∆θ

2
),

rc
3 = (

1

3
ξ1 +

2

3
ξ2) sin(θc +

∆θ

2
), rc

4 = (
2

3
ξ1 +

1

3
ξ2) sin(θc +

∆θ

2
),

Ac =
1

2
(ξ1 + ξ2)l3 sin ∆θ. (3.12)
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Substituting (3.9)-(3.12) into (3.4), we get

mc

d

dt









1/ρc

uξ
c

uθ
c

Ec









=









sin θc cos ∆θ
2

(ξ2l2u
c
4 − ξ1l1u

c
1)

sin θc{1
6
[(2ξ1 + ξ2)P

c
2 + (ξ1 + 2ξ2)P

c
3 ]l3 sin ∆θ + (ξ1l1P

c
1 − ξ2l2P

c
4 ) cos ∆θ

2
} + AcPs sin θc

−1
6
[(2ξ1 + ξ2)P

c
2 + (ξ1 + 2ξ2)P

c
3 ]l3 sin ∆θ cos θc + AcPs cos θc

sin θc cos ∆θ
2

(ξ1l1u
c
1P

c
1 − ξ2l2u

c
4P

c
4 )









=









sin θc cos ∆θ
2

(ξ2l2u
c
4 − ξ1l1u

c
1)

sin θc[cos ∆θ
2

(ξ1l1P
c
1 − ξ2l2P

c
4 ) + 2AcPs]

−AcPs cos θc + AcPs cos θc

sin θc cos ∆θ
2

(ξ1l1u
c
1P

c
1 − ξ2l2u

c
4P

c
4 )









= sin θc









cos ∆θ
2

(ξ2l2u
c
4 − ξ1l1u

c
1)

cos ∆θ
2

(ξ1l1P
c
1 − ξ2l2P

c
4 ) + 2AcPs

0
cos ∆θ

2
(ξ1l1u

c
1P

c
1 − ξ2l2u

c
4P

c
4 )









. (3.13)

Since the cell is an equal-sided trapezoid, we have

mc = ρcVc = ρcrcAc = ρcξcAc sin θc, (3.14)

where rc and ξc are the values of r and ξ at the cell center respectively.

Thus from (3.13) and (3.14), we have

d

dt









1/ρc

uξ
c

uθ
c

Ec









=
1

ρcξcAc









cos ∆θ
2

(ξ2l2u
c
4 − ξ1l1u

c
1)

cos ∆θ
2

(ξ1l1P
c
1 − ξ2l2P

c
4 ) + 2AcPs

0
cos ∆θ

2
(ξ1l1u

c
1P

c
1 − ξ2l2u

c
4P

c
4 )









. (3.15)

Finally we obtain the scheme (3.4) in the following detailed expression








1/ρn+1
c

uξ,n+1
c

uθ,n+1
c

E
n+1

c









=









1/ρc

uξ
c

0
Ec









+
∆t

ρcξcAc









cos ∆θ
2

(ξ2l2u
c
4 − ξ1l1u

c
1)

cos ∆θ
2

(ξ1l1P
c
1 − ξ2l2P

c
4 ) + 2AcPs

0
cos ∆θ

2
(ξ1l1u

c
1P

c
1 − ξ2l2u

c
4P

c
4 )









. (3.16)

From the formula (3.16), we can see, at the (n + 1)-th time step, the θ component

of the cell velocity uc is zero and the magnitude of all the other conserved variables

only depend on the radial position of the cell. The proof of the symmetry preservation

property of the scheme is thus completed.
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4 Numerical results in the two-dimensional cylindrical

coordinates

In this section, we perform numerical experiments in two-dimensional cylindrical coordinates.

Purely Lagrangian computation, the ideal gas with γ = 5/3, the initially equal-angled polar

grid and the scheme (2.22)-(2.23) are used in the following tests unless otherwise stated. All

the examples are performed by the scheme with local characteristic decomposition in the

WENO reconstruction. Reflective boundary conditions are applied to the z and r axes in all

the tests. uξ and uθ represent the values of velocity in the radial and angular directions in the

cell’s local polar coordinates. The numerical results of the first order scheme shown in the

following non-oscillatory tests for the purpose of comparison are obtained by the symmetry-

preserving Lagrangian scheme developed in [8]. All the cells will be plotted in the following

figures of density versus radial radius.

4.1 Accuracy test

We test the accuracy of the scheme (2.22)-(2.23) on a free expansion problem given in [21, 7].

The initial computational domain is [0, 1]×[0, π/2] defined in the polar coordinates. At t = 0,

we have

ρ = 1, uξ = 0, uθ = 0, p = 1 − ξ2,

where ξ =
√

z2 + r2.

The problem has the following analytical solution,

R(t) =
√

1 + 2t2,

uξ(z, r, t) =
2t

1 + 2t2
ξ, uθ(z, r, t) = 0,

ρ(z, r, t) =
1

R3
,

p(z, r, t) =
1

R5

(

1 − ξ2

R2

)

,

where R is the radius of the free outer boundary.
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Figure 4.1: The initial grid of the free expansion problem with 20 × 20 cells. Left: equal-
angled polar grid; Right: non-uniform smooth polar grid.

We perform the test on two different types of grids as shown in Figure 4.1. The first

is an initially equal-angled polar grid. The second is an initially non-uniform smooth polar

grid, for which each internal grid vertex is obtained by a smooth perturbation from an

equal-angled polar grid as follows

zk,l = ξk cos

(

1

2
πθl

)

+ ǫ sin(2πξk) sin(2πθl),

rk,l = ξk sin

(

1

2
πθl

)

+ ǫ sin(2πξk) sin(2πθl),

where ξk = k−1
K−1

, θl = l−1
L−1

, (zk,l, rk,l) is the z-r coordinate of the grid points with the

sequential indices (k, l), k = 1, ..., K − 1, l = 2, ..., L − 1 in the radial and angular directions

respectively. K, L represent the number of grid points in the above mentioned two directions.

ǫ is a parameter which is chosen as 0.02 in this test.

Free boundary condition is applied on the outer boundary. Figure 4.2 shows the final

grids. We can clearly observe symmetry in the left figure for the first type of grids. The

errors of the scheme on these two kinds of grids at t = 1 are listed in Tables 4.1-4.2 which are

measured on the interval [ 1
10

K, 9
10

K]× [ 1
10

L, 9
10

L] to remove the influence from the boundary.

From both of these tables, we can see the expected second order accuracy at least in L1-norm

for all the evolved conserved variables.
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Figure 4.2: The final grid of the free expansion problem with 20 × 20 cells at t = 1. Left:
initially equal-angled polar grid; Right: initially non-uniform smooth polar grid.

Table 4.1: Errors of the scheme in 2D cylindrical coordinates for the free expansion problem
using K × L initially equal-angled polar grid cells

K = L Norm Density order Momentum order Energy order
10 L1 0.22E-2 0.18E-2 0.15E-2

L∞ 0.36E-2 0.41E-2 0.28E-2
20 L1 0.34E-3 2.69 0.22E-3 3.05 0.23E-3 2.71

L∞ 0.59E-3 2.59 0.43E-3 3.27 0.45E-3 2.65
40 L1 0.71E-4 2.25 0.39E-4 2.48 0.48E-4 2.30

L∞ 0.15E-3 1.96 0.67E-4 2.66 0.11E-3 1.99
80 L1 0.16E-4 2.18 0.80E-5 2.29 0.10E-4 2.20

L∞ 0.41E-4 1.90 0.13E-4 2.34 0.28E-4 2.04

Table 4.2: Errors of the scheme in 2D cylindrical coordinates for the free expansion problem
using K × L initially non-uniform smooth polar grid cells

K = L Norm Density order Momentum order Energy order
10 L1 0.22E-2 0.18E-2 0.15E-2

L∞ 0.38E-2 0.40E-2 0.30E-2
20 L1 0.34E-3 2.67 0.23E-3 2.99 0.24E-3 2.68

L∞ 0.59E-3 2.68 0.36E-3 3.46 0.47E-3 2.67
40 L1 0.72E-4 2.24 0.42E-4 2.45 0.49E-4 2.29

L∞ 0.17E-3 1.81 0.50E-4 2.87 0.12E-3 2.00
80 L1 0.16E-4 2.14 0.87E-5 2.28 0.11E-4 2.21

L∞ 0.47E-4 1.85 0.12E-4 2.08 0.29E-4 2.03
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Figure 4.3: The results of the Noh problem with 100 × 20 cells at t = 0.6. Left: grid
of the second order scheme; Middle: density contour of the second order scheme; Right:
density versus radial radius. Solid line: exact solution; Blue symbols: first order scheme;
Red symbols: second order scheme.

4.2 Non-oscillatory tests

Example 1 (The Noh problem in a cylindrical coordinate system on the polar grid [18]).

The Noh problem is a well-known test problem which is widely used to validate the

performance of Lagrangian schemes on strong discontinuities. In this test case, the perfect

gas has the following initial condition,

ρ = 1, uξ = 1, uθ = 0, e = 10−5.

The equal-angled polar grid is applied in the 1
4
-circle computational domain defined in the

polar coordinates by [0, 1]× [0, π/2]. The shock is generated by bringing the cold gas to rest

at the origin. The analytical post shock density is 64 and the shock speed is 1/3. Figure

4.3 shows the results of the second order scheme (2.22)-(2.23) including the final grid and

density contour with 100 × 20 cells at t = 0.6. The comparison of density as a function of

the radial radius between the first order and second order schemes is also given on the right

of Figure 4.3. From Figure 4.3, we observe the results are symmetric and non-oscillatory.

The numerical solution is closer to the analytical solution with the usage of the second order

scheme.

Example 2 (The spherical Sedov problem in a cylindrical coordinate system on the polar

grid [21]).
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Figure 4.4: The results of the Sedov problem with 30 × 30 cells at t = 1. Left: grid of the
second order scheme; Middle: density contour of the second order scheme; Right: density
versus radial radius. Solid line: exact solution; Blue symbols: first order scheme; Red
symbols: second order scheme.

The spherical Sedov blast wave problem in a cylindrical coordinate system is a commonly

used example of a diverging shock wave. The initial computational domain is a 1
4
-circle region

defined in the polar coordinates by [0, 1.125] × [0, π/2]. The initial condition is,

ρ = 1, uξ = 0, uθ = 0,

the specific internal energy e is zero except in the cells connected to the origin where they

share a total value of 0.2468. Reflective boundary condition is applied on the outer boundary.

The analytical solution is a shock with a peak density of 4 at radius unity at time unity.

The final grid and the surface of density obtained by the second order scheme (2.22)-(2.23)

with 30 × 30 cells are displayed in Figure 4.4. The comparison of density as a function of

the radial radius between the first order and second order schemes is shown on the right of

Figure 4.4. We observe the expected symmetry in the plots of grid and density. The shock

position and peak density obtained by the second order scheme coincide with the analytical

solutions better than those obtained by the first order scheme, which demonstrates the

good performance of the second order scheme in symmetry preserving, non-oscillation and

accuracy properties.

Example 3 (The one-dimensional spherical Sod Riemann problem).

For this problem, the initial computational domain is [0, 20]× [0, π/2] defined in the polar

27



z

r

0 5 10 15 20
0

5

10

15

20

z

r

0 5 10 15 20
0

5

10

15

20

radius

de
ns

ity

8 9 10 11 12 13

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 reference
1st order 400 ×10
2nd order 400 ×10
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of the second order scheme; Middle: density contour of the second order scheme; Right:
density versus radial radius. Solid line: exact solution; Blue symbols: first order scheme;
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coordinates. Its initial condition is as follows

(ρ, uξ, uθ, p) =

{

(1, 0, 0, 1), 0 ≤ ξ ≤ 10
(0.125, 0, 0, 0.1), 10 < ξ ≤ 20

The reflective boundary condition is applied on the outer boundary. The grid consists of

400× 10 equal-angled polar cells. The reference solution is the converged result obtained by

using a one-dimensional second-order Eulerian code in the spherical coordinate with 10000

grid points. Figure 4.5 shows the numerical results of the grid and density contour of the

second order scheme, and density as a function of the radial radius performed by both the

second order scheme and the first order scheme at t = 1.4. We observe the good symmetry

behavior of the schemes and the better agreement between the numerical result of the second

order scheme and the reference solution.

Example 4 (Kidder’s isentropic compression problem [11, 15]).

This problem is a self-similar problem with a spherical isentropic compression. At the

initial time, the shell has a ring shape with the computational region [0.9, 1]× [0, π/2] in the

polar coordinates. uξ = 0, uθ = 0. The initial density and pressure ρ0, P0 have the following

expression,

ρ0(ξ) =

(

ξ4 − ξ2

ξ4 − ξ3

ργ−1
1 +

ξ2 − ξ3

ξ4 − ξ3

ργ−1
2

)
1

γ−1

, P0(ξ) = s(ρ0(ξ))
γ,
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where ρ1 = 6.31 × 10−4, ρ2 = 10−2, s = 2.15 × 104, γ = 5/3. With the time marching, the

pressure P1(t) and P2(t) are imposed continuously at the internal and external boundary

respectively which have the following representation

P1(t) = P 0
1 a(t)−

2γ

γ−1 , P2(t) = P 0
2 a(t)−

2γ

γ−1

where P 0
1 = 0.1, P 0

2 = 10 and a(t) =
√

1 − ( t
τ
)2 in which τ = 6.72 × 10−3 is the focusing

time of the shell and t ∈ [0, τ) is the evolving time.

The analytical solutions of the three fundamental variables for this problem in spherical

geometry are as follows

ρ(ζ(ξ, t), t) = ρ0(ξ)ξa(t)−
2

γ−1 ,

u(ζ(ξ, t), t) = ξ
d

dt
a(t),

p(ζ(ξ, t), t) = P0(ξ)ξa(t)−
2γ

γ−1 ,

where ζ(ξ, t) is denoted to be the radius at time t of a point initially located at radius ξ, its

analytical solution is ζ(ξ, t) = a(t)ξ.

We test the second order scheme (2.22)-(2.23) on this problem with initially 80 × 40

equal-angular cells. The final time is set to be t = 0.99τ . Figure 4.6 shows the final grid

and density contour, from which we observe perfect symmetry. Figure 4.7 shows the results

of density, velocity and pressure obtained by both the second order scheme and the first

order scheme at the final time where we can observe the numerical solutions obtained by the

second order scheme are much closer to the analytical solutions.

Example 5 (Implosion problem of Lazarus [12]).

In this self-similar implosion problem, initially a sphere of unit radius has the following

condition,

ρ = 1, uξ(t) =
−αf

(1 − ft)1−α
, uθ(t) = 0, e = 10−5, (4.1)

where α = 0.6883545, f = 1 − εt − δt3, ε = 0.185, δ = 0.28.
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Figure 4.6: The results of the Kidder problem with 80 × 40 cells at t = 0.99τ . Left: grid of
the second order scheme; Right: density contour of the second order scheme.
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We test the problem on a grid of 200 × 30 cells in the initial computational domain

[0, 1]× [0, π/2] defined in the polar coordinates. The numerically converged result computed

using a one-dimensional second-order Lagrangian code in the spherical coordinate with 10000

cells is used as a reference solution. We display the results of the second order scheme

(2.22)-(2.23) in Figure 4.8. In the plots of grid and density contour, we notice the expected

symmetry. In the plot of density as a function of the radial radius, we observe the non-

oscillatory property of the scheme. By comparing with the first order scheme, we observe

that the second order scheme produces more accurate numerical solution.

Example 6 (Coggeshall expansion problem [9]).

In this example, we attempt to apply a two-dimensional adiabatic compression problem

proposed by Coggeshall to test the performance of the second order scheme (2.22)-(2.23) on

a truly two-dimensional problem. The computational domain is [0, 1] × [0, π/2] defined in

the polar coordinates with 100 × 10 equal-angular cells. The initial condition is as follows,

ρ = 1, (uz, ur) = (−z/4,−r), e = (3zc/8)2,

where zc is the z coordinate of the cell center. Figure 4.9 shows the results of the grid,

density contour and density plotted as a function of the radial radius along each radial line

at t = 0.8 in which time the analytical density is expected to be flat with a value of 37.4.
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of the second order scheme; Middle: density contour of the second order scheme; Right:
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From the figures, we can observe the numerical results performed by the second order scheme

agree with the analytical solution much better except for the small region near the origin.

Example 7 (Spherical Sedov problem on the Cartesian grid).

The spherical symmetry problem simulated on the initially rectangular grid is demon-

strated to be much more challenging for a Lagrangian scheme due to the shock direction

being not aligned with the grid line. In this example, we test the spherical Sedov blast

wave problem in a cylindrical coordinate system on the initially rectangular grid. The initial

computational domain is a 1.125×1.125 square consisting of 50×50 uniform cells. Its initial

condition is

ρ = 1, uz = 0, ur = 0.

The specific internal energy e is zero except in the cell connected to the origin where it has

a value of 0.2468. Figure 4.10 shows the results of our second order scheme (2.22)-(2.23)

and the first order scheme. From the figures, we can observe the results of our second order

scheme are symmetric and more accurate than the first order scheme even on this non-polar

grid.

Example 8 (Spherical Noh problem on the Cartesian grid [18]).

In this example, we test the spherical Noh implosion problem on a Cartesian grid to verify
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Figure 4.10: The results of the Sedov problem with 50 × 50 Cartesian cells at t = 1.0. Left:
grid of the second order scheme; Middle: density contour of the second order scheme; Right:
density versus radial radius. Solid line: exact solution; Blue symbols: first order scheme;
Red symbols: second order scheme.

the robustness of the scheme. This problem is a very severe test for a Lagrangian scheme

computed on a Cartesian grid, since in this case the grid near the axes is easy to be distorted

which has been addressed in [5]. The initial domain is [0, 1] × [0, 1]. The initial state of the

fluid is (ρ, uξ, uθ, e) = (1,−1, 0, 10−5), where uξ, uθ are the radial and angular velocities at the

cell center. Reflective boundary conditions are applied on the left and bottom boundaries.

Free boundary condition is used on the right and top boundaries. The analytical solution

is the same as that in Example 1. Figure 4.11 shows the result of the second order scheme

(2.22)-(2.23) with 60 × 60 initially uniform rectangular cells at t = 0.6. From these figures,

we can see that there is no grid distortion along the axes, the spherical symmetry of the shock

front is preserved well and the shock position is correct, which demonstrate the robustness

of the scheme on the Cartesian grid.

Example 9 (Implosion problem of Lazarus simulated on the semi-circle domain [12, 13]).

To demonstrate the robustness of our scheme, we further perform the test on the pre-

viously mentioned Lazarus problem with a grid of 50 × 50 cells on an initially semi-circle

domain of unit initial radius with a center of convergence at (z, r) = (0, 0) and a center of

convergence at (z, r) = (0.5, 0) respectively, see the left figures in Figures 4.12-4.13 for the

initial grids. In both cases the velocity boundary condition is the same as that in Example

5, which is given by (4.1). We display the results of the second order scheme (2.22)-(2.23) in
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Figure 4.12: The results of the Lazarus problem on a semi-circle domain with a center of
convergence at (z, r) = (0, 0) initially. Left: the initial grid with 50 × 50 cells; Middle: grid
of the second order scheme at t = 0.8; Right: density contour of the second order scheme at
t = 0.8.

Figure 4.12 and Figure 4.13. In the plots of density contour at t = 0.8, we notice the results

on these two types of grids are quite comparable, which shows the good performance of our

scheme on robustness.

5 Concluding remarks

In this paper we develop a new second order cell-centered symmetry-preserving Lagrangian

scheme for solving compressible Euler equations in the two-dimensional cylindrical coordi-

nates. The scheme is based on the control volume discretizations. It is designed to have

uniformly second order accuracy and to be able to preserve one-dimensional spherical sym-
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Figure 4.13: The results of the Lazarus problem on a semi-circle domain with a center of
convergence at (z, r) = (0.5, 0) initially. Left: the initial grid with 50×50 cells; Middle: grid
of the second order scheme at t = 0.8; Right: density contour of the second order scheme at
t = 0.8.

metry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned

initial grid, and meanwhile it maintains many other good properties such as conservation

for mass, momentum and total energy and the geometric conservation law. Several two-

dimensional numerical examples in cylindrical coordinates are presented to demonstrate the

good performance of the scheme in terms of accuracy, symmetry, non-oscillation and ro-

bustness properties. The improvement of the scheme on other important properties such as

positivity-preserving constitutes our future work.
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