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Abstract

Solving wave propagation problems within heterogeneous media has been of great inter-

est and has a wide range of applications in physics and engineering. The design of numerical

methods for such general wave propagation problems is challenging because the energy con-

serving property has to be incorporated in the numerical algorithms in order to minimize

the phase or shape errors after long time integration. In this paper, we focus on multi-

dimensional wave problems and consider linear second-order wave equation in heterogeneous

media. We develop and analyze an LDG method, in which numerical fluxes are carefully

designed to maintain the energy preserving property and accuracy. Compatible high order

energy conserving time integrators are also proposed. The optimal error estimates and the

energy conserving property are proved for the semi-discrete methods. Our numerical exper-

iments demonstrate optimal rates of convergence, and show that the errors of the numerical

solutions do not grow significantly in time due to the energy conserving property.
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1 Introduction

Wave propagation is a fundamental form of energy transmission, which arises in many fields

of science, engineering and industry, and it is significant to geoscience, petroleum engineer-

ing, telecommunication, and the defense industry (see [24, 33] and the references therein).

Efficient and accurate numerical methods to solve wave propagation problems are of funda-

mental importance to these applications. Experience reveals that energy conserving numeri-

cal methods, which conserve the discrete approximation of the energy, are favorable because

they are able to maintain the phase and shape of the waves accurately, especially for long

time simulation. In [44], we have designed a high order accurate energy conserving local

discontinuous Galerkin (LDG) method for the one-dimensional second-order wave equation

with constant coefficient. In this paper, we focus on multi-dimensional problems in hetero-

geneous media, and develop optimally convergent LDG methods which also conserve the

energy in the discrete sense.

The wave equation can be written in a second-order form, or an equivalent first-order hy-

perbolic system. Directly solving the second-order equation usually involves fewer unknown

variables, therefore the resulting numerical schemes are more efficient. This saving can be

significant in the three-dimensional applications. For example, for the linear elasticity equa-

tions in three dimensions, three variables are used in the second-order form, while first-order

system needs at least nine components [6]. In addition, there are many applications where

the second-order PDEs arise naturally. When converted into first-order systems, they may

admit a wider class of solutions, therefore some constraints are needed to ensure these so-

lutions are solutions of the original second-order equation, which also increases difficulty to

the design of numerical methods. Finally, it was also shown [3] that second-order equation

may allow larger time step size, compared to the first-order system.

A vast amount of literature can be found on the numerical approximations of the second-

order wave equation. The most common numerical method for solving the wave equation is

to use the second order accurate centered finite difference operator. One major component
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in designing such finite difference methods which conserve the energy numerically is the

Summation By Parts (SBP) operator, with special attention paid near the boundaries. There

have been many studies on this subject (see [43] and the references therein). While finite

difference methods provide efficient solvers, they are largely limited by the geometry of the

domain, although some attempts [4] have been made to circumvent this difficulty. In contrast,

finite element methods have the flexibility in handling complex geometry. Safjan and Oden

[41] introduced a family of unconditionally stable high order Taylor-Galerkin schemes for

acoustic and elastic wave propagation. Faccioli et al. [25] used explicit Fourier-Legendre

domain decomposition methods and focused on the numerical validation of the methods.

Spectral methods for acoustic and elastic waves have been developed in [36, 46], and a mortar

coupling between spectral and finite elements methods for elastodynamic problem on complex

geometries can be found in [9]. Spectral element methods are shown to conserve energy when

applied to the wave equations [2, 28]. We refer to [29, 20] for a review of previous work on

spectral and spectral element methods. Here, we will confine our attention in discontinuous

Galerkin (DG) methods, which have the advantages of being local (versus global), easy h-p

adaptivity and being able to handle hanging nodes, compared with spectral element methods.

DG methods can be viewed as spectral element methods with domain decomposition. They

belong to a class of finite element methods using discontinuous piecewise polynomial spaces

for both the numerical solution and the test functions. They were originally devised to solve

hyperbolic conservation laws with only first order spatial derivatives, e.g. [14, 15, 16, 18, 19].

They allow arbitrarily unstructured meshes, and have compact stencils. Moreover, they

easily accommodate arbitrary h-p adaptivity. DG methods were later generalized to the

LDG methods by Cockburn and Shu to solve convection-diffusion equations [17], motivated

by successful numerical experiments from Bassi and Rebay [7] for the compressible Navier-

Stokes equations. Recently, Zhong and Shu [47] studied the question of how many grid

points (degrees of freedom) per wave length are needed to achieve a given accuracy for the

DG method applied to the linear wave equation, following the classical error analysis by
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Kreiss and Oliger [35] for the finite difference methods.

Many DG methods have been developed for the wave equation in both first-order and

second-order forms [16, 31, 26, 38, 41, 40, 1, 5], and some of these methods are also energy-

conserving [27, 30, 12]. Two approaches are commonly used to achieve the energy-conserving

property. The first one is to introduce two staggered mesh sets, and define one set of solution

on each mesh. This usually leads to more complexity, as staggered mesh may be difficult to

construct, especially for high dimensional complex domain and in the neighborhood of the

boundary. Recently, Chung and Engquist [12, 13] have proposed an optimal, energy con-

serving DG method for the first-order wave equation using staggered grids. They introduced

different meshes for different computational variables, and are able to prove the optimal con-

vergence for unstructured meshes. The other approach to obtain energy-conserving method

is to use the central numerical flux [27], i.e., the numerical flux along cell boundaries is eval-

uated by taking the average of two values of the numerical solution from the two neighboring

cells. However, only suboptimal convergence can be proven theoretically, and numerically,

one can observe optimal convergence if even order polynomial space is used, and suboptimal

if odd order polynomial space is used.

Usually it is difficult to obtain DG schemes for wave equations which are non-dissipative

(energy conserving for the physical energy) and optimal high order accurate. In [44], we

have designed an energy conserving LDG method for the simple one-dimensional second-

order constant coefficient wave equation. We have proved that the proposed method has the

optimal convergence rates in both the energy and L2 norms, and the upper bound of the errors

grows in time only in a linear fashion. In this paper, we consider the multi-dimensional wave

problems in heterogeneous media. Extension of the previous work to the multi-dimensional

problems on Cartesian meshes is discussed. Extra attention needs to be paid at the interface

of different media to ensure the stability and energy conservation. Theoretical proof, as

well as the numerical evidence, indicates that a good choice of the projection of the initial

condition into the polynomial space is important to achieve optimal convergence rate. The
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semi-discrete LDG method will be coupled with high order explicit energy conserving time

discretization. We remark here that since our scheme is non-dissipative, it is more oscillatory

than the commonly used upwind (energy-dissipative) DG method when applied to problems

with discontinuities. The advantage of energy-conserving methods is to solve smooth wave

problems, with the attempt to resolve all waves for long time periods.

The outline of our paper is as follows. In Section 2, we present the semi-discrete LDG

method, and prove its energy conserving property. The optimal error estimates, both in

the energy norm and the L2 norm, are analyzed in Section 3, and therein, the upper bound

of errors is proved to grow linearly in time. The fully discrete LDG method, with the

high order energy conserving time discretization, and its energy conserving properties are

presented in Section 4. Section 5 contains numerical experiments that demonstrate the

optimal convergence rates and energy conservation of the proposed LDG method, as well as

its excellent long time accuracy. Finally, we give concluding remarks in Section 6.

2 Local discontinuous Galerkin discretization

2.1 The model problem

In this paper, we primarily consider the second-order wave equation, on a bounded domain

Ω in R2 or R3,

utt = ∇ · (a2(x)∇u), x ∈ Ω, t ∈ [0, T ], (2.1)

where a(x) > 0, and this problem is subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x). (2.2)

The speed of wave propagation is a(x), which is assumed to be piecewise smooth. Both

homogeneous Dirichlet boundary conditions and periodic boundary conditions will be con-

sidered. We remark here that the results in the following sections will remain the same if a

source term f(x, t) is added to the equation (2.1), so for simplicity, we only consider (2.1)

throughout this paper.
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2.2 Notations

We consider a two-dimensional rectangular domain Ω for simplicity (extension to three di-

mension is straightforward), and without loss of generality, we denote it by [0, Lx] × [0, Ly].

We discretize the computational domain Ω into rectangular cells Ki,j = Ii × Jj, where

Ii = [xi− 1

2

, xi+ 1

2

], i = 1, · · · , Nx and Jj = [yj− 1

2

, yj+ 1

2

], j = 1, · · · , Ny. The center of

each cell is (xi, yj) =
(

1
2
(xi− 1

2

+ xi+ 1

2

), 1
2
(yj− 1

2

+ yj+ 1

2

)
)
, and the mesh sizes are denoted

by hx
i = xi+ 1

2

− xi− 1

2

and hy
j = yj+ 1

2

− yj− 1

2

, with hx = max1≤i≤Nx
hx

i , h
y = max1≤j≤Ny

hy
j ,

and h = max(hx, hy) the maximal mesh size. Regular meshes are used, namely, the ratio

between the maximal and the minimal mesh sizes remains bounded during mesh refinement.

Let Th be the family of partitions of Ω parameterized by h > 0, and we define

E I
h := set of all interior edges/faces of Th,

EB
h := set of all boundary edges/faces of Th on Γ = ∂Ω,

Eh := E I
h ∪ EB

h .

The piecewise polynomial space V k
h is defined as the space of tensor products of piecewise

polynomials of degree at most k in each variable on every element Ki,j, that is,

V k
h = {v : v|K ∈ Qk(K), ∀K ∈ Th}, (2.3)

where Qk is the space of tensor products of one-dimensional polynomials of degree up to k.

Note that functions in V k
h are allowed to have discontinuities across element interfaces. We

extend this definition to vector-valued functions by defining

Σk
h = {w = (w1, w2)

T : wl|K ∈ Qk(K), l = 1, 2, ∀K ∈ Th}. (2.4)

The solution of the numerical scheme is denoted by uh, which belongs to the finite element

space V k
h . We denote by uh(x

+
i+1/2, y) and uh(x

−
i+1/2, y) the limit values of uh at xi+ 1

2

from the

right cell Ii+1 × Jj and from the left cell Ii × Jj, respectively; uh(x, y
+
j+1/2) and uh(x, y

−
j+1/2)

are defined similarly. The L2 norm over the domain Ω is denoted by ‖ · ‖.
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2.3 The LDG method

In this subsection, we define the semi-discrete LDG method for the wave equation (2.1),

by discretizing the space with the LDG method and leaving the time dependence continu-

ous. The wave equation is written into a first order system by substituting the first order

derivatives ux, uy with the auxiliary variable q = (q1, q2):

utt = ∇ · (a(x)q), (2.5)

q = a(x)∇u.

The LDG method for (2.5) is then formulated as follows: find uh, q
1
h, q

2
h ∈ V k

h , such that

∫

Ki,j

(uh)ttψdx +

∫

Ki,j

aq1
hψxdx −

∫

Jj

âq1
hψ(x−

i+ 1

2

, y)dy +

∫

Jj

âq1
hψ(x+

i− 1

2

, y)dy (2.6)

+

∫

Ki,j

aq2
hψydx −

∫

Ii

ãq2
hψ(x, y−

j+ 1

2

)dx+

∫

Ii

ãq2
hψ(x, y+

j− 1

2

)dx = 0,

∫

Ki,j

q1
hφdx +

∫

Ki,j

auhφxdx −
∫

Jj

âuhφ(x−
i+ 1

2

, y)dy +

∫

Jj

âuhφ(x+
i− 1

2

, y)dy = −
∫

Ki,j

axuhφdx,

(2.7)∫

Ki,j

q2
hϕdx +

∫

Ki,j

auhϕydx −
∫

Ii

ãuhϕ(x, y−
j+ 1

2

)dx+

∫

Ii

ãuhϕ(x, y+
j− 1

2

)dx = −
∫

Ki,j

ayuhϕdx,

(2.8)

for all test functions ψ, φ, ϕ ∈ V k
h . The hatted terms, âq1

h and âuh, and the tilde terms, ãq2
h

and ãuh, in (2.6)-(2.8) are the cell boundary terms obtained from integration by parts, and

they are the so-called numerical fluxes. These numerical fluxes are single-valued functions

defined on the cell boundaries, and they are essential to ensure numerical stability and

capture certain properties of the PDEs, such as energy conservation in wave equations.

If the function a(x) is continuous, the numerical fluxes can be determined following the

one-dimensional approach in [44]. For the hatted terms, we use the simple alternating fluxes,

âq1
h = aq1,−

h , âuh = au+
h , (2.9)

where all quantities are computed at the same points (xi+1/2, y) (i.e., the cell interface). We

remark that the choice of the fluxes (2.9) is not unique. We can, for example, alternatively
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choose the numerical fluxes to be

âq1
h = aq1,+

h , âuh = au−h . (2.10)

Similarly, one can use the numerical fluxes

ãq2
h = aq2,−

h , ãuh = au+
h , (2.11)

or

ãq2
h = aq2,+

h , ãuh = au−h , (2.12)

where all quantities are computed at the same points (x, yj+ 1

2

) (i.e., the cell interface).

However, if the function a(x) is discontinuous, the above numerical fluxes are not well

defined at the interface, since a(x) takes different values from both sides of the interface.

Here we assume that a(x) is piecewise smooth and the discontinuities only occur in the

direction aligned with our spatial discretization, namely, either vertical or horizontal (or

both). Thus, we can align the jumps of a(x) with cell interfaces. Then, one way to define

the numerical fluxes is to take a(x) from the same side as uh or q1
h (or q2

h), for example (2.9)

becomes

âq1
h = a−q1,−

h , âuh = a+u+
h . (2.13)

However, this is not sufficient to render the correct accuracy and energy preserving property.

Theoretically, the natural interface condition (see [8]) for the two media is the continuity in

u and the flux aq, that is, u− = u+ and a−q− = a+q+. This continuity condition, however,

is not consistent with the fluxes of the original LDG methods (2.7)-(2.8). Take Eq. (2.7)

with the choice of numerical fluxes (2.13) as an example. Applying the integration by parts

on the volume integral again, Eq. (2.7) becomes

∫

Ki,j

q1
hφdx −

∫

Ki,j

a(uh)xφdx +

∫

Jj

(
a−u−h − a+u+

h

)
φ(x+

i− 1

2

, y)dy = 0, (2.14)

and this flux term a−u−h − a+u+
h is not consistent with the continuity condition, as u, not

au, is continuous across the interface.
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To overcome this difficulty, we propose to update the discretization of Eqs. (2.7) and

(2.8) by:

∫

Ki,j

q1
hφdx+

∫

Ki,j

uhaφxdx−
∫

Jj

ûha
−φ(x−

i+ 1

2

, y)dy+

∫

Jj

ûha
+φ(x+

i− 1

2

, y)dy = −
∫

Ki,j

axuhφdx,

(2.15)∫

Ki,j

q2
hϕdx+

∫

Ki,j

uhaϕydx−
∫

Ii

ũha
−ϕ(x, y−

j+ 1

2

)dx+

∫

Ii

ũha
+ϕ(x, y−

j− 1

2

)dx = −
∫

Ki,j

ayuhϕdx,

(2.16)

for all test functions ψ, φ, ϕ ∈ V k
h . Note that a is no longer included in the numerical flux

and takes its value from inside the cell Ki,j, the same way as the test function ϕ, at the

interface. We will show later that this choice of discretization will provide correct accuracy

and energy conservation property. For the hatted terms, we still use the simple alternating

fluxes,

âq1
h = a−q1,−

h , ûh = u+
h , (2.17)

or

âq1
h = a+q1,+

h , ûh = u−h , (2.18)

where all quantities are computed at the same points (xi+ 1

2

, y) (i.e., the cell interface).

Similarly, one can use the numerical fluxes

ãq2
h = a−q2,−

h , ũh = u+
h , (2.19)

or

ãq1
h = a+q2,+

h , ũh = u−h , (2.20)

where all quantities are computed at the same points (x, yj+ 1

2

) (i.e., the cell interface).

If the numerical fluxes (2.18) and (2.20) are used, and if we denote Ki,j by K for simple

presentation, the LDG methods can be equivalently reformulated as

((uh)tt, ψ)K + (aqh,∇ψ)K − (a+q+
h · ν, ψ)∂K = 0, (2.21)

(qh,φ)K + (auh,∇ · φ)K − (u−h , aφ · ν)∂K = −(uh∇a,φ)K . (2.22)
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where (·)K denotes the L2 inner product, that is, (f , g)K =
∫

K
f · g dx; the vector ν is

the outward normal vector of ∂K, and φ is a vectored test function in the space V k
h × V k

h .

Equation (2.22) renders a formulation of qh in terms of uh in an element-by-element fashion,

and therefore this could be substituted into Eq. (2.21). This is the spirit of the LDG method,

and qh is simply an auxiliary variable.

2.4 Energy conservation

As is well known, the important physical quantity, the energy E =
∫
Ω
u2

t + (a(x)ux)
2 +

(a(x)uy)
2 dx, is conserved, in the linear wave equation (2.1) with proper boundary condi-

tions. This property is often taken into consideration in the design of numerical schemes

because experiences show that schemes conserving the discrete analogs of energy appear to

approximate the solution better, especially in the long time behavior. In this subsection, we

will show that the proposed semi-discrete LDG method conserves energy.

Proposition 2.1. The (continuous) energy

Eh(t) =

∫

Ω

(
(uh)

2
t + (q1

h)
2 + (q2

h)
2
)
dx (2.23)

is conserved by the the semi-discrete LDG method (2.21)-(2.22) for all time.

Proof. By taking the time derivative of Eq. (2.22), and choosing the test function φ = qh,

one obtains

((qh)t, qh)K + (a(uh)t,∇ · qh)K − ((u−h )t, aqh · ν)∂K = −((uh)t∇a, qh)K . (2.24)

In Eq. (2.21), we choose the test function to be (uh)t:

((uh)tt, (uh)t)K + (aqh,∇(uh)t)K − (a+q+
h · ν, (uh)t)∂K = 0. (2.25)

Addition of Eq. (2.24) and Eq. (2.25) becomes

((uh)tt, (uh)t)K + ((qh)t, qh)K + (aqh,∇(uh)t)K + (a(uh)t,∇ · qh)K

+ (ut∇a, qh)K − ((u−h )t, aqh · ν)∂K − (a+q+
h · ν, (uh)t)∂K = 0,
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and with integration by parts, we obtain

((uh)tt, (uh)t)K +((qh)t, qh)K +((uh)t, aqh ·ν)∂K −((u−h )t, aqh ·ν)∂K −((uh)t, a
+q+

h ·ν)∂K = 0.

(2.26)

By summing up Eq. (2.26) over all cells and using the periodic or homogeneous Dirichlet

boundary conditions, we have

0 = ((uh)tt, (uh)t)Ω + ((qh)t, qh)Ω +
∑

K∈Th

(
((uh)t, aqh · ν)∂K − ((u−h )t, aqh · ν)∂K − ((uh)t, a

+q+
h · ν)∂K

)

= ((uh)tt, (uh)t)Ω + ((qh)t, qh)Ω.

Therefore the quantity Eh is invariant in time.

3 Error estimate

In this section, we derive the optimal error estimates for the energy conserving LDG method

(2.21)-(2.22) proposed in Section 2. The error estimate in the energy norm will be presented

first, and then the analysis will be extended to the L2 norm. We will also show that these

error bounds are both linear in time.

3.1 Projections and inequalities

First, we introduce the projections and other notations that will be used throughout this

paper. We use P to denote a weighted L2 projection of a function ω(x) with k+1 continuous

derivatives into space V k
h , that is:

(Pω, aφ)K = (ω, aφ)K,

for any φ ∈ Qk on K.

In addition, a one-dimensional projection P−
x for a real-valued function ω, which projects

ω into the one-dimensional piecewise polynomial space of degree k while taking the values

of ω at the cell interface, is defined as follows

(P−
x ω, aφ)Ii

= (ω, aφ)Ii
, ∀φ ∈ P k−1(Ii) and (P−

x ω)−(xi+ 1

2

) = ω−(xi+ 1

2

), (3.1)

11



where P k−1(Ii) is the space of polynomials on the interval Ii of degree up to k−1. Similarly,

the one-dimensional projection P+
x ω is defined as the projection of ω such that

(P+
x ω, aφ)Ii

= (ω, aφ)Ii
, ∀φ ∈ P k−1(Ii) and (P+

x ω)+(xi− 1

2

) = ω+(xi− 1

2

),

and the one-dimensional projection on the y-direction P±
y are defined in the same way. Since

the Cartesian meshes are used in this paper, we can extend the definition of the above P±
x

to two dimension: on a two-dimensional rectangular element Ki,j = Ii × Jj , the projection

P− for scalar functions are defined as

P− = P−
x ⊗ P−

y . (3.2)

This projection P− on the Cartesian meshes has been shown in [23, Lemma 3.7] to have the

following superconvergence property: for η ∈ Hk+2(Ω), ρ ∈ Σk
h,

|(η − P−η, a∇ · ρ)Th
− (η − P̂−η, aρ · ν)Eh

| ≤ Chk+1‖η‖Hk+2(Ω)‖ρ‖Ω, (3.3)

where the “hat” term denotes the numerical flux.

Another projection Π+, for vector-valued functions ρ = (ρ1, ρ2), is defined as

Π+ρ = (P+
x ⊗ Pyρ1, Px ⊗ P+

y ρ2), (3.4)

where Px and Py are the one-dimensional L2 projections in the x- and y-directions, respec-

tively. One can easily observe that, for any ρ ∈ [H1(Ω)]2, the restriction of Π+ρ to I × J

(= Ki,j) are elements of [Qk(I × J)]2 that satisfy

(Π+ρ − ρ, a∇w)I×J = 0, (3.5)

for any w ∈ Qk(I × J), and

(
(Π+ρ(xi− 1

2
, ·) − ρ(xi− 1

2
, ·)) · ν, aw(x+

i− 1

2

, ·)
)

J
= 0, ∀w ∈ Qk(I × J), (3.6)

(
(Π+ρ(·, yj− 1

2

) − ρ(·, yj− 1

2

)) · ν, aw(·, y+
j− 1

2

)
)

I
= 0, ∀w ∈ Qk(I × J), (3.7)
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where ν is the outward normal vector of the boundary of Kij . These projections defined

above have the following approximation property (see [23, 45]): for any η ∈ Hk+1(Ω) and

ρ ∈ [Hk+1(Ω)]2,

‖P±η − η‖Ω ≤ Chk+1‖η‖Hk+1(Ω), ‖Π±ρ − ρ‖Ω ≤ Chk+1‖ρ‖Hk+1(Ω), (3.8)

where C is independent of the mesh size h.

Finally, we denote the errors by

eu = u− uh = ηu + ζu, ηu = u− P−u, ζu = P−u− uh, (3.9)

eq = q − qh = ηq + ζq, ηq = q − Π+q, ζq = Π+q − qh,

which, from left to right, respectively represent the errors between the exact solution and

the numerical solution, the projection errors, and the errors between the numerical solution

and the particular projection of the exact solution. Note that the signs of the projection P±
h

and Π± of u and q in (3.9) are consistent with the choice of the numerical fluxes in (2.17).

So if the other set of numerical fluxes are chosen, the signs of P±
h and Π± in (3.9) should be

changed accordingly.

3.2 Error estimate in the energy norm

The optimal error estimates of the proposed LDG method rely upon carefully chosen pro-

jections of the initial conditions. Note that we have two initial conditions in (2.2), one for

u and the other for ut. We take the initial condition uh(x, 0) as P−
h u(x, 0) = P−

h u0(x),

which is consistent with the choice of the numerical fluxes (2.17). The other initial condition

(uh)t(x, 0) is given by the standard L2 projection. Thus, we have the following lemma.

Lemma 3.1. Suppose the initial conditions of the LDG scheme (2.6)-(2.7) are given by

uh(x, 0) = P−
h u(x, 0), (uh)t(x, 0) = Phut(x, 0), (3.10)

there holds the following error estimates

‖ζu(0)‖ = 0, ‖ζq(0)‖ ≤ Chk+1, ‖(ζu)t(0)‖ ≤ Chk+1, (3.11)
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and

((eu)t(0), v)Ω = 0, for any v ∈ Qk. (3.12)

The proof of this Lemma is similar as that in [44], and is therefore omitted here.

Remark 3.1. We would like to emphasize that this special choice of initial condition is criti-

cal in the optimal convergence rate of the proposed LDG method. The optimal error estimate

shown below is based on these initial conditions, and this is confirmed by our numerical ex-

periments. As shown in Section 5, if the standard L2 projections are used for both u and ut,

the convergence rate becomes oscillating and does not converge to the desired (k+1)-th order

accuracy. Although previous studies on LDG methods showed that the different choices of

initial condition have little impact on the convergence/superconvergence results [11, 37, 32],

different initial conditions do make a difference for our method. We believe it is related to

the fact that the current energy conserving method has no numerical dissipation, and there-

fore it is more sensitive to the error in the initial conditions. So it is critical to choose an

appropriate initial condition which results in the “optimal” energy-conserving method.

Based on the initial conditions (3.10), we have the following error estimate in the energy

norm.

Proposition 3.1. Let u and q be the exact solutions of the wave equation (2.5), and uh,

qh be the numerical solutions of the semi-discrete LDG method (2.21)-(2.22) with the initial

conditions (3.10), there holds the following error estimates:

‖(eu)t‖ ≤ Chk+1(t+ 1), ‖eq‖ ≤ Chk+1(t+ 1), (3.13)

where the constant C depends on maxK∈Th
{‖∇a(x)‖∞|x ∈ K}, ‖u‖Hk+3 and ‖ut‖Hk+2.

Proof. The error equations of the proposed LDG method are

((eu)tt, ψ)K + (aeq,∇ψ)K − (a+e+
q
· ν, ψ)∂K = 0, (3.14)

(eq,φ)K + (aeu,∇ · φ)K − (e−u , aφ · ν)∂K = −(eu∇a,φ)K , (3.15)

14



for all test functions ψ ∈ V k
h and φ ∈ Σk

h, which can be derived by subtracting (2.21)-(2.22)

from the weak formulation satisfied by the exact solutions u and q.

Using the properties of the projections P− and Π+, the error equations become

((ζu)tt, ψ)K + ((ηu)tt, ψ)K + (aζq,∇ψ)K − (a+ζ+
q
· ν, ψ)∂K = 0, (3.16)

(ζq,φ)K + (ηq,φ)K + (aζu,∇ · φ)K − (ζ−u , aφ · ν)∂K + (aηu,∇ · φ)K − (η−u , aφ · ν)∂K

= −(ζu∇a,φ)K − (ηu∇a,φ)K , (3.17)

Along the same line in the proof of Proposition 2.1, we first take the time derivative of Eq.

(3.17), choose the test functions to be φ = ζq, ψ = (ζu)t, and then sum up the resulting two

equations to get

((ζu)tt, (ζu)t)K + ((ηu)tt, (ζu)t)K + ((ζq)t, ζq)K + ((ηq)t, ζq)K =

−(aζq,∇(ζu)t)K + (a+ζ+
q
· ν, (ζu)t)∂K − (a(ζu)t,∇ · ζq)K + ((ζu)

−
t , aζq · ν)∂K

−(a(ηu)t,∇ · ζq)K + ((ηu)
−
t , aζq · ν)∂K − ((ζu)t∇a, ζq)K − ((ηu)t∇a, ζq)K .

If the Dirichlet boundary conditions are imposed, the flux terms of the boundary cells EB
h in

the above equations will vanish, and therefore for simplicity, we only keep the notation for

the internal cells.

Summing up the above equation over all cells and using integration by parts yields

((ζu)tt, (ζu)t)Th
+ ((ηu)tt, (ζu)t)Th

+ ((ζq)t, ζq)Th
+ ((ηq)t, ζq)Th

=

−(a(ηu)t,∇ · ζq)Th
+ ((ηu)

−
t , aζq · ν)Eh

− ((ηu)t∇a, ζq)Th

if periodic or Dirichlet boundary conditions are employed.

By the properties of the projections (3.3) and (3.8), one has

1

2

d

dt

(
‖(ζu)t‖2 + ‖ζq‖2

)
=

1

2

d

dt

∫

I

(
(ζu)

2
t + ζ2

q

)
dx

≤ |((ηu)tt, (ζu)t)Th
+ ((ηq)t, ζq)Th

| + Chk+1‖ut‖Hk+2(Ω)‖ζq‖ + |∇a|∞‖(ηu)t‖‖ζq‖

≤ Chk+1 (‖(ζu)t‖ + ‖ζq‖) ≤ Chk+1
(
‖(ζu)t‖2 + ‖ζq‖2

) 1

2 ,
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which leads to

d

dt

(
‖(ζu)t‖2 + ‖ζq‖2

) 1

2 ≤ Chk+1.

Combining this inequality with the property of the initial condition (3.11), we conclude that

(
‖(ζu)t‖2 + ‖ζq‖2

) 1

2 ≤ C(t+ 1)hk+1,

in which the constant C only depends on maxK∈Th
{‖∇a(x)‖∞|x ∈ K}, ‖u‖Hk+3 and ‖ut‖Hk+2.

Together with the optimal projection error (3.8), the error estimate (3.13) follows.

3.3 Error estimate in the L2 norm

In this section, we prove the optimal error estimate in the L2 norm.

Proposition 3.2. Let u and q be the exact solutions of the wave equation (2.5), and uh,

qh be the numerical solutions of the semi-discrete LDG method (2.21)-(2.22) with the initial

conditions (3.10), there holds the following error estimate:

max
t∈[0,T ]

‖eu(t)‖ ≤ Chk+1(T + 1), (3.18)

where the constant C only depends on the solution u and a.

Proof. First, the term (eu)tt is split as the summation of (ζu)tt and (ηu)tt in Eq. (3.16), and

by using product rule in time derivative, one obtains

−((ζu)t, ψt)K + (aζq,∇ψ)K − (a+ζ+
q
· ν, ψ)∂K = −((ηu)tt, ψ)K − d

dt
((ζu)t, ψ)K . (3.19)

For any fixed time τ ≤ T , we denote the time integral of the error by

Eu(t) =

∫ τ

t

eu(s)ds, Eη
u(t) =

∫ τ

t

ηu(s)ds, Eζ
u(t) =

∫ τ

t

ζu(s)ds,

Eq(t) =

∫ τ

t

eq(s)ds, Eη
q
(t) =

∫ τ

t

ηq(s)ds, Eζ
q
(t) =

∫ τ

t

ζq(s)ds.

Integrating Eq. (3.15) in time, from t to τ yields

(Eq,φ)K + (aEu,∇ · φ)K − (E−
u , aφ · ν)∂K = −(Eu∇a,φ)K . (3.20)
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If we choose the test functions to be ψ = Eζ
u(t) and φ = ζq(t) in (3.19)-(3.20), and use

the fact that ψt = −ζu(t), we have

((ζu)t, ζu)K + (aζq,∇Eζ
u)K − (a+ζ+

q
· ν, Eζ

u)∂K = −((ηu)tt, E
ζ
u)K − d

dt
((ζu)t, E

ζ
u)K , (3.21)

(Eζ
q
, ζq)K + (aEζ

u,∇ · ζq)K − ((Eζ
u)

−, aζq · ν)∂K + (Eζ
u∇a, ζq)K

= −(Eη
q
, ζq)K − (aEη

u ,∇ · ζq)K + ((Eη
u)−, aζq · ν)∂K − (Eη

u∇a, ζq)K . (3.22)

If the Dirichlet boundary conditions are used, the flux terms of the boundary cells EB
h in the

above equations will vanish, and therefore for simplicity, we only keep the notation for the

internal cells.

Adding up Eqs. (3.21) and (3.22) and summing over all cells, and using the periodic or

Dirichlet boundary conditions, one obtains

1

2

d

dt

(
‖ζu‖2 − ‖Eζ

q
‖2
)

= −((ηu)tt, E
ζ
u)Th

− d

dt
((ζu)t, E

ζ
u)Th

− (Eη
q
, ζq)Th

−(aEη
u,∇ · ζq)Th

+ ((Eη
u)−, aζq · ν)Eh

− (Eη
u∇a, ζq)Th

.

Integrating the above equation from 0 to τ , we get

1

2
‖ζu(τ)‖2 − 1

2
‖ζu(0)‖2 +

1

2
‖Eζ

q
(0)‖2

= −
∫ τ

0

((ηu)t, ζu)Th
dt+ ((eu)t(0), Eζ

u(0))Th
−
∫ τ

0

(Eη
q
, ζq)Th

dt

+

∫ τ

0

(
−(aEη

u,∇ · ζq)Th
+ ((Eη

u)−, aζq · ν)Eh
− (Eη

u∇a, ζq)Th

)
dt, (3.23)

in which we use the fact Eζ
q
(τ) = Eζ

u(τ) = 0. By the property of the projection (3.8), we

have ‖(Eη
u)t‖ = Chk+1. Note that

Eη
q
(t) =

∫ τ

t

ηq(s)ds =

∫ τ

t

(
q(s) − P−q(s)

)
ds =

∫ τ

t

q(s)ds− P−

(∫ τ

t

q(s)ds

)
,

and therefore we can conclude that ‖Eη
q
‖ = Chk+1. Due to the property of projection P−

(3.3), one has

− (aEη
u,∇ · ζq)Th

+ ((Eη
u)−, aζq · ν)Eh

− (Eη
u∇a, ζq)Th

≤ Chk+1‖ζq‖Ω + |∇a|∞‖Eη
u‖Ω‖ζq‖Ω ≤ Ch2k+2(T + 1),
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where the last inequality comes from the error estimate (3.13) of q. Combining with the

property of the L2 projection (3.12), we have

1

2
‖ζu(τ)‖2 − 1

2
‖ζu(0)‖2 +

1

2
‖Eζ

q
(0)‖2

≤
∣∣∣∣
∫ τ

0

((ηu)t, ζu)Th
dt

∣∣∣∣+
∣∣∣∣
∫ τ

0

(Eη
q
, ζq)Th

dt

∣∣∣∣+ Ch2k+2(T + 1)τ

≤
∫ τ

0

‖(ηu)t‖‖ζu‖dt+

∫ τ

0

‖Eη
q
‖‖ζq‖dt+ Ch2k+2(T + 1)τ

≤ τ max
t∈[0,τ ]

‖(ηu)t‖ max
t∈[0,τ ]

‖ζu‖ + τ max
t∈[0,τ ]

‖Eη
q
‖ max

t∈[0,τ ]
‖ζq‖ + Ch2k+2(T + 1)τ

≤ T

(
max
t∈[0,T ]

‖(ηu)t‖ max
t∈[0,T ]

‖ζu‖ + max
t∈[0,T ]

‖Eη
q
‖ max

t∈[0,T ]
‖ζq‖ + Ch2k+2(T + 1)

)

≤ CT

(
hk+1 max

t∈[0,T ]
‖ζu‖ + (T + 1)h2k+2

)

≤ C(T 2 + 1)h2k+2 +
1

4
max
t∈[0,T ]

‖ζu‖2.

Since this is true for any τ < T , we have

1

2
‖ζu(τ)‖2 − 1

2
‖ζu(0)‖2 +

1

2
‖Eζ

q
(0)‖2 ≤ C(T 2 + 1)h2k+2 +

1

4
max
t∈[0,T ]

‖ζu‖2.

Hence,

1

4
max
t∈[0,T ]

‖ζu‖2 +
1

2
‖Eζ

q
(0)‖2 ≤ C(T 2 + 1)h2k+2 +

1

2
‖ζu(0)‖2 = C(T 2 + 1)h2k+2,

from which we can conclude

max
t∈[0,T ]

‖eu(t)‖ ≤ Chk+1(T + 1).

where the constant C only depends on the solution u and a.

Remark 3.2. The proposed semi-discrete LDG method has the advantage of energy conserv-

ing and optimal convergence rate. The proof of optimal error estimate is carried out with

the Qk polynomial space. Numerically, if one uses P k space (P k = {xk1yk2|k1 + k2 ≤ k}),

the same results can be observed, as shown in Section 5. However it seems to be difficult to

prove this fact, as the special projection introduced in the subsection 3.1 does not exist in the

P k space.
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4 Time discretization

In this section, we develop fully discrete method that maintains the energy conservation

property of the semi-discrete methods. To achieve this, it is essential to employ time stepping

methods that conserve the discrete energy. In the following, we introduce a second-order

time stepping (leap frog), and a high order symplectic time integrator.

In general, one obtains the semi-discrete scheme (2.21)-(2.22) after the spatial discretiza-

tion by the LDG method. Note that we can solve qh in terms of uh in (2.22) in an element-

by-element fashion. This local solvability gives the name to the LDG method, and we refer

to [18] for details. Eliminating the auxiliary variable qh leads to the linear second-order

ordinary differential system:

Müh(t) = Auh(t), (4.1)

where uh(t) denotes the solution vector at time t and M denotes the mass matrix.

4.1 Second order time stepping

Newmark method is a family of single-step integration methods, proposed by Newmark [39]

in 1959, for the solution of structural dynamics problems. It has been applied to dynamics

analysis of many practical engineering problems during the last forty years. In [34], Newmark

method is shown to belong to the category of variational algorithms, which are well known to

be symplectic and momentum preserving and to often have excellent global energy behaviour.

A special case in the Newmark family is the standard leap-frog method, which is well-known

to be energy conserving.

Let 0 ≤ t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with time step

∆tn = tn+1 − tn. Here uniform time step ∆t is used. The fully discrete approximations un
h

to u(·, tn) are constructed as follows: for n = 1, . . . , N − 1, un+1
h ∈ V k

h is given by

M
un+1

h − 2un
h + un−1

h

∆t2
= Aun

h, (4.2)

19



based on the system (4.1), and more precisely,

(
un+1

h − 2un
h + un−1

h

∆t2
, ψ

)

K

+ (aqn
h,∇ψ)K − (a+(qn)+

h · ν, ψ)∂K = 0, (4.3)

(qn
h,φ)K + (aun

h,∇ · φ)K − ((un
h)−, aφ · ν)∂K = −(un

h∇a,φ)K , (4.4)

for all test functions ψ ∈ V k
h and φ ∈ Σk

h. The initial u0
h and u1

h can be obtained through

projection and Taylor expansion, and this is shown in Eqs. (5.2) and (5.3) in Section 5.1.1.

The stability condition is the standard Leap-Frog condition, where the CFL number should

be less than 1.

In Proposition 2.1, we have shown the semi-discrete LDG method conserves the contin-

uous energy Eh(t). Along the same line of analysis, we can prove that the discrete energy,

as defined in the following proposition, is conserved in the fully discrete method.

Proposition 4.1. The solution to the fully discrete leap-frog LDG method (4.3)-(4.4), con-

serves the (discrete) energy

En+1
h =

∥∥∥∥
un+1

h − un
h

∆t

∥∥∥∥
2

+

∥∥∥∥
qn+1

h + qn
h

2

∥∥∥∥
2

− ∆t2

4

∥∥∥∥
qn+1

h − qn
h

∆t

∥∥∥∥
2

(4.5)

for all n.

Proof. We choose the test function in (4.3) to be ψ = (un+1
h −un

h)/(2∆t)+(un
h−un−1

h )/(2∆t) =

(un+1
h − un−1

h )/(2∆t), and obtain

(
un+1

h − 2un
h + un−1

h

∆t2
,
un+1

h − un−1
h

2∆t

)

K

+

(
aqn

h,∇
(
un+1

h − un−1
h

2∆t

))

K

(4.6)

−
(
a+(qn)+

h · ν, u
n+1
h − un−1

h

2∆t

)

∂K

= 0.

Consider Eq. (4.4) at time levels tn−1 and tn+1, and let the test function φ be qn
h/(2∆t).

Subtracting these two equations yields

(
qn+1

h − qn−1
h

2∆t
, qn

h

)

K

+

(
a
un+1

h − un−1
h

2∆t
,∇ · qn

h

)

K

(4.7)

−
(

(un+1
h )− − (un−1

h )−

2∆t
, aqn

h · ν
)

∂K

= −
(
un+1

h − un−1
h

2∆t
∇a, qn

h

)

K

.

20



Adding Eqs. (4.6) to (4.7) and summing over all cells gives

(
un+1

h − 2un
h + un−1

h

∆t2
,
un+1

h − un−1
h

2∆t

)

Th

+

(
qn+1

h − qn−1
h

2∆t
, qn

h

)

Th

=

(
un+1

h − 2un
h + un−1

h

∆t2
,
un+1

h − un−1
h

2∆t

)

Th

+

(
qn+1

h + 2qn
h + qn−1

h

4
,
qn+1

h − qn−1
h

2∆t

)

Th

−
(

qn+1
h − 2qn

h + qn−1
h

4
,
qn+1

h − qn−1
h

2∆t

)

Th

=
1

2∆t

(∥∥∥∥
un+1

h − un
h

∆t

∥∥∥∥
2

+

∥∥∥∥
qn+1

h + qn
h

2

∥∥∥∥
2

− ∆t2

4

∥∥∥∥
qn+1

h − qn
h

∆t

∥∥∥∥
2

−
∥∥∥∥
un

h − un−1
h

∆t

∥∥∥∥
2

−
∥∥∥∥
qn

h + qn−1
h

2

∥∥∥∥
2

+
∆t2

4

∥∥∥∥
qn

h − qn−1
h

∆t

∥∥∥∥
2
)

= 0.

Therefore, by the definition of En
h in (4.5), we have En+1

h = En
h for all n, which completes

the proof.

Remark 4.1. The discrete energy En
h can be rewritten as:

En+1
h =

∫

Ω

(
un+1

h − un
h

∆t

)2

dx+

∫

Ω

qn+1
h qn

hdx, (4.8)

which is a consistent approximation of the continuous energy (2.23).

4.2 High order time stepping

The spatial discretization of the proposed method is by the local discontinuous Galerkin

method, which can be high order accurate depending on the polynomial degree k utilized

in the space V k
h . Therefore, we would like to present high order time stepping which also

conserves the energy exactly. Such numerical methods have been designed from the modified

equation approach [42, 22, 43]. Following the same technique, we will present an energy-

conserving fourth-order time discretization below. This idea can be extended to derive higher

order methods.

For a smooth function u, simple calculus leads to

u(t+ ∆t) − 2u(t) + u(t− ∆t) = ∆t2
∫ 1

−1

(1 − |θ|)u′′(t+ θ∆t)dθ. (4.9)
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Therefore, the leap-frog method is obtained by simply approximating u′′(t+ θ∆t) with u′′(t)

on the right hand side, i.e.,

u(t+ ∆t) − 2u(t) + u(t− ∆t) ≈ ∆t2u′′(t).

Extension to high order version can be derived by the modified equation approach, as shown

in [22, 42]. To obtain a fourth-order time discretization, we consider the Taylor expansion

of u′′(t+ θ∆t) and the first three terms are:

u′′(t+ θ∆t) ≈ u′′(t) + θ∆tu′′′(t) +
θ2∆t2

2
u(4)(t).

Inserting the above approximation into Eq. (4.9), the integral of odd powers of θ vanishes,

and we have

u(t+ ∆t) − 2u(t) + u(t− ∆t) ≈ ∆t2
(
u′′(t) +

∆t2

12
u(4)(t)

)
. (4.10)

We comment here that if one considers a time integrator more accurate than fourth order,

more terms should be included in the Taylor expansion. Applying (4.10) to the differential

system (4.1), and utilizing the fact that u
(4)
h (t) = M−1Aüh(t) = (M−1A)2uh(t), one has the

fourth-order method:

un+1
h − 2un

h + un−1
h

∆t2
= M−1Aun

h +
∆t2

12
(M−1A)2un

h, (4.11)

It has been shown that the largest time step of this fourth-order method is
√

3 of that of

the leap-frog method [21, 43], and therefore the computational cost is comparable yet the

accuracy is improved. In our numerical simulations, we use Eq. (4.11) as the fourth-order

time integrator.

We remark here that the same fourth-order method has been reformulated into a predictor-

corrector method in [43]: for n = 1, . . . , N − 1, un+1
h ∈ V k

h is given by

M
u∗

h − 2un
h + un−1

h

∆t2
= Aun

h, (4.12)

Mun+1
h = Mu∗

h +
∆t4

12
Avh, vh =

u∗
h − 2un

h + un−1
h

∆t2
, (4.13)
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based on the system (4.1). More precisely, it can be rewritten in the form of a second-order

predictor step

(
u∗h − 2un

h + un−1
h

∆t2
, ψ

)

K

+ (aqn
h,∇ψ)K − (a+(qn)+

h · ν, ψ)∂K = 0, (4.14)

(qn
h,φ)K + (aun

h,∇ · φ)K − ((un
h)−, aφ · ν)∂K = −(un

h∇a,φ)K , (4.15)

and the corrector step

vh =
u∗h − 2un

h + un−1
h

∆t2
, (4.16)

(wh,φ)K + (avh,∇ · φ)K − ((vh)
−, aφ · ν)∂K = −(vh∇a,φ)K , (4.17)

(un+1
h , ψ)K = (u∗, ψ)K +

∆t4

12
(awh,∇ψ)K − ∆t4

12
(a+(w)+

h · ν, ψ)∂K = 0, (4.18)

for all test functions ψ ∈ V k
h and φ ∈ Σk

h.

5 Numerical experiments

5.1 Example 1: Wave equation with a constant coefficient – a

standing wave

5.1.1 Accuracy test in Qk space

We consider the 2D wave equation with a constant coefficient, which is taken to be 1,

utt = ∇2u, (x, y) ∈ [0, 2] × [0, 2], (5.1)

with initial condition

u(x, y, 0) = sin(πx) sin(πy), ut(x, y, 0) = 0,

and periodic boundary conditions u(0, y, t) = u(2, y, t) and u(x, 0, t) = u(x, 2, t), for all

0 ≤ x ≤ 2, 0 ≤ y ≤ 2 and t ≥ 0.

This problem has the exact solution, which is a standing wave

u(x, y, t) = cos(
√

2πt) sin(πx) sin(πy).

23



Table 5.1: Example 1 with Q1 space: numerical errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 4.9405E-03 1.3059E-02 1.3059E-02
20 1.2323E-03 2.0033 6.7050E-03 0.9617 6.7050E-03 0.9617
40 3.1303E-04 1.9770 2.2976E-03 1.5451 2.2976E-03 1.5451
80 7.7676E-05 2.0108 3.7983E-04 2.5967 3.7983E-04 2.5967
160 1.9396E-05 2.0017 7.5453E-05 2.3317 7.5453E-05 2.3317

We implemented the LDG method with the alternating fluxes (2.17) and use the time inte-

grator (4.11) with time step ∆t = 0.2/(∆x
−5

4 + ∆y
−5

4 ). Since the symplectic time integrator

requires initial conditions for two time steps, we consider Taylor expansion of u at t = 0:

u(x, y,∆t) = u(x, y, 0) + ∆tut(x, y, 0) +
∆t2

2
utt(x, y, 0) +

∆t3

6
uttt(x, y, 0) +O(∆t4),

and convert the higher derivatives of t to derivatives of x and y by repeatedly using the

wave equation, while u and ut are given by the initial conditions. To obtain the desired

order of convergence of u, following the initial conditions (3.10), we take the projection P+
h

of u(x, y, 0), and L2 projection Ph of ut(x, y, 0). In other words, with u(x, y, 0) denoted by

u0 and ut(x, y, 0) by v0, we use the initial conditions:

u0
h = P−

h u0, (5.2)

u1
h = u0

h + ∆tPhv0 +
∆t2

2
P−

h {(∂xx + ∂yy)u0} +
∆t3

6
Ph{(∂xx + ∂yy)v0}. (5.3)

Tables 5.1 – 5.3 list the numerical errors and the orders of convergence for Qk spaces,

k = 1, 2, 3. In each table, the L2-norm of the errors eu, ep, and eq at the final time T = 1

are presented. The (k + 1)th order for all the errors of u, p, q can be observed clearly.

5.1.2 Accuracy test in Qk space with standard L2 projections for initial condi-

tions

To show that the special projections of the initial condition u0 in (5.2) is indeed critical for

optimal rate of convergence, we test the problem with the same setting, but with standard

L2 projections for both u0 and v0. Tables 5.4 – 5.5 list the numerical errors and the orders
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Table 5.2: Example 1 with Q2 space: numerical errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 2.7279E-04 1.7387E-03 1.7387E-03
20 3.2450E-05 3.0715 1.7662E-04 3.2993 1.7662E-04 3.2993
40 4.1196E-06 2.9776 2.5073E-05 2.8164 2.5073E-05 2.8164
80 5.1406E-07 3.0025 2.5418E-06 3.3022 2.5418E-06 3.3022
160 6.4271E-08 2.9997 3.4971E-07 2.8616 3.4971E-07 2.8616

Table 5.3: Example 1 with Q3 space: numerical errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 1.2053E-05 5.3347E-05 5.3347E-05
20 7.8368E-07 3.9430 4.0172E-06 3.7311 4.0172E-06 3.7311
40 5.0864E-08 3.9455 2.2137E-07 4.1817 2.2137E-07 4.1817
80 3.3455E-09 3.9264 1.2105E-08 4.1928 1.2105E-08 4.1928

of convergence for Q1 and Q2 spaces. We can observe that the order of accuracy for u, ux

and uy is oscillating. When Q2 space is used, the accuracy of ux and uy is close to 2, which

means only suboptimal convergence rate is obtained. This oscillating behavior of numerical

accuracy is commonly observed for energy conserving methods, and a least square fitting

of the order [44] may give the optimal convergence rate of u. We notice that in Subsection

5.1.1, different initial conditions are employed and optimal convergence rates are clearly

observed there. Previous studies on LDG methods showed that different choices of initial

conditions have little impact on the convergence/superconvergence results [11, 37, 32]. This

test demonstrates that our energy conserving method is more sensitive to the error in the

initial conditions, probably due to the fact that no numerical dissipation is included in these

methods to dissipate the initial error.

5.1.3 Accuracy test in P k space

We consider the same problem and setup, but replace the DG spaces by P k, which is the

polynomial space that has degree at most k, namely, {
∑

i,j x
iyj : i, j ∈ N, i + j ≤ k}.

According to extensive numerical experiments in previous works, (k + 1)-th order accuracy
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Table 5.4: Example 1 with Q1 space and L2 projections of the initial conditions: numerical
errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 2.8467e-03 1.0048e-01 1.0048e-01
20 2.4944e-03 0.1906 1.4448e-01 -0.5240 1.4448e-01 -0.5240
40 1.0608e-03 1.2335 6.6667e-02 1.1158 6.6667e-02 1.1158
80 1.7083e-04 2.6345 1.7039e-02 1.9681 1.7039e-02 1.9681
160 2.3920e-05 2.8363 1.2683e-02 0.4259 1.2683e-02 0.4259
160 6.5615e-06 1.8661 1.3186e-03 3.2658 1.3186e-03 3.2658

Table 5.5: Example 1 with Q2 space and L2 projections of the initial conditions: numerical
errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 7.7825e-04 1.7934e-02 1.7934e-02
20 7.0800e-05 3.4584 4.7146e-03 1.9275 4.7146e-03 1.9275
40 1.1093e-05 2.6741 1.0602e-03 2.1528 1.0602e-03 2.1528
80 9.9096e-07 3.4847 2.4853e-04 2.0928 2.4853e-04 2.0928
160 1.4768e-07 2.7464 7.0811e-05 1.8114 7.0811e-05 1.8114

can usually be observed for the P k space. Since the space P k is smaller than Qk, using P k

will be more efficient in order to obtain (k+1)-th order accuracy. However, theoretically it is

very difficult to prove the optimal order of accuracy for P k space, and therefore in this paper,

we only perform numerical experiments. As for the initial conditions, we simply project the

initial conditions (5.2)-(5.3), which is defined in Qk, to space P k.

The orders of accuracy with spaces P 1, P 2 and P 3 are shown in Tables 5.6 – 5.8. For P 1,

second order accuracy can be observed in all the variables u, p and q. However, for P 2 and

P 3, (k+ 1)-th order can be achieved in u, but only k-th order of accuracy is seen in p and q.

This loss of accuracy in p and q may be resulted from the initial projection (5.2)-(5.3), which

has been shown essential for the Qk space, but appears not to produce the same optimal

order of accuracy for the P k space.
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Table 5.6: Example 1 with P 1 space: numerical errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 1.2736e-02 6.3328e-02 6.3328e-02
20 3.1285e-03 2.0254 1.8352e-02 1.7869 1.8352e-02 1.7869
40 7.8996e-04 1.9856 5.6663e-03 1.6955 5.6663e-03 1.6955
80 1.9682e-04 2.0049 1.1306e-03 2.3253 1.1306e-03 2.3253
160 4.9184e-05 2.0006 2.5818e-04 2.1306 2.5818e-04 2.1306

Table 5.7: Example 1 with P 2 space: numerical errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 2.6763e-03 7.6128e-02 7.6128e-02
20 2.0342e-04 3.7177 1.2275e-02 2.6327 1.2275e-02 2.6327
40 4.7780e-05 2.0900 4.2500e-03 1.5302 4.2500e-03 1.5302
80 6.3518e-06 2.9112 1.1668e-03 1.8649 1.1668e-03 1.8649
160 8.0589e-07 2.9785 2.9819e-04 1.9683 2.9819e-04 1.9683

Table 5.8: Example 1 with P 3 space: numerical errors and orders with uniform meshes.

N error of u error of ux error of uy

L2 error order L2 error order L2 error order
10 1.5827e-04 3.9745e-03 3.9745e-03
20 1.2081e-05 3.7116 8.3389e-04 2.2528 8.3389e-04 2.2528
40 8.6623e-07 3.8018 7.7308e-05 3.4312 7.7308e-05 3.4312
80 3.0307e-08 4.8370 1.2469e-05 2.6323 1.2469e-05 2.6323
160 2.0657e-09 3.8749 1.1613e-06 3.4245 1.1613e-06 3.4245
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Table 5.9: Example 1 with Qk and central flux: numerical errors and orders for u with
uniform meshes, for Q1, Q2 and Q3.

N Q1 Q2 Q3

L2 error order L2 error order L2 error order
10 2.8446e-02 1.9582e-04 7.5838e-05
20 1.1325e-02 1.3287 1.8994e-05 3.3659 6.0140e-06 3.6565
40 5.1048e-03 1.1496 2.5060e-06 2.9221 8.1456e-07 2.8842
80 2.4699e-03 1.0474 2.9755e-07 3.0742 1.0012e-07 3.0243
160 1.2234e-03 1.0136 3.7259e-08 2.9975 1.2413e-08 3.0118

5.1.4 Accuracy test with central flux in the Qk space

While claiming that the advantage of using alternating flux as proposed in this paper is to

conserve energy, it is arguable that in (2.6), (2.15) and (2.16) using the central flux

âq1
h = {{aqh}}, ûh = {{uh}},

and

ãq2
h = {{aqh}}, ũh = {{uh}},

where {{u}} = u−+u+

2
, may also conserve energy, as is known when applied for first order

hyperbolic equations. However, a well-known disadvantage of central flux is its order of

accuracy oscillates, depending on if k is even or odd. Here we implement the LDG scheme,

with central flux and show that the order of accuracy indeed oscillates (Table 5.9): the order

for even k is k + 1 and the order for odd k is k. Therefore it is not an optimal energy

preserving method to use for any desired order of accuracy.

5.1.5 Time history of the L2 error

To demonstrate that the growth of the L2 error of our proposed method is at most linear,

as proved in Section 3, we simulate the problem in Example 1 until T = 100 and monitor

the L2 error. When a 40× 40 uniform mesh is used, it can be seen in Fig. 5.1 (upper panel)

that the L2 error stays at the level of 10−5 for Q2 and 10−7 for Q3, and the average values

do not grow noticeably in time. As we reduce the resolution by using a 5× 5 uniform mesh,

the growth of errors can be seen to be bounded linearly. We also simulated with the central
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Figure 5.1: Example 1 with Qk space. Upper panel: time history until T = 100 of the L2

error of the numerical approximations obtained from using the alternating flux (red) and
central flux (blue), with k = 2, 3. A uniform 40×40 grid is used. The L2 error of u on y-axis
are presented in log scale. Lower panel: A uniform 5 × 5 grid is used to observe the growth
of errors until T = 1000. History of L2 errors for central flux and alternating flux with Q2

space are shown at left and right in linear scale, respectively.

flux for Q2 and Q3. Since the central flux also preserves energy, the L2 error also remains

roughly constant in average if a 40 × 40 uniform mesh is used. However, due to the nature

of the oscillating order of accuracy, the L2 error for Q2 is comparable to that of alternating

flux, but the error for Q3 is much higher than using alternating flux. Moreover, if Q2 space

and a coarse 5 × 5 mesh are used, the growth of the errors for central flux is much faster

than that for alternating flux (lower panel of Fig. 5.1).

29



5.2 Example 2: Wave equation with a constant coefficient – a

traveling wave

In this example, we present a problem which has a traveling wave solution. This is to test

whether the nice behavior of L2 errors seen in Example 1 can still be observed in this traveling

wave case. The equation is the same as Eq. (5.1), with periodic boundary conditions and

initial conditions

u(x, y, 0) = cos(πx) cos(πy), ut(x, y, 0) = −
√

2π sin(πx) cos(πy),

and the exact solution is

u(x, y, t) = cos(
√

2πt+ πx) cos(πy).

We tested spaces Q2 and Q3 with a well resolved 40 × 40 mesh, and the time history is

displayed in the upper panel of Fig. 5.2. The figure shows that the L2 errors stays constant

in average over time. Similar to Example 1, as we decrease the resolution of the numerical

solutions, the growth of the errors are more obvious. In the lower panel of Fig. 5.2, we use

5 × 5, 10 × 10 and 20 × 20 meshes, and it can be observed that the errors grow in a linear

fashion asymptotically for the coarse meshes.

5.3 Example 3: Wave equation with discontinuous coefficient –

standing wave

We consider the 2D wave equation

utt = ∇ · (a2(x, y)∇u), (5.4)

with a discontinuous coefficient in the domain Ω = {(x, y)|(x, y) ∈ [−2, 2] × [−1, 1]}. The

domain Ω is composed of two subdomains Ω1 = [−1, 1] × [−1, 1] and Ω2 = Ω\Ω1, and if the

coefficient a(x, y) is defined as

a(x, y) =





√
9
34
, in Ω1√

1
2
, in Ω2
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Figure 5.2: Example 2. Upper panel: time history until T = 100 of the L2 error of the
numerical approximations obtained from using the Q2 (red) and Q3 (blue) spaces. A uniform
40 × 40 grid is used. The L2 error of u on y-axis are presented in log scale. Lower panel:
time history until T = 1000 with Q2 space, uniform meshes 5 × 5 (red), 10 × 10 (blue) and
20 × 20 (green) are used. The L2 error of u on y-axis are presented in linear scale.
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Table 5.10: Example 3: numerical errors and orders with uniform meshes and space Q2.

Nx ×Ny error of u error of ux error of uy

L2 error order L2 error order L2 error order
20 × 5 1.1173e-01 7.9322e-01 6.7706e-01
40 × 10 1.4404e-02 2.9554 1.4475e-01 2.4541 1.6922e-01 2.0005
80 × 20 2.1081e-03 2.7725 2.4832e-02 3.1870 4.4012e-02 2.8145
160 × 40 2.3950e-04 3.1378 2.0700e-03 2.9408 2.0477e-03 3.5543
320 × 80 3.0262e-05 2.9844 3.3118e-04 2.6440 2.5500e-04 3.0054

and if we impose periodic boundary conditions in both x- and y-directions, then the solution

is a standing wave

u(x, y, t) =

{
cos (3πt) cos (5πx) cos (3πy), in Ω1

cos (3πt) cos (3πx) cos (3πy), in Ω2.

By using the alternating flux (2.17)-(2.18) designed for this type of problem, we present the

order of accuracy Q2 space in Table 5.10. Third order accuracy can be clearly seen in the all

the variables. Spaces Q1 and Q3 were also tested, and we obtained second and fourth orders

accuracy, respectively (data not shown).

5.4 Example 4: Wave equation with discontinuous coefficient –

traveling wave

Here we test a problem with discontinuous coefficient but with a traveling wave solution.

Consider Eq. (5.4) in the domain Ω = {(x, y)|(x, y) ∈ [−2, 2] × [−1, 1]}, and its two subdo-

mains Ω1 = [−1, 1] × [−1, 1] and Ω2 = Ω\Ω1, where the coefficient is discontinuous at the

interface:

a(x, y) =





√
4
5
, in Ω1√

1
5
, in Ω2.

If we impose periodic boundary conditions in both x- and y-directions, the solution is a

traveling wave

u(x, y, t) =

{
cos (4πt+ 2πx) cos (4πy), in Ω1

cos (4πt+ 8πx) cos (4πy), in Ω2.

In Fig. 5.3, we show the time history of the L2 error until T = 200, using Q2 and Q3 spaces

with 80 × 40 meshes. It can be observed that the L2 errors grow linearly asymptotically on
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Figure 5.3: Example 4. Time history until T = 200 of the L2 error of the numerical
approximations obtained from using the Q2 (red) and Q3 (blue) spaces. A uniform 80 × 40
grid is used. The L2 error of u on y-axis are presented in linear scale.

average, while the growth rate for Q3 space is slower than that for Q2 space. Oscillations in

errors with Q3 space appear larger than Q2 space.

5.5 Example 5: Isotropic wave propagation within heterogeneous

media

We consider the 2D wave equation Eq. (2.1) with discontinuous coefficient in the domain

[0, 1] × [0, 1], with the coefficient a(x, y) defined as

a(x, y) =

{
1
2
, if x ≤ 0.65,

1, if x > 0.65.

The initial condition is given by

u(x, y, 0) = 0 and ut(x, y, 0) = 2e−500((x−0.5)2+(y−0.5)2).

and zero boundary conditions are imposed for all the boundaries. Fig. 5.4 shows the time

evolution of the wave propagation: initially the wave propagates isotropically, until it reaches

the interface of two media (around T = 0.25 to 0.3), and at a later time, the wave fronts

propagates at different speeds in these two media. To verify the convergence of our numerical

solutions, we compared snapshots of the 2D contour at T = 0.5 with 40×40 and 80×80 cells,

and the contours agree very well (Fig. 5.5). We further compared, for these two meshes,
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Figure 5.4: Example 5: Two-dimensional contours of the numerical approximations at time
T = 0.05, 0.25, 0.3, 0.4, 0.45, 0.5. The DG space used is Q2 and the grid is uniform with
40 × 40 cells.

the cross sections at y = 0.4 for T = 0.05, 0.3, 0.5. In Fig. 5.6, it can be seen that the

one-dimensional profiles match very well.

6 Concluding remarks

In this paper, we have developed an LDG method for multi-dimensional wave problems in

discontinuous media. As is well known, energy conservation is one of the most important

properties of wave equations, and therefore this is the aimed property of our numerical

method aside high order convergence rate. To obtain such a scheme, we carefully designed

numerical fluxes and projections of the initial conditions. We also developed compatible time

integrators, such as a second-order (leap-frog) and a fourth-order energy preserving method.

We proved the optimal error estimate for the semi-discrete method, and also showed that our

scheme preserves energy in the discrete sense. Numerous numerical examples were shown to

demonstrate the optimal convergence rate and energy conservation property.

Future works include the generalization of the LDG scheme to wave equations, of which
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Figure 5.5: Example 5: Comparison of the 2D contours using 40× 40 cells (left) and 80× 80
cells (right), at T = 0.5.
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Figure 5.6: Example 5: Comparison of the cross sections of the numerical solutions at
y = 0.5, at T = 0.05, 0.3, 0.5. The red dotted solutions are simulated with 40× 40 cells, and
the blue solid curves are for 80 × 80 cells.
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the discontinuities of the coefficients are not aligned with the Cartesian grid. Schemes on un-

structured triangular meshes will also be developed to accommodate general computational

domains.

References

[1] S. Adjerid and H. Temimi. A discontinuous Galerkin method for the wave equation.

Computer Methods in Applied Mechanics and Engineering, 200:837–849, 2011.

[2] M. Anderson and J.-H. Kimn. A numerical approach to space-time finite elements for

the wave equation. Journal of Computational Physics, 226:466–476, 2007.
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