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CHEBYSHEV SPECTRAL METHOD FOR UNSTEADY

AXISYMMETRIC MIXED CONVECTION HEAT TRANSFER OF

POWER LAW FLUID OVER A CYLINDER WITH VARIABLE

TRANSPORT PROPERTIES

JIAJIA NIU, LIANCUN ZHENG, YANG YANG, AND CHI-WANG SHU

Abstract. In this work, we study the unsteady axisymmetric mixed convec-

tion boundary layer flow and heat transfer of non-Newtonian power law fluid

over a cylinder. Different from most classical works, the temperature depen-

dent variable fluid viscosity and thermal conductivity are taken into account in

highly coupled velocity and temperature fields. The motion of the fluid can be

modeled by a time-dependent nonlinear parabolic system in cylindrical coordi-

nates, which is solved numerically by using Chebyshev spectral method along

with the strong stability preserving (SSP) third order Runge-Kutta time dis-

cretization. We apply the numerical solver to problems with different power law

indices, viscosity parameter, thermal conductivity parameter and Richardson

numbers, and compute up to the steady state. The numerical solver is checked

by testing the spectral convergence of the numerical approximation to a smooth

exact solution of the PDEs with source terms. Moreover, the combined effects

of pertinent physical parameters on the flow and heat transfer characteristics

are analyzed in detail.

Key Words. Unsteady mixed convection, power law fluid, temperature depen-

dent fluid viscosity, variable thermal conductivity, Chebyshev spectral method.

1. Introduction

Mixed convection (combined forced and free convection) flows are of interest and
importance in a wide variety of fields such as petroleum, nuclear and environmental
engineering. Flow over a slender cylinder is generally considered as axisymmetric
instead of three dimensional problems, and the transverse curvature term contained
in the governing equations strongly influences the velocity and temperature fields.
Thus it has attracted great attention in the fields of steady/unsteady mixed con-
vection flows under different situations [4, 13, 2, 12, 24].

One of the classical models of mixed convection flow is based on Newtonian fluid,
which has been studied intensively. For steady flows, Kumari et al. [10] analyzed
the effects of localized cooling/heating and suction/injection with a finite discon-
tinuity on the mixed convection boundary layer flow in a thin vertical cylinder.
Later, Mukhopadhyay [14] considered the axisymmetric mixed convection flow to-
wards a stretching cylinder embedded in porous medium. Subsequently, Kaya [9]
extended the problem to the case when the porosity of the porous medium is high,
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and non-similar solutions were obtained by the Keller-box method. For unsteady
flows, unsteady mixed convection flow over a rotating vertical slender cylinder has
been studied in [21]. Recently, Patil et al. [16] obtained a non-similar solution of
an unsteady mixed convection boundary layer flow over a non-linearly stretching
vertical slender cylinder, where the slender cylinder velocity varies arbitrarily with
time.

Besides the above, there are also some works on nanofluids. Grosan et al. [6]
investigated the axisymmetric mixed convection flow past a thin vertical cylinder
placed in a water-based copper (Cu) nanofluid. Moreover, Rashad et al. [20] studied
the mixed convection boundary layer flow over a horizontal cylinder filled with a
nanofluid, where they incorporated the Brownian motion and thermophoresis.

Another model is based on non-Newtonian fluid, which is a very commonly used
model for gelled propellant fluid in aerospace application, foam fluid in petroleum
industry, blood fluid in hemodynamic et al. [26, 25, 15]. However, there are only a
few papers in the literature that deal with mixed convection flow of non-Newtonian
fluid, and most works are on the inflow in the radial direction. For example, mixed
convection from a heated semi-circular cylinder to power-law fluids in the steady
flow regime is studied in [3, 1], and the unsteady flow was considered by Patnana
et al. [17].

In all the above mentioned works, the thermo-physical properties of the fluid
were assumed to be constant. However, these physical properties, especially fluid
viscosity and thermal conductivity are affected by temperature [7, 11, 18, 19, 22, 23].
To the best of the authors’ knowledge, little research was conducted for considering
variable thermo-physical properties to boundary layer flows over a slender cylinder,
especially the studies on unsteady flow of non-Newtonian fluid. In this paper, we
focus on the effects of variable transport properties on unsteady mixed convection
heat transfer of power law fluid.

Motivated by the above mentioned works, we perform our work in three aspects.
First, we study the unsteady axisymmetric flow of a non-Newtonian power law
fluid past a slender cylinder. Second, we consider the temperature dependent fluid
properties. Third, we focus on developing numerical solutions with high-accuracy
obtained by the Chebyshev spectral method [8], which can be sped up by the
technique of Fast Fourier Transform (FFT).

2. Mathematical formulation

In this section, we construct the parabolic system to be solved numerically.
Consider the unsteady axisymmetric mixed convection boundary layer flow over a
vertical permeable slender cylinder of radius R placed in a non-Newtonian power
law fluid with power law index n. Let t be the time variable and (u, v) be the velocity
field along the (x, r) directions, where x and r are the axial and radial coordinates,
respectively. By using the cylindrical coordinates, the domain is (x, r) ∈ [0, +∞)×
[R, +∞). The density, velocity and temperature of the free flow at a remote distance
from the cylinder are given by ρ∞, U∞ and T∞, while the temperature of the
static cylinder is TW . The volumetric coefficient of thermal expansion is given as
β0, and the specific heat at constant temperature is assumed to be Cp. Under
these assumptions, the governing equations for the mixed convection boundary
layer equations are written as:

(1)
∂u

∂x
+

∂v

∂r
+

v

r
= 0,
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(2)

ρ∞

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r

)

=
1

r

∂

∂r

{

r
µ∞

[1 + γ∗ (T − T∞)]

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

n−1
∂u

∂r

}

+ρ∞gβ0 (T − T∞) ,

(3) (ρ∞CP )

(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂r

)

=
1

r

∂

∂r

{

k∞

(

1 + ε
T − T∞

TW − T∞

)

r
∂T

∂r

}

,

with the initial and boundary conditions given as follows.
Non-slip condition:

(4) u (x, R, t) = 0, v (x, R, t) = 0, T (x, R, t) = TW ,

matching with outer flow:

(5) lim
r→+∞

u (x, r, t) = U∞, lim
r→+∞

T (x, r, t) = T∞,

inlet condition:

(6) u (0, r, t) = U∞, T (0, r, t) = T∞,

initial condition:

(7) u (x, r, 0) = u0, T (x, r, 0) = T0.

Here we consider the semi-empirical formula for the variable dynamic viscosity and
thermal conductivity of the form [18, 19]:

(8)
1

µ (T )
=

1

µ∞

[1 + γ∗ (T − T∞)] , k (T ) = k∞

(

1 + ε
T − T∞

TW − T∞

)

,

where γ∗ is the thermal property of the fluid, ε is the thermal conductivity param-
eter, and µ∞, k∞ are the dynamic viscosity and thermal conductivity of the fluid
far away from the cylinder, respectively.

Upon making use of the following dimensionless variables:

(9) t̄ =
Au∞

R
t, x̄ =

Ax

R
, r̄ =

r

R
, ū =

u

u∞

, v̄ =
v

Au∞

, T̄ =
T − T∞

Tw − T∞

, A =
un−2
∞ µ∞

Rnρ∞
,

the dimensionless governing equations can be written as:

(10)
∂ū

∂x̄
+

∂v̄

∂r̄
+

v̄

r̄
= 0,

(11)
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂r̄
=

1

r̄

∂

∂r̄

(

(

θr

θr − T̄

)

r̄

∣

∣

∣

∣

∂ū

∂r̄

∣

∣

∣

∣

n−1
∂ū

∂r̄

)

+ RiT̄ ,

(12)
∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂r̄
=

1

Pr

1

r̄

∂

∂r̄

(

(

1 + εT̄
)

r̄
∂T̄

∂r̄

)

,

with the corresponding dimensionless initial and boundary conditions:

(13) ū (x̄, 1, t̄) = 0, v̄ (x̄, 1, t̄) = 0, T̄ (x̄, 1, t̄) = 1,

(14) lim
r̄→+∞

ū (x̄, r̄, t̄) = 1, lim
r̄→+∞

T̄ (x̄, r̄, t̄) = 0,

(15) ū (−1, r̄, t̄) = 1, T̄ (−1, r̄, t̄) = 0,

(16) ū (x̄, r̄, 0) = ū0, T̄ (x̄, r̄, 0) = T̄0.
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The corresponding dimensionless groups that appeared in the governing equations
are defined as:

(17) Ri =
gβ∞(Tw − T∞)R

u2
∞A

, Pr =
Cpµ∞un−1

∞

k∞Rn−1
, θr = − 1

γ∗ (TW − T∞)
,

where Ri is the Richardson number, Pr is the Prandtl number, θr is the variable
viscosity parameter with θr < 0 for fluid and θr > 1 for gas. In this paper, we
consider θr < 0 only.

We present:

(18) ξ = 1 − 2e−x̄, η = 1 − 2e−r̄+1,

which is the mapping from the semi-infinite domain x̄ ∈ [0, +∞) , r̄ ∈ [1, +∞) to a
bounded one ξ ∈ [−1, 1] , η ∈ [−1, 1], and then we have:

(19)
∂ū

∂ξ
(1 − ξ) +

∂v̄

∂η
(1 − η) +

v̄

1 − ln
(

1−η
2

) = 0,

(20)

∂ū
∂t̄

+ ū∂ū
∂ξ

(1 − ξ) + v̄ ∂ū
∂η

(1 − η) = + (1 − η)
n+1

(

θr

θr−T̄

) ∣

∣

∣

∂ū
∂η

∣

∣

∣

n−1
∂2ū
∂η2

+ (1 − η)n

[

1

1−ln( 1−η
2 )

− 1

]

(

θr

θr−T̄

) ∣

∣

∣

∂ū
∂η

∣

∣

∣

n−1
∂ū
∂η

+(n − 1) (1 − η)
n
(

θr

θr−T̄

)
∣

∣

∣

∂ū
∂η

∣

∣

∣

n−2
∂ū
∂η

[

(1 − η) ∂
∂η

∣

∣

∣

∂ū
∂η

∣

∣

∣
−
∣

∣

∣

∂ū
∂η

∣

∣

∣

]

+ (1 − η)
n+1 θr

(θr−T̄)
2

∣

∣

∣

∂ū
∂η

∣

∣

∣

n−1
∂ū
∂η

+ RiT̄ ,

(21)

∂T̄
∂t̄

+ ū∂T̄
∂ξ

(1 − ξ) + v̄ ∂T̄
∂η

(1 − η) = 1
Pr (1 − η)

[

1

1−ln( 1−η
2 )

− 1

]

(

1 + εT̄
)

∂T̄
∂η

+ 1
Pr

(

1 + εT̄
)

(1 − η)
2 ∂2T̄

∂η2 + 1
Prε (1 − η)

2
(

∂T̄
∂η

)2

,

with the corresponding initial and boundary conditions:

(22) ū (ξ,−1, t̄) = 0, v̄ (ξ,−1, t̄) = 0, T̄ (ξ,−1, t̄) = 1,

(23) ū (ξ, 1, t̄) = 1, T̄ (ξ, 1, t̄) = 0,

(24) ū (−1, η, t̄) = 1, T̄ (−1, η, t̄) = 0,

(25) ū (ξ, η, 0) = ū0, T̄ (ξ, η, 0) = T̄0.

3. Numerical solution

In this section we consider the numerical scheme to solve the system of Eqs.(19)-
(25). The space and time discretizations are given by the Chebyshev spectral
method [8] and third order Runge-Kutta method [5], respectively.

3.1. Chebyshev polynomials. We now recall the basic properties of the weighted
orthogonal Chebyshev polynomials [8], which will be used in this paper.

Let Tk be the k-th degree Chebyshev polynomial defined for x ∈ [−1, 1] as:

(26) Tk(x) = cos(k arccosx), k = 0, 1, 2, · · · .

We list the properties that will be used:

(27) (i) (Tk, Tj) =

∫

1√
1 − x2

Tk(x)Tj(x)dx =







0 k 6= j
π k = j = 0
π
2 k = j 6= 0

,
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(28) (ii) Tk(±1) = (±1)
k
,

(29)

(iii) T ′
k(x) = 2k

k−1
∑

l = 0
l + kodd

1

cl

Tl (x) , T ′′
k (x) =

k−2
∑

l = 0
l + keven

1

cl

k
(

k2 − l2
)

Tl (x) ,

where c0 = 2 and cl = 1 for l ≥ 1.

3.2. The Chebyshev collocation scheme. For the momentum conservation
equation (20) and energy conservation equation (21), we choose the collocation
method, which can deal with strongly nonlinear problems easily. For simplicity, we
first consider Euler forward time discretization.

First, at time level k, we seek solutions ūN1,N2, T̄N1,N2 ∈ QN1,N2, where

QN1,N2 =

{

P : P =
N1
∑

m=0

N2
∑

n=0
amnξmηn

}

, with N1, N2 being the numbers of grid

points in the ξ, η directions, respectively. Then we have:

(30) ūN1,N2

(

ξ, η, tk
)

=

N1
∑

m=0

N2
∑

n=0

ūN1,N2

(

ξm, ηn, tk
)

gm (ξ)fn (η) ,

(31) T̄N1,N2

(

ξ, η, tk
)

=
N1
∑

m=0

N2
∑

n=0

T̄N1,N2

(

ξm, ηn, tk
)

gm (ξ)fn (η) ,

where gm (ξ) and fn (η) are the interpolating Lagrange polynomials based on the
Gauss-Lobatto quadrature points (ξi, ηj) in two space dimension given by:

(32) ξi = cos
πi

N1
, ηj = cos

πj

N2
, ∀i = 0, 1 · · ·N1, j = 0, 1 · · ·N2,

and gm (ξ) and fn (η) have the form:

(33) gm (ξ) =
(−1)

m+1 (
1 − ξ2

)

T ′
N (ξ)

CmN12 (ξ − ξm)
, fn (η) =

(−1)
n+1 (

1 − η2
)

T ′
N (η)

CnN22 (η − ηn)
.

By using the Lagrange interpolation, ūk
m,n = ūN1,N2

(

ξm, ηn, tk
)

is the numerical

approximation at the grid point (ξm, ηn) at time t = tk = k∆t with ∆t being the
time step. The solutions are found by requiring the residuals to vanish at the interior
collocation points and the grid points on the boundary ξ = 1. For simplicity, if we
consider the numerical approximation at time level k, the corresponding index k
will be omitted. The scheme is:
(34)

ū
k+1

N1,N2
−ūN1,N2

∆t
+ uN1,N2

∂ūN1,N2

∂ξ
(1 − ξ) + vN1,N2

∂ūN1,N2

∂η
(1 − η)

− (1 − η)n+1
(

θr

θr−T̄N1,N2

) ∣

∣

∣

∂ūN1,N2

∂η

∣

∣

∣

n−1
∂2ūN1,N2

∂η2

− (1 − η)
n

[

1

1−ln( 1−η
2 )

− 1

]

(

θr

θr−T̄N1,N2

)
∣

∣

∣

∂ūN1,N2

∂η

∣

∣

∣

n−1
∂ūN1,N2

∂η

−(n − 1) (1 − η)
n
(

θr

θr−T̄N1,N2

) ∣

∣

∣

∂ūN1,N2

∂η

∣

∣

∣

n−2
∂ūN1,N2

∂η

[

(1 − η) ∂
∂η

∣

∣

∣

∂ūN1,N2

∂η

∣

∣

∣
−
∣

∣

∣

∂ūN1,N2

∂η

∣

∣

∣

]

+ (1 − η)n+1 θr

(θr−T̄N1,N2)
2

∣

∣

∣

∂ūN1,N2

∂η

∣

∣

∣

n−1
∂ūN1,N2

∂η
− RiT̄N1,N2 = 0,
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(35)

T̄
k+1

N1,N2
−T̄N1,N2

∆t
+ ūN1,N2

∂T̄N1,N2

∂ξ
(1 − ξ) + v̄N1,N2

∂T̄N1,N2

∂η
(1 − η)

− 1
Pr (1 − η)

[

1

1−ln( 1−η
2 )

− 1

]

(

1 + εT̄N1,N2

) ∂T̄N1,N2

∂η

− 1
Pr

(

1 + εT̄N1,N2

)

(1 − η)2
∂2T̄N1,N2

∂η2 − 1
Prε (1 − η)2

(

∂T̄N1,N2

∂η

)2

= 0,

for all ξ = ξm, η = ηn with 0 ≤ m ≤ N1 − 1, 1 ≤ n ≤ N2 − 1. To enforce the
boundary conditions (22-24), we explicitly require the numerical solution to take
the boundary value. For example, for equation (25), we enforce:

(36) ūN1,N2 (ξi,−1, t̄) = 0, T̄N1,N2 (ξi,−1, t̄) = 1, ∀i = 1, 2, · · ·N1.

3.3. Chebyshev Galerkin scheme. Now we consider the discretization of the
continuum equation (19), in which we would like to use ū to solve for v̄ . Notice
the fact that, for each fixed ξ, we need only to solve an ODE about v̄, therefore we
use one dimensional Chebyshev Galerkin method, and choose the basis:

(37) ϕn (η) = Tn (−η) − 1.

By (28), such basis satisfies the boundary conditions (22) and clearly ϕ0 (η) = 0.
For each ξ, we seek solutions v̄N1 (η) ∈ BN1 such that:

(38) v̄N1 (η) =
N1
∑

n=1

anϕn (x) =
N1
∑

n=1

an (Tn (−η) − 1).

To construct the numerical scheme, we want the residual:

(39) RN1 (η) =
∂v̄N1

∂η
(1 − η) +

v̄N1

1 − ln
(

1−η
2

) +
∂ū

∂ξ
(1 − ξ)

to be orthogonal to ϕn (η) in L2
w[−1, 1]:

(40)
2

π

∫ 1

−1

RN1 (η)ϕk (η)
1

√

1 − η2
dx = 0, ∀k ∈ [1, 2 . . .N1] .

Here L2
w[−1, 1] is the weighted L2 space on [−1, 1] with the weight function 1/

√

1 − η2.
Notice that for each fixed ξm,(1 − ξm) ∂ū/∂ξ is given. This procedure yields the
Chebyshev Galerkin scheme:

(41)

∫ 1

−1 (1 − η)
N1
∑

n=1
anϕ′

n (η)ϕk (η) 1√
1−η2

dη

+
∫ 1

−1
1

1−ln( 1−η
2 )

N1
∑

n=1
anϕn (η) ϕk (η) 1√

1−η2
dη

+
∫ 1

−1
∂ū
∂ξ

(1 − ξm)ϕk (η) 1√
1−η2

dη = 0.

3.4. Algorithm procedure. We make a summary of the algorithm flowchart.
First we consider the initial discretization, and take:

(42) ū0
i,j = ū0 (ξi, ηj) , T̄ 0

i,j = T̄0 (ξi, ηj) .

And then we solve the initial value of vertical velocity v̄0 by applying the Chebyshev
Galerkin scheme (41) to the continuum equation (19).

Now suppose we have the numerical approximations at time level k, as ūk, T̄ k,
we use (34)-(35) to obtain ūk+1 and T̄ k+1, and then use (41) to solve v̄k+1.
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Finally, to seek the steady state, we compute the L∞-norm of the velocity differ-
ence in the time steps, and we use the following criterion to stop the computation:

(43)
∥

∥

∥
ūk+1

N1,N2 − ūk
N1,N2

∥

∥

∥

L∞

≤ 10−8.

Besides, we also use FFT to provide a crucial speedup for our calculations, more
details can be found in [8].

3.5. High order time discretization scheme. The discretizations above are
based on Euler forward time discretization. However, we can also apply the SSP
third order Runge-Kutta scheme [5] to improve time accuracy.

For the semi discrete scheme:

(44) ut = L (u, t) ,

where L(u, t) is a spatial discretization operator, the SSP third order Runge-Kutta
scheme is given as:

(45)
u(1) = un + ∆tL (un, tn) ,

u(2) = 3
4un + 1

4u(1) + 1
4∆tL

(

u(1), tn + ∆t
)

,
un+1 = 1

3un + 2
3u(2) + 2

3∆tL
(

u(2), tn + 1
2∆t

)

.

In the following numerical experiments we use the SSP third order Runge-Kutta
method (45) for the time discretization.

4. Accuracy test and grid testing

In this paper, we use the method of manufactured solutions to test the order of
accuracy. First we select appropriate manufactured solutions as following:

(46) ū = esin(η+ξ)(1 + t), v̄ = (1 − esin(η+1))(1 + t), T̄ = ecos(η+ξ)(1 + t).

Then we obtain the analytical source term:

(47)
∂ū

∂ξ
(1 − ξ) +

∂v̄

∂η
(1 − η) +

v̄

1 − ln
(

1−η
2

) = f1 (ξ, η) ,

(48)

∂ū
∂t̄

+ ū∂ū
∂ξ

(1 − ξ) + v̄ ∂ū
∂η

(1 − η) − (1 − η)n

[

1

1−ln( 1−η
2 )

− 1

]

(

θr

θr−T̄

) ∣

∣

∣

∂ū
∂η

∣

∣

∣

n−1
∂ū
∂η

−(n − 1) (1 − η)
n
(

θr

θr−T̄

)
∣

∣

∣

∂ū
∂η

∣

∣

∣

n−2
∂ū
∂η

[

(1 − η) ∂
∂η

∣

∣

∣

∂ū
∂η

∣

∣

∣
−
∣

∣

∣

∂ū
∂η

∣

∣

∣

]

− (1 − η)
n+1

(

θr

θr−T̄

) ∣

∣

∣

∂ū
∂η

∣

∣

∣

n−1
∂2ū
∂η2 + (1 − η)

n+1 θr

(θr−T̄)
2

∣

∣

∣

∂ū
∂η

∣

∣

∣

n−1
∂ū
∂η

− RiT̄ = f2 (ξ, η) ,

(49)

∂T̄
∂t̄

+ ū∂T̄
∂ξ

(1 − ξ) + v̄ ∂T̄
∂η

(1 − η) − 1
Pr (1 − η)

[

1

1−ln( 1−η
2 )

− 1

]

(

1 + εT̄
)

∂T̄
∂η

− 1
Pr

(

1 + εT̄
)

(1 − η)2 ∂2T̄
∂η2 − 1

Prε (1 − η)2
(

∂T̄
∂η

)2

= f3 (ξ, η)

with the corresponding initial and boundary conditions. We solve the modified
governing equations with these specific source terms on multiple meshes, and then
we compute the L∞-norm for different mesh levels at t = 0.5 as shown in Table 1.
It is shown that the numerical results achieve spectral convergence in the L∞-norm
until round-off error for double-precision is reached.

Also, for the original dimensionless equations (19)-(25) with

(50) ū0 (ξi, ηj) =
ξi + 1

2
, T̄0 (ξi, ηj) =

−ξi + 1

2
,
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Table 1. L∞-norm of the errors between the obtained numeri-
cal velocity/temperature solutions and the exact solutions of Eqs.
(47)- (49).

GRID
ū v̄ T̄

ERROR ORDER ERROR ORDER ERROR ORDER

4 × 4 1.49 × 10−3 – 6.84 × 10−2 – 2.56 × 10−2 –

8 × 8 1.10 × 10−5 7.08 3.08 × 10−4 6.64 2.68 × 10−4 6.58

16×16 4.90 × 10−11 17.78 3.28 × 10−9 17.67 1.35 × 10−9 17.60

32×32 1.37 × 10−10 – 7.43 × 10−9 – 1.04 × 10−10 –

an extensive mesh testing procedure was conducted to guarantee a grid independent
solution for code validation, which is shown in Figures 1 and 2. It is found that the
results of the calculation change little with a refined (32 × 32) grid and a coarser
(16 × 16) grid.

η

u

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

t=0.1:grid number=16
t=0.1:grid number=32
t=0.5:grid number=16
t=0.5:grid number=32

Figure 1. Dimensionless velocity profiles for different meshes at
x̄ = 0.25.

5. Results and discussion

In this section, we are going to discuss the physical insights and make a summary.
To calculate the velocity and temperature profiles, we solve Eqs. (19) - (21). The
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η

T

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

t=0.1: grid number=16
t=0.1: grid number=32
t=0.5: grid number=16
t=0.5: grid number=32

Figure 2. Dimensionless temperature profiles for different meshes
at x̄ = 0.25.

initial and boundary conditions are given in (22)-(25) with (50). Then we map
the numerical solution back to the x̄, r̄ coordinates, see (18) for the mapping. In
order to observe the physical insight of the mixed convection boundary layer flow
and heat transfer problem, the effects of emerging parameters on the dimensionless
velocity profiles and temperature profiles are illustrated graphically in this section.

Figures 3 and 4 show the velocity and temperature distributions of the fields
when the steady state has been reached at t = 1.15, see section 3.4. The velocity
is increasing gradually toward the infinite boundary, while the temperature shows
the opposite tendency.

The velocity and temperature profiles with different values of the power law
index n are plotted in Figures 5 and 6. As we know, for the case n = 1, the
fluid is Newtonian, while n < 1 and n > 1 correspond to pseudo-plastic fluid and
dilatant fluid, respectively. It is revealed that the larger the power index n, the
smaller the velocity and the thicker the boundary layer. As for the influence on
the temperature profile, increasing n results in the growth of the temperature and
thermal boundary layer thickness. However, comparing with the velocity profiles,
the temperature profiles are less influenced by the power law index.

Figure 7 represents the effects of θr, the indicator of the variation of fluid viscosity
with temperature, on velocity and temperature distributions, respectively. It is
noticed that with an increase in |θr|, there is an increase in the momentum boundary
layer thickness. This is because, for a given fluid with fixed γ∗, larger |θr| implies
smaller temperature difference between the cylinder and the fluid. It is also clear
that the velocity changes markedly with smaller |θr|, in view of the fact that the
higher temperature difference has more significant effect on the fluid viscosity. We
add that µ (T )equals to µ∞, which corresponds to the constant viscosity case when
|θr| tends to infinity, for neglecting the effects of variable viscosity on the flow.
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Figure 3. Dimensionless velocity field of the steady boundary
layer flow when t̄ = 1.15.

Figure 4. Dimensionless temperature field of the steady bound-
ary layer flow when t̄ = 1.15.
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 r

u

1 2 3 4

0

0.2

0.4

0.6

0.8

1

 x=0.15,n=0.5
 x=0.15,n=1
 x=0.15,n=1.5
 x=1.5,n=0.5
 x=1.5,n=1
 x=1.5,n=1.5

Figure 5. Dimensionless velocity profiles for different power law
index at Ri = 0.5, Pr = 7, ε = 0.5, θr = −2, t̄ = 0.5.

 r

T

1 2 3 4

0

0.2

0.4

0.6

0.8

1

 x=0.15,n=0.5
 x=0.15,n=1
 x=0.15,n=1.5
 x=1.5,n=0.5
 x=1.5,n=1
 x=1.5,n=1.5

Figure 6. Dimensionless temperature profiles for different power
law index at Ri = 0.5, Pr = 7, ε = 0.5, θr = −2, t̄ = 0.5.
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Moreover, in Figures 8 and 9, we can see that the variable viscosity parameter
does not significantly influence the temperature profile, it is similar to the variable
thermal conductivity parameter on the velocity profiles.

 r

u

1 2 3

0

0.2

0.4

0.6

0.8

1

t=0.1,θr=-2
t=0.1,θr=-5
t=0.1,θr=-10
t=1,θr=-2
t=1,θr=-5
t=1,θr=-10

Figure 7. Dimensionless velocity profiles for different viscosity
parameter at n = 1.5, Ri = 0.5, Pr = 7, ε = 0.5, x̄ = 0.25.

Figure 10 elucidates the variations of temperature profiles with variable ther-
mal conductivity parameter ε. Results show that the dimensionless temperature
increases with the increase of ε. Physically, the temperature is found to be low for
the constant conductivity of the fluid when ε = 0 compared to the variable case
when ε > 0. On the other hand, the thermal boundary becomes thicker in the
presence of variable thermal conductivity parameter.

Figures 11 and 12 describe the derived dimensionless velocity and temperature
profiles when n = 1.5, Pr = 7, θr = −2, ε = 0.5, t̄ = 0.5, x̄ = 0.25 for various
values of the Richardson number Ri, which is a measurement of the buoyancy and
represents the importance of free convection relative to the forced convection. It is
revealed that the velocity increases and the temperature decreases with increasing
Ri. Hence the velocity and thermal boundary layer thickness are significantly
thinner. The observable phenomenon is attributed to the fact that increasing in
Ri gives rise to an increase in the temperature difference between the cylinder and
fluid, since a greater Ri indicates a greater buoyancy effect, which leads to an
enhancement of the convection and an increase in the surface heat transfer rate.
Besides, it shows the overshoot in the velocity profiles near the surface for fluids
for higher Ri.

6. Conclusions

In this work we endeavor to investigate unsteady axisymmetric mixed convection
heat transfer of power law fluid over a cylinder, and then the temperature dependent
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1 2 3
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0.2

0.4

0.6

0.8

1

t=0.1,θr=-2
t=0.1,θr=-5
t=0.1,θr=-10
t=1,θr=-2
t=1,θr=-5
t=1,θr=-10

Figure 8. Dimensionless temperature profiles for different viscos-
ity parameter at n = 1.5, Ri = 0.5, Pr = 7, ε = 0.5, x̄ = 0.25.
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0.4

0.6

0.8

1

 x=0.25,ε=0
 x=0.25,ε=1
 x=0.25,ε=5
 x=1.5,ε=0
 x=1.5,ε=1
 x=1.5,ε=5

Figure 9. Dimensionless velocity profiles for different thermal
conductivity parameter at n = 1.5, Ri = 0.5, Pr = 7, θr = −2, t̄ =
0.5.
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 r

T

1 2 3

0

0.2

0.4

0.6

0.8

1
 x=0.25,ε=0
 x=0.25,ε=1
 x=0.25,ε=5
 x=1.5,ε=0
 x=1.5,ε=1
 x=1.5,ε=5

Figure 10. Dimensionless temperature profiles for different ther-
mal conductivity parameter at n = 1.5, Ri = 0.5, Pr = 7, θr =
−2, t̄ = 0.5.
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Ri=0
Ri=0.5
Ri=1
Ri=5

Figure 11. Dimensionless velocity profiles for different buoyancy
parameters at n = 1.5, Pr = 7, θr = −2, ε = 0.5, t = 0.5, ξ = 0.25.
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Figure 12. Dimensionless temperature profiles for different buoy-
ancy parameters at n = 1.5, Pr = 7, θr = −2, ε = 0.5, t̄ = 0.5, x̄ =
0.25.

fluid properties are further studied. From the discussion above, we can arrive at
the following conclusions:

(a) Numerical solutions from initial unsteady flow to the final steady flow are
obtained by Chebyshev spectral method and SSP third order Runge-Kutta method,
and a high order spectral accuracy is observed.

(b) An increase in the power law index n and variable viscosity parameter |θr|
decreases the dimensionless velocity and increases momentum boundary layer thick-
ness. However, the Richardson number Ri yields the opposite trend on the velocity
profiles. The dimensionless temperature and thermal boundary layer thickness in-
crease as the value of power law index n and thermal conductivity parameter ε
increase, while they decrease when the Richardson number Ri increases.

(c) Meanwhile, variable fluid properties result in a visible change of flow and
heat transfer characteristics of the power law fluid, hence it is worth mentioning
that more investigations might be required in the future to search for variable fluid
properties model on non-Newtonian power law fluid.
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