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Abstract

In this paper, we propose a multi-scale discontinuous Galerkin (DG) method for

second-order elliptic problems with curvilinear unidirectional rough coefficients by

choosing a special non-polynomial approximation space. The key ingredient of the

method lies in the incorporation of the local oscillatory features of the differential op-

erators into the approximation space so as to capture the multi-scale solutions without

having to resolve the finest scales. The unidirectional feature of the rough coefficients

allows us to construct the basis functions of the DG non-polynomial approximation

space explicitly, thereby greatly increasing the algorithm efficiency. Detailed error

estimates for two-dimensional second-order DG methods are derived, and a general

guidance on how to construct such non-polynomial basis is discussed. Numerical

examples are also presented to validate and demonstrate the effectiveness of the al-

gorithm.
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1 Introduction

In this paper, we propose a multi-scale DG method for a special class of two

dimensional second order elliptic boundary value problems

−∇ · (A(x)∇u) = f(x) in Ω (1.1)

with Dirichlet boundary condition

u = 0 on ∂Ω,

where Ω is a bounded computational domain, f is a function in L2(Ω) and A(x) is a

special diagonal coefficient matrix containing a small scale ǫ

A(x) =

(

aǫ(x, y) 0
0 aǫ(x, y)

)

,

or equivalently,

−(aǫ(x, y)ux)x − (aǫ(x, y)uy)y = f(x, y). (1.2)

As the typical situation in multi-scale modeling, we assume the elliptic coefficients

aǫ(x, y) are highly oscillatory functions involving a small scale ǫ. Furthermore, aǫ(x, y)

belongs to L∞(Ω) and satisfies

0 < α ≤ aǫ(x, y) ≤ β < ∞ (1.3)

for any (x, y) ∈ Ω, where α and β are constants independent of ǫ. In particular,

we are interested in a special subclass of rough coefficients, in which aǫ is curvilinear

unidirectional rough, as defined originally by Babuška et al. in [6], and to be specified

more precisely in Subsection 2.1.

Applications of this type of problems arise in modeling two phase flows in porous

media (see [20, 17, 9]), where Eq. (1.1) is the pressure equation, with u and A(x)

representing the pressure and the relative permeability tensor, respectively. In par-

ticular, A(x) would be a diagonal tensor if the stochastic permeabilities are upscaled.
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Eq. (1.1) also captures the mechanics of steady state heat (electrical) conduction

through a composite material (e.g. [17]), where A(x) and u describe the thermal

(electronic) conductivity and temperature (electronic potential).

It is a well known fact that, if the coefficient aǫ(x, y) is rough, the solution to (1.2)

will also be rough; to be more specific, we will in general have

||aǫ||H1(Ω) → ∞, ||u||H2(Ω) → ∞, as ǫ → 0.

Thus, we will not have enough regularity in u with respect to ǫ, i.e., u is not bounded

uniformly with respect to ǫ in H2(Ω) or in H1+δ(Ω) for any δ > 0. As a result, it

requires a computational mesh size h at least comparable to ǫ to obtain reasonable

resolutions and to observe any convergence rate. This intrinsic difficulty prohibits the

application of traditional numerical methods like polynomial based finite-element and

finite-difference methods, due to the limitations of available computational resources,

e.g. memory and CPU time.

There have been a lot of efforts to overcome or bypass this numerical difficulty.

As early as in the 60s, Tikhonov and Samarskii [21] (see also [16]) designed a simple

3-point finite difference scheme which can solve the one-dimensional version of (1.2)

exactly at the grid points by utilizing harmonic averages and the special solution

structure. However, this method is difficult to extend to multi-dimensions. Later,

various multi-scale finite element methods have been developed and extensively stud-

ied in the literature, including [7, 15, 6, 17, 18, 13, 14, 9, 24, 11, 4, 19, 1, 2, 3] and also

the review book [12] etc. The universal idea therein is to have the local properties

of the differential operators built in to the scheme and, as a result, allowing ade-

quate resolutions on coarser meshes. In particular, the special finite element methods

proposed by Babuška et al. in [6] provide an efficient and convenient framework of

constructing local trial spaces for this specific subclass of two dimensional elliptic

problems like Eq. (1.2) concerned in this paper. The key ingredients of special finite

element methods in [7, 15, 6] can be summarized as:
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• A regularity result for the rough solution in a transformed space with respect

to the right hand side function, f ∈ L2(Ω).

• Construction of trial spaces with good approximation properties, in particular,

they utilize special shape functions for which the explicit construction of local

multi-scale approximation bases is available, thus making the whole algorithm

more efficient and easy to implement.

• Construction of reasonable test spaces to ensure stability results.

By exploiting the special features of the oscillatory coefficients, the special finite

element method is proven to yield second order convergence on coarse meshes even if

the coefficient aǫ is rough and the meshes used cannot resolve it. Notice that for this

particular subclass of two dimensional elliptic equations, unlike the method based on

the homogenization theory, no assumptions as periodicity of aǫ or scale separation

are imposed. The coefficients as well as the solution u can then have a continuum

scale spectrum from O(ǫ) to O(1). For more general cases of the coefficients, though

the general idea of incorporating the oscillatory basis into the approximation spaces

still applies, such regularity result which is the key step in the procedure above in

general no longer holds. Local problems would have to be first solved on a finer grid in

order to obtain an approximation for the oscillatory basis, thus significantly reducing

the efficiency of the multi-scale numerical methods. More details regarding a general

framework for error analysis and related applications could be found in a series of

work [17, 18, 13, 9] by Hou et al.

One of the difficulties for designing higher order schemes for multi-dimensional

continuous Galerkin method is to make the elements conforming. It would be appeal-

ing if one can extend the results in [7, 6] to discontinuous Galerkin (DG) methods

which would not enforce continuity constraints across the element interfaces, and thus

automatically overcome the difficulties of requiring the elements to be conforming for
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multi-dimensions of the continuous Galerkin method and the practical inconvenience

of using curvilinear elements. Motivated by [7, 15, 6], Yuan and Shu proposed a

multi-scale Babuška-Zlámal DG method with a non-polynomial approximation DG

space [24, 23] for the one dimensional version of Eq. (1.2), and they proved arbitrary

high order error estimates. Later, in [22], Wang improved the one-dimensional proof

of the multi-scale Babuška-Zlámal DG method by only assuming that the solution is

uniformly bounded with respect to ǫ in H1(Ω). More regularity was assumed in [24]

while proving estimates for the multi-scale Babuška-Zlámal DG method. Following

the previous work, in [25], Wang et al. proposed a multi-scale symmetric interior

penalty DG (IP-DG ([10, 26, 5])) method. This is proved to be uniformly high order

accurate, with respect to the small scale ǫ in one space dimension, even in the case

where there is no separation of scales (the problem could have a continuum of scales

from O(ǫ) to O(1)) and the mesh size h is much larger than ǫ. Optimal order conver-

gence for second order scheme in two space dimension given unidirectional oscillations

was also proven.

As for the curvilinear unidirectional rough coefficients, in this paper, we extend

the idea in [6] to multi-scale IP-DG [25] framework in two space dimension. In

particular, we prove uniform optimal accuracy for a second order approximation space

in the two-dimensional case, without assuming any properties such as periodicity or

scale separation in the rough coefficients. Although the local mapping might put

some constraints on the computational geometry, this turns out to be a non-essential

restrictions required only for the error analysis. An easy implementation framework

is also suggested for the construction of a local basis, assuming that the leading

oscillatory direction does not change abruptly within each element. We remark that

one of the difficulties in practice for multi-dimensional special finite element methods

is that the methods are designed for curvilinear elements. It is ideal for the purpose

of error estimates, but would cause a lot of inconvenience on the implementation

5



side. On the other hand, for the multi-scale IP-DG methods, we could use regular

triangulations instead. Of course, there is a price to pay for this flexibility: we

must carefully analyze the errors associated with these discontinuities across element

interfaces, to obtain error estimates.

The paper is organized as follows: in Section 2, we first propose the IP-DG scheme

for general nonlinear elliptic equations and discuss the construction of special approx-

imation spaces to cope with curvilinear unidirectional rough coefficients. In Section

3, optimal error estimates are proven for a second order approximation space regard-

less of the fine scales. Numerical examples and a new way of implementation are

presented in Section 4. Concluding remarks are given in Section 5.

2 Multi-scale DG method: the methodology

In this section, we focus on solving the elliptic multi-scale problem (1.2) on a

bounded domain Ω, with additional features to be specified in Subsection 2.1. Let Th

be a collection of quasi-uniform rectangular partitions of Ω and Eh be the collection

of edges of the Th. Define the following inner products

(v, w)Th
=
∑

K∈Th

∫

K

v(x, y) w(x, y)dx dy,

〈v, w〉Eh
=
∑

e∈Eh

∫

e

v(s) w(s) ds

where K denotes a given element in the triangulation, and e represents the edges

associated with it.

There are many different DG formulations for such elliptic equations. To fix ideas,

in this paper we focus on the IP-DG formulation for (1.2): for any test function

vh ∈ Vh, the IP-DG scheme is to find uh ∈ Vh, such that

Bh(uh, vh) = (f, vh)Th
∀v ∈ Vh, (2.1)
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where the bilinear form Bh(uh, vh) is defined as

Bh(u, v) := (A∇u,∇v)Th
− 〈{{A∇u}}, [[v]]〉Eh

− 〈{{A∇v}}, [[u]]〉Eh
+

η

h
〈[[u]], [[v]]〉Eh

where η is a sufficiently large penalty coefficient to ensure stability. For the scalar

valued function u, {{u}}, [[u]] represent the average and jump across the element inter-

face, respectively. To be more precise, let e be an interior edge shared by elements

K1 and K2, define the unit normal vectors n1 and n2 on e pointing exterior to K1

and K2, respectively. We set

{{u}} =
1

2
(u1 + u2), [[u]] = u1n1 + u2n2 on e ∈ Eo

h, (2.2)

with ui := u|∂Ki
, and Eo

h is the set of interior edges e. In a similar fashion, for a

vector-valued function q, we define q1 and q2 analogously and set

{{q}} =
1

2
(q1 + q2), [[q]] = q1 · n1 + q2 · n2 on e ∈ Eo

h. (2.3)

For e ∈ E∂
h , the set of boundary edges, we set

[[u]] = un, {{q}} = q on e ∈ E∂
h , (2.4)

where n is the outward unit normal. We do not require either of the quantities {{u}}

or [[q]] on boundary edges, and leave them undefined.

2.1 Curvilinear unidirectional rough coefficients

As Babuska et al. suggested in [6], the strict definition of “locally varying sharply

in at most one direction” is outlined as follows. For the two dimensional elliptic

equation (1.2) on the domain Ω, assume the existence of the following local change

of variables, such that

• There exists an open cover {Ωi, i = 1, . . . , n} of Ω, with ∪n
i=1Ωi = Ω, and

∪n
i=1(Ω̄i ∩ ∂Ω) = ∂Ω.
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• For each Ωi, there exists a local mapping: (ξ, η): Ωi → Ω̃i such that,

– The mapping is one-to-one and onto, with | ∂(ξ,η)
∂(x,y)

| ≥ γ > 0 on Ωi,

– Ω̃i is the image of Ωi under the mapping and it is a rectangle in ξ and η,

i.e., Ω̃i = (ξ1
Ω, ξ2

Ω) × (η1
Ω, η2

Ω),

– ∇ξ · ∇η = 0,

– The boundary of each open set Ωi is constraint by the boundaries of the

domain Ω:

Ω̄i ∩ ∂Ω = ∅, if all the edges of Ωi are interior edges

= boundary edges of Ωi, and remaining are interior edges

• Under the mapping, the coefficient aǫ(x, y) can be written as a function of a

single variable in the ξ direction, i.e., aǫ(x, y) = ãǫ(ξ), ∀(x, y) ∈ Ωi.

where in general we define for any function w defined on Ω

w̃(ξ(x, y), η(x, y)) = w(x, y).

Under such conditions, the elliptic problem (1.2) is said to have curvilinear unidirec-

tional coefficients. In other words, the local oscillation direction changes smoothly

(no ǫ-scale in this change of oscillation direction) within the computational domain Ω.

Furthermore, in [6], the authors proved a generalized version of the classical Bernstein

theorem [8] for this local change of variables, which we quote here:

Theorem 2.1. ([6]) Let u be the solution in H1
0 of (1.2), where we assume f ∈ L2(Ω)

and aǫ is locally varying sharply in at most one direction. Let Oi ⊂ Ωi be open and

satisfying Oi ⊂⊂ Ωi if Ōi ∩ ∂Ω = ∅, and (∂Oi ∩ ∂Ωi) ⊂ ∂Ω if Ōi ∩ ∂Ω 6= ∅. Let Õi

be the image of Oi under the mapping (ξ, η). Then there is a constant C which does

not depend on ǫ, such that
∫

Õi

{

ãǫ

∣

∣

∣

∣

∂

∂ξ
(ãǫ∂ũ

∂ξ
)

∣

∣

∣

∣

2

+ ãǫ

∣

∣

∣

∣

∂2ũ

∂ξ∂η

∣

∣

∣

∣

2

+
1

ãǫ

∣

∣

∣

∣

∂2ũ

∂η2

∣

∣

∣

∣

2
}

dξdη ≤ C||f ||L2(Ω) (2.5a)
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The constant in the above result depends on the distance between Oi and ∂Ωi\∂Ω.

Hence, we assume that for each Ωi in the above covering we can can pick an Oi with

the following properties.

1) Oi ⊂ Ωi for i = 1, . . . , n.

2) dist(Oi, ∂Ωi\∂Ω) > 0 for i = 1, . . . , n.

3) Ω =
⋃n

i=1 Oi

4) Each K ∈ Th is completely contained in at least one Oi.

Remark 2.2. As suggested in [6], the result can be generalized to coefficients which

could locally be transformed into the form ãǫ(ξ, η) where the dependency of the

function ãǫ on η is independent of the small scale ǫ. For example, ãǫ(ξ, η) = ã( ξ

ǫ
, η).

Remark 2.3. One may notice that due to the definition of curvilinear unidirectional co-

efficients and properties of the associated local change of coordinates specified above,

some constraints may apply to the computational domain. For example, if we consider

coefficients of the specific form aǫ(x, y) =
1

4 + cos(x2+y2

ǫ
)
, the convenient coordinates

mapping would be the polar one:

ξ =
√

x2 + y2, η = tan−1(
y

x
)

Thus a quarter torus domain such as

1 ≤ x2 + y2 ≤ 4, 0 ≤ η ≤
π

2

would satisfy the requirement that the transformed domain Ω̃ is rectangular in (ξ, η).

However, the definition suggests that a square domain like [−1, 1] × [−1, 1] will be

ruled out. We notice that this restriction is only required for the regularity result

above, which simplifies the error analysis of the multi-scale DG scheme. In Section 4,

extensive numerical results suggest that this requirement is not essential. We still

observe an optimal convergence rate for the second order multi-scale DG scheme,

even if the constraints associated with the local mapping are not strictly satisfied.
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2.2 Approximation spaces

In this subsection, we first propose a way to construct the approximation space

motivated by [6]. For each element Kj ∈ Th, the local oscillating approximation space

is obtained as follows:

• Find Oi ⊂ Ωi such that Kj ⊂ Oi and the local mapping (ξ, η) associated with

Ωi.

• Define the second order local approximation space on Kj as:

V 1
j =

{

v : v|Kj
∈ span

{

1,

∫ ξ

ξ∗j

1

ãǫ(s)
ds, η − η∗

j

}}

.

Here ξ∗j = ξj(x
∗
j , y

∗
j ), η

∗
j = ηj(x

∗
j , y

∗
j ) where (x∗

j , y
∗
j ) is the centroid of Kj.

• The multi-scale DG approximation space on Ω is S1
h =

⋃N
j=1 V 1

j .

• Likewise, a higher order approximation space can be defined by including more

basis function in, e.g. S2
h =

⋃N

j=1 V 2
j , where

V 2
j =

{

v : v|Kj
∈ span

{

1,

∫ ξ

ξ∗j

1

ãǫ(s)
ds, η − η∗

j ,

∫ ξ

ξ∗j

s

ãǫ(s)
ds,

(η − η∗

j )

∫ ξ

ξ∗j

1

ãǫ(s)
ds, (η − η∗

j )
2

}}

.

This construction is vital to the success of the multi-scale DG method, which can

be expected to yield the same convergence rate as the usual polynomial based DG

methods when the coefficient a is smooth, while achieves greatly improved accuracy

on a coarse mesh when a is rough. An easy implementation of the basis construction

is proposed in Subsection 4.4, to address the cases where the local mapping is not

obvious or directly available in an analytical form. Numerical experiments show that

this practical implementation achieves optimal order of convergence with a second

order approximation space.
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Remark 2.4. According to the mean value theorem, we have
∫ ξ

ξ∗j

1

ãǫ(s)
ds =

1

ãǫ(c)
(ξ − ξ∗j )

for some c ∈ (ξ∗j , ξ). Thus, the condition number of the multiscale bases system

is similar to that of polynomials under the assumption of the coefficients 0 < α ≤

aǫ(x, y) ≤ β < ∞ and the assumptions of the mapping from (x, y) to (ξ, η) in the

previous section.

3 Multi-scale DG method: the error estimates

Combining all the pieces together, we have completely defined the multi-scale DG

method for solving two dimensional elliptic equations (1.2) with curvilinear unidi-

rectional coefficients. In this section, we proceed to analyze the theoretical aspects

of the multi-scale DG methods. The first result to prove is the interpolation error

associated with the special approximation space S1
h defined in the previous section.

3.1 Error estimates of the interpolation error

We first define the following straightforward energy norm

9v92 := (A∇v,∇v)Th
+

1

h
〈[[v]], [[v]]〉Eh

+ h〈{{A∇v}}, {{A∇v}}〉Eh
.

Meanwhile, given Kj ∈ Th, find the containing partition Ωi, such that Kj ⊂

Oi ⊂ Ωi. Suppose the corresponding local mapping (ξ, η) satisfies all the conditions

specified in Subsection 2.1. Denote the images of Kj, Ωi with such mapping as K̃j ,

Ω̃i respectively. Then define a further mapping as follows:

ξ̂ :=

∫ ξ 1

ãǫ(s)
ds

η̂ :=η.

which maps the element K̃j ∈ T̃h to K̂j ∈ T̂h. Accordingly, for any function u defined

on Kj , we could define functions ũ on K̃j and û on K̂j separately as

ũ(ξ, η) = û(ξ̂, η̂) = u(x, y).
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Before preceding to a proof of the interpolation error in the energy norm, we state

and prove the following two lemmas, one certifying the equivalence of L2-estimates

after changing coordinates, the other assuring the trace inequality estimates, both

regarding the transformed “hat” domain.

Lemma 1. Given Kj and the local mapping (ξ̂, η̂) defined above, then for any function

w ∈ H1(Kj), the following inequality holds

‖w‖2
L2(Kj)

≤ C ′‖ŵ‖2
L2(K̂j)

(3.1)

∫

Kj

A∇w · ∇wdx dy ≤ C‖∇̂ŵ‖2
L2(K̂j)

(3.2)

where C ′ and C are constants depending only on α and β in (1.3) and on the local

mapping, but not on ǫ.

Proof. (3.1) can be proved by straightforward calculus:

‖w‖2
L2(Kj)

=

∫

K̂j

ŵ2

∣

∣

∣

∣

∣

∂(x, y)

∂(ξ̂, η̂)

∣

∣

∣

∣

∣

dξ̂ dη̂ ≤ C ′‖ŵ‖2
L2(K̂j)

Similar for (3.2)

∫

Kj

A∇w · ∇wdx dy =

∫

K̃j

[

ãǫ(
∂

∂ξ
w̃)2|∇ξ|2 + ãǫ(

∂

∂η
w̃)2|∇η|2

]

|
∂(x, y)

∂(ξ, η)
|dξ dη

≤C

∫

K̃j

[

ãǫ
i(

∂

∂ξ
w̃)2 + ãǫ(

∂

∂η
w̃)2

]

dξ dη

≤C

∫

K̂j

[

(
∂

∂ξ̂
ŵ)2 + (ãǫ ∂

∂η̂
ŵ)2

]

dξ̂ dη̂

≤C‖∇̂ŵ‖2
L2(K̂j)

Lemma 2. For each element Kj and the associated mapping, given any function

w ∈ C1(Kj), the following trace inequality holds:

‖ŵ‖L2(∂K̂j)
≤ C1h

−
1

2

K̂j
‖ŵ‖L2(K̂j)

+ C2h
1

2

K̂j
‖∇̂ŵ‖L2(K̂j)
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where hK̂j
= diam(K̂j). Note that both constants C1 and C2 do not depend on the

small scale ǫ.

Proof. Denote M as the mapping defined on x ∈ ∂Kj : M(x) = x̂ ∈ ∂K̂j . As a result,

ŵ(x̂) = (ŵ ◦ M)(x) = w(x)

Moreover, by variable substitution,

∫

∂K̂j

ŵ(x̂)dx̂ =

∫

∂Kj

(ŵ ◦ M)(x)|det(JM )(x)|dx

where JM is the Jacobian of the mapping M. It is obvious that there exist constants

independent of ǫ, 0 < m1(α, β, ξ, η) ≤ m2(α, β, ξ, η), such that m1 ≤ |det(JM)| ≤ m2.

Therefore, by the trace inequality on Kj and Lemma 1,

‖ŵ‖L2(∂K̂j)
≤C‖w‖L2(∂Kj) ≤ C1h

−
1

2‖w‖L2(Kj) + C2h
1

2‖∇w‖L2(Kj)

≤C1h
−

1

2‖ŵ‖L2(K̂j)
+ C2h

1

2‖∇̂ŵ‖L2(K̂j)

≤C1h
−

1

2

K̂j
‖ŵ‖L2(K̂j)

+ C2h
1

2

K̂j
‖∇̂ŵ‖L2(K̂j)

We have used here that there exist constants M1, M2, independent of Kj, such that

M1h ≤ hK̂j
≤ M2h.

We then proceed to prove the following approximation result.

Lemma 3. Let u be the exact solution of (1.2). Then, there exists v ∈ S1
h so that

9u − v9 ≤ Ch‖f‖L2(Ω).

Proof. Define v̂ to be the piecewise linear function defined on K̂j such that v̂|K̂j
∈

P 1(K̂j) satisfies

hK̂j
‖∇̂(û − v̂)‖L2(K̂j)

+ ‖û − v̂‖L2(K̂j)
≤ Ch2

K̂j
|D̂2û|L2(K̂j)

, (3.3)
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From the definition of 9 · 9 we have

9u − v92 =(A∇(u − v),∇(u − v))Th
+

1

h
〈[[(u − v)]], [[(u − v)]]〉Eh

+ h〈{{A∇(u − v)}}, {{A∇(u− v)}}〉Eh
(3.4)

for which each term will be bounded individually.

As for the first term in the energy norm (3.4), by Lemma 1 and the linear approx-

imation results (3.3)

∫

Kj

A∇(u − v) · ∇(u − v)dx dy ≤ C‖∇̂(û − v̂)‖2
L2(K̂j)

≤ Ch2
K̂j
|D̂2û|2

L2(K̂j)
.

Hence, if we sum over Kj ⊂ Oi we recover

∑

Kj⊂Oi

(A∇(u − v),∇(u − v))Kj
≤ (A∇(u − v),∇(u − v))Oi

≤ Ch2|D̂2û|2
L2(Ôi)

. (3.5)

Of course, summing over i = 1, . . . , n we get

(A∇(u − v),∇(u − v))Th
≤ Ch2

n
∑

i=1

|D̂2û|2
L2(Ôi)

. (3.6)

For the second term in the energy norm (3.4), we use a trace inequality to get

1

h
〈[[(u − v)]], [[(u − v)]]〉Eh

≤
C

h2
‖u − v‖2

L2(Ω) + C‖∇(u − v)‖2
L2(Ω) (3.7)

By Lemma 1, the first term in (3.7) satisfies

‖u − v‖2
L2(Kj)

≤ C‖û − v̂‖2
L2(K̂j)

≤ Ch4
K̂j
|D̂2û|2

L2(K̂j)
.

Taking the sum over Kj ⊂ Oi we get

∑

Kj⊂Oi

‖u − v‖2
L2(Kj)

≤ Ch4|D̂2û|2
L2(Ôi)

,
1

h2
‖u − v‖2

L2(Ω) ≤
n
∑

i=1

Ch2|D̂2û|2
L2(Ôi)

(3.8)

As for the second term in (3.7), it can be bounded by scaling argument,

‖∇(u − v)‖2
L2(Ω) ≤ C

1

α
(A∇(u − v),∇(u − v))Th

≤
n
∑

i=1

Ch2|D̂2û|2
L2(Ôi)

, (3.9)
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where in the last inequality we use (3.6). Therefore for the middle term in the energy

norm (3.4),

1

h
〈[[(u − v)]], [[(u − v)]]〉Eh

≤
n
∑

i=1

Ch2|D̂2û|2
L2(Ôi)

(3.10)

For the last term in the energy norm (3.4), following the mapping argument carried

out in Lemma 1 and Lemma 2, we have

h〈{{A∇(u − v)}}, {{A∇(u− v)}}〉Eh
≤ Ch

∑

Kj

‖∇̂(û − v̂)‖2
L2(∂K̂j)

(3.11)

By the trace inequality in Lemma 2, it is clear that

h
∑

Kj

‖∇̂(û − v̂)‖2
L2(∂K̂j)

≤C
∑

K̂j

‖∇̂(û − v̂)‖2
L2(K̂j)

+ C h2
∑

K̂j

‖D̂2û‖2
L2(K̂j)

≤C h2
∑

K̂j

‖D̂2û‖2
L2(K̂j)

.

Thus we bound the third term in the (3.4) as:

h〈{{A∇(u − v)}}, {{A∇(u− v)}}〉Eh
≤ C h2

n
∑

i=1

‖D̂2û‖2
L2(Ôi)

(3.12)

We combine (3.6), (3.10), (3.12) to obtain

9u − v92 ≤
n
∑

i=1

Ch2|D̂2û|2
L2(Ôi)

.

To complete the proof we argue that

n
∑

i=1

|D̂2û|L2(Ôi)
≤ C‖f‖L2(Ω). (3.13)

By change of variables, we have

∂2û

∂ξ̂2
= ãǫ ∂

∂ξ
(ãǫ ∂ũ

∂ξ
),

∂2û

∂ξ̂∂η̂
= ãǫ ∂2ũ

∂ξ̃∂η̃
,

∂2û

∂η̂2
=

∂2ũ

∂η̃2
.

As indicated by the generalized Bernstein Theorem 2.1, (3.13) is immediate and this

completes the proof.
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Remark 3.1. The main difficulty in the proof is we only have the optimal approxima-

tion result for the polynomial space. So the key idea of the proof is to first construct

the polynomial approximation in the “hat” space, then to show that this approx-

imation mapped back to the original space can maintain the optimal convergence

independent of ǫ.

3.2 Coercivity result

Next, we are going to prove the coercivity of the bilinear form, again by referring

to Lemma 2.

Lemma 4. The following coercivity result holds

9v92 ≤ CBh(v, v) ∀v ∈ S1
h. (3.14)

Proof. Let v ∈ S1
h. Then by the definition of Bh(·, ·) we get

Bh(v, v) = (A∇v,∇v)Th
− 2〈{{A∇v}}, [[v]]〉Eh

+
η

h
〈[[v]], [[v]]〉Eh

. (3.15)

By the arithmetic-geometric mean inequality we get that

2〈{{A∇v}}, [[v]]〉Eh
≤

1

δh
〈[[v]], [[v]]〉Eh

+ hδ〈{{A∇v}}, {{A∇v}}〉Eh
, (3.16)

for any δ > 0. Next, we bound hδ〈{{A∇v}}, {{A∇v}}〉Eh
. By (3.11), it is immediate

that

〈{{A∇v}}, {{A∇v}}〉Eh
≤ C

∑

‖∇̂v̂‖2
L2(∂K̂j)

(3.17)

Invoking Lemma 2, the inverse inequality for the transformed domain,

〈{{A∇v}}, {{A∇v}}〉Eh
≤ C

∑

‖∇̂v̂‖2
L2(∂K̂j)

≤ Ch−1
∑

K̂j

‖∇̂v̂‖2
L2(K̂j)

(3.18)

In the last inequality, the higher order derivative term drops out since v̂ ∈ P 1(K̂j).

Combining this with Lemma 1,

hδ〈{{A∇v}}, {{A∇v}}〉Eh
≤ Cδ

∑

K̂j

‖∇̂v̂‖2
L2(K̂j)

≤ Cδ(A∇v,∇v)Th
. (3.19)
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If we insert this result into (3.16) we get

2〈{{A∇v}}, [[v]]〉Eh
≤

1

δh
〈[[v]], [[v]]〉Eh

+ Cδ(A∇v,∇v)Th
. (3.20)

Using (3.15) to follow that

Bh(v, v) ≥(A∇v,∇v)Th
+

η

h
〈[[v]], [[v]]〉Eh

−
1

δh
〈[[v]], [[v]]〉Eh

− Cδ(A∇v,∇v)Th

=(1 − Cδ)(A∇v,∇v)Th
+ (

η

h
−

1

δh
)〈[[v]], [[v]]〉Eh

.

If we choose δ such that (1 − Cδ) ≤ 1
2

and assume that η is sufficiently large so that

η ≥ (1
2

+ 1
δ
), we recover

(A∇v,∇v)Th
+

1

h
〈[[v]], [[v]]〉Eh

≤ C B(v, v).

The proof is complete by using (3.19).

3.3 The main result

Combining the interpolation error analysis and the coercivity result, we now state

our main error estimate as follows:

Theorem 3.2. Let u be the solution of (1.2) and let uh ∈ Vh be the IP-DG approxi-

mation, then

9u − uh9 ≤C h‖f‖L2(Ω), (3.21a)

‖u − uh‖L2(Ω) ≤C h2‖f‖L2(Ω). (3.21b)

Proof. We first prove (3.21a). To this end, by Lemma 4 we have, for any v ∈ S1
h,

9v − uh9
2 ≤ C Bh(v − uh, v − uh).

By Galerkin orthogonality of the IP-DG method we have

9v − uh9
2 ≤ C Bh(v − u, v − uh).

17



Clearly, Bh(·, ·) is a bounded bilinear form. That is,

Bh(v − u, v − uh) ≤ C 9 v − u 9 9v − uh 9 .

Therefore,

9v − uh9 ≤ C 9 v − u 9 .

The triangle inequality gives

9u − uh9 ≤ C 9 v − u 9 .

Since this holds for any v ∈ S1
h, Lemma 3 yields (3.21a).

To prove (3.21b), we will use a duality argument. Define the problem

−(a(x, y)φx(x, y))x − (a(x, y)φy(x, y))y =(u − uh)(x, y), (x, y) ∈ Ω, (3.22a)

φ(x, y) =0, (x, y) ∈ ∂Ω. (3.22b)

By adjoint consistency of the IP-DG method we have

‖u − uh‖
2
L2(Ω) = Bh(u − uh, φ) = Bh(u − uh, φ − v),

for any v ∈ S1
h. Here we have used Galerkin orthogonality. Hence,

‖u − uh‖
2
L2(Ω) ≤ C 9 u − uh 9 9φ − v9 ≤ C h 9 u − uh 9 ‖u − uh‖L2(Ω),

where we have used Lemma 3. Inequality (3.21b) now follows from (3.21a).

4 Multi-scale DG method: numerical results

In this section, various two-dimensional numerical examples are presented to

demonstrate that the proposed multi-scale DG method is able to capture oscilla-

tory solutions without having to completely resolve the finest scales therein. This is

in contrast to the traditional DG method based on polynomial approximation spaces.

We consider two two-dimensional elliptic multi-scale examples on the domain

[−1, 1]2. In the first example we do not enforce zero Dirichlet boundary condition,

18



thus an exact solution can be obtained. The second example is a real two-dimensional

Dirichlet problem, in which case explicit formulas for the exact solutions are not avail-

able. Thus we compute the reference solutions by a spectral Chebyshev collocation

method with a 512 × 512 mesh to check the convergence rates of the DG methods.

We note that in the second example, due to the difficulty of computing a high

resolution reference solution, we are unable to test for very small values of ǫ (we tested

ǫ = 0.01 and ǫ = 0.005). Indeed, the smaller ǫ is, the more significant advantage of the

multi-scale IP-DG method is expected to have. This is because the error of the multi-

scale IP-DG method does not depend on ǫ, whereas the traditional IP-DG method

only has convergence when the mesh size is comparable to ǫ.

Finally, an easy implementation is proposed. Though no theoretical proof for the

error estimates has been obtained, we demonstrate the effectiveness of this new way

of implementation through the same set of numerical tests.

4.1 2D Example I: Accuracy test

In the first example, we consider aǫ(x, y) =
1

4 + cos(x2+y2

ǫ
)
. By not imposing zero

Dirichlet boundary condition, we can assume an exact solution and smooth right hand

side function, i.e.,

u = (x2 + y2)2 +
1

2
ǫ(x2 + y2) sin

(

x2 + y2

ǫ

)

+
1

2
ǫ2 cos

(

x2 + y2

ǫ

)

, f = −4(x2 + y2).

(4.1)

The boundary condition comes from the exact solution which has oscillations.

Note that throughout the domain, the oscillations only appear in the radial di-

rection. Thus we define the corresponding mapping (ξ, η) : ξ(x, y) =
√

x2 + y2,

η(x, y) = tan−1( y

x
). The second order local approximations space S1

h is just

span

{

1,

∫ ξ

ξ∗
Kj

1

ãǫ(s)
ds, η − η∗

Kj

}

, (4.2)
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where ã(ξ) = 1

4+cos( ξ2

ǫ
)
. The third order local approximation space S2

h is

span

{

1,

∫ ξ

ξ∗j

1

ãǫ(s)
ds, η − η∗

j ,

∫ ξ

ξ∗j

s

ãǫ(s)
ds, (η − η∗

j )

∫ ξ

ξ∗j

1

ãǫ(s)
ds, (η − η∗

j )
2

}

. (4.3)

The integration in the construction of basis above is done numerically with a sufficient

number of quadrature points to completely resolve ǫ = 0.01. We first studied the

L2-projection error of the multi-scale bases S1
h and S2

h for a small ǫ = 0.01. From

Table 4.1, we can see a second and a third order for S1
h and S2

h independent of ǫ,

respectively.

Table 4.1: L2 projection error of the multi-scale bases S1
h and S2

h with ǫ = 0.01.

S1
h S2

h

N error order error order
10 2.06E-01 – 3.91E-03 –
20 4.28E-02 2.27 4.35E-04 3.17
40 9.70E-03 2.14 5.16E-05 3.09
80 2.31E-03 2.07 6.13E-06 3.06

Next, in Table 4.2, the L2-errors and convergence rates of both u and Du by

the multi-scale DG methods are listed. For the error of u, we can see an almost

second order convergence rate and a clear third order of convergence rate for the S1
h

and S2
h spaces, respectively. We have also computed the L2 error of Du (defined as

||(ux, uy) − ((uh)x, (uh)y)||L2), we can see an at least first order convergence rate and

a second order of convergence rate for the S1
h and S2

h spaces, respectively. The results

for smaller ǫ, e.g., ǫ = 0.005 are similar, thus we do not list the results here.

4.2 2D Example II: Radial direction

In the second example, the multi-scale DG method is tested with the coefficients

with no separation of scales:

aǫ(x, y) =
1

4 + sin( cos(x2+y2)
ǫ

)
, f = −2. (4.4)
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Table 4.2: L2-errors and orders of accuracy of u and Du by the multi-scale DG
method: Accuracy test with ǫ = 0.01.

u S1
h S2

h

N error order error order
10 9.89E-01 – 5.15E-03 –
20 3.44E-01 1.52 4.48E-04 3.52
40 9.68E-02 1.83 4.11E-05 3.44
80 2.45E-02 1.98 4.53E-06 3.18

Du S1
h S2

h

N error order error order
10 2.48E-00 – 9.65E-02 –
20 9.48E-01 1.39 2.08E-02 2.21
40 3.53E-01 1.43 4.74E-03 2.13
80 1.48E-01 1.26 1.13E-03 2.06

In this case, zero boundary condition is imposed, thus an explicit formula for the

exact solution is no longer available. Also note that there is no scale separation in the

oscillatory coefficient in this example. The numerical solutions are compared with

reference solutions as mentioned above.

The same local mapping is used as in the first example, i.e. the polar one (ξ, η).

Table 4.3 shows the L2-errors and orders of convergence for the cases with ǫ = 0.01

and ǫ = 0.005. As expected, it shows a nearly second order of convergence rates for

the S1
h space. Although a clear improvement in the errors could be observed, for the

S2
h space, it is not clear what the convergence rate is, since the error decreases faster

after only a few refinements, the reference solution is no longer reliable.

4.3 2D Example III: x6 + y6 direction

In the third example, we consider the problem with oscillating coefficient

aǫ(x, y) =
1

4 + cos(x6+y6

ǫ
)

(4.5)

and smooth right hand side f = −2 with zero boundary condition.

It is easy to see the oscillation is along x6 + y6 direction. So we can define the
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Table 4.3: L2-errors and orders of accuracy by the multi-scale DG method: Example
II.

ε = 0.01 ε = 0.005

S1
h

N error order error order
10 3.53E-01 – 3.58E-01 –
20 1.25E-01 1.50 1.25E-01 1.52
40 3.72E-02 1.75 3.65E-02 1.78
80 1.03E-02 1.85 9.91E-03 1.88
160 2.68E-03 1.95 2.58E-03 1.94

S2
h

10 8.50E-03 – 7.06E-03 –
20 1.53E-03 2.48 6.94E-04 3.55
40 9.08E-04 0.75 1.98E-04 1.81
80 2.89E-04 1.65 1.88E-04 0.08

mapping (ξ, η) : ξ(x, y) =
√

x6 + y6, η(x, y) = tan−1( y3

x3 ). With the (ξ, η), the second

and third order finite element space S1
h and S2

h can be defined as Eq. (4.2) and (4.3).

Since there is no exact solution for this problem, the reference solution is computed

same as before.

Table 4.4 shows the L2-errors and orders of convergence by the multi-scale DG

method with ǫ = 0.01 and ǫ = 0.005. For S1
h space, the order is approaching second

order. For S2
h space, the order is a little more than second order. Theoretically we

cannot prove the order of convergence for the S2
h space, but numerically we can see a

good approximation by S2
h with a much smaller error than S1

h.

4.4 Easy implementations

In this subsection, an easy implementation is proposed for the multi-scale DG

methods. From the assumption on aǫ, it is clear that within each local element, the

oscillation direction of the coefficients changes smoothly. Intuitively the oscillation

direction at each cell center should be able to capture and explain the majority part of

the local oscillations. This approach would be especially helpful for practical purposes,
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Table 4.4: L2-errors and orders of accuracy by the multi-scale DG method: Example
III.

ε = 0.01 ε = 0.005

S1
h

N error order error order
10 4.87E-01 – 4.90E-01 –
20 2.10E-01 1.22 1.25E-01 1.22
40 8.38E-02 1.32 8.27E-02 1.34
80 3.19E-02 1.39 3.12E-02 1.41
160 1.06E-02 1.59 1.03E-02 1.59

S2
h

10 2.44E-02 – 2.40E-02 –
20 5.78E-03 2.08 5.85E-03 2.04
40 1.20E-03 2.27 1.24E-03 2.24
80 2.45E-04 2.29 2.95E-04 2.07

when the local mapping (ξ, η), is not directly available, or can not be written out in

an analytical form. A new approximation space could be defined as:

ES1
h =

⋃

j

V h
j =

{

v : v|Kj
∈ span

{

1,

∫ ξj

ξ∗
Kj

1

ãǫ
j(s, η

∗
Kj

)
ds, ηj − η∗

Kj

}}

,

ES2
h =

⋃

j

V h
j =

{

v : v|Kj
∈ span

{

1,

∫ ξj

ξ∗
Kj

1

ãǫ
j(s, η

∗
Kj

)
ds, ηj − η∗

Kj
,

(ηj − η∗

Kj
)

∫ ξj

ξ∗
Kj

1

ãǫ
j(s, η

∗
Kj

)
ds,

∫ ξj

ξ∗
Kj

s

ãǫ
j(s, η

∗
Kj

)
ds, (ηj − η∗

Kj
)2

}}

where ξj denotes the oscillation direction of aǫ(x, y) at cell center of Kj , and ηj

is the direction perpendicular to ξj. So (ξj , ηj) is now just a rotation of the original

coordinates (x, y). (ξ∗Kj
, η∗

Kj
) denotes the element center of Kj under the new mapping

(ξj, ηj).

Consider the 2D accuracy test case for example, for each cell Kj with cell center’s

coordinates denoted as (x∗
Kj

, y∗
Kj

). We know that the oscillation direction at the

cell center is ξj = cos(θ∗Kj
)x + sin(θ∗Kj

)y, and in turn the orthogonal direction to

ξj is ηj = − sin(θ∗Kj
)x + cos(θ∗Kj

)y, where θ∗Kj
= tan−1(

y∗

Kj

x∗

Kj

). Under the mapping
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ξj(x, y), ηj(x, y) defined as above, the element center (xj , yj) can now be represented

as ξ∗Kj
= cos(θ∗Kj

)x∗
Kj

+ sin(θ∗Kj
)y∗

Kj
, η∗

Kj
= − sin(θ∗Kj

)x∗
Kj

+ cos(θ∗Kj
)y∗

Kj
. As a result,

the new local oscillatory basis defined on Kj now is:

∫ ξj

ξ∗
Kj

1

ãj(s, η
∗
Kj

)
ds =

∫ ξj

ξ∗
Kj

(

4 + cos(
s2 + (η∗

Kj
)2

ǫ
)

)

ds

which can be calculated through numerical integration as in the previous session.

We study the L2-projection error of the oscillating solution (4.1) onto the new

approximation space. As shown in Table 4.5, we observe second order of conver-

gence for both the ES1
h and ES2

h spaces, indicating that for this easy implementation

approach, enriching the basis does not help improve the convergence rates. This is

understandable as we have only captured the major portion of the oscillations in the

solution by freezing the oscillation direction to be that at the element center. The

error committed by this approximation is expected to be second order. As a result,

we just focus on ES1
h and omit the results obtained from ES2

h.

Table 4.5: L2 projection error of the easy implementation basis with ǫ = 0.01.

ES1
h ES2

h

N error order error order
10 4.48E-01 – 4.59E-02 –
20 1.27E-01 1.82 1.06E-02 2.11
40 2.98E-02 2.09 2.50E-03 2.08
80 7.28E-03 2.03 5.98E-04 2.06

The tests on the same numerical examples I & II as in the previous subsections

4.1 and 4.2 are performed to validate and to show the effectiveness of this method

based on an easy implementation. From Table 4.6, it is clear that the multi-scale DG

with the approximation space ES1
h also provide a second order of convergence rate.
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Table 4.6: L2 errors and orders of accuracy obtained by the easy implementation:
Example I & II.

Accuracy Test Dirichlet B.C.

ES1
h ǫ = 0.01 ǫ = 0.01 ǫ = 0.005

N error order error order error order
10 4.84E-01 – 4.71E-01 – 5.41E-01 –
20 1.50E-01 1.69 1.72E-01 1.45 1.83E-01 1.56
40 4.32E-02 1.80 5.12E-02 1.75 5.12E-02 1.84
80 1.13E-02 1.93 1.39E-02 1.88 1.36E-02 1.91
160 2.88E-03 1.97 3.60E-03 1.95 3.66E-03 1.93

5 Concluding remarks

In this paper, we propose a multi-scale DG method for solving a class of two di-

mensional second order elliptic equations with rough coefficients which locally vary

sharply in at most one direction, or in other words, are curvilinear unidirectional.

Solving this type of problems is computationally expensive for most traditional nu-

merical methods, which motivates us to exploit the flexibility of DG methods in

choosing a special local approximation basis that allows a much more efficient algo-

rithm.

Motivated by previous work in [6, 25], we build our local approximation space

by utilizing special oscillatory basis functions indicated by the differential operators.

As a result, we prove that the scheme yields optimal accuracy for the second order

approximation on coarse meshes. The convergence rate is uniform and independent of

the small scale ǫ. Furthermore, the constraints on the computational geometry indi-

cated in the error estimates appear to be artificial, in the sense of being assumed only

for the convenience of analysis rather than enforcing restrictions on real application.

Various numerical tests have been performed to demonstrate the effectiveness of

the proposed schemes, particularly on coarse meshes. In addition, an easy implemen-

tation is suggested and validated through numerical examples. The easy implementa-

tion technique is helpful especially when it is hard to find the explicit local mapping.
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In future work, we plan to apply this methodology to real applications that arise in

engineering problems.
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1906, 253–271.

26



[9] Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic

problems with oscillating coefficients, Math. Comp., 72, 2002, 541–576.

[10] J. Douglas Jr. and T. Dupont, Interior Penalty Procedures for Elliptic and

Parabolic Galerkin Methods, Lecture Notes in Phys. 58, Springer-Verlag, Berlin,

1976.

[11] Y. Efendiev, V. Ginting, T.Y. Hou and R. Ewing, Accurate multiscale finite

element methods for two-phase flow simulations, J. Comput. Phys., 220, 2006,

155–174.

[12] Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods: Theory and

Applications, Springer, New York, 2009.

[13] Y. Efendiev, T.Y. Hou and X.H. Wu, The convergence of nonconforming multi-

scale finite element methods, SIAM J. Numer. Anal., 37, 2000, 888–910.

[14] R. Ewing, O. Iliev and R. Lazarov, A modified finite volume approximation of

second-order elliptic equations with discontinuous coefficients, SIAM J. Sci. Com-

put., 23, 2001, 1335–1351.

[15] R.S. Falk and J.E. Osborn, Remarks on mixed finite element methods for prob-

lems with rough coefficient, Math. Comp., 62, 1994, 1–19.

[16] K.N. Godev, R.D. Lazarov, V.L. Makarov and A.A. Samarskii, Homogeneous

difference schemes for one-dimensional problems with generalized solutions, Math

USSR SB, 59, 1988, 155–179.

[17] T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems

in composite materials and porous media, J. Comput. Phys., 134, 1997, 169–189.

27



[18] T.Y. Hou, X.H. Wu and Z. Cai, Convergence of a multiscale finite element method

for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68, 1999,

913–943.

[19] T.Y. Hou, X.H. Wu and Y. Zhang, Removing the cell resonance error in the mul-

tiscale finite element method via a Petrov-Galerkin formulation, Comm. Math.

Sci., 2, 2004, 185–205.

[20] P. Langlo and M.S. Espedal, Macrodispersion for two-phase, immiscible flow in

porous media, Adv. in Water Resources, 17, 1994, 297–316.

[21] A.N. Tikhonov and A.A. Samarskii, Homogeneous difference schemes, USSR

Computational Mathematics and Mathematical Physics, 1, 1962, 5-67.

[22] W. Wang, Multiscale discontinuous Galerkin methods and applications, Ph.D.

Thesis, Brown University, 2008.

[23] L. Yuan and C.-W. Shu, Discontinuous Galerkin method based on non-polynomial

approximation spaces, J. Comput. Phys., 218, 2006, 295–323.

[24] L. Yuan and C.-W. Shu, Discontinuous Galerkin method for a class of elliptic

multi-scale problems, Int. J. Numer. Meth. Fluids, 56, 2008, 1017–1032.

[25] W. Wang, J. Guzmán and C.-W. Shu, The multiscale discontinuous Galerkin

method for solving a class of second order elliptic problems with rough coefficients,

Int. J. Numer. Anal. Model, 8, 2011, 28–47.

[26] M.F. Wheeler, An elliptic collocation-finite element method with interior penal-

ties, SIAM J. Numer. Anal., 15, 1978, 152–161.

28


