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Abstract

Robustness of numerical methods has attracted an increasing interest in the community

of computational fluid dynamics. One mathematical aspect of robustness for numerical

methods is the positivity-preserving property. At high Mach numbers or for flows near

vacuum, solving the conservative Euler equations may generate negative density or internal

energy numerically, which may lead to nonlinear instability and crash of the code. This

difficulty is particularly profound for high order methods, for multi-material flows and for

problems with moving meshes, such as the Lagrangian methods. In this paper, we construct

both first order and uniformly high order accurate conservative Lagrangian schemes which

preserve positivity of physically positive variables such as density and internal energy in the

simulation of compressible multi-material flows with general equations of state (EOS). We

first develop a positivity-preserving approximate Riemann solver for the Lagrangian scheme

solving compressible Euler equations with both ideal and non ideal EOS. Then we design a

class of high order positivity-preserving and conservative Lagrangian schemes by using the

essentially non-oscillatory (ENO) reconstruction, the strong stability preserving (SSP) high

order time discretizations and the positivity-preserving scaling limiter which can be proven

to maintain conservation and uniformly high order accuracy and is easy to implement. One-

dimensional and two-dimensional numerical tests for the positivity-preserving Lagrangian

schemes are provided to demonstrate the effectiveness of these methods.
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1 Introduction

There are two typical frameworks to describe the motion of fluid flow, that is, the Eulerian

framework and the Lagrangian framework. In the Eulerian formulation the mesh is fixed

in space, which makes these methods very suitable for flows with large deformations. In

fact, numerical methods for the equations of compressible fluid flow in Eulerian coordinates

have been extensively investigated and they have the widest fields of applications. On the

other hand, Lagrangian methods, e.g. [3, 4, 5, 19, 20], in which the computational mesh

moves with the fluid, are more suitable for problems involving interfaces between materials

or free surfaces. Thus they are widely used in many fields for multi-material flow simulations.

Unfortunately, multidimensional extensions of Lagrangian methods are more difficult than

those in the Eulerian case. To simulate flows with deformation, the Lagrangian methods

are often combined with an algorithm to rezone the mesh and remap variables from the

Lagrangian mesh to the rezoned mesh to avoid severe mesh distortion or mesh tangling

which may destroy the calculations. This combined method that can choose the motion of

the grid more freely is called the Arbitrary Lagrangian-Eulerian (ALE) method.

As computational fluid dynamics is widely used in many scientific and engineering fields,

issues such as reliability and robustness of computations become more important. One

mathematical aspect of scheme robustness is the positivity-preserving property. As in a

conservative approximation to Euler equations where density, momentum and total energy

are solved directly, the kinetic energy is computed from mass and momentum and then

subtracted from the total energy. At high Mach numbers, internal energy appears as the

small difference of two large quantities, and is therefore prone to large percentage errors.

It may easily become negative numerically which may lead to nonlinear instability and a

failure of the numerical scheme. An alternative way to solve this problem is the usage of a

non-conservative scheme which solves the internal energy instead of the total energy directly,

but its cost is the possible loss of conservation which may result in a wrong shock position

or an exponential error growth.
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A scheme is called positivity-preserving if it can update new states with positive density,

internal energy and other physically positive variables, when starting from a set of physi-

cally admissible states. Numerous studies exist in the literature on this issue, especially for

the Eulerian methods. In the earlier years, many first order positivity-preserving Eulerian

schemes were well documented, for example, the classical Godunov scheme [9], Lax-Friedrichs

scheme [23, 29], the modified HLLE scheme [9], the HLLC scheme [1], the AUSM+ scheme

[17], and the flux vector splitting schemes such as Van Leer’s and Steger and Warming’s [13].

Many gas-kinetic schemes have also been shown to be positivity-preserving, such as those

in [21, 27]. Some of them are designed up to second order accuracy, e.g., [16, 22, 23, 10].

More recently, Zhang and Shu developed a series of high order positivity-preserving Eulerian

schemes such as the Runge-Kutta discontinuous Galerkin (RKDG) method, weighted essen-

tially non-oscillatory (WENO) finite volume and finite difference schemes [29, 30, 31, 32].

The part of our work in this paper on high order schemes is an extension of the work of

Zhang and Shu to Lagrangian methods and to multi-material flows.

Numerical simulation of compressible multi-material flows arises in many applications

including astrophysics, inertial confine fusion, underwater bubble dynamics, shock wave

interactions with material interface and combustion, and so on. In these problems, large

density jumps or strong pressure jumps across the material interface frequently happen which

makes positivity-preserving a big issue for the simulation of this kind of multi-material fluid

flows. Moreover, multi-material fluid flow may involve different kinds of equations of state

(EOS), some of which are quite more complicated than the ideal EOS which is applied for

perfect gas, for example, the stiffened EOS for water and the Jones-Wilkins-Lee (JWL)

EOS for the detonation-products gas, which makes positivity-preserving more difficult to

achieve. For this reason, positivity-preserving Eulerian schemes have seldom been discussed

for multi-material problems.

Compared with Eulerian methods, positivity-preserving Lagrangian schemes are less in-

vestigated. The pioneering work on this issue includes the positivity-preserving Godunov-
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type Lagrangian scheme based on the modified HLL Riemann solver [20], and the positive

and entropic schemes for a general class of Lagrangian systems including gas dynamics and

magnetohydrodynamics (MHD) in [2, 12]. Unfortunately all of these schemes are only first

order accurate and only valid in one-dimensional space. As all of them adopt the mass

coordinate, which can be implemented only in one-dimensional space. It is not clear how

these schemes can be extended to higher dimensional spaces. The main difficulty is that

Lagrangian fluxes should not introduce any numerical diffusion for density (no mass trans-

fer between cells), hence many popular Eulerian fluxes such as Lax-Friedrichs fluxes are

ruled out. It is significantly more difficult to prove the positivity-preserving property if the

numerical flux does not have any diffusion for the first component (density).

In this paper, we will discuss the methodology to construct positivity-preserving La-

grangian schemes both in one- and in two-dimensional spaces, which can be used to simulate

multi-material problems both with ideal EOS and non-ideal EOS. To be more specific, we first

develop a HLLC approximate Riemann solver for the Lagrangian scheme which can preserve

the positivity of density and internal energy (or a similar quantity which should be physically

positive for some complicated EOS) in the simulation of multi-material flows with general

equations of state. This HLLC numerical flux has a particularly simple form in the La-

grangian form. Based on this HLLC numerical flux, a class of first order positivity-preserving

Lagrangian schemes is designed. We then design a class of high order positivity-preserving

Lagrangian schemes by using the essentially non-oscillatory (ENO) reconstruction, the strong

stability preserving (SSP) high order time discretizations and the positivity-preserving scal-

ing limiter which can be proven to maintain conservation and uniformly high order accu-

racy both in one and two dimensions. One- and two-dimensional numerical tests for the

positivity-preserving Lagrangian schemes are provided to demonstrate the effectiveness of

these methods.

An outline of the rest of this paper is as follows. In Section 2, we describe the positivity-

preserving HLLC approximate Riemann solver for the Lagrangian method solving compress-
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ible Euler equations with general EOS and present a class of first order positivity-preserving

Lagrangian schemes both in one and two spatial dimensions. In Section 3, we show the way

to extend the first order positivity-preserving Lagrangian schemes to high order schemes. In

Section 4, one- and two-dimensional numerical examples are given to verify the performance

of the new Lagrangian schemes. In Section 5 we will give concluding remarks.

2 First order positivity-preserving Lagrangian scheme

solving the Euler equations with general EOS

2.1 The positivity-preserving HLLC approximate Riemann solver

for the Lagrangian method

The Euler equations for unsteady compressible flow in the reference frame of a moving control

volume can be expressed in integral form in the Cartesian coordinates as

d

dt

∫

Ω(t)

UdΩ +

∫

Γ(t)

F(U,n)dΓ = 0 (2.1)

where Ω(t) is the moving control volume enclosed by its boundary Γ(t). The vector of the

conserved variables U and the flux vector F are given by

U =




ρ
ρu
E


 , F =




ρ(u − ẋ) · n
ρu(u− ẋ) · n + pn

E(u− ẋ) · n + pu · n


 (2.2)

where ρ is density, u is velocity, m = ρu is momentum, E is total energy and p is pressure, ẋ

is the velocity of the control volume boundary Γ(t), and n denotes the unit outward normal

to Γ(t). The system (2.1) represents the conservation of mass, momentum and energy.

This paper focuses on solving the governing equations (2.1) in a Lagrangian framework,

in which it is assumed that ẋ = u, and the vectors U and F then take the simpler form

U =




ρ
ρu
E


 , F =




0
pn

pu · n


 . (2.3)

The set of equations is completed by the addition of an equation of state (EOS) with the

following general form

p = p(ρ, e) (2.4)
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where e = E
ρ
− 1

2
|u|2 is the specific internal energy. The sound speed for the fluid flow is

c =
√

pρ|s =
√

pρ + ppe

ρ2 , and physically the quantity inside the square root should be positive.

In this paper, we will consider several commonly used multi-material problems with general

EOS. To be more specific, the following three types of general EOS are involved:

1) The ideal EOS for the perfect gas,

p = (γ − 1)ρe, c =

√
γ

p

ρ
(2.5)

where γ is a constant representing the ratio of specific heat capacities of the fluid.

2) The stiffened EOS for water,

p = (γ − 1)ρe − γpc, c =

√
γ
p + pc

ρ
(2.6)

where γ has the same meaning as that in the ideal EOS and pc is another positive constant.

3) The Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas,

p = (γ − 1)ρe + f(ρ), c =

√
γp − f(ρ) + ρf ′(ρ)

ρ
(2.7)

where

f(ρ) = A1

(
1 − ωρ

R1ρ0

)
e−

R1ρ0
ρ + A2

(
1 − ωρ

R2ρ0

)
e−

R2ρ0
ρ

with constants A1, A2, ρ0, R1, R2, γ which guarantee 0 ≤ ρ ≤ ρ0 and f(ρ) ≥ 0.

Physically, the fluid flow has the positivity property for some variables such as density,

internal energy, the quantity inside the square root to define the sound speed, and so on.

For some fluid materials such as perfect gas and detonation-products gas, pressure is always

positive as well. But pressure may not always be positive for some fluid flows such as water

which is described by the stiffened EOS (2.6).

Consider the Lagrangian scheme for the Euler equations (2.1), (2.3) in the one-dimensional

case. The spatial domain Ω is discretized into N computational cells Ii = [xi−1/2, xi+1/2] of

sizes ∆xi = xi+1/2 − xi−1/2 with i = 1, . . . , N . For a given cell Ii, the location of the cell

center is denoted by xi. The fluid velocity ui+1/2 is defined at the vertex of the mesh. All
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the conserved variables are stored at the cell center xi in the form of cell averages and this

cell is their common control volume. For example, the values of the cell averages for the cell

Ii, denoted by ρi, mi and Ei, are defined as follows

ρi =
1

∆xi

∫

Ii

ρdx, mi =
1

∆xi

∫

Ii

ρudx, Ei =
1

∆xi

∫

Ii

Edx.

The finite volume Lagrangian scheme with Euler forward time discretization for the

governing equations (2.1), (2.3) in the one-dimensional case has the following form,

U
n+1

i ∆xn+1
i − U

n

i ∆xn
i = −∆t[F̂(U−

i+1/2,U
+
i+1/2) − F̂(U−

i−1/2,U
+
i−1/2)], (2.8)

U =




ρ
m
E


 , F̂ =




f̂D

f̂m

f̂E


 (2.9)

where U
n
, U

n+1
are the vectors of cell averages of the conserved variables and ∆xn, ∆xn+1

are the lengths of the corresponding cell at the n-th and (n + 1)-th time steps respectively.

U±
i±1/2 are the values of the conserved variables at the left and right sides of the cell boundary

xi±1/2 respectively. For a high order spatial approximation, U±
i±1/2 are obtained from a high

order reconstruction which will be discussed in the next section. F̂ is the vector of the

numerical fluxes of mass, momentum and total energy across the cell boundary of its control

volume Ii(t) respectively.

For the first order spatial approximation, U±
i±1/2 are taken as the vectors of the cell

averages of the conserved variables, that is, the scheme (2.8) becomes

U
n+1

i ∆xn+1
i = U

n

i ∆xn
i − ∆t[F̂(U

n

i ,U
n

i+1) − F̂(U
n

i−1,U
n

i )]. (2.10)

We define the Godunov-type intercell numerical flux as

F̂(U−,U+) = F(U∗)

where U∗ is the similarity solution U(x/t) of the following Riemann problem




Ut + F(U)x = 0

U(x, 0) =

{
U−, x < 0
U+, x ≥ 0

(2.11)
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Figure 2.1: Simplified Riemann fan for the HLLC flux in the Lagrangian formulation.

evaluated along the contact wave in the Lagrangian formulation (see Figure 2.1) where

U =




ρ
ρu
E


 , F(U) =




ρ(u − S∗)
ρu(u − S∗) + p
E(u − S∗) + pu


 . (2.12)

U± = (ρ±, (ρu)±, E±)T . S∗ denotes the velocity of the middle wave (the contact wave).

For the Euler equations, the solution to the Riemann problem consists of a contact wave

and two acoustic waves, which may be either shocks or expansion fans. We denote the

smallest and largest velocities of the acoustic waves as S− and S+ respectively.

Exact solution to the Riemann problem may be difficult and costly to obtain, hence often

approximate Riemann solvers are used to build Godunov-type numerical schemes. In the

approximate Riemann solvers for the Eulerian equations, the HLLC Riemann solver pro-

posed and developed initially by Harten et al and further developed by Toro, Einfeldt et al

[14, 28, 9] has been proved to be very simple, reliable and robust. It has been widely used in

many application fields. In [1], Batten et al. further proved that the HLLC flux is positively

conservative (for density and pressure) for the perfect gas in the Eulerian formulation with

an appropriate choice of the acoustic wavespeeds. In this section, we will discuss the specific

form of the HLLC flux for the Euler equations with general EOS in the Lagrangian formu-

lation and prove that the scheme (2.10) based on this flux with suitably chosen wavespeeds

S− and S+ is positivity-preserving.

For the HLLC flux, two averaged intermediate states U∗
− and U∗

+ between the two acous-
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tic waves S−, S+ are considered, which are separated by the contact wave (interface) with

the velocity S∗. In the Lagrangian formulation we take the moving reference coordinate with

the velocity of the contact wave S∗ so that the contact wave is always at the position x = 0.

Thus F(U∗) would have the following form,

F∗ = F(U∗) =




0
p∗

p∗S∗





where p∗ is the pressure along the contact wave which will be determined below. Figure 2.1

gives an illustration of the HLLC flux formulation in the Lagrangian framework.

Since the approximate Riemann solver does not give an exact solution to the Riemann

problem, what we insist upon designing the HLLC flux is to enforce the divergence theorem.

Integrating the Euler system (2.1) over the left and right halves of the Riemann fan, i.e.

the rectangles ABCD and CEFD respectively in Figure 2.1, and enforcing the divergence

theorem in each of them, we obtain the following expressions for the flux,

F∗
− = F− + (S− − S∗)(U

∗
− −U−) (2.13)

F∗
+ = F+ + (S+ − S∗)(U

∗
+ −U+) (2.14)

where F∗
± = F(U∗

±) and F± = F(U±) as defined by (2.12).

Equations (2.13)-(2.14) can be rewritten in details as follows,

(S− − S∗)




ρ∗
−

ρ∗
−u∗

−
E∗

−


−




ρ∗
−(u∗

− − S∗)
ρ∗
−u∗

−(u∗
− − S∗) + p∗−

E∗
−(u∗

− − S∗) + p∗−u∗
−




= (S− − S∗)




ρ−
ρ−u−
E−


−




ρ−(u− − S∗)
ρ−u−(u− − S∗) + p−
E−(u− − S∗) + p−u−


 (2.15)

and

(S+ − S∗)




ρ∗
+

ρ∗
+u∗

+

E∗
+


−




ρ∗
+(u∗

+ − S∗)
ρ∗

+u∗
+(u∗

+ − S∗) + p∗+
E∗

+(u∗
+ − S∗) + p∗+u∗

+




= (S+ − S∗)




ρ+

ρ+u+

E+


−




ρ+(u+ − S∗)
ρ+u+(u+ − S∗) + p+

E+(u+ − S∗) + p+u+


 . (2.16)
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Using the fact that the left and right values of velocity and pressure along the contact wave

are the same, that is, {
p∗ = p∗− = p∗+
S∗ = u∗

− = u∗
+

, (2.17)

we have F∗ = F∗
− = F∗

+. From the above expressions (2.15)-(2.16), we can get the following

simple form of the HLLC flux in the Lagrangian formulation,

F̂(U−,U+) = F∗ =




0
p∗

p∗S∗



 (2.18)

where

p∗ = ρ−(u− − S−)(u− − S∗) + p− (2.19)

S∗ =
ρ+u+(S+ − u+) − ρ−u−(S− − u−) + p− − p+

ρ+(S+ − u+) − ρ−(S− − u−)
(2.20)

and




ρ∗
− = ρ−

S−−u−

S−−S∗

ρ∗
−u∗

− = (S−−u−)ρ−u−+(p∗−p−)
S−−S∗

E∗
− = (S−−u−)E−−p−u−+p∗S∗

S−−S∗

. (2.21)

Similar expression can be obtained for U∗
+. The acoustic wavespeeds S− and S+ will be

determined later to make the Lagrangian scheme positivity-preserving.

Define the set of admissible states by

G =



U =




ρ
ρu
E



 , ρ > 0, e = E/ρ − 1

2
|u|2 > 0, c2 = pρ|s > 0



 . (2.22)

Lemma: The set of admissible states G is a convex set for the previous mentioned three

types of EOS given by (2.5)-(2.7).

Proof. From the expressions (2.5)-(2.7), we can easily verify:

1) For the ideal EOS, if ρ > 0, then e > 0 ⇐⇒ c2 > 0.

2) For the stiffened EOS, if ρ > 0, then ρe − pc > 0 ⇐⇒ c2 > 0.

3) For the JWL EOS, if ρ > 0, then e > 0 =⇒ c2 > 0.
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Thus for the ideal EOS and the JWL EOS, G can be described as

G =



U =




ρ
ρu
E



 , ρ > 0, e > 0



 . (2.23)

For the stiffened EOS, G can be described as

G =



U =




ρ
ρu
E


 , ρ > 0, ρe − pc > 0



 . (2.24)

Denote ĕ = ρe, ẽ = ρe − pc. Since ρe is a concave function of U, using Jensen’s inequality,

we have

ĕ(aU1 + (1 − a)U2) ≥ aĕ(U1) + (1 − a)ĕ(U2), if ρ1 ≥ 0, ρ2 ≥ 0,

ẽ(aU1 + (1 − a)U2) ≥ aẽ(U1) + (1 − a)ẽ(U2), if ρ1 ≥ 0, ρ2 ≥ 0,

for U1 = (ρ1, m1, E1), U2 = (ρ2, m2, E2) and 0 ≤ a ≤ 1. Thus G is a convex set.

The scheme (2.10) is called positivity-preserving if {Un

i ∈ G, i = 1, ..., N} implies

{Un+1

i ∈ G, i = 1, ..., N}. Following the design of the HLLC flux, under a suitable CFL

condition, the two waves in Figure 2.2 centered at xi−1/2 and at xi+1/2 do not interact within

the time step ∆t, and divergence theorem is satisfied exactly in the two rectangles ABCD

and CEFD respectively in Figure 2.1. With also the continuity of p∗ at the contact (the line

CD in Figure 2.1), U
n+1

i in the scheme (2.10) can be described as the exact integration of

the approximate Riemann solver over [xn+1
i−1/2, x

n+1
i+1/2] broken into two pieces (see Figure 2.2),

that is,

U
n+1

i =
1

∆xn+1
i

∫ xn+1

i

xn+1

i−1/2

R(x/t,U
n

i−1,U
n

i )dx +
1

∆xn+1
i

∫ xn+1

i+1/2

xn+1

i

R(x/t,U
n

i ,U
n

i+1)dx (2.25)

where R(x/t,U
n

j−1,U
n

j ) (for j = i and j = i + 1) is the approximate Riemann solution

between the states U
n

j−1 and U
n

j . To be more specific, for the HLLC Riemann solver,

R(x/t,U
n

i−1,U
n

i ) in the relevant integration interval will take the value of either U∗
+ (com-

puted from the two states U
n

i−1 and U
n

i ) or U
n

i . Similarly R(x/t,U
n

i ,U
n

i+1) in the relevant
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Figure 2.2: Illustration of the Lagrangian scheme with the approximate Riemann solver.

integration interval will take the value of either U
n

i or U∗
− (computed from the two states U

n

i

and U
n

i+1). Thus in order to prove the positivity-preserving property of the scheme (2.10),

we only need to prove the intermediate states U∗
± ∈ G if U± ∈ G, which would imply that

U
n+1

i given by (2.25) also belongs to G, due to the fact that G is a convex set and Jensen’s

inequality for integrals. According to the definition of G in (2.23) for the ideal EOS and the

JWL EOS, we need to prove if

{
ρ− > 0, E− − 1

2
ρ−u2

− > 0
ρ+ > 0, E+ − 1

2
ρ+u2

+ > 0
, (2.26)

then

ρ∗
− > 0, ρ∗

+ > 0, (2.27)

E∗
− − 1

2
ρ∗
−(u∗

−)2 > 0, E∗
+ − 1

2
ρ∗

+(u∗
+)2 > 0. (2.28)

For simplicity, we only give the proof for the validity of (2.27)-(2.28) for U∗
−. Similar argu-

ments can prove the validity for U∗
+ as well.

Since S− < S∗, S− < u−, the inequality (2.27) is easily obtained from (2.21). By using

(2.21), the inequality (2.28) can be rewritten as

(u− − S−)E− + p−u− − p∗S∗ +
((S− − u−)ρ−u− − p− + p∗)2

2ρ−(S− − u−)
> 0. (2.29)

Substituting the expression (2.19) into (2.29) and rearranging, we have

(u− − S−)[E− − ρ−(u− − S∗)S∗ −
1

2
ρ−S2

∗ ] + (u− − S∗)p− > 0. (2.30)
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Using the relationship E− = ρ−e− + 1
2
ρ−u2

−, the inequality (2.30) becomes

1

2
ρ−(S∗ − u−)2 − p−

u− − S−
(S∗ − u−) + ρ−e− > 0. (2.31)

Defining ξ = S∗ − u−, we finally get the inequality to verify as

1

2
ρ−ξ2 − p−

u− − S−
ξ + ρ−e− > 0. (2.32)

To guarantee the inequality (2.32) to hold for any value of ξ, the discriminant of the quadratic

function of ξ on the left side of (2.32) should be negative, which gives the following condition

for the acoustic wavespeed S−,

p2
−

(u− − S−)2
− 2ρ2

−e− < 0, (2.33)

that is,

S− < u− − p−
ρ−

√
2e−

. (2.34)

By a similar derivation, we can get the condition for the acoustic wavespeed S+,

S+ > u+ +
p+

ρ+

√
2e+

. (2.35)

For Euler equations with the stiffened EOS in which the definition of G is described by

(2.24), by a similar argument, we can prove that U∗
± ∈ G if U± ∈ G under the following

condition

S− < u− − p− + pc√
2ρ−(ρ−e− − pc)

, S+ > u+ +
p+ + pc√

2ρ+(ρ+e+ − pc)
. (2.36)

In particular, for the ideal EOS, from (2.5), we have p

ρ
√

2e
=
√

(γ−1)p
2ρ

<
√

γp
ρ

= c. For

the stiffened EOS, using (2.6), we get p+pc√
2ρ(ρe−pc)

=
√

(γ−1)(p+pc)
2ρ

<
√

γ(p+pc)
ρ

= c. Thus the

final acoustic wavespeeds S− and S+ can be taken as follows,

S− = min

[
u− − p−

ρ−
√

2e−
, u− − c−, ũ − c̃

]
, S+ = max

[
u+ +

p+

ρ+

√
2e+

, u+ + c+, ũ + c̃

]

(2.37)

where ũ, c̃ are the Roe’s averages of the fluid velocity and sound speed respectively.
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For the ideal EOS and stiffened EOS, S− and S+ in (2.37) have the same simpler forms

as those in [9] which can yield the exact velocity for isolated shocks,

S− = min[u− − c−, ũ − c̃], S+ = max[u+ + c+, ũ + c̃]. (2.38)

In summary, we have the following theorem for the scheme (2.10).

Theorem 2.1. Consider the finite volume Lagrangian scheme (2.10) with the HLLC flux

(2.18)-(2.20) solving the Euler equations (2.1), (2.3) with the general equation of state given

by one of (2.5)-(2.7). If {Un

i ∈ G, ∀i = 1, ..., N}, then the scheme is positivity-preserving,

namely, {Un+1

i ∈ G, ∀i = 1, ..., N} under the choice of the acoustic wavespeeds S− and S+

in (2.37) and with the time step restriction

∆tn ≤ λ min
i=1,...,N

(
∆xn

i

/(
max

{∣∣∣∣
pn

i

ρn
i

√
2en

i

∣∣∣∣ , c
n
i

}
+ |un

i |
))

(2.39)

with the Courant number λ = 1/2.

Remark 2.1. The time step restriction (2.39) with the Courant number λ = 1/2 is used to

guarantee that the two waves in Figure 2.2 centered at xi−1/2 and at xi+1/2 do not interact

within the time step ∆t.

Remark 2.2. If G is described as (2.23), then Theorem 2.1 holds for the Euler equations

(2.1), (2.3) with any EOS.

As to the vertex velocity ui+1/2 which is used to determine the motion of the grid, it is

simply taken as S∗ solved by (2.20) at the corresponding point. After we get the velocity at

each cell vertex, the cell vertex moves with the following discretized local kinematic equation

xn+1
i+1/2 = xn

i+1/2 + ∆tnun
i+1/2

where un
i+1/2 is the vertex velocity at the n-th time step, xn

i+1/2, x
n+1
i+1/2 are the vertex position

at the n-th and (n + 1)-th time steps respectively.
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2.2 The first order positivity-preserving Lagrangian scheme in the

two-dimensional space

The 2D spatial domain Ω is discretized into M × N computational cells. Ii,j is a quadrilat-

eral cell constructed by the four vertices {(xi−1/2,j−1/2, yi−1/2,j−1/2), (xi+1/2,j−1/2, yi+1/2,j−1/2),

(xi+1/2,j+1/2, yi+1/2,j+1/2), (xi−1/2,j+1/2, yi−1/2,j+1/2)}. Ai,j is used to denote the area of the

cell Ii,j with i = 1, . . . , M , j = 1, . . . , N . The values of the cell averages for the cell Ii,j

denoted by ρi,j, mi,j , and Ei,j are defined as follows

ρi,j =
1

Ai,j

∫∫

Ii,j

ρdxdy, mi,j =
1

Ai,j

∫∫

Ii,j

ρudxdy, Ei,j =
1

Ai,j

∫∫

Ii,j

Edxdy.

The conservative Lagrangian scheme for the Euler equations (2.1), (2.3) has the following

form in the two-dimensional space

U
n+1

i,j An+1
i,j − U

n

i,jA
n
i,j = −∆t

∫

∂Ii,j

F̂(Uint(Ii,j),Uext(Ii,j),nIi,j
)dl, (2.40)

Ui,j =




ρi,j

mi,j

Ei,j


 , F̂ =




f̂D

f̂m

f̂E


 (2.41)

where the variables with the superscript n and n+1 represent the values of the corresponding

variables at the n-th and (n + 1)-th time steps respectively. Uint(Ii,j) = (ρint(Ii,j ),mint(Ii,j),

Eint(Ii,j))T and Uext(Ii,j) = (ρext(Ii,j),mext(Ii,j), Eext(Ii,j))T are the vectors of the conserved

variables inside the cell Ii,j and outside the cell Ii,j (inside the neighboring cell) at the cell

boundary ∂Ii,j respectively. F̂ is the vector of the numerical fluxes for mass, momentum

and total energy across the cell boundary ∂Ii,j . nIi,j
= (nx, ny) is the unit outward normal

to the quadrilateral cell boundary. For simplicity, we omit the superscript ‘n’ for all the

variables which appear at the right side of the scheme (2.40). The numerical flux satisfies

F̂(U,U,n) = F(U,n) = (0, pn, pu · n)T for consistency and F̂(U,V,n) = −F̂(V,U,−n)

for conservation.

If the line integral in Eq. (2.40) is discretized by a K-point Gaussian integration formula
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for each edge, then we have

∫

∂Ii,j

F̂dl ≈
M∑

m=1

K∑

α=1

ωαF̂(Uint(Ii,j)
m,α ,Uext(Ii,j)

m,α ,nm
Ii,j

)lmi,j (2.42)

where the terms at the right hand side represent the line integral of the numerical flux along

the boundary edges of the cell Ii,j. M is the number of the cell boundary edges, for the

quadrilateral grid M = 4. nm
Ii,j

is the unit outward normal of Ii,j along the m-th cell edge.

lmi,j is the length of the m-th edge of the cell boundary for the cell Ii,j . {Uint(Ii,j)
m,α ,Uext(Ii,j)

m,α , α =

1, ..., K} are the values of the reconstruction polynomial U at the Gaussian quadrature points

inside and outside the cell Ii,j along the m-th cell edge respectively.

In a similar way as introduced in the last section, we can get the HLLC numerical flux

for the Euler equations in two spatial dimensions

F̂(Uint,Uext,n) =




0
p∗nx

p∗ny

p∗S∗


 (2.43)

where

p∗ = ρint(uint
n − S−)(uint

n − S∗) + pint,

S∗ =
ρextuext

n (S+ − uext
n ) − ρintuint

n (S− − uint
n ) + pint − pext

ρext(S+ − uext
n ) − ρint(S− − uint

n )
,

S− = min

[
uint

n − pint

ρint
√

2eint
, uint

n − cint, ũn − c̃

]
, (2.44)

S+ = max

[
uext

n +
pext

ρext
√

2eext
, uext

n + cext, ũn + c̃

]

with uint
n = mint · n/ρint, uext

n = mext · n/ρext. ũn and c̃ are the Roe averages of un and c

respectively.

For the first order scheme, Uint and Uext in (2.42) are taken as the values of the cell

averages for the conserved variables at the inside and outside cells along the cell edge. The

line integral of F̂ along each cell edge can simply be calculated by the middle-point integration

formula. Thus the first order Lagrangian scheme in the two-dimensional space can be written

16



in the following form,

U
n+1

i,j An+1
i,j = U

n

i,jA
n
i,j − ∆t

M∑

m=1

F̂(U
n

i,j ,U
ext(Ii,j)

m ,nm
Ii,j

)lmi,j (2.45)

where U
ext(Ii,j)

m is the cell average of U in the neighboring cell of Ii,j along the m-th cell edge.

By (2.2), we clearly have F(U,n) = F̃(U) · n for a vector flux F̃(U). Also geometrically

it is clear that
∑M

m=1 nm
Ii,j

lmi,j = 0. Therefore, by the consistency of numerical fluxes, we have

M∑

m=1

F̂(U
n

i,j ,U
n

i,j ,n
m
Ii,j

)lmi,j =

M∑

m=1

F(U
n

i,j,n
m
Ii,j

)lmi,j = F̃(U
n

i,j)

M∑

m=1

nm
Ii,j

lmi,j = 0.

By adding 0 = ∆t
∑M

m=1 F̂(U
n

i,j,U
n

i,j,n
m
Ii,j

)lmi,j to the scheme (2.45), we have

U
n+1

i,j An+1
i,j = U

n

i,jA
n
i,j − ∆t

M∑

m=1

[F̂(U
n

i,j,U
ext(Ii,j)

m ,nm
Ii,j

) − F̂(U
n

i,j,U
n

i,j,n
m
Ii,j

)]lmi,j

=
M∑

m=1

{
An

i,j∑M
m=1 lmi,j

U
n

i,j − ∆t
[
F̂(U

n

i,j,U
ext(Ii,j)

m ,nm
Ii,j

) − F̂(U
n

i,j,U
n

i,j,n
m
Ii,j

)
]}

lmi,j.

Define

F̂m =
An

i,j∑M
m=1 lmi,j

U
n

i,j − ∆t
[
F̂(U

n

i,j,U
ext(Ii,j)

m ,nm
Ii,j

) − F̂(U
n

i,j ,U
n

i,j ,n
m
Ii,j

)
]
. (2.46)

Clearly, F̂m is a formal one-dimensional first order positivity-preserving scheme, namely, the

same type as (2.10). The only difference between them is the former vector U has four com-

ponents while the latter one in the one-dimensional case (2.10) has only three components.

This additional component corresponds to the linear degenerate contact discontinuity field

and is a simple shear term, a similar proof as in the one-dimensional case can lead to the

proof that F̂m is also in the set G under the CFL condition

∆tn ≤ λ min
i,j

{
An

i,j∑M
m=1 lmi,j

/(
max

{∣∣∣∣∣
pn

i,j

ρn
i,j

√
2en

i,j

∣∣∣∣∣ , c
n
i,j

}
+ |un

i,j|

)}
(2.47)

where cn
i,j is the sound speed within this cell. The Courant number λ = 1/2 is the same as in

the one-dimensional case. Since U
n+1

is a convex combination of F̂m, the following theorem

is obtained by using the fact that G is a convex set.
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Theorem 2.2. Consider the first order Lagrangian scheme (2.45) with the HLLC flux (2.43)-

(2.44) solving the Euler equations (2.1), (2.3) with the general equation of state given by

one of (2.5)-(2.7). The scheme (2.45) is positivity-preserving, namely, {Un+1

i,j ∈ G, ∀i =

1, ..., M, j = 1, ..., N} if {Un

i,j ∈ G, ∀i = 1, ..., M, j = 1, ..., N} under the time step restriction

(2.47) with λ = 1/2.

The vertex velocity for the motion of the grid is determined in a similar way as that in

[5]. Briefly, we first obtain the tangential and normal velocities along each edge connected

to the vertex. Specifically, the tangential velocity of the vertex (or edge center) along the

edge is defined as a simple average of that on both sides. The normal velocity along each

edge connected to the vertex is taken as S∗. Finally the velocity of the vertex is set to be

the arithmetic average of the velocities along the edges sharing this vertex.

3 High order positivity-preserving Lagrangian scheme

for the Euler equations with general EOS

3.1 High order positivity-preserving Lagrangian scheme in the

one-dimensional space

We first consider a general high-order finite volume Lagrangian scheme in the one-dimensional

space which has the form (2.8). To obtain high order accurate spatial discretization for the

scheme (2.8), by the information of the corresponding cell-average conserved variables from

the cell Ii and its neighboring cells, a polynomial vector {Ui(x) = (ρi(x), mi(x), Ei(x))T

is obtained by applying the techniques of the ENO reconstruction and local characteristic

decomposition. {U±
i±1/2, i = 1, ..., N} is then determined by {Ui(x), i = 1, ..., N}. We refer

to our previous work [5, 6] for the details.

Assume a polynomial vector Ui(x) is obtained by the ENO reconstruction with degree k,

where k ≥ 1, defined on Ii such that U
n

i is the cell average of Ui(x) on Ii, U−
i+ 1

2

= Ui(xi+ 1

2

),

U+
i− 1

2

= Ui(xi− 1

2

).

Consider the K-point Legendre Gauss-Lobatto quadrature rule on the interval Ii which
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is exact for the integral of polynomials of degree up to 2K − 3. We denote these quadrature

points on Ii as

Si = {xi− 1

2

= x̂1
i , x̂

2
i , ..., x̂

K−1
i , x̂K

i = xi+ 1

2

}.

Define ωα to be the quadrature weights such that ωα ≥ 0, α = 1, ..., K and
∑K

α=1 ωα = 1.

Next, we will show that a sufficient condition for the scheme (2.8) to satisfy U
n+1

i ∈ G is

that Ui(x̂
α
i ) ∈ G for all i and α, under a suitable CFL condition.

If we choose K to be the smallest integer satisfying 2K − 3 ≥ k, then the K-point

Legendre Gauss-Lobatto rule is exact for the polynomial Ui(x), which implies

U
n

i =
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

Ui(x)dx =
K∑

α=1

ωαUi(x̂
α
i ) =

K−1∑

α=2

ωαU
α
i + ω1U

+
i−1/2 + ωKU−

i+1/2 (3.1)

where Uα
i = Ui(x̂

α
i ).

By adding and subtracting ∆tF̂(U+
i−1/2,U

−
i+1/2), the scheme (2.8) becomes

U
n+1

i ∆xn+1
i =

K∑

α=1

ωαU
α
i ∆xn

i

−∆t[F̂(U−
i+ 1

2

,U+
i+ 1

2

) − F̂(U+
i− 1

2

,U−
i+ 1

2

) + F̂(U+
i− 1

2

,U−
i+ 1

2

) − F̂(U−
i− 1

2

,U+
i− 1

2

)]

=

K−1∑

α=2

ωαU
α
i ∆xn

i

+ωK{U−
i+ 1

2

∆xn
i − ∆t

ωK
[F̂(U−

i+ 1

2

,U+
i+ 1

2

) − F̂(U+
i− 1

2

,U−
i+ 1

2

)]}

+ω1{U+
i− 1

2

∆xn
i − ∆t

ω1
[F̂(U+

i− 1

2

,U−
i+ 1

2

) − F̂(U−
i− 1

2

,U+
i− 1

2

)]}

=
K−1∑

α=2

ωαU
α
i ∆xn

i + ωKF̂K + ω1F̂1

where

F̂1 = U+
i− 1

2

∆xn
i − ∆t

ω1

[F̂(U+
i− 1

2

,U−
i+ 1

2

) − F̂(U−
i− 1

2

,U+
i− 1

2

)], (3.2)

F̂K = U−
i+ 1

2

∆xn
i − ∆t

ωK

[F̂(U−
i+ 1

2

,U+
i+ 1

2

) − F̂(U+
i− 1

2

,U−
i+ 1

2

)]. (3.3)

Notice that (3.2) and (3.3) are both of the type (2.10), and ω1 = ωK . Therefore if F̂ is

determined by the HLLC numerical flux (2.18)-(2.20) with the acoustic wavespeeds (2.37),
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F̂1 and F̂K are in the set G under the CFL condition

∆tn ≤ λω1 min
i,α

(
∆xn

i

/(
max

{∣∣∣∣
pα

i

ρα
i

√
2eα

i

∣∣∣∣ , c
α
i

}
+ |uα

i |
))

(3.4)

with λ = 1/2 and the sufficient condition

Ui(x̂
α
i ) ∈ G, ∀x̂α

i ∈ Si, α = 1, ..., K. (3.5)

This sufficient condition can be enforced by the linear scaling limiter shown in the next

subsection. It is now easy to conclude that U
n+1

i ∈ G, since it is a convex combination of

elements in G. Thus we can summarize the above results in the following theorem.

Theorem 3.1. Consider a high order finite volume Lagrangian scheme (2.8) solving the

Euler equations (2.1), (2.3) with the general equation of state given by one of (2.5)-(2.7).

The numerical flux of the scheme is determined by the HLLC flux described by (2.18)-(2.20)

in which the acoustic wavespeeds are chosen as (2.37). If the reconstruction polynomial

Ui(x) from the cell average variables U
n

i satisfies (3.5), then the scheme (2.8) is positivity-

preserving, namely, U
n+1

i ∈ G under the time step restriction (3.4) with λ = 1/2.

In this paper, we take the three-point Simpson quadrature rule to get the scheme (2.8) up

to third order accuracy in the spatial discretization, i.e. Si = {xi− 1

2

, xi, xi+ 1

2

}, ω1 = ω3 = 1
6
,

ω2 = 2
3
.

3.2 The positivity-preserving limiter for high order Lagrangian

schemes in the one-dimensional space

At the time level n, assume the reconstruction polynomial in the cell Ii is Ui(x) = (ρi(x), mi(x),

Ei(x))T with degree k, and the cell average of Ui(x) is U
n

i = (ρn
i , m

n
i , Ēn

i )T which is denoted

as Ui in this subsection for simplicity. Under the assumption Ui ∈ G ∀i, we would like to

modify the reconstruction polynomial Ui(x) into another polynomial

Ũi(x) = θi(Ui(x) − Ui) + Ui (3.6)

where θi ∈ [0, 1] is to be determined, such that Ũi(x) ∈ G, ∀x ∈ Si. Following [29, 31], the

specific implementation can be taken as follows:
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1. First, enforce the positivity of density. Pick a small number ε such that ρi ≥ ε for all

i. In practice, we can choose ε = 10−13. For each cell Ii, compute

ρ̂i(x) = θ1
i [ρi(x) − ρi] + ρi, θ1

i = min
x∈Si

{
1,

∣∣∣∣
ρi − ε

ρi − ρi(x)

∣∣∣∣
}

. (3.7)

2. Second, enforce the positivity of the internal energy e for the cells with the ideal EOS or

the JWL EOS. Define Ûi(x) = (ρ̂i(x), mi(x), Ei(x))T . For each x ∈ Si, if e(Ûi(x)) ≥ 0

set θx = 1; otherwise, set

θx =
e(Ui)

e(Ui) − e(Ûi(x))
.

For the cells with the stiffened EOS, enforce the positivity of ẽ = ρe − pc, that is, for

each x ∈ Si, if ẽ(Ûi(x)) ≥ 0 set θx = 1; otherwise, set

θx =
ẽ(Ui)

ẽ(Ui) − ẽ(Ûi(x))
.

Then we get the limited polynomial

Ũi(x) = θ2
i (Ûi(x) − Ui) + Ui, θ2

i = min
x∈Si

θx. (3.8)

It is easy to check that the cell average of Ũi(x) over Ii is unchanged and is still U
n

i , and

Ũi(x̂
α
i ) ∈ G for all α. Moreover, this limiter will not destroy accuracy for smooth solutions,

and we refer to [29] for the proof. Thus this positivity-preserving limiter can keep accuracy,

conservation and positivity.

3.3 The algorithm for SSP Runge-Kutta time discretization

To improve the accuracy of time discretization for the scheme (2.8), the time marching is

implemented by a high order SSP Runge-Kutta type method, for example by the third order

SSP Runge-Kutta type method which has the following form in the Lagrangian formulation

[5].

Stage 1,

x
(1)
i−1/2 = xn

i−1/2 + un
i−1/2∆tn, ∆x

(1)
i = x

(1)
i+1/2 − x

(1)
i−1/2,
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U
(1)

i ∆x
(1)
i = U

n

i ∆xn
i + ∆tnL(U

n

i ); (3.9)

Stage 2,

x
(2)
i−1/2 =

3

4
xn

i−1/2 +
1

4
[x

(1)
i−1/2 + u

(1)
i−1/2∆tn], ∆x

(2)
i = x

(2)
i+1/2 − x

(2)
i−1/2,

U
(2)

i ∆x
(2)
i =

3

4
U

n

i ∆xn
i +

1

4
[U

(1)

i ∆x
(1)
i + ∆tnL(U

(1)

i )]; (3.10)

Stage 3,

xn+1
i−1/2 =

1

3
xn

i−1/2 +
2

3
[x

(2)
i−1/2 + u

(2)
i−1/2∆tn], ∆xn+1

i = xn+1
i+1/2 − xn+1

i−1/2,

U
n+1

i ∆xn+1
i =

1

3
U

n

i ∆xn
i +

2

3
[U

(2)

i ∆x
(2)
i + ∆tnL(U

(2)

i )] (3.11)

where L is the numerical spatial operator representing the right hand of the scheme (2.8).

At each stage, the limiter operation is performed on the conserved variables. Notice that

SSP Runge-Kutta schemes are convex combinations of Euler forward time stepping, and

are hence conservative, stable and positivity-preserving whenever the Euler forward time

stepping is conservative, stable and positivity-preserving.

The algorithm flow chart for the third order positivity-preserving Lagrangian scheme is

as follows,

1) Reconstruct the polynomials Ui(x) at time step n from the cell average {Un

i ∈ G, i =

1, ..., N} by using the techniques of ENO reconstruction with local characteristic de-

composition [5, 6].

2) Perform the positivity-preserving limiter on Ui(x) to get Ũi(x) such that {Ũi(x) ∈

G, ∀x ∈ Si}.

3) Set U+
i−1/2 = Ũi(xi−1/2), U−

i+1/2 = Ũi(xi+1/2) and then the numerical flux and the

vertex velocity S∗ are determined by (2.18)-(2.20).

4) Update the position of each cell vertex and the conserved variables by (3.9) to get

x
(1)
i−1/2 and U

(1)

i .
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5) Based on x
(1)
i−1/2 and U

(1)

i , repeat the above steps 1-3 to get the numerical flux and the

vertex velocity for the second stage of the third order SSP Runge-Kutta method.

6) Update the position of each cell vertex and the conserved variables by (3.10) to get

x
(2)
i−1/2 and U

(2)

i .

7) Based on x
(2)
i−1/2 and U

(2)

i , repeat the above steps 1-3 to get the numerical flux and the

vertex velocity for the third stage of the third order SSP Runge-Kutta method.

8) Update the position of each cell vertex and the conserved variables by (3.11) to get

xn+1
i and U

n+1

i .

3.4 High order positivity-preserving Lagrangian scheme in the

two-dimensional space

By using a coordinate transformation, we convert the cell Ii,j with the general quadrilateral

shape in the x-y coordinates to the square [−1
2
, 1

2
]× [−1

2
, 1

2
] in the ξ-η coordinates (see Figure

3.1). The inverse of this mapping, namely the mapping from the ξ-η coordinates to the x-y

coordinates, is bilinear. Define the set of Gauss-Lobatto quadrature points for the cell Ii,j

to be Si,j = {(xα,β , yα,β), α = 1, ..., K, β = 1, ..., K}, which are the pre-images under the

coordinate transformation of the Gauss-Lobatto quadrature points in the square [−1
2
, 1

2
] ×

[−1
2
, 1

2
]. We require the Gauss-Lobatto quadrature to be exact for polynomials of degree

2k+1. This is because a polynomial of degree k in the x-y coordinates becomes a polynomial

of degree 2k in the ξ-η coordinates, and the Jacobian of the coordinate transformation is a

linear function. For example, to construct a second order Lagrangian scheme, the 3×3-point

tensor product Simpson quadrature rule can be applied where the quadrature points consist

of the cell vertices, the middle points of the cell edges and the cell center. ω1 = ω3 = 1
6
, ω2 = 2

3

(see Figure 3.1). Then we can decompose the cell average U
n

i,j as follows,

U
n

i,j =
1

An
i,j

∫∫

Ii,j

Ui,j(x, y)dxdy
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=
1

An
i,j

∫ 1

2

− 1

2

∫ 1

2

− 1

2

Ui,j(gi,j(ξ, η))

∣∣∣∣
∂gi,j(ξ, η)

∂(ξ, η)

∣∣∣∣ dξdη

=
1

An
i,j

K∑

α=1

K∑

β=1

ωαωβUi,j(gi,j(ξα, ηβ))

∣∣∣∣
∂gi,j(ξ, η)

∂(ξ, η)

∣∣∣∣
(ξα,ηβ)

=
1

An
i,j

K∑

α=1

K∑

β=1

ωαωβ

∣∣∣∣
∂gi,j(ξ, η)

∂(ξ, η)

∣∣∣∣
(ξα,ηβ)

U
α,β
i,j

where {Uα,β
i,j , α, β = 1, ..., K} are the values of Ui,j(x, y) at the corresponding Gauss-Lobatto

quadrature points. |∂gi,j(ξ,η)

∂(ξ,η)
| is the Jacobian for the coordinate transformation. Specifically,

gi,j(ξ, η) ==

(
a1ξη + a2ξ + a3η + a4

b1ξη + b2ξ + b3η + b4

)

|∂gi,j(ξ, η)

∂(ξ, η)
|(ξα,ηβ) = (a2b1 − a1b2)ξα + (a1b3 − a3b1)ηβ + (a2b3 − a3b2)

where

a1 = xi− 1

2
,j− 1

2

+ xi+ 1

2
,j+ 1

2

− xi+ 1

2
,j− 1

2

− xi− 1

2
,j+ 1

2

,

a2 =
1

2
(xi+ 1

2
,j− 1

2

+ xi+ 1

2
,j+ 1

2

− xi− 1

2
,j− 1

2

− xi− 1

2
,j+ 1

2

),

a3 =
1

2
(xi+ 1

2
,j+ 1

2

+ xi− 1

2
,j+ 1

2

− xi− 1

2
,j− 1

2

− xi+ 1

2
,j− 1

2

),

a4 =
1

4
(xi− 1

2
,j− 1

2

+ xi+ 1

2
,j− 1

2

+ xi+ 1

2
,j+ 1

2

+ xi− 1

2
,j+ 1

2

),

b1 = yi− 1

2
,j− 1

2

+ yi+ 1

2
,j+ 1

2

− yi+ 1

2
,j− 1

2

− yi− 1

2
,j+ 1

2

,

b2 =
1

2
(yi+ 1

2
,j− 1

2

+ yi+ 1

2
,j+ 1

2

− yi− 1

2
,j− 1

2

− yi− 1

2
,j+ 1

2

),

b3 =
1

2
(yi+ 1

2
,j+ 1

2

+ yi− 1

2
,j+ 1

2

− yi− 1

2
,j− 1

2

− yi+ 1

2
,j− 1

2

)

b4 =
1

4
(yi− 1

2
,j− 1

2

+ yi+ 1

2
,j− 1

2

+ yi+ 1

2
,j+ 1

2

+ yi− 1

2
,j+ 1

2

).

Denote |J |α,β
i,j = |∂gi,j(ξ,η)

∂(ξ,η)
|(ξα,ηβ), ω̃α,β = ωαωβ|J |α,β

i,j , then we have

Ū
n
i,j =

1

2
U

n

i,j +
1

2
U

n

i,j (3.12)

=
1

2An
i,j

[
K∑

α=1

ω1ωα|J |1,α
i,j U

int(Ii,j)
1,α +

K∑

α=1

ωKωα|J |K,α
i,j U

int(Ii,j)
3,α +

K−1∑

β=2

K∑

α=1

ω̃β,αU
β,α
i,j

]
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Figure 3.1: Transformation from x-y coordinates to ξ-η coordinates for the calculation of
integration.

+
1

2An
i,j

[
K∑

α=1

ωαω1|J |α,1
i,j U

int(Ii,j)
2,α +

K∑

α=1

ωαωK |J |α,K
i,j U

int(Ii,j)
4,α +

K−1∑

β=2

K∑

α=1

ω̃α,βU
α,β
i,j

]

where {Uint(Ii,j)
m,α , m = 1, ..., 4} are the values of the reconstruction polynomial Ui,j(x, y) for

the cell Ii,j at the Gauss-Lobatto quadrature points along its left, bottom, right and top

cell boundaries respectively. Specifically we have U
int(Ii,j)
1,α = U

1,α
i,j , U

int(Ii,j)
3,α = U

K,α
i,j and

U
int(Ii,j)
2,α = U

α,1
i,j , U

int(Ii,j)
4,α = U

α,K
i,j .

Substituting (2.42) into the scheme (2.40), we get the general form of high order La-

grangian schemes in two-dimensional space with forward Euler time discretization,

U
n+1

i,j An+1
i,j − U

n

i,jA
n
i,j = −∆t

4∑

m=1

K∑

α=1

ωαF̂(Uint(Ii,j)
m,α ,Uext(Ii,j)

m,α ,nm
Ii,j

)lmi,j. (3.13)

The numerical flux F̂ along the cell edge is determined by the formulas (2.43)-(2.44).

We choose the same Gauss-Lobatto quadrature points for the line integral of the numerical

flux as those used in (3.12) along each cell edge. Substituting (3.12) into the scheme (3.13)

and noticing ω1 = ωK , then we get

U
n+1

i,j An+1
i,j =

1

2

[
K−1∑

β=2

K∑

α=1

ω̃β,αU
β,α
i,j +

K−1∑

β=2

K∑

α=1

ω̃α,βU
α,β
i,j

]

+
1

2
ω1

K∑

α=1

ωα

[
U

int(Ii,j)
1,α |J |1,α

i,j + U
int(Ii,j)
2,α |J |α,1

i,j + U
int(Ii,j)
3,α |J |K,α

i,j + U
int(Ii,j)
4,α |J |α,K

i,j

]

−∆t

4∑

m=1

K∑

α=1

ωαF̂(Uint(Ii,j)
m,α ,Uext(Ii,j)

m,α ,nm
Ii,j

)lmi,j .
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By adding and subtracting ∆tF̂(U
int(Ii,j)
1,α ,Uint(Ii,j)

m,α ,nm
Ii,j

)lmi,j, m = 2, ..., 4, we then get

U
n+1

i,j An+1
i,j =

1

2

[
K−1∑

β=2

K∑

α=1

ω̃β,αU
β,α
i,j +

K−1∑

β=2

K∑

α=1

ω̃α,βU
α,β
i,j

]

+
ω1

2

K∑

α=1

ωα[F̂1
α + F̂2

α + F̂3
α + F̂4

α] (3.14)

where

F̂1
α = U

int(Ii,j)
1,α |J |1,α

i,j − 2∆t

ω1

[
F̂(U

int(Ii,j)
1,α ,U

ext(Ii,j)
1,α ,n1

Ii,j
)l1i,j + F̂(U

int(Ii,j)
1,α ,U

int(Ii,j)
2,α ,n2

Ii,j
)l2i,j

+F̂(U
int(Ii,j)
1,α ,U

int(Ii,j)
3,α ,n3

Ii,j
)l3i,j + F̂(U

int(Ii,j)
1,α ,U

int(Ii,j)
4,α ,n4

Ii,j
)l4i,j

]
,

F̂2
α = U

int(Ii,j)
2,α |J |α,1

i,j −
2l2i,j∆t

ω1

[F̂(U
int(Ii,j)
2,α ,U

ext(Ii,j)
2,α ,n2

Ii,j
) − F̂(U

int(Ii,j)
1,α ,U

int(Ii,j)
2,α ,n2

Ii,j
)],

F̂3
α = U

int(Ii,j)
3,α |J |K,α

i,j −
2l3i,j∆t

ω1

[F̂(U
int(Ii,j)
3,α ,U

ext(Ii,j)
3,α ,n3

Ii,j
) − F̂(U

int(Ii,j)
1,α ,U

int(Ii,j)
3,α ,n3

Ii,j
)],

F̂4
α = U

int(Ii,j)
4,α |J |α,K

i,j −
2l4i,j∆t

ω1
[F̂(U

int(Ii,j)
4,α ,U

ext(Ii,j)
4,α ,n4

Ii,j
) − F̂(U

int(Ii,j)
1,α ,U

int(Ii,j)
4,α ,n4

Ii,j
)].

Under the time step restriction,

∆tn ≤ ω1

2
λ min

i,j,α,β





|J |i,j∑
m=1,4 lmi,j

/
max





∣∣∣∣∣∣
pα,β

i,j

ρα,β
i,j

√
2eα,β

i,j

∣∣∣∣∣∣
, cα,β

i,j



+ |uα,β

i,j |






 (3.15)

where |J |i,j = minα=1,K{|J |α,1
i,j , |J |α,K

i,j , |J |1,α
i,j , |J |K,α

i,j }, F̂1 is a formal two-dimensional first

order positivity-preserving scheme, namely, the same type as (2.45), therefore F̂1
α ∈ G. F̂2,

F̂3 and F̂4 are formal one-dimensional first order positivity-preserving schemes (like the

scheme (2.10)), thus F̂2, F̂3, F̂4 ∈ G. Notice that U
n+1

is a convex combination of Uα,β

and F̂m
α . Since G is a convex set, we have U

n+1 ∈ G if Uα,β ∈ G. We have therefore the

following theorem.

Theorem 3.2. Consider a finite volume Lagrangian scheme (3.13) with the HLLC flux

(2.43)-(2.44) solving the Euler equations (2.1), (2.3) with the general equation of state given

by one of (2.5)-(2.7). If the reconstruction polynomial for the cell average variables U
n

i,j

satisfies U
α,β
i,j ∈ G, ∀α, β = 1, ..., K, i = 1, ..., M, j = 1, ..., N , then the scheme (3.13) is

positivity-preserving, namely, U
n+1

i,j ∈ G under the time step restriction (3.15) with λ = 1/2.
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Remark 3.1. Notice that the time step restriction (3.15) would give a positive time step

only if {|J |α,β
i,j > 0, α, β = 1, .., K}. That is, we can guarantee positivity-preserving only if

the shape of all the cells keeps convex.

Remark 3.2. In this paper, as the reconstruction polynomial to determine Uint,Uext are

obtained by the high order ENO reconstruction with Roe-type characteristic decomposition

along each cell edge, they will have multiple values at the vertices which are the joint Gauss-

Lobatto quadrature points of all their connecting edges. That is why we should split U
n

i,j into

two parts like (3.12).

Similar SSP Runge-Kutta method introduced in the subsection 3.3 can also be used on

the scheme (3.13) to get high order accuracy in time discretization, which can keep the

positivity-preserving property due to its convexity.

3.5 The positivity-preserving limiter for the high order Lagrangian

scheme in the two-dimensional space

At the time level n, we will perform the limiter on the two series of polynomials belonging

to {Uint(Ii,j)
1,α ,U

int(Ii,j)
3,α ,Uβ,α

i,j , α = 1, ..., K, β = 2, ..., K − 1} and {Uint(Ii,j)
2,α ,U

int(Ii,j)
4,α ,Uα,β

i,j , α =

1, ..., K, β = 2, ..., K − 1} sequentially and then get the modified values of {Ũint(Ii,j)
m,α , α =

1, ..., K, m = 1, ..., 4} which are used in the scheme (3.13). The implementation taken on

these two series of polynomials is similar to that for the high order scheme in the one-

dimensional space which can be described as follows.

Assuming a reconstruction polynomial in the cell Ii,j is Ui,j(x, y) = (ρi,j(x, y),mi,j(x, y),

Ei,j(x, y))T with degree k, and the cell average of Ui,j(x, y) is Ui,j = (ρi,j,mi,j, Ei,j)
T , we

next modify it into another polynomial

Ũi,j(x, y) = θi,j(Ui,j(x, y) −Ui,j) + Ui,j (3.16)

where θi,j ∈ [0, 1] is to be determined, such that Ũi,j(x, y) ∈ G, ∀(x, y) ∈ Si,j.
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1. First, enforce the positivity of density. Pick a small number ε such that ρi,j ≥ ε for all

i, j. In practice, we can choose ε = 10−13. For each element Ii,j, compute

ρ̂i,j(x, y) = θ1
i,j

[
ρi,j(x, y) − ρi,j

]
+ ρi,j, θ1

i,j = min
(x,y)∈Si,j

{
1,

∣∣∣∣
ρi,j − ε

ρi,j − ρi,j(x, y)

∣∣∣∣
}

. (3.17)

2. Second, enforce the positivity of internal energy e for the cells with the ideal EOS or the

JWL EOS. Define Ûi,j(x, y) = (ρ̂i,j(x, y),mi,j(x, y), Ei,j(x, y))T . For each (x, y) ∈ Si,j,

if e(Ûi,j(x, y)) ≥ 0 set θx,y = 1; otherwise, set

θx,y =
e(Ui,j)

e(Ui,j) − e(Ûi,j(x, y))
. (3.18)

Similarly, for the cells with the stiffened EOS, enforce the positivity of ẽ = ρe − pc,

that is, for each (x, y) ∈ Si,j, if ẽ(Ûi,j(x, y)) ≥ 0 set θx,y = 1; otherwise, set

θx,y =
ẽ(Ui,j)

ẽ(Ui,j) − ẽ(Ûi,j(x, y))
. (3.19)

Then the final limited polynomial is obtained as follows,

Ũi,j(x, y) = θ2
i,j(Ûi,j(x, y) − Ui,j) + Ui,j, θ2

i,j = min
(x,y)∈Si,j

θx,y. (3.20)

The preservation of conservation, positivity and accuracy of the polynomials Ũi,j(x, y)

can be proven as in the one-dimensional case, see [29] for more details.

The flow chart for the second order positivity-preserving Lagrangian scheme in the two-

dimensional space is similar to that in subsection 3.3 for the one-dimensional high order

positivity-preserving Lagrangian scheme.

Remark 3.3. In practice, we do not need to limit each internal Gauss-Lobatto quadrature

point U
α,β
i,j . As discussed in [31], due to the mean value theorem, there exist points (x∗, y∗) ∈

Ii,j and (x∗∗, y∗∗) ∈ Ii,j such that

ρi,j(x
∗, y∗) =

1
∑K−1

β=2

∑K
α=1 ω̃β,α

K−1∑

β=2

K∑

α=1

ω̃β,αρβ,α
i,j

28



=
1

∑K−1
β=2

∑K
α=1 ω̃β,α

(ρi,j −
K∑

α=1

ω1ωα|J |1,α
i,j ρ

int(Ii,j)
1,α −

K∑

α=1

ωKωα|J |K,α
i,j ρ

int(Ii,j)
3,α ),

ρi,j(x
∗∗, y∗∗) =

1
∑K−1

β=2

∑K
α=1 ω̃α,β

K−1∑

β=2

K∑

α=1

ω̃α,βρα,β
i,j

=
1

∑K−1
β=2

∑K
α=1 ω̃α,β

(ρi,j −
K∑

α=1

ωαω1|J |α,1
i,j ρ

int(Ii,j)
2,α −

K∑

α=1

ωαωK |J |α,K
i,j ρ

int(Ii,j)
4,α ).

Thus to guarantee all the terms at the right hand side of (3.14) to be density positive,

in the implementation, only ρi,j(x
∗, y∗), ρi,j(x

∗∗, y∗∗) and {ρint(Ii,j)
m,α , α = 1, ..., K, m = 1, ..., 4}

need to be involved to determine θ1
i,j. Similar simplified operations can be done for e and ẽ.

Remark 3.4. In practice, we do not need to know explicitly the polynomials Ui,j(x, y) and

Ũi,j(x, y) either. θ defined by (3.17)-(3.19) can be calculated without the explicit expression of

the approximation polynomial Ui,j(x, y) or the locations (x∗, y∗), (x∗∗, y∗∗). We only need to

know the existence of such polynomials to prove the accuracy of the limiter. Instead only the

values of U
int(Ii,j )
m,α ,U

ext(Ii,j)
m,α at the Gauss-Lobatto quadrature points along the cell edges should

be modified by (3.20) which will be used to construct the scheme. Thus the implementation

for the above procedures becomes very simple.

4 Numerical tests

In this section, we choose several challenging numerical examples in one- and two-dimensional

spaces to demonstrate the performance of our first order and high order positivity-preserving

Lagrangian schemes. The examples involve the ideal and non-ideal multi-material problems.

All these examples encounter the problem of negative internal energy or negative c2 if the

usual high order Lagrangian scheme without the positivity-preserving limiter is applied.

λ = 0.5 is applied in these simulations.

4.1 One-dimensional tests

Example 4.1. Numerical convergence study.
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Figure 4.1: The results of the one-dimensional smooth isentropic problem at t = 0.1. Left:
density; Middle: velocity; Right: internal energy.

We first test the accuracy of our schemes on a isentropic problem with smooth solutions.

Its initial condition is:

ρ(x, 0) = 1 + 0.9999995 sin(πx), u(x, 0) = 0, p(x, 0) = ργ(x, 0), x ∈ [−1, 1]

with γ = 3 and the periodic boundary condition. For this kind of special isentropic problem,

the Euler equations are equivalent to the two Burgers equations in terms of their two Riemann

invariants for which an analytical solution is easy to obtain. Figure 4.1 shows the computed

results at t = 0.1 for the first order Lagrangian scheme and third order Lagrangian scheme

with the positivity-preserving limiter using 40 initially uniform cells. In Tables 4.1-4.2,

we summarize the errors and numerical rate of convergence of our first and third order

Lagrangian schemes at t = 0.1. The percentage of the cells in which the positivity-preserving

limiter has been performed is also listed in Table 4.2. We can clearly see from Tables 4.1

and 4.2 that the first order Lagrangian scheme and third order Lagrangian scheme with the

positivity-preserving limiter achieve the designed order of accuracy both in the L1 and L∞

norms.

Example 4.2. Interaction of blast waves.

The problem of interaction of blast waves is a typical low internal energy problem involv-
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Table 4.1: Errors of the first order Lagrangian scheme on 1D meshes using Nx initially
uniform cells.

Nx Norm Density order Momentum order Energy order
100 L1 0.94E-2 0.29E-1 0.26E-1

L∞ 0.22E-1 0.65E-1 0.72E-1
200 L1 0.48E-2 0.97 0.15E-1 0.96 0.14E-1 0.95

L∞ 0.11E-1 0.95 0.33E-1 0.96 0.38E-1 0.93
400 L1 0.24E-2 0.98 0.76E-2 0.98 0.69E-2 0.98

L∞ 0.58E-2 0.98 0.17E-1 0.98 0.19E-1 0.96
800 L1 0.12E-2 0.99 0.38E-2 0.99 0.35E-2 0.99

L∞ 0.29E-2 0.99 0.86E-2 0.99 0.99E-2 0.98

Table 4.2: Errors of the third order ENO Lagrangian scheme with the positivity-preserving
limiter on 1D meshes using Nx initially uniform cells.

Nx Norm Density order Momentum order Energy order limited cells
100 L1 0.11E-3 0.14E-3 0.14E-3 2%

L∞ 0.85E-3 0.67E-3 0.60E-3
200 L1 0.14E-4 2.94 0.17E-4 3.07 0.18E-4 2.96 1%

L∞ 0.85E-4 3.32 0.85E-4 2.98 0.78E-4 2.95
400 L1 0.16E-5 3.07 0.21E-5 3.00 0.23E-5 2.99 0.5%

L∞ 0.11E-4 2.92 0.11E-4 3.00 0.98E-5 2.98
800 L1 0.20E-6 3.04 0.27E-6 3.00 0.28E-6 3.00 0.25%

L∞ 0.11E-5 3.36 0.13E-5 3.00 0.12E-5 2.99
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Figure 4.2: The results of the blast wave problem at t = 0.038. Left: density; Middle:
velocity; Right: internal energy.

ing shocks. The initial data are

ρ = 1, u = 1, p =





103, 0 < x < 0.1
10−2, 0.1 < x < 0.9
102, 0.9 < x < 1.0.

The working fluid is described by an perfect gas with γ = 1.4. The reflective boundary

condition is applied at both x = 0 and x = 1. In Figure 4.2, the computed density, velocity

and internal energy with 400 initially uniform cells at the final time t = 0.038 are plotted

against the reference “exact” solution, which is computed using a fifth order Eulerian WENO

scheme [15] with 16000 grid points. We can see that both density and internal energy can

keep positive in this problem for our first and third order Lagrangian schemes, and the higher

order scheme has a better resolution than the first order scheme. Meanwhile, we also notice

that some overshoots appear near the discontinuity such as the contact wave, in these figures

and in some examples later. Such overshoots are caused by the Lagrangian framework rather

than by the high order ENO reconstruction, since they are already present for the first order

scheme which does not involve any ENO reconstruction.

Example 4.3. The Leblanc shock tube problem.

In this extreme shock tube problem, the computational domain is [0, 9] filled with a

perfect gas with γ = 5/3. The initial condition consists of large ratio jumps for the energy
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Figure 4.3: The results of the Leblanc problem at t = 6.0. Left: density; Middle: velocity;
Right: internal energy.

and density and is given by the following data

(ρ, u, e) =

{
(1, 0, 0.1), 0 ≤ x < 3
(0.001, 0, 10−7), 3 < x ≤ 9.

It is very difficult for a scheme to obtain accurate positions of the contact and shock

discontinuities in such a severe test case [27]. The results of density, velocity and internal

energy for our first order and third order Lagrangian schemes with the HLLC flux and the

positivity-preserving limiter are shown in Figure 4.3 with 2000 initially uniform cells at t = 6.

By comparing with the exact solution, we can observe that the property of positivity is well

preserved and the shape and position of the contact discontinuity and the shock can be

maintained better when the higher order scheme is used. The high order Lagrangian scheme

without the positivity-preserving limiter will blow up for this example.

Example 4.4. The 123 problem.

We consider a one-dimensional low density and low pressure problem for perfect gas. The

initial condition is

(ρ, u, p, γ) =

{
(1,−2, 0.4, 1.4), −4 ≤ x ≤ 0
(1, 2, 0.4, 1.4), 0 < x ≤ 4.

The exact solution contains vacuum. The results of our first and third order positivity-

preserving Lagrangian schemes with 400 initially uniform cells compared with the exact
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Figure 4.4: The results of the 123 problem with 400 cells at t = 1.0. Left: density; Middle:
velocity; Right: internal energy.

solution at t = 1.0 are shown in Figure 4.4. We can see that the low internal energy and

the low density are both captured correctly with the higher resolution for the higher order

scheme. Without the positivity-preserving limiter, the high order Lagrangian scheme will

blow up for this example. In these figures, we also observe that the resolution for the velocity

and internal energy near the origin (vacuum) in the Lagrangian simulation is less satisfactory

as that in the Eulerian simulation. A possible reason for this phenomena is that much fewer

grid points are located in this region in the Lagrangian simulation as the fluid moves outward

in both directions.

Example 4.5. The gas-liquid shock-tube problem [24].

This severe water-air shock tube problem has a density ratio of 200. This shock tube

problem is considered to illustrate the performance of the schemes for multi-material prob-

lems with a strong interfacial contact discontinuity, and highlight the superior performance

of the positivity-preserving Lagrangian method for such problems. In this problem, the fluid

at the left side of the membrane with the position of x = 0.3 is a perfect gas. The fluid at

the right side of the membrane is water and is modeled as a stiffened gas. The initial states

of two fluids and the constants of their EOS are as follows,

{
(ρ, u, p, γ) = (5, 0, 105, 1.4), 0 ≤ x ≤ 0.3
(ρ, u, p, γ, pc) = (1000, 0, 109, 4.4, 6 × 108), 0.3 < x ≤ 1.0.
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Figure 4.5: The results of the water-air shock tube problem with 200 cells at t = 0.00024.
Left: density; Middle: velocity; Right: internal energy.

The results of density, velocity and internal energy at t = 0.00024 by the first and third order

positivity-preserving Lagrangian schemes with 200 initially uniform cells are shown in Figure

4.5. The agreement between the exact and numerical solutions is very good, despite of the

very tough initial conditions. The front of the interface is captured very sharply which shows

the advantage of the Lagrangian method. The results also demonstrate that the schemes

can preserve the positivity of density and internal energy well and the high order scheme

can produce results with better resolution.

Example 4.6. The spherical underwater explosion of a TNT charge.

This 1D spherically symmetric underwater detonation problem is often applied as a

benchmark to test the robustness of numerical methods for multi-phase problems with strong

shocks and contact discontinuities.

The charge is a 3-cm-radius TNT sphere. The initial condition consists of the detonation-

products phase (left) and the water phase (right). In this paper, in order to test the per-

formance of our schemes on the property of positivity-preserving in the simulation of this

kind of multi-material problems with complicated EOS, we take the original model given in

the references such as in [11], and scale the values of the variables related to density and

pressure such as ρ, p and the constants A1, A2 which appear in the JWL EOS by 10−6, to

increase the stiffness of the problem and to make the appearance of negative density and
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Figure 4.6: The results of the spherical underwater explosion of a TNT charge with 400 cells
at several typical times. Left: density; Right: pressure.

internal energy more likely. Thus the initial condition is as follows,

{
(ρ, u, p) = (1.63 × 10−3, 0, 8.381 × 103), 0 ≤ x ≤ 0.16
(ρ, u, p) = (1.025 × 10−3, 0, 1.), 0.16 < x ≤ 3.

The gaseous product of the detonated explosive is modeled by the JWL EOS (2.7) with

A1 = 3.712× 105, A2 = 3.23× 103, ρ0 = 1.63× 10−3, R1 = 4.15, R2 = 0.95 and γ = 1.3. The

water is modeled by the stiffened EOS (2.6) with γ = 7.15 and pc = 3.309 × 102.

Figure 4.6 plots the results of the first and third order positivity-preserving Lagrangian

schemes in spherical coordinates with 400 initially uniform cells at several typical time. The

reference solution is obtained by the first order Lagrangian scheme in the one-dimensional

spherical coordinate with 2000 grid cells. The Lagrangian scheme shows the advantage in

capturing the interface of the gas and condensed phases of an underwater explosion auto-

matically and sharply. Both density and pressure can always keep positivity in this problem.

The higher order scheme produces better resolution for both density and pressure. The

shape of density and pressure at different time is also comparable to those shown in [11].

4.2 Two-dimensional tests

Example 4.7. Numerical convergence study.

We test the numerical convergence of our first and second order positivity-preserving

Lagrangian schemes in this example. In the Cartesian coordinates, we choose the standard
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Table 4.3: Errors of the first order Lagrangian scheme for the vortex problem using Nx ×Ny

initially uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order
20 L1 0.30E-2 0.10E-1 0.15E-1

L∞ 0.45E-1 0.99E-1 0.29E+0
40 L1 0.13E-2 1.25 0.43E-2 1.23 0.68E-2 1.14

L∞ 0.20E-1 1.15 0.46E-1 1.12 0.13E+0 1.12
80 L1 0.57E-3 1.16 0.20E-2 1.15 0.31E-2 1.13

L∞ 0.90E-2 1.16 0.22E-1 1.03 0.61E-1 1.12
160 L1 0.27E-3 1.09 0.92E-3 1.08 0.15E-2 1.07

L∞ 0.42E-2 1.11 0.10E-1 1.10 0.29E-1 1.07

two-dimensional vortex evolution problem (e.g. [32]) as our accuracy test function. The

vortex problem is described as follows: the mean flow is ρ = 1, p = 1 and (u, v) = (1, 1).

We add to this mean flow an isentropic vortex perturbations in (u, v) and the temperature

T = p/ρ, no perturbation in the entropy S = p/ργ.

(δu, δv) =
ǫ

2π
e0.5(1−r2)(−y, x), δT = −(γ − 1)ǫ2

8γπ2
e(1−r2), δS = 0

where (−y, x) = (x−5, y−5), r2 = x2 +y2, and the vortex strength is ǫ = 10.0828 such that

the lowest density and lowest pressure of the exact solution are 7.8 × 10−15 and 1.7 × 10−20

respectively.

The computational domain is taken as [0, 10]× [0, 10], and periodic boundary conditions

are used. For this problem, the second order Lagrangian scheme without the positivity-

preserving limiter fails to calculate due to the appearance of the negative internal energy.

The convergence results for the first order Lagrangian scheme and the second order ENO La-

grangian scheme with the positivity-preserving limiter at t = 0.1 are listed in Tables 4.3-4.4.

The percentage of the cells that need the usage of the positivity-preserving limiter is listed

in Table 4.4 as well. In the tables, we can see the expected first and second order accuracy

for all the conserved variables such as density, momentum and total energy, especially in the

L1 norm.

Example 4.8. The Sedov blast wave problem in a Cartesian coordinate system [25]
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Table 4.4: Errors of the second order ENO Lagrangian scheme with the positivity-preserving
limiter for the vortex problem using Nx × Ny initially uniform mesh cells.

Nx = Ny Norm Density order Momentum order Energy order limited cells
20 L1 0.26E-2 0.73E-2 0.13E-1 1%

L∞ 0.37E-1 0.93E-1 0.26E+0
40 L1 0.73E-3 1.85 0.20E-2 1.90 0.36E-2 1.84 0.32%

L∞ 0.12E-1 1.67 0.27E-1 1.80 0.70E-1 1.90
80 L1 0.19E-3 1.94 0.50E-3 1.96 0.90E-3 1.98 0.11%

L∞ 0.36E-2 1.68 0.84E-2 1.66 0.22E-1 1.69
160 L1 0.48E-4 1.98 0.13E-3 1.98 0.23E-3 1.98 0.029%

L∞ 0.12E-2 1.60 0.25E-2 1.75 0.68E-2 1.68

The Sedov blast wave problem models the expanding wave by an intense explosion in

a perfect gas. The simulation is performed on a Cartesian grid whose initial uniform grid

consists of 60 × 60 rectangular cells with a total edge length of 1.2 in both directions. The

initial density is unity and the initial velocity is zero. The specific internal energy is zero

except in the first zone where it has a value of 182.09. But in the practical simulation, as

we cannot simulate vacuum, we usually set up p to be a small positive value such as 10−6.

Here we take p to be a smaller positive value, that is 10−14 which is demonstrated to bring

much more challenge to the scheme. In fact, the second order Lagrangian scheme without

the positivity-preserving limiter fails to calculate. Reflective boundary conditions are used

on the four boundaries. The analytical solution gives a shock at radius unity at time unity

with a peak density of 6. Figure 4.7 shows the results by the purely Lagrangian calculations

at the time t = 1. We can clearly see that the positivity of density and pressure can be

kept well for our schemes and the higher order ENO scheme obtains more symmetrical and

precise solution than the first order scheme.

Example 4.9. The Saltzman problem [8]

The problem consists of a rectangular box whose left end is a piston. The piston moves

into the box with a constant velocity of 1.0. The initial grid is designed to be not aligned

with the fluid flow to validate the robustness of a Lagrangian scheme. The initial grid is 100
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Figure 4.7: The results of the first and second order positivity-preserving Lagrangian schemes
for the Sedov problem. Top row: grid. Middle row: density versus radius. Bottom row:
pressure versus radius. Left: first order; Right: second order.
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Figure 4.8: The initial grid of the Saltzman problem.

cells in the x-direction and 10 cells in the y-direction which is defined by

x(i, j) = (i − 1)∆x + (11 − j) sin(0.01π(i − 1))∆y, y(i, j) = (j − 1)∆y

where ∆x = ∆y = 0.01. The initial grid is displayed in Figure 4.8. The working fluid is

described by a perfect gas with γ = 5/3. The initial condition is ρ = 1, u = 0, v = 0 and

p = 0. Similarly as in the above example, in practical simulation we take p to be a much

smaller positive value, that is 10−14 to demonstrate the robustness of the scheme. For this

problem, the second order Lagrangian scheme without the positivity-preserving limiter will

blow up due to the appearance of negative pressure. Reflective boundary conditions are

used on the right, upper and lower boundaries. The numerical results for the first order

Lagrangian scheme and the second order Lagrangian scheme with the positivity-preserving

limiter are shown in Figures 4.9 at the time t = 0.6. The analytic post shock density is 4.0

and the shock speed is 1.333. At this time, the shock is expected to be located at x = 0.8.

We can observe that our first and second order schemes can keep the positivity of density

and pressure well and the higher order scheme preserves the one-dimensional solution well

except for the region near the top and bottom wall boundaries where the results are affected

by the boundary conditions. Also the higher order scheme gives better shock resolution for

this example.

Example 4.10. The air-water-air problem [26]

In this test, we consider a radially symmetric two-phase problem. A 1.2-radius cylinder
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Figure 4.9: The results of the first and second order positivity-preserving Lagrangian schemes
for the Saltzman problem at t = 0.6. Top row: grid; Middle row: density contour; Bottom
row: pressure contour. Left: first order; Right: second order.

consists of air (r ∈ [0, 0.2]), water (r ∈ [0.2, 1.0]) and air (r ∈ [1.0, 1.2]). Its specific initial

condition is as follows,

(ρ, u, v, p, γ, pc) =





(1000, 0, 0, 0.001, 1.4, 0), 0 ≤ r ≤ 0.2
(1, 0, 0, 1, 7, 3000), 0.2 < r ≤ 1.0
(0.001, 0, 0, 0.001, 1.4, 0), 1.0 < r ≤ 1.2.

(4.1)

Because of the symmetry of the solution, we only simulate a quarter of the domain, and

apply the symmetric boundary conditions to the bottom, left and right sides during the

computations.

Figure 4.10 shows the results of grid, density, velocity and internal energy for our second

order positivity-preserving Lagrangian scheme with 100×10 initially equal-angle cells at the

typical time t = 0.0015, 0.003, 0.007. This problem cannot be solved by the second order

Lagrangian scheme without the positivity-preserving limiter due to the negativity of the

internal energy. From the figures, we observe that the positivity of density and internal

energy can be kept well during the whole process. Figure 4.11 shows the contour results of

density, velocity and internal energy cuts along each radial grid line for the first and second

order positivity preserving Lagrangian schemes. The reference exact solution is obtained by
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the one-dimensional first order Lagrangian scheme in the cylindrical coordinate with 2000

cells. By the comparison, the second order scheme is shown to have a better resolution.

5 Concluding remarks

In this paper, we discuss the methodology to construct positivity-preserving Lagrangian

schemes in one- and two-dimensional spaces for compressible Euler equations with general

equations of state. Firstly we develop a positivity-preserving approximate HLLC Riemann

solver for the Lagrangian scheme and present a class of first order positivity-preserving La-

grangian schemes. Then we design a class of high order positivity-preserving Lagrangian

schemes both in one- and two-dimensional spaces by using the essentially non-oscillatory

(ENO) reconstruction, the strong stability preserving (SSP) high order time discretizations

and the positivity-preserving limiter which can be proven to maintain conservation and uni-

formly high order accuracy. The numerical results of multi-material problems with the gen-

eral EOS demonstrate the effectiveness of our first order and high order positivity-preserving

Lagrangian schemes. The schemes can also be extended to the higher (than second) order

schemes if curvilinear grids are applied in the two-dimensional space [7, 18]. The generaliza-

tion of the positivity-preserving Lagrangian schemes to cylindrical coordinates and further

improvement of the scheme robustness (for example with respect to mesh movement quality,

geometric conservation law, and symmetry-preserving) constitute our future work.
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Figure 4.10: The results of the second order positivity-preserving Lagrangian scheme for the
air-water-air problem. Top row: grid; Second row: density; Third row: velocity; Bottom
row: internal energy. Left: t = 0.0015; Middle: t = 0.003; Right: t = 0.007.
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Figure 4.11: The cut contour results of the first and second order positivity-preserving
Lagrangian schemes for the air-water-air problem compared with the reference solution.
Top row: density; Middle row: velocity; Bottom row: internal energy. Left: t = 0.0015;
Middle: t = 0.003; Right: t = 0.007.
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