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Abstract. In this paper we present an error estimate for the explicit Runge-Kutta dis-
continuous Galerkin method to solve a linear hyperbolic equation in one dimension with
discontinuous but piecewise smooth initial data. The discontinuous finite element space is
made up of piecewise polynomials of arbitrary degree k ≥ 1, and time is advanced by the
third order explicit total variation diminishing Runge-Kutta method under the standard
CFL temporal-spatial condition. The L2(R\RT )-norm error at the final time T is optimal
in both space and time, where RT is the pollution region due to the initial discontinu-
ity with the width O(

√
Tβh1/2 log(1/h)). Here h is the maximum cell length and β is

the flowing speed. These results are independent of the time step and hold also for the
semi-discrete discontinuous Galerkin method.

Keywords. Runge-Kutta discontinuous Galerkin method, nonsmooth initial data, pollu-
tion region, error estimate, hyperbolic problems.

AMS subject classifications. 65N12, 65N30

1 Introduction

In this paper we present an error estimate for the Runge-Kutta discontinuous Galerkin
(RKDG) method to solve linear one-dimensional hyperbolic equation with discontinuous
but piecewise smooth initial data. The scheme considered in this paper, which is referred to
as the RKDG3 scheme, uses the third order explicit total variation diminishing Runge-Kutta
(TVDRK3) time-marching and piecewise polynomials of arbitrary degree in space.

The RKDG method is one version of the discontinuous Galerkin (DG) finite element
method which is suitable for solving time-dependent nonlinear conservation laws because it
is an explicit scheme. The first DG method was introduced in 1973 by Reed and Hill [17],
in the framework of neutron linear transport. Later, it was developed into RKDG method
by Cockburn et al. [7–11] for nonlinear hyperbolic conservation laws, which uses the DG
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discretization in space and combines it with an explicit total variation diminishing Runge-
Kutta (TVDRK) time-marching [19]. It has been observed numerically and proved theoret-
ically in many cases that the DG method has strong stability in capturing discontinuities
and optimal accuracy in smooth regions, and it combines the advantages of finite element
method and high resolution finite difference and finite volume methods. For a fairly complete
set of references on DG methods, we refer to the lecture notes and review papers [5, 12,18]
and the recent book [13].

Most a priori and a posteriori error analyses of DG methods for hyperbolic problems
have been carried out either for the semidiscrete version or for DG methods using space-
time elements. Recently, research has been performed to obtain error estimates for the
fully-discrete version of this method with explicit TVDRK time-marching, when the exact
solution is sufficiently smooth; see [1, 20,21].

In this paper we are concerned with discontinuous solutions rather than smooth solu-
tions. This is more difficult to analyze but is also more realistic for hyperbolic equations.
We will continue the work in [21] and study the a priori error estimate for the RKDG3
scheme to solve the model problem in one dimension

Ut + βUx = 0, (x, t) ∈ R × (0, T ], (1.1a)

U(x, 0) = U0(x), x ∈ R, (1.1b)

where the flowing speed β is a given constant; we assume β > 0 in this paper. The initial
solution U0(x) has compact support; further, it has a sole discontinuity at x = 0 and is
sufficiently smooth everywhere else. The result can be easily generalized to discontinuous
but piecewise smooth initial conditions. It is well known that the solution of (1.1) is discon-
tinuous along the line x = βt. Since we do not consider limiters in this paper, the numerical
solution given by the RKDG3 scheme has oscillations around the discontinuity line which
we refer to as the pollution region due to the initial discontinuity. The purpose of this pa-
per is, roughly speaking, to investigate the RKDG3 scheme in terms of its pollution region
in the presence of discontinuities and its high order convergence away from this pollution
region.

While there are now many works in studying error estimates for DG method and other
related finite element methods for hyperbolic equations with smooth solutions, there are
relatively few works on error estimates for problems with discontinuous solutions. To our
best knowledge, the first work along this direction was given by Johnson et al. [14–16],
where the streamline diffusion method and the discontinuous Galerkin method are discussed
for stationary convection-diffusion equations and hyperbolic equations (or space-time finite
element method for time dependent problems). The authors proved that the pollution
region at any time is contained in a region whose size is at most O(ρ1/2 log(1/ρ)), if one
approximates (1.1) with the DG method with linear space-time elements, where ρ is the
maximum element diameter. We remark that the techniques required for proving such error
estimates are very different when Runge-Kutta time stepping is used instead of the space-
time discontinuous Galerkin methods. Recently, Cockburn and Guzmán [6] considered
this problem for the RKDG2 scheme using the second order TVDRK time-marching and
piecewise linear polynomials. In their analysis, the mesh in one dimension is assumed to
be uniform. Also they expressed explicitly the evolution of two freedoms (mean and slope)
in each element, similar to a finite difference scheme, which allow them to obtain a better
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result than [14] in that the size of the pollution region in the upwind direction is at most
O(h2/3 log(1/h)), where h is the uniform cell length; however their result does not hold
when the CFL number goes to zero, or for the semi-discrete DG scheme. Notice that the
second order explicit Runge-Kutta (TVDRK2) method can only be paired with piecewise
linear DG scheme to achieve standard CFL condition for linear stability. Higher order DG
schemes coupled with second order Runge-Kutta method are not linearly stable under finite
CFL number, and a more restrictive time step restriction is necessary to obtain a stable
scheme.

In this paper we will show, for the RKDG3 scheme, the size of the pollution region at the
final time T is at most O(

√
Tβh1/2 log(1/h)), where h is the maximum cell length. The size

estimate for the pollution region is the same as that in [14] for space-time DG, but is less
sharp than that in [6]. However, our result holds for piecewise polynomials with arbitrary
degree on quasi-uniform meshes, and for any suitably small CFL number and also for the
semi-discrete DG scheme. Moreover, the order of the pollution region size is independent
of the degree of piecewise polynomials, a fact also verified by our numerical experiments
in section 6. If we focus on piecewise linear polynomials we could get a sharper estimate,
however this is not relevant since one would not pair up piecewise linear polynomials, which
provides second order spatial error, with third order Runge-Kutta time stepping.

Comparing with the work in [6], which has used the monotonicity of the weight function
to detect different sides of the pollution region, we do not use in our analysis the mono-
tonicity of the weight function and obtain the same estimates for both sides around the
discontinuity point. However, this is not the key point of the analysis. The difference in the
estimate of the left size of the pollution region comes from different stability mechanisms
of the RKDG2 (with the TVDRK2 time-marching) and RKDG3 methods.

1. In the RKDG2 method, there exists a balance between the anti-diffusion of the TV-
DRK2 time-marching and the diffusion of the DG spatial discretization; thus this
method works well only for piecewise linear polynomials under the standard CFL
condition. This anti-diffusion mechanism is helpful to shorten the size of pollution
region, if the CFL number is a fixed constant. However, when the CFL number λ
goes to zero (or for the semi-discrete version), the conclusion in [6] does not seem to
hold.

2. On the other hand, TVDRK3 time-marching provides an additional numerical stabil-
ity (see section 4.3) and enlarges the stability of the RKDG3 method, making it stable
for piecewise polynomials of any degree k. However, this advantage does not provide
any contribution to shorten the size of the pollution region. The result presented in
this paper is independent of the CFL number below the stability bound and holds
when the CFL number goes to zero.

We present in this paper error estimates for piecewise polynomials with arbitrary degree
k ≥ 1 on the quasi-uniform mesh. This extends the results in [6] in polynomial degree,
order of the Runge-Kutta time stepping, and to non-uniform meshes. The analysis is more
technical than that in [6], however the main result is obtained along the same lines, with a
few notable exceptions in which the techniques used in [6] for the lower order (k = 1) cases
are not applicable and we have to develop new techniques to obtain the error analysis.
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In this paper, we would like to use a modification of the classical L2-norm argument [21]
for the RKDG3 scheme. The difference results from the the introduction of weight functions,
which are similar to those in [14]. During the energy estimate with the weighted L2-
norm, we also adopt two important techniques. One is the introduction of the generalized
slope function as those in [4] and the highest frequency component in each cell, for a
suitable projection of the numerical error, to cope with the troublesome terms resulting from
the weight function. The other is the additional numerical stability in the time direction
provided by the TVDRK3 time-marching. To the latter point, similar result has been given
in [21] for the classical L2-norm analysis.

The paper is organized as follows. In section 2 we present the RKDG3 scheme and
the main result in this paper. In section 3, we recall some preliminaries with respect to
the weight function, including the inverse properties and approximation properties in the
weighted Sobolev norms, and some essential properties of the DG spatial discretization.
Section 4 is the main body of this paper where the error estimate given in the main result
is proved. The important techniques and the detailed proofs for some of the key results are
given in section 5, and a few more technical proofs are given in the appendix. Numerical
experiments are given in section 6 to verify our error estimates. Finally, concluding remarks
are given in section 7.

2 RKDG scheme and the main result

In this section we first present the precise definition of the RKDG3 scheme, following [21].
Let {Ij}j be a partition of the real line with cell Ij = (xj−1/2, xj+1/2) of length hj =
xj+1/2 − xj−1/2, where h = hmax = maxj hj ≤ 1 and hmin = minj hj are the maximum
cell length and the minimal cell length, respectively. Denote νj = hj/h and define the
regularity parameter of the mesh by ν = hmin/h. In this paper we assume the partition is
quasi-uniform, namely, ν ≤ 1 is bounded below away zero uniformly when h goes to zero.
If the mesh is uniform, then ν ≡ 1.

Associated with this mesh, we define the discontinuous finite element space

Vh = { v ∈ L2
loc(R) : v|Ij ∈ Pk(Ij)∀j }, (2.1)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k. This space is
contained in the following (mesh-dependent) broken Sobolev space

H1,h = {φ ∈ L2
loc(R) : φ|Ij ∈ H1(Ij)∀j }. (2.2)

Here L2
loc(R) and H1(Ij) are the usual Sobolev spaces. Note that the function p ∈ H1,h is

allowed to have discontinuities across element interfaces. At each element interface point,
there are two traces from the right and from the left, denoted by p+ and p− respectively.
The jump is denoted by [[p]] = p+ − p−.

Let {tn}Nn=0 be a uniform partition of the time interval [0, T ], with the time step τ , where
tn = nτ for n = 0, 1, . . . , N . Since we use a one-step Runge-Kutta time discretization, the
time step could actually change freely from step to step, but in this paper we take the time
step as a constant for simplicity of presentation.

The RKDG3 scheme is implemented as follows. Assume the numerical solution unh ∈ Vh
at time tn is obtained, we would like to find un+1

h ∈ Vh at the next time tn+1, through two
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intermediate solutions un,1h and un,2h , also belonging to Vh. For any test functions vh ∈ Vh,
the three numerical solutions satisfy the following variational forms

(un,1h , vh) = (unh, vh) + τH(unh, vh), (2.3a)

(un,2h , vh) =
3

4
(unh, vh) +

1

4
(un,1h , vh) +

τ

4
H(un,1h , vh), (2.3b)

(un+1
h , vh) =

1

3
(unh, vh) +

2

3
(un,2h , vh) +

2τ

3
H(un,2h , vh). (2.3c)

Hereafter (w, v) =
∑

j(w, v)j is the L2-inner product with (w, v)j =
∫

Ij
wvdx, and

H(p, q) =
∑

j

(βp, qx)j +
∑

j

βp−
j+ 1

2

[[q]]j+ 1

2

(2.4)

is the bilinear functional representing the DG spatial discretization, where βp− is the upwind
numerical flux since β > 0.

To ensure the numerical stability of the RKDG3 scheme, the time step should satisfy a
suitable temporal-spatial condition, namely the CFL number λ := |β|τ/hmin should not be
larger than a certain positive constant λmax. In this paper we do not pay attention to the
sharp value of λmax.

The initial solution is taken as u0
h = PhU0(x), where Ph is the Gauss-Radau projection

for the positive flow direction. For any function p ∈ H1,h, the projection Php is defined
element by element as the unique function in Vh, such that in each element Ij,

(Php)
−
j+1/2 = p−j+1/2, and (Php− p, vh)j = 0, ∀ vh ∈ Pk−1(Ij). (2.5)

Now we have completed the definition of the RKDG3 scheme under consideration.

Next we state the main result of our error estimate and the size of the pollution region
at the final time T . The detailed proof will be given in the next three sections.

Theorem 2.1 Let {unh}Nn=0 be the numerical solution of the RKDG3 scheme (2.3),
where the finite element space Vh is made up of piecewise polynomials of degree k ≥ 1 on
quasi-uniform meshes, with the maximum cell length h = hmax and the minimal cell length
hmin, respectively. Let U(x, t) be the exact solution of the linear hyperbolic equation (1.1),
where the initial solution U0(x) is piecewise smooth and belongs to Hmax(k+2,4) on both sides
of the sole discontinuity point at x = 0. Assume the CFL number λ := |β|τ/hmin is small
enough, where τ is the time step satisfying Nτ = T . Then there holds

‖U(T ) − uNh ‖L2(R\RT ) ≤M(hk+1 + τ3), (2.6)

where the bounding constant M > 0 is independent of h and τ , but may depend on the final
time T , the norm of the exact solution in smooth regions, and the jump at the discontinuity
point. Here RT is the pollution region at the final time T , given by

RT = (βT −C
√

Tβν−1h1/2 log(1/h), βT + C
√

Tβν−1h1/2 log(1/h)), (2.7)

where the bounding constant C > 0 is independent of ν = hmin/hmax, λ, β, h, τ and T .
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3 Preliminaries

In this section we will introduce two weight functions that will be used, and present several
elementary properties related to them.

3.1 The weight functions

Let Ω be any given interval, which is a union of some cells. Denote by Γh(Ω) all element
interface points of those cells contained in Ω. For any function q ∈ H1,h, we define the

weighted norms ‖q‖ψ,Ω =
(∫

Ω q
2ψdx

)1/2
and

‖q‖ψ,Γh(Ω) =





∑

xj+1/2∈Γh(Ω)

1

2
ψj+ 1

2

[

(q+
j+ 1

2

)2 + (q−
j+ 1

2

)2
]





1/2

,

in the domain Ω and on the element boundary Γh(Ω), respectively, where ψ(x) is a positive
and continuous function, referred to as the weight function. If ψ ≡ 1 or Ω = R, the
corresponding notation will be omitted. Here ψj+1/2 = ψ(xj+1/2).

In this paper we will consider two weight functions, denoted by ψ(1)(x, t) and ψ(−1)(x, t),
respectively, in order to determine the left-hand and right-hand boundaries of the pollution
region. Both weight functions ψ(α)(x, t) for α = ±1 are related to the cut-off exponential
function φ(r) : R → R,

φ(r) =

{

2 − er, r < 0;

e−r, r ≥ 0,
(3.1)

and they are defined as the solutions of the linear hyperbolic equation (1.1),

ψ
(α)
t + βψ(α)

x = 0, t > 0; ψ(α)(x, 0) = φ
(α(x− xc)

γhσ

)

, (3.2)

where the parameters γ > 0 and σ ∈ [0, 1] are related to the steepness of the weight function,
and the parameter xc is related to the initial position of the steepness center of the weight
function. These parameters will be chosen later in a suitable way.

It is straightforward to verify that both weight functions, ψ(α)(x, t) for α = ±1, satisfy
the following proposition at any time. The proof is elementary and is omitted.

Proposition 3.1 The weight function ψ(x, t) = ψ(α)(x, t), for α = ±1, satisfies a.e.

max
|d|≤γhσ

∣

∣

∣

∣

∂mx ψ(x+ d, t)

∂mx ψ(x, t)

∣

∣

∣

∣

≤ e, m = 0, 1, 2; (3.3a)

|∂m+1
x ψ(x, t)| ≤ 1

γhσ
|∂mx ψ(x, t)|, m = 0, 1, (3.3b)

where ∂mx ψ is the spatial derivatives of ψ with order m ≥ 0; noting here ∂0
xψ = ψ.
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We also notice that the above two weight functions are mirror images of each other. We
can easily verify, for the weight function ψ(α)(x, t), the following properties

sgn(∂xψ
(α)(x, t)) = −α, if (x, t) ∈ R × [0, T ]; (3.4a)

1 ≤ ψ(α)(x, t) ≤ 2, if α(x− xc − βt) ≤ 0; (3.4b)

0 < ψ(α)(x, t) ≤ hs, if α(x− xc − βt) > s log(1/h)γhσ , (3.4c)

where α = ±1, and s ≥ 1 is any given positive number. The proof is straightforward and is
omitted.

Below we will denote, for convenience, either of the weight functions ψ(α)(x, t) by a
uniform notation ψ(x, t). Furthermore, we would like to always assume γhσ−1 ≥ 1 in this
paper. This can be achieved if γ is large enough, since σ ∈ [0, 1]. Under this condition, the
length of each cell Ij is ensured to be not greater than γhσ . Thus it follows from (3.3a)
that the amplitude of |∂mx ψ(x, t)| in each cell is bounded uniformly. This is an important
property to rebuild the inverse properties and approximation properties in the weighted
norm.

3.2 Properties of the finite element space

Based on the classical inverse properties and Proposition 3.1 for the weight functions, we
can easily obtain the following inverse properties in the weighted norm.

Lemma 3.1 Assume the weight function ψ = ψ(x, t) satisfies Proposition 3.1, and
γhσ−1 ≥ 1. For any function vh ∈ Vh, there exists an inverse constant µ > 0, depending
solely on k and independent of ν(Ω), h and vh, such that

‖∂mx vh‖ψ,Ω ≤ µ(ν(Ω)h)−m‖vh‖ψ,Ω , m ≥ 1; (3.5a)

‖vh‖ψ,Γh(Ω) ≤ (µ/2)1/2(ν(Ω)h)−1/2‖vh‖ψ,Ω , (3.5b)

where ν(Ω) is the minimum of νj = hj/hmax for those cells Ij contained in Ω. Here Ω may
be the single cell Ij with ν(Ij) = νj , or the whole real line with ν(R) = ν.

Besides the previously defined projection Ph, we will also use another Gauss-Radau
projection Qh corresponding to the negative flow direction. For any function p ∈ H1,h, the
projection Qhp is defined element by element as the unique function in Vh, such that in
each element Ij there holds

(Qhp)
+
j−1/2 = p+

j−1/2, and (Qhp− p, vh)j = 0, ∀ vh ∈ Pk−1(Ij). (3.6)

The projections Ph and Qh are distinguished by the exact collocation at different endpoints
of each cell.

For convenience, let Wh be one of the Gauss-Radau projections Ph and Qh, and denote
the error operator by W⊥

h = I − Wh, where I is the identity operator. By the scaling
technique of finite element analysis [2,3] and the first property (3.3a) of the weight function
in Proposition 3.1, we have the following approximation property.
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Lemma 3.2 Assume the condition of Lemma 3.1 holds. For any sufficiently smooth
function p(x), there exists a positive constant C independent of γ, σ, h and p, such that

‖W⊥
h p‖ψ,Ω + h‖∂x(W⊥

h p)‖ψ,Ω + h1/2‖W⊥
h p‖ψ,Γh(Ω) ≤ Chmin(k+1,m+1)‖∂m+1

x p‖ψ,Ω , (3.7)

where Ω may be the single cell Ij or the whole real line.

For any function in the finite element space Vh, there holds the following superconver-
gence result. It is a cornerstone in our analysis, and will be used many times. It can be
obtained by using Proposition 3.1 along the same line as that in [15]. For completeness of
this paper, the detailed proof is given in the appendix.

Lemma 3.3 Assume the condition of Lemma 3.1 holds. Then we have for any vh ∈ Vh
the superconvergence result

‖W⊥
h (ψvh)‖ψ−1 + h‖∂x(W⊥

h (ψvh))‖ψ−1 ≤ Cγ−1h1−σ‖vh‖ψ. (3.8)

As an application, Wh is a bounded projection in Vh, namely

‖Wh(ψvh)‖ψ−1 ≤ C‖vh‖ψ, ∀vh ∈ Vh. (3.9)

The above bounding constants C > 0 are all independent of γ, σ, h and vh.

3.3 Properties of the DG spatial discretization

In this subsection we present some basic properties in the weighted norm about the bilinear
functional H(·, ·), which is given in (2.4). These results are straightforward extensions of
those in [21], as an application of integration by parts and the weighted inverse properties.
We would only give the proof to Lemma 3.5 in the appendix.

Lemma 3.4 Let ψ = ψ(x, t) be a weight function. For any functions w and v in the
broken Sobolev space H1,h, there hold the identities

H(w,ψv) + H(v, ψw) = − |β|
∑

j

ψj+ 1

2

[[w]]j+ 1

2

[[v]]j+ 1

2

+ (βw, ∂xψv), (3.10)

H(w,ψw) = − 1

2
|β|‖[[w]]‖2

ψ,Γh
+

1

2
(βw, ∂xψw). (3.11)

Lemma 3.5 Assume the condition of Lemma 3.1 holds. Then we have

|H(w,ψv)| ≤ 3|β|µ(νh)−1‖w‖ψ‖v‖ψ , ∀w, v ∈ Vh. (3.12)

We now give a remark about these two lemmas. The identities in Lemma 3.4 show in
some sense that H is antisymmetric and semi-negative definite, respectively. Further, it
follows from Lemma 3.5 that H is bounded in Vh×Vh, however the bounding constant is in
the order of O(h−1). These properties have played very important roles in obtaining linear
stability and error estimate in the classical L2-norm, in [21].

Finally, we will mention the nice and strong relationships between two Gauss-Radau
projections and the DG spatial discretization in the following lemma. These results are the
same as that in Lemma 4.1 in [6], and will be used many times in our analysis. Their proof
is straightforward by using the definition of the projections, and is omitted.

Lemma 3.6 H(P⊥
h q, vh) = H(vh,Q

⊥
h q) = 0, for any q ∈ H1,h and vh ∈ Vh.
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4 The error estimate

In this section we begin to prove the main theorem of this paper. The main line of the proof
is based on the ideas in [6] and the energy analysis in [21] when combined with suitable
weight functions [14]. The proofs are rather technical, so we proceed in several steps to
clarify the main ideas.

For convenience, below we will denote by C (maybe with a subscript) a generic positive
constant which depends solely on the regularity of the exact solution in smooth regions and
the degree k of piecewise polynomials (showing up explicitly in the inverse constant µ), and
is independent of ν, λ, β, γ, σ, h, τ , n and T . We will also use another generic notation
M , if this constant is only independent of h, τ and n. These constants may have a different
value in each occurrence.

4.1 Step 1: the smooth solution

Associated with problem (1.1) with piecewise smooth initial solution U0(x), we would like
to follow [6] and consider the following problem

ut + βux = 0, t > 0; u(x, 0) = u0(x), (4.1)

where u0(x) is a sufficiently smooth function modified from U0(x). The function u0(x) is
the same as U0(x) beyond the interval [−h, h] and satisfies

|∂mx u0(x)| ≤ Ch−m, x ∈ [−h, h], m = 1, 2, 3, 4, (4.2)

where the bounding constant C > 0 depends solely on the jump and the piecewise smooth-
ness of the exact solution around the discontinuity point.

As a direct result, u(x, t) = u0(x − βt) is sufficiently smooth everywhere and always
agrees with U(x, t) beyond the bad region {(x, t) : x ∈ [βt − h, βt + h],∀ t ∈ [0, T ]}. This
is the starting point of our subsequent analysis. To make it clear, let us illustrate here the
key ideas to prove Theorem 2.1.

In order to detect the left-hand and right-hand boundaries of the pollution region at
the final time T , we would like to determine two half-lines R+

T and R−
T , which contains

[βT − h,+∞) and (−∞, βT + h], respectively. For each case, we take the suitable weight
function ψ(x, t) and set up the estimate

‖U(T ) − uNh ‖L2(R\R±
T ) = ‖u(T ) − uNh ‖L2(R\R±

T ) ≤ ‖u(T ) − uNh ‖ψN , (4.3)

where ψN = ψ(x, T ) and is not less than 1 in the considered domain R\R±
T . The estimate to

the right-hand side term is a typical energy analysis with the weight function, which is the
main body of our analysis. Finally, we figure out the suitable setting for those parameters
in the weight functions and complete the proof of Theorem 2.1. The detailed process will
be given below.

4.2 Step 2: error representation and error equations

To carry out the energy analysis with the weight function, we proceed with the following
three steps. Following [21], we firstly introduce three functions, u(0), u(1) and u(2), associated
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with the local TVDRK3 time discretization. Let u(0) = u, and define

u(1) = u(0) + τu
(0)
t , (4.4a)

u(2) =
3

4
u(0) +

1

4
u(1) +

1

4
τu

(1)
t , (4.4b)

where u(x, t) is the exact solution of the smooth problem (4.1). The reference function at
each stage of time level n is defined by un,ℓ = u(ℓ)(x, tn). Here and below we may omit the
superscript ℓ if ℓ = 0.

By using Taylor’s expansion in time and integration by parts in space, it is easy to get
the following lemma. The detailed proof will be given in the appendix.

Lemma 4.1 Let u(x, t) be the sufficiently smooth solution of problem (4.1). Then for
any function v ∈ H1,h, there hold the following variational forms

(un,1, v) = (un, v) + τH(un, v), (4.5a)

(un,2, v) =
3

4
(un, v) +

1

4
(un,1, v) +

τ

4
H(un,1, v), (4.5b)

(un+1, v) =
1

3
(un, v) +

2

3
(un,2, v) +

2τ

3
H(un,2, v) + (ζn, v), (4.5c)

where ζn(x) = 1
6

∫ tn+1

tn (tn+1 − t)3∂4
t u(x, t) dt is the local truncation error in time. Here ∂4

t u
is the fourth order time derivative of u.

For convenience of notations, we would like in this paper to introduce for a series of
functions {qn,ℓ}ℓ=0,1,2

n≥0 , defined at every stage of time levels, two series of simplifying nota-
tions

E1q
n = qn,1 − qn, D1q

n = qn,1 − qn, (4.6a)

E2q
n = qn,2 − 1

4
qn,1 − 3

4
qn, D2q

n = 2qn,2 − qn,1 − qn, (4.6b)

E3q
n = qn+1 − 2

3
qn,2 − 1

3
qn, D3q

n = qn+1 − 2qn,2 + qn. (4.6c)

Obviously these series of notations can be expressed linearly by each other, for example

E1q
n = D1q

n, E2q
n =

1

2
D2q

n +
1

4
D1q

n, E3q
n = D3q

n +
2

3
D2q

n +
2

3
D1q

n. (4.7)

Here Eℓq
n describes the evolution of the solution in the explicit TVDRK3 algorithm, while

Dℓq
n reflects the information of the ℓ-order time derivatives (see Lemma 5.1). The latter

property is inherent in this time-marching, and plays very important roles in our analysis;
a detailed discussion will be given in section 5.1.

Denote the error at each stage of time level n by en,ℓ = un,ℓ − un,ℓh . As the usual
treatment in finite element analysis, we consider the error decomposition en,ℓ = ηn,ℓ − ξn,ℓ,
and then estimate ξn,ℓ by ηn,ℓ using an energy analysis in the weighted norm. Here

ηn,ℓ = un,ℓ − Phu
n,ℓ = P⊥

h u
n,ℓ, and ξn,ℓ = un,ℓh − Phu

n,ℓ = Phe
n,ℓ, (4.8)
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are the approximation error and the error’s projection in Vh, respectively, and Ph is the
Gauss-Radau projection for the positive flow direction, defined in (2.5).

To estimate the error’s projection ξn,ℓ, we need to set up the error equations by sub-
tracting those variational forms in Lemma 4.1 from the RKDG3 scheme (2.3), in the same
order. This yields the following error equations for any test function vh ∈ Vh,

(E1ξ
n, vh) = (E1η

n, vh) + τH(ξn, vh), (4.9a)

(E2ξ
n, vh) = (E2η

n, vh) +
1

4
τH(ξn,1, vh), (4.9b)

(E3ξ
n, vh) = (E3η

n, vh) +
2

3
τH(ξn,2, vh) − (ζn, vh). (4.9c)

Here we have used H(ηn,ℓ, vh) = 0 for any vh ∈ Vh, owing to the first equality in Lemma
3.6. These error equalities are fundamental in the following energy analysis.

4.3 Step 3: energy equation and related estimates

In this subsection we would like to set up the energy evolution at any sequential time and
establish some related estimates with respect to the weight function ψ(x, t), which has been
given in section 3.1 and satisfies Proposition 3.1. This analysis process is an extension of
the classical L2-norm estimate in [21].

To this end, we first take three test functions in each equation of (4.9). The first one is
vh = Qh(ψ

nξn) in (4.9a), the second is 4Qh(ψ
nξn,1) in (4.9b), and the last is 6Qh(ψ

nξn,2)
in (4.9c). Then we sum up the three equalities. After some manipulations similar to those
in [21], we finally obtain the energy equation as follows:

3‖ξn+1‖2
ψn+1 − 3‖ξn‖2

ψn = Π1 + Π2 + Π3 + Π4, ∀n, (4.10)

where d0 = d1 = 1 and d2 = 4 for notations’ convenience, and

Π1 = ‖D2ξ
n‖2
ψn + 3(D1ξ

n + D2ξ
n + D3ξ

n, ψnD3ξ
n), (4.11a)

Π2 = (E1ξ
n,Q⊥

h (ψnξn)) + 4(E2ξ
n,Q⊥

h (ψnξn,1)) + 6(E3ξ
n,Q⊥

h (ψnξn,2)), (4.11b)

Π3 = (E1η
n,Qh(ψ

nξn)) + 4(E2η
n,Qh(ψ

nξn,1)) + 6(E3η
n − ζn,Qh(ψ

nξn,2)), (4.11c)

Π4 =
∑

ℓ=0,1,2

dℓH(ξn,ℓ, ψnξn,ℓ)τ + 3((ψn+1 − ψn)ξn+1, ξn+1). (4.11d)

In this process we have used H(ξn,κ,Q⊥
h (ψnξn,ℓ)) = 0, for any κ, ℓ = 0, 1, 2, which follows

from the second equality in Lemma 3.6. If ψ(x, t) ≡ 1, the above result is the same as that
in [21] to obtain the classical L2-norm error estimate; in this case Π2 and the last term in
Π4 are both equal to zero.

In what follows we will present some estimates to those terms on the right-hand side of
(4.10), one by one. To highlight the main line of our analysis, we would like to enumerate
here the basic ideas and techniques, and present the results with only brief explanations,
leaving the more technical and detailed discussion to the next section.

In our analysis, we mainly use the following techniques:

11



1. As an extension of the ideas in [21], it is still important to study the evolution of the
four functions Dℓξ

n, ℓ = 0, 1, 2, 3. Note that D0 = I is the identity operator. We need
to set up the relationships among the weighted norms of these functions and/or their
components, for instance, the generalized slope functions and the highest frequency
components.

2. It is well-known that, for the RKDG scheme, the basic stability comes from the
dissipative nature of the DG spatial discretization, namely, the sum of the squares of
the jumps at element interfaces. Furthermore, for the RKDG3 scheme, there exists
an additional stability term in the time direction, provided by the TVDRK3 time-
marching. This stability shows up explicitly in the term ‖D2ξ

n‖2
ψn , and plays a very

important role in our analysis.

3. One of the main techniques is the generalized slope function, as considered by Cheng
and Shu in [4]. This technique helps us to set up the inverse relationships between
Dℓ+1ξ

n and the generalized slope function of Dℓξ
n, measured in the weighted L2-norm.

This careful treatment leads to a good estimate and helps us to determine the sharp
size of the pollution region; see the proof of Lemma 4.5. The detailed results and
discussions will be given in subsection 5.1.

4. In the following energy analysis, the weight function results into some troublesome
terms, for example, the term Π2 and the last term in Π4. However, we are able to
take suitable parameters γ and σ in the weight function, such that those troublesome
terms are controlled by the stability terms.

Along the same line as that in [21], we can obtain an estimate to the term Π1 as given
in the following lemma. The detailed proof is given in section 5.2.

Lemma 4.2 Let ε1 and ε2 be any two small positive constants. We have

Π1 ≤ ε1β‖[[D1ξ
n]]‖2

ψn,Γh
τ +CT−1τ‖D1ξ

n‖2
ψn + (Θ0 + Θ1 + CT−1τ)‖D2ξ

n‖2
ψn

+ Θ2

(

‖D2η
n‖2

ψn + ‖D3η
n‖2
ψn + ‖ζn‖2

ψn

)

τ−1, (4.12)

where

Θ0 = − 1 + (2ε1)
−1µλ+ 6µ2λ2 + 2ε2, (4.13a)

Θ1 = Cλγ−1h1−σ + Cε−1
2 λ2γ−2h2−2σ + CTβν−1λγ−2h1−2σ , (4.13b)

Θ2 = CT (λ2γ−2h2−2σ + 1) + Cε−1
2 (γ−2h2−2σ + 1)τ, (4.13c)

and the bounding constant C > 0 is independent of ε1, ε2, ν, λ, β, γ, σ, h, τ , n and T .

Here we give a remark to this lemma. From this lemma an additional stability in the
time direction shows up explicitly in term of (Θ0 + Θ1)‖D2ξ

n‖2
ψn , if the involved coefficient

is not greater than zero. This condition can be satisfied, by setting the CFL number under
λ ≤ λmax with a suitably small λmax, and taking suitable parameters γ and σ in the weight
function. The detailed discussion will be given in section 4.4.
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Now we turn to obtain a sharp estimate to the second term Π2. To do that, we would
like to make the full use of the highest frequency component that will be defined in (5.11),
and the definition of the Gauss-Radau projection. The detailed proof will be given in section
5.3, and the result is stated in the following lemma.

Lemma 4.3 There holds the following estimate

Π2 ≤ CT−1
∑

ℓ=0,1,2

‖ξn,ℓ‖2
ψnτ + CTβ2ν−1γ−2h1−2σ

∑

ℓ=0,1,2

‖[[ξn,ℓ]]‖2
ψn,Γh

τ

+ CTγ−2h2−2στ−1
(

∑

ℓ=1,2,3

‖Dℓη
n‖2

ψn + ‖ζn‖2
ψn

)

, (4.14)

where the bounding constant C > 0 is independent of ν, λ, β, γ, σ, h, τ , n and T .

The third term Π3 is easy to estimate by using the boundedness of the projection Qh

in the finite element space (the superconvergence result given in Lemma 3.3). The line of
analysis is almost the same for each term included in Π3. By using the weighted Cauchy-
Schwarz inequality, Lemma 3.3, and Young’s inequality, we have for ℓ = 0, 1, 2, that

|(Eℓ+1η
n,Qh(ψ

nξn,ℓ))| ≤ ‖Eℓ+1η
n‖ψn‖Qh(ψ

nξn,ℓ)‖(ψn)−1

≤ Cγ−1h1−σ‖Eℓ+1η
n‖ψn‖ξn,ℓ‖ψn

≤ CT−1τ‖ξn,ℓ‖2
ψn + CTγ−2h2−2στ−1‖Eℓ+1η

n‖2
ψn .

Collecting the above estimates for ℓ = 0, 1, 2, and using triangle inequality to the relationship
(4.7) among Eℓη

n and Dℓη
n, we can obtain the following lemma.

Lemma 4.4 There holds the following estimate

Π3 ≤ CT−1
∑

ℓ=0,1,2

‖ξn,ℓ‖2
ψnτ +CTγ−2h2−2στ−1

∑

ℓ=1,2,3

‖Dℓη
n‖2

ψn , (4.15)

where the bounding constant C > 0 is independent of ν, λ, β, γ, σ, h, τ , n and T .

Using (3.11) in Lemma 3.4, we estimate the last term Π4 from the formula

Π4 = Π41 + Π42 := −1

2

∑

ℓ=0,1,2

dℓβ‖[[ξn,ℓ]]‖2
ψn,Γh

τ

+
{1

2

∑

ℓ=0,1,2

dℓ(βξ
n,ℓ, ∂xψ

nξn,ℓ)τ + 3((ψn+1 − ψn)ξn+1, ξn+1)
}

, (4.16)

where d0 = d1 = 1 and d2 = 4 are the three parameters as stated before.
Herein the term Π41 is the numerical stability owing to the DG spatial discretization,

which provides a nice control on the first term on the right-hand side of (4.12), if ε1 is
small enough. The term Π42 is resulted from the weight function and the time advancing.
It is important to establish a sharp estimate to this term, which depends on a careful
analysis on the weighted L2-norm ‖D1ξ

n‖ψn . To do that, we need to make full use of the
generalized slope function M(D1ξ

n), and the additional stability provided by the TVDRK3
time-marching.

The detailed proof will be given in section 5.4, and the estimate to the last term Π4 is
stated in the next lemma.
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Lemma 4.5 There holds the following estimate

Π4 ≤ − 1

2

∑

ℓ=0,1,2

dℓβ‖[[ξn,ℓ]]‖2
ψn,Γh

τ + Θ3‖D2ξ
n‖2
ψn + Θ4

∑

ℓ=0,1,2,3

‖ξn,ℓ‖2
ψnτ (4.17)

+ Θ5

(

β‖[[ξn]]‖2
ψn,Γh

+ β‖[[ξn,1]]‖2
ψn,Γh

)

τ + Θ6

(

∑

ℓ=1,2,3

‖Dℓη
n‖2
ψn + ‖ζn‖2

ψn

)

τ−1,

where ξn,3 = ξn+1, d0 = d1 = 1, d2 = 4, and

Θ3 = CTβλγ−2h1−2σ(λ2 + 2)ν−1, (4.18a)

Θ4 = CT−1 + Cβλγ−2h1−2σ + Cβλ2γ−3h2−3σ , (4.18b)

Θ5 = Cβλγ−1h1−σ + CTβ2ν−1λ2γ−2h1−2σ +CTβ2ν−2λ2γ−4h3−4σ , (4.18c)

Θ6 = CTλ2ν−1γ−2h2−2σ(λ2 + 2) + CTλ2γ−4h4−4σ + Cβ−1λ2γ−1h2−σ, (4.18d)

and the bounding constant C > 0 is independent of ν, λ, β, γ, σ, h, τ , n and T .

4.4 Step 4: the final energy inequality

At the beginning of this subsection, we first point out a rough estimate to the stage error’s
projections, limited in a single TVDRK3 time-marching step. This result is a direct corollary
of Lemma 5.2; see section 5.1.

Corollary 4.1 Assume the CFL number λ ≤ λmax. We have

‖ξn,ℓ‖2
ψn ≤ C

(

‖ξn‖2
ψn +

∑

1≤κ≤ℓ

‖Dκη
n‖2
ψn + δ3ℓ‖ζn‖2

ψn

)

, ℓ = 1, 2, 3, (4.19)

where ξn,3 = ξn+1, and the bounding constant C > 0 is independent of ν, λ, β, γ, σ, h, τ ,
n and T . In this paper we always denote δκℓ = 1 if ℓ = κ; otherwise δκℓ = 0 if ℓ 6= κ.

Now we collect up lemmas from 4.2 to 4.5, into the energy equation (4.10). Noticing
Corollary 4.1, we obtain the general energy estimate at the successive time level

3‖ξn+1‖2
ψn+1 − 3‖ξn‖2

ψn ≤ Θ4‖ξn‖2
ψnτ +G1 +G2 +G3, (4.20)

where G1, G2 and G3 are given in the form

G1 = (Θ0 + Θ1 + Θ3)‖D2ξ
n‖2
ψn , (4.21a)

G2 =
[

− 1

2
+ 2ε1 + CTβν−1γ−2h1−2σ + Θ5

][

β‖[[ξn]]‖2
ψn,Γh

+ β‖[[ξn,1]]‖2
ψn,Γh

]

τ

+
[

− 2 + CTβν−1γ−2h1−2σ
]

β‖[[ξn,2]]‖2
ψn,Γh

τ, (4.21b)

G3 =
[

Θ2 + Θ6 + CTγ−2h2−2σ
](

∑

ℓ=1,2,3

‖Dℓη
n‖2

ψn + ‖ζn‖2
ψn

)

τ−1. (4.21c)

Note that the notations Θi, (0 ≤ i ≤ 6), have the same form as that in section 4.3, and the
bounding constants C in (4.21) and involved in Θi are all independent of ν, λ, β, γ, σ, h,
τ , n and T .
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Now we will show that there exists a group of parameters ε1, ε2, γ and σ, such that the
terms G1 and G2 reflect respectively the different stability in the RKDG3 scheme, and, at
the same time, the term Θ4 and the coefficient in (4.21c) are bounded as needed.

To this purpose, we first let ε1 = 1/8 and ε2 = 1/24. Then we get Θ0 ≤ −1/12 from
(4.13a), if the maximum CFL number λmax is suitably small and satisfies, for example,

µλmax ≤ 1/6, (4.22)

Furthermore, we take
σ = 1/2, and γ = Cγ

√

Tβν−1, (4.23)

where Cγ is a sufficiently large constant as determined later. This setting is flexible to ensure
the terms Θ1, Θ3, Θ5 and CTβν−1γ−2h1−2σ to be small enough so that the coefficients in
(4.21a) and (4.21b) are not greater than zero. Consequently, G1 +G2 ≤ 0. After given the
constant Cγ , the setting (4.23) implies that

Θ2 + Θ6 + CTγ−2h2−2σ ≤ C1(T + 1), and Θ4 ≤ C2T
−1, (4.24)

where the positive constants C1 and C2 are independent of λ, h, τ , n and T .
For convenience of statements, we put aside the detailed discussion about these as-

sertions, to the end of this subsection. Under the above parameter’s setting, we con-
tinue our analysis by writing the energy inequality (4.20) in the simple form: for any
n = 0, 1, . . . , N − 1, there exist two positive constants C1 and C2 independent of ν, λ, h, τ ,
n and T , such that

‖ξn+1‖2
ψn+1 − ‖ξn‖2

ψn ≤ C2T
−1‖ξn‖2

ψnτ + C1(T + 1)τ−1
(

∑

ℓ=1,2,3

‖Dℓη
n‖2
ψn + ‖ζn‖2

ψn

)

.

Since ξ0 = 0, an application of the discrete Gronwall’s inequality yields that

‖ξN‖2
ψN ≤ C3(T + 1)

N−1
∑

n=0

(

∑

ℓ=1,2,3

‖Dℓη
n‖2
ψn + ‖ζn‖2

ψn

)

, (4.25)

where the bounding constant C3 > 0 is independent of λ, h, τ , n and T . This result is the
same as that in the classical L2-norm error estimate, if ψ ≡ 1.

At the end of this subsection we complete the verification on those assertions with
respect to the coefficients in (4.20) and (4.21). As two typical examples, we would like to
present the discussions only for the terms Θ1 and Θ4. Due to τ ≤ T and λ = βτ/(νh), we
have λνh/(Tβ) ≤ 1. Thus, substituting the expression (4.23) into Θ1 yields

Θ1 ≤ Cλ1/2C−1
γ

(

λνh

Tβ

)1/2

+ CC−2
γ λ

λνh

Tβ
+ CC−2

γ λν ≤ Cλ1/2
maxC

−1
γ + CλmaxC

−2
γ ,

which implies that the term Θ1 can be small enough if the constant Cγ is taken to be large
enough. Along the same line, we also have the following observation

Θ4 ≤ CT−1 +Cβλ(Tβν−1)−1 + Cβλ2(Tβν−1)−3/2h1/2

≤ CT−1 +CλνT−1 + Cλ2νT−1 (νh)1/2

β1/2T 1/2
≤ CT−1(λ3/2 + λ+ 1) ≤ C2T

−1,

since the CFL number λ is upper bounded by λmax. The other assertions can be verified
similarly, so they are omitted here.
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4.5 Step 5: size of the pollution region

In this subsection we return to our main purpose and investigate the size of the pollution
region at the final time T . To this end, in this paper we would like to assume explic-
itly that the initial solution U0(x) is piecewise smooth and it belongs to Hmax(k+2,4)(Ω±),
respectively, where Ω+ = (0,+∞) and Ω− = (−∞, 0).

The analysis is almost the same for determining the position of the left-hand boundary
and the right-hand boundary of the pollution region. As an example, we will show below
how to find out the position of the left-hand boundary.

This purpose can be obtained by using the last parameter xc involved in the weight
function. Let s ≥ 1 be a suitably large constant as determined later, and we take

xc = −s log(1/h)γhσ , (4.26)

where σ = 1/2 and γ = Cγ
√

Tβν−1 is a large enough constant, as determined in (4.23).
Assume at this moment that the parameter s is large enough to ensure |xc| > 2h.

Let xL(t) = βt+2xc, which can be concluded as the left-hand boundary of the pollution
region at any time t ∈ [0, T ]. This can be showed by the following optimal L2-norm error
estimate out of the domain R+

t = (xL(t),+∞), with respect to both time and space.
Because the domain R\R+

t stays away from the bad interval [βt−h, βt+h], the smooth
solution u(x, t) agrees with U(x, t) in this half-line at any time t. As we have stated in
(4.3), it follows from property (3.4b) of the weight function ψ(x, t), that

‖uNh − U(x, T )‖
R\R+

T
≤ ‖uNh − u(x, T )‖ψN ,R\R+

T
≤

√
2‖ηN‖

R\R+

T
+ ‖ξN‖ψN , (4.27)

where the last term has been estimated by (4.25).
Let w(t) be the element’s endpoint xm+1/2 satisfying βt+ xc ∈ (xm−1/2, xm+1/2]. Then

we split the whole real line into two parts: one is IL(t) = (−∞, w(t)), and the other is the
remaining part IR(t). Note that both sets R\R+

t and IL(t) enlarge as the time t increases,
and R\R+

t ⊂ IL(t). Therefore, (4.27) and (4.25) yield

‖uNh − U(x, T )‖
R\R+

T
≤M

{

‖ηN‖IL(T ) +
N−1
∑

n=0

[En(IL(tn)) + En(IR(tn))]τ−1
}

, (4.28)

where En(Ω) =
∑

ℓ=1,2,3 ‖Dℓη
n‖2
ψn,Ω + ‖ζn‖2

ψn,Ω, and the bounding constant M = C(T +1)
is independent of λ, h, τ and n.

The estimate to the right-hand side depends strongly on the different smoothness of un

and Dℓu
n, for ℓ = 1, 2, 3, on different domains IL(tn) and IR(tn).

Let us first look at the smooth region IL(t), which also stays away from the bad interval
[βt−h, βt+h], thus u(x, t) agrees with U(x, t). Since U0(x) ∈ Hmax(k+2,4)(Ω−), there exists
a positive constant C such that

‖∂k+1
x u‖IL(t) + ‖∂k+1

x (∂tu)‖IL(t) + ‖∂kx(∂2
t u)‖IL(t) + ‖∂4

t u‖IL(t) ≤ C, ∀t ∈ [0, T ].

Then it follows ‖ζn‖ψn,IL(tn) ≤ Cτ4 from the definition of truncation error ζn, given in
Lemma 4.1. By using standard approximation property (Lemma 3.2) for the linear projec-
tion, we easily have that

‖ηN‖IL(T ) ≤ Chk+1, and ‖Dℓη
n‖ψn,IL(tn) ≤ Chk+1τ, ∀n, ℓ = 1, 2, 3. (4.29)
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In the above process, we have used βτ = λνh and the simple fact, due to (4.6) and (4.4),
that D1u

n = τut(x, t
n), D2u

n = 1
2τ

2∂2
t u(x, t

n), and

D3u
n =

∫ tn+1

tn

∫ t′′

tn
∂2
t u(x, t

′)dt′dt′′ − 1

2
τ2∂2

t u(x, t
n).

Next let us move our sight to the right half-line IR(t), which includes the bad interval
[βt− h, βt+ h]. Due to the relationship (4.2), we have the following smoothness

‖∂2
x(∂tu)‖IR(t) + ‖∂x(∂2

t u)‖IR(t) ≤ Ch−5/2, ‖∂4
t u‖IR(t) ≤ Ch−7/2.

Noticing property (3.4c) of the weight function, namely ψ(x, t) ≤ hs when x ∈ IR(t), along
the similar way as above we have the following estimates

‖ζn‖ψn,IR(tn) ≤ Ch
s−7

2 τ4, and ‖Dℓη
n‖ψn,IR(tn) ≤ Ch

s−1

2 τ, ∀n, ℓ = 1, 2, 3. (4.30)

Finally we substitute inequalities (4.29) and (4.30) into the energy estimate (4.28), and
then take s large enough, for example, s ≥ max(2k + 3, 7). This yields that

‖uNh − U(x, T )‖
R\R+

T
≤M(hk+1 + τ3), (4.31)

where the bounding constant M is independent of λ, h, τ and n, and depends on the
smoothness of the exact solution U(x), the jump at the discontinuity point and the final
time T .

Along the same line as before, we can use another weight function to obtain the similar
estimate ‖uNh −U(x, T )‖

R\R−
T
≤M(hk+1 +τ3), where R−

t = (−∞, βt+C
√
βth1/2 log(1/h)).

The detailed process is omitted.
Finally, let the pollution region be RT = R+

T ∩ R−
T . Then we complete the proof of

theorem 2.1, by combining the above two conclusions.

5 Main proofs

In this section we present the detailed proofs of Lemmas 4.2, 4.3 and 4.5, with respect to
the terms Π1, Π2 and Π4, respectively, on the right-hand side of the energy equation (4.10).
These proofs depend strongly on the structure of the RKDG3 scheme, which is represented
explicitly by a series of functions Dℓξ

n and the relationships among them.

5.1 Relationships among Dℓξ
n

We start our analysis from the simple evolution among the functions Dℓξ
n for ℓ = 0, 1, 2, 3;

noting D0 = I is the identity operator. It is straightforward to obtain the following lemma
by suitable linear combinations of those equations in (4.9). Similar discussions have been
given in [21], so we omit the detailed proof.

Lemma 5.1 For any vh ∈ Vh, the RKDG3 scheme has the following identities

(D1ξ
n, vh) = τH(ξn, vh) + (D1η

n, vh), (5.1a)

(D2ξ
n, vh) =

τ

2
H(D1ξ

n, vh) + (D2η
n, vh), (5.1b)

(D3ξ
n, vh) =

τ

3
H(D2ξ

n, vh) + (D3η
n, vh) − (ζn, vh). (5.1c)
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Based on this lemma, we can obtain the following three kinds of relationships among
Dℓξ

n and/or their components, measured in the weighted norms. These conclusions will be
used to prove Lemmas 4.2, 4.3 and 4.5, respectively.

Firstly let us consider the relationships among ‖Dℓξ
n‖ψn when the index ℓ increases.

Roughly speaking, the weighted L2-norm with a bigger index can be upper bounded by
that with a smaller index. The bounding constant here depends on the CFL number.

Lemma 5.2 Assume the weight function ψ(x, t) satisfies Proposition 3.1 and γhσ−1 is
large enough. Then there exists a positive constant C independent of λ, ν, β, γ, σ, h, τ , n
and T , such that

‖Dℓ+1ξ
n‖2
ψn ≤ 2µ2λ2‖Dℓξ

n‖2
ψn + C

(

‖Dℓ+1η
n‖2

ψn + δ2ℓ‖ζn‖2
ψn

)

, ℓ = 0, 1, 2. (5.2)

Proof. The proofs are straightforward and are almost the same for every ℓ. We only
look at ℓ = 2 here as an example. By taking the test function vh = Qh(ψ

nD3ξ
n) in (5.1c)

and using the second equality in Lemma 3.6, we get that

(D3ξ
n, ψnD3ξ

n) = X1 +X2 +X3

=:
τ

3
H(D2ξ

n, ψnD3ξ
n) + (D3η

n − ζn,Qh(ψ
nD3ξ

n)) + (D3ξ
n,Q⊥

h (ψnD3ξ
n)). (5.3)

We now estimate each term above separately. By the weighted Cauchy-Schwarz inequality
and Young’s inequality, we have that

X1 ≤ µτ |β|(νh)−1‖D2ξ
n‖ψn‖D3ξ

n‖ψn ≤ 1

4
‖D3ξ

n‖2
ψn + µ2λ2‖D2ξ

n‖2
ψn , (5.4a)

X2 ≤ C(‖D3η
n‖ψn + ‖ζn‖ψn)‖D3ξ

n‖ψn ≤ 1

8
‖D3ξ

n‖2
ψn + C‖D3η

n‖2
ψn + C‖ζn‖2

ψn , (5.4b)

since λ = βτ/hmin = βτ/(νh), where we have used Lemma 3.5 and Lemma 3.3 to estimate
the terms X1 and X2, respectively. Since γhσ−1 is assumed to be large enough, we can use
Lemma 3.3 to get that

X3 ≤ Cγ−1h1−σ‖D3ξ
n‖2
ψn ≤ 1

8
‖D3ξ

n‖2
ψn . (5.4c)

Finally, we collect the above three inequalities to complete the proof of this lemma. �

The result in Corollary 4.1 is a direct application of this lemma, if the CFL number
satisfies λ ≤ λmax for a suitable fixed number λmax. That result will help us to control the
weighted norms of the errors at the intermediate time stage by the weighted norms of the
error at the integer time level.

Secondly, we turn to consider the relationships among ‖Dℓξ
n‖ψn when ℓ decreases. Un-

fortunately, similar inequalities as those in Lemma 5.2 do not hold. However, we can make
a minor modification and obtain the desired result by adopting the technique in [4], which
introduces the generalized slope function for functions in the finite element space.

For any function q ∈ Vh, the generalized slope function M(q) is given by the following
important decomposition

q = m(q) + M(q)
x− xj
hj

, x ∈ Ij ,∀j, (5.5)
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where m(q) is a piecewise constant function taking the value q(xj) in each cell Ij, and M(q)
is a piecewise polynomial of degree at most k − 1 in each cell. Note that M(q) ∈ Vh also.

As a direct extension of the result in [4], we have the following inequality for any j,

B−
j (M(x)) :=

∫

Ij

ψ(x)M(x)
x − xj− 1

2

hj
∂x

[

M(x)
x− xj
hj

]

dx

≥ 1

8hj

∫

Ij

ψ(x)M2(x)dx+
1

4
ψ(xj+ 1

2

)M2(x−
j+ 1

2

), (5.6)

if γhσ−1 is assumed to be large enough, where M(x) := M(q)(x). We will give the proof of
(5.6) in the appendix.

By the aid of this inequality, the weighted L2-norm of the generalized slope function,
‖M(D1ξ

n)‖ψn , can be upper bounded by the additional numerical stability owing to the
TVDRK3 time-marching, which shows up explicitly in the term ‖D2ξ

n‖ψn .
In the following lemma we provide the conclusion for the general case, which is similar

to that in Lemma 5.2. This establishes the weak relationships in the reverse order of ℓ.

Lemma 5.3 Assume the condition of Lemma 5.2 holds. Then there exists a positive
constant C independent of ν, λ, β, γ, σ, h, τ , n and T , such that

‖M(Dℓξ
n)‖2

ψn ≤ Cλ−2ν−2
[

‖Dℓ+1ξ
n‖2
ψn + ‖Dℓ+1η

n‖2
ψn + δ2ℓ‖ζn‖2

ψn

]

, ℓ = 0, 1, 2. (5.7)

Proof. We will only prove this lemma for ℓ = 1 as an example, which will be used
actually in our later analysis.

Let w(x) be a piecewise polynomial, defined by w(x) = M(D1ξ
n)(x−xj−1/2)/hj in each

cell Ij. Obviously w(x) ∈ Vh. We take the test function vh = Qh(ψ
nw(x)) in (5.1b) and

use the second identity in Lemma 3.6 again. Then we have

−H(D1ξ
n, ψnw(x)) =

2

τ
(D2e

n,Qh(ψ
nw(x))). (5.8)

In what follows we estimate both sides of this equality.
Noticing w(x+

j−1/2) = 0, an integration by parts in every cell followed by a usage of the

inequality (5.6) leads to

LHS of (5.8) =
∑

j

∫

Ij

βψnw(x)∂x(D1ξ
n)dx

=
∑

j

∫

Ij

βψnM(D1ξ
n)
x− xj−1/2

hj
∂x

[

M(D1ξ
n)
x− xj
hj

]

dx

≥ β

8h
‖M(D1ξ

n)‖2
ψn +

β

4

∑

j

ψ(xj+ 1

2

)M2(D1ξ
n)(x−

j+ 1

2

), (5.9)

since β > 0 and hj ≤ h for all j. Further, we use the weighted Cauchy-Schwarz inequality,
as well as the second conclusion in Lemma 3.3, to have

RHS of (5.8) ≤ 2

τ
‖D2e

n‖ψn‖Qh(ψ
nw(x))‖(ψn)−1 ≤ C

τ
‖D2e

n‖ψn‖w(x)‖ψn

=
C

τ
‖D2e

n‖ψn‖M(D1ξ
n)
x− xj−1/2

hj
‖ψn ≤ C

τ
‖D2e

n‖ψn‖M(D1ξ
n)‖ψn , (5.10)
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since |(x− xj−1/2)/hj | ≤ 1 in each cell Ij.

Since D2e
n = D2η

n − D2ξ
n and λ = βτ/hmin = βτ/(νh), we collect the above two

inequalities and finally get

‖M(D1ξ
n)‖ψn ≤ Ch

βτ
‖D2e

n‖ψn ≤ Cλ−1ν−1(‖D2ξ
n‖ψn + ‖D2η

n‖ψn).

This completes the proof of this lemma by squaring the above inequality. �

Thirdly, we would like to consider a stronger relationship than that in Lemma 5.2.
Inspired by the Gauss-Radau projection, we consider another decomposition of any function
q ∈ Vh. In each cell Ij , there holds the decomposition

q = L(q) + N(q), (5.11)

where L(q) is a piecewise polynomial of degree at most k − 1, and N(q) is the piecewise
polynomial of degree k that satisfies the orthogonality

(vh,N(q))j = 0, ∀vh ∈ Pk−1(Ij),∀j. (5.12)

This decomposition can be easily implemented by using the Legendre polynomials. In this
paper we refer to N(q) as the highest frequency component of q.

The orthogonality (5.12) is very useful to yield the following estimate.

Lemma 5.4 Assume the condition of Lemma 5.2 holds. Then there exists a positive
constant C independent of ν, λ, β, γ, σ, h, τ , n and T , such that

‖N(Dℓ+1ξ
n)‖2

ψn ≤ Cβ2τ2

νh
‖[[Dℓξ

n]]‖2
ψn,Γh

+ C
(

‖Dℓ+1η
n‖2

ψn + δ2ℓ‖ζn‖2
ψn

)

, ℓ = 0, 1, 2.

(5.13)

Proof. We will only prove this lemma for ℓ = 0 as an example. To this end, we take
the test function vh = N(D1ξ

n)χj(x) in (5.1b), where χj is the characteristic function of
the cell Ij . An integration by parts yields

(D1ξ
n,N(D1ξ

n))j = τH(ξn,N(D1ξ
n)χj(x)) + (D1η

n,N(D1ξ
n)χj(x))

= − τ(βξnx ,N(D1ξ
n))j − τβ[[ξn]]j− 1

2

N(D1ξ
n)+
j− 1

2

+ (D1η
n,N(D1ξ

n))j

= − τβ[[ξn]]j− 1

2

N(D1ξ
n)+
j− 1

2

+ (D1η
n,N(D1ξ

n))j ,

where we have used the orthogonality (5.12) to get rid of the element integration, at the
last step. It follows from (5.11) and (5.12) that (D1ξ

n,N(D1ξ
n))j = ‖N(D1ξ

n)‖2
Ij

. Using
the Cauchy-Schwarz inequality and Young’s inequality to each term on the right-hand side
of the above equality, we have

‖N(D1ξ
n)‖2

Ij ≤ Cε−1β2τ2[[ξn]]2
j− 1

2

+ ε|N(D1ξ
n)+
j− 1

2

|2 + C‖D1η
n‖2
Ij . (5.14)
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We multiply ψnj−1/2 on both sides of this inequality, and then we use property (3.3a) of
the weight function in each cell. Summing up the results for all cells and using the inverse
property (3.5b), we get

‖N(D1ξ
n)‖2

ψn ≤ Cε−1β2τ2‖[[ξn]]‖2
ψn,Γh

+ Cε
∑

j

ψn
j+ 1

2

[N(D1ξ
n)]2

j+ 1

2

+ C‖D1η
n‖2
ψn

≤ Cε−1β2τ2‖[[ξn]]‖2
ψn,Γh

+ Cεµ(νh)−1‖N(D1ξ
n)‖2

ψn + C‖D1η
n‖2
ψn .

Taking ε = 1
2C

−1µ−1νh we can complete the proof of this lemma. �

5.2 Proof of Lemma 4.2

In this subsection, we estimate the first term Π1 by Lemmas 5.1 and 5.2. Obviously there
are four terms included here, which are denoted, respectively, by Λ0 = (D2ξ

n, ψnD2ξ
n) and

Λℓ = 3(Dℓξ
n, ψnD3ξ

n) for ℓ = 1, 2, 3.

The following analysis is the extension of the classical L2-norm error estimate in [21],
where the weight function is taken as ψ ≡ 1.

The main technique here is that we deal with the terms Λ0 and Λ1 at the same time,
namely, we estimate their sum but not either of them separately. Owing to the variational
forms (4.9b) and (4.9c) with the test functions vh = Qh(ψ

nD2ξ
n) and vh = Qh(ψ

nD1ξ
n),

respectively, we use again the second equality in Lemma 3.6 to get that

Λ0 + Λ1 = − (D2ξ
n, ψnD2ξ

n) + 2(D2ξ
n, ψnD2ξ

n) + 3(D3ξ
n, ψnD1ξ

n)

= − ‖D2ξ
n‖2
ψn +

[

τH(D1ξ
n, ψnD2ξ

n) + τH(D2ξ
n, ψnD1ξ

n)
]

+
[

2(D2ξ
n,Q⊥

h (ψnD2ξ
n)) + 3(D3ξ

n,Q⊥
h (ψnD1ξ

n))
]

+
[

2(D2η
n,Qh(ψ

nD2ξ
n)) + 3(D3η

n − ζn,Qh(ψ
nD1ξ

n))
]

:= − ‖D2ξ
n‖2
ψn + S1 + S2 + S3. (5.15)

The first term, −‖D2ξ
n‖2
ψn , provides an additional numerical stability in the time direction.

This term reflects the essential property inherent in the explicit TVDRK3 time-marching,
which is different to the explicit second order TVDRK time-marching [20].

Below we estimate the last three terms on the right-hand side of (5.15) separately.
Recalling the approximate antisymmetric property for H, we can use (3.10) in Lemma 3.4
to have that

S1 = − βτ
∑

j

ψn
j+ 1

2

[[D1ξ
n]]j+ 1

2

[[D2ξ
n]]j+ 1

2

+ τ(βD1ξ
n, ∂xψ

nD2ξ
n) := S11 + S12. (5.16)

Let ε1 be any positive constant. By the weighted Cauchy-Schwarz inequality and Young’s
inequality, we can get that

S11 ≤ β‖[[D1ξ
n]]‖ψn,Γh‖[[D2ξ

n]]‖ψn,Γhτ ≤ ε1βτ‖[[D1ξ
n]]‖2

ψn,Γh
+ (4ε1)

−1βτ‖[[D2ξ
n]]‖2

ψn,Γh

≤ ε1βτ‖[[D1ξ
n]]‖2

ψn,Γh
+ (2ε1)

−1µλ‖D2ξ
n‖2
ψn ,
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since λ = βτ/hmin = βτ/(νh), where we have used the inverse property (3.5b) (or (8.4)).
Along the similar line, we can also estimate S12. Using property (3.3b), we will get

S12 ≤ Cβγ−1h−στ‖D2ξ
n‖ψn‖D1ξ

n‖ψn ≤ CTβλγ−2h1−2σ‖D2ξ
n‖2
ψn + CT−1τ‖D1ξ

n‖2
ψn .

Combining the above two inequalities, we get an estimate to S1.
We can estimate the term S2 by the superconvergence result in Lemma 3.3. As an

application of the weighted Cauchy-Schwarz inequality and Young’s inequality, we have

S2 ≤ Cγ−1h1−σ‖D2ξ
n‖2
ψn + Cγ−1h1−σ‖D1ξ

n‖ψn‖D3ξ
n‖ψn

≤ CT−1τ‖D1ξ
n‖2
ψn + Cγ−1h1−σ‖D2ξ

n‖2
ψn + CTγ−2h2−2στ−1‖D3ξ

n‖2
ψn ,

≤ CT−1τ‖D1ξ
n‖2
ψn + C(γ−1h1−σ + Tβµ2ν−1λγ−2h1−2σ)‖D2ξ

n‖2
ψn

+ CTλ2γ−2h2−2στ−1(‖D3η
n‖2
ψn + ‖ζn‖2

ψn), (5.17)

since λ = βτ/(νh). Here we have used the elementary relationship between ‖D3ξ
n‖ψn and

‖D2ξ
n‖ψn , which is given in Lemma 5.2.

Since the considered projection is bounded in Vh in the weighted norm (see Lemma
3.3), we can estimate the next term S3 easily. A simple application of the weighted Cauchy-
Schwarz inequality and Young’s inequality yields

S3 ≤ C‖D2ξ
n‖ψn‖D2η

n‖ψn + C‖D1ξ
n‖ψn‖D3η

n‖ψn + C‖D1ξ
n‖ψn‖ζn‖ψn

≤ CT−1τ(‖D1ξ
n‖2
ψn + ‖D2ξ

n‖2
ψn) + CTτ−1(‖D2η

n‖2
ψn + ‖D3η

n‖2
ψn + ‖ζn‖2

ψn). (5.18)

We have now completed the estimate to the first two terms Λ0 and Λ1.
Next we turn to estimate the term Λ2 = 3(D3ξ

n, ψnD2ξ
n). By taking the test function

vh = Qh(ψ
nD2ξ

n) in (5.1c) in Lemma 5.1, and using Lemma 3.6 again, we get that

Λ2 = τH(D2ξ
n, ψnD2ξ

n) + 3(D3ξ
n,Q⊥

h (ψnD2ξ
n)) + 3(D3η

n − ζn,Qh(ψ
nD2ξ

n))

:= S4 + S5 + S6. (5.19)

This is a typical construction in our analysis process. For example, we have coped with
similar construction in (5.3) with different test functions.

Below we will estimate each of the terms above separately. First, we use the semi-
negative definition of H (see Lemma 3.4) and property (3.3b) of the weight function, to
bound S4 as follows

S4 = −1

2
βτ‖[[D2ξ

n]]‖2
ψn,Γh

+
1

2
τ(βD2ξ

n, ∂xψ
nD2ξ

n) ≤ Cλγ−1h1−σ‖D2ξ
n‖2
ψn , (5.20a)

since λ = βτ/(νh) and ν ≤ 1. Then we apply the superconvergence results (Lemma 3.3) to
estimate the remaining terms. Furthermore, we also apply Lemma 5.2 for the term S5 to
deal with the relationship between ‖D3ξ

n‖ψn and ‖D2ξ
n‖ψn . An application of the weighted

Cauchy-Schwarz inequality and Young’s inequality yields

S5 ≤ Cγ−1h1−σ‖D3ξ
n‖ψn‖D2ξ

n‖ψn

≤ ε2‖D2ξ
n‖2
ψn + Cε−1

2 γ−2h2−2σ(µ2λ2‖D2ξ
n‖2
ψn + ‖D3η

n‖2
ψn + ‖ζn‖2

ψn), (5.20b)

S6 ≤ ε2‖D2ξ
n‖2
ψn + Cε−1

2 (‖D3η
n‖2

ψn + ‖ζn‖2
ψn), (5.20c)
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where ε2 is any small positive constant. Summing up the above three inequalities, we get
the estimate to the term Λ2.

For the last term Λ3 = 3(D3ξ
n, ψnD3ξ

n), it is easy to get from Lemma 5.2 that

Λ3 = 3‖D3ξ
n‖2
ψn ≤ 6µ2λ2‖D2ξ

n‖2
ψn + C‖D3η

n‖2
ψn + C‖ζn‖2

ψn . (5.21)

Finally, we collect all of the above results about Λ0, Λ1, Λ2 and Λ3, and then complete
the proof of this lemma.

5.3 Proof of Lemma 4.3

Let us illustrate in this subsection how to prove Lemma 4.3, or estimate the term Π2. Due
to (4.7), we can write Π2 into the summation of terms like

Gℓ,κ := (Dℓξ
n,Q⊥

h (ψnξn,κ)), ℓ = 1, 2, 3;κ = 0, 1, 2. (5.22)

We refer to this kind of terms as the troublesome terms in this paper, since they are the
result of the weight function; if ψ ≡ 1, these terms will be equal to zero.

First we estimate the troublesome term G1,κ, as an example. If we use directly the
weighted Cauchy-Schwarz inequality to bound this term by ‖D1ξ

n‖ψn , the estimate is not
sharp enough. This difficulty can be overcome by focusing on the highest frequency compo-
nent N(D1ξ

n) and using the property of the Gauss-Radau projection. Since the residual of
the projection is orthogonal to any lower frequency component (the polynomials of degree
at most k − 1) in each cell, we have

G1,κ =
∑

j

(N(D1ξ
n),Q⊥

h (ψnξn,κ))j .

Then we use the weighted Cauchy-Schwarz inequality, the superconvergence result (Lemma
3.3), Young’s inequality and Lemma 5.4, to have

G1,κ ≤ ‖N(Dℓξ
n)‖ψn‖Q⊥

h (ψnξn,κ)‖(ψn)−1 ≤ Cγ−1h1−σ‖N(D1ξ
n)‖ψn‖ξn,κ‖ψn

≤ CT−1‖ξn,κ‖2
ψnτ + CTγ−2h2−2στ−1‖N(D1ξ

n)‖2
ψn (5.23)

≤ CT−1‖ξn,κ‖2
ψnτ + CTβ2ν−1γ−2h1−2σ‖[[ξn]]‖2

ψn,Γh
τ + CTγ−2h2−2στ−1‖D1η

n‖2
ψn .

Along the same line as before, it is easy to estimate the other terms G2,κ and G3,κ. The
estimate reads

G2,κ +G3,κ ≤ CT−1‖ξn,κ‖2
ψnτ + CTβ2ν−1γ−2h1−2σ

∑

ℓ=0,1,2

‖[[ξn,ℓ]]‖2
ψn,Γh

τ

+ CTγ−2h2−2στ−1
(

∑

ℓ=1,2,3

‖Dℓη
n‖2
ψn + ‖ζn‖2

ψn

)

, (5.24)

which is similar to the former estimate. Finally, we collect the above inequalities to complete
the proof of this lemma.
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5.4 Proof of Lemma 4.5

In this subsection we turn to prove Lemma 4.5 and estimate the last term Π4. Recalling
the expression (4.16), we only need to cope with the second term Π42. This term is also a
troublesome term, and it is equal to zero if ψ ≡ 1.

To do that, we would like to give a new expression of this term. By Taylor’s expansion
in the time direction and the mean value theorem of integration, we have

ψn+1(x) − ψn(x) = τ∂tψ(x, tn) +

∫ tn+1

tn
(tn+1 − t′)∂2

t ψ(x, t′)dt′

= − βτ∂xψ
n +

∫ tn+1

tn
β2(tn+1 − t′)∂2

xψ(x− β(t′ − tn), tn)dt′

= − βτ∂xψ
n +

1

2
β2τ2∂2

xψ
n(θn),

where θn := θn(x) is a certain mean value satisfying |θn−x| ≤ βτ , since the weight function
ψ(x, t) is the solution of ψt + βψx = 0. By virtue of definition (4.6), a simple manipulation
leads to the equivalent expression

Π42 = − τ(β∂xψ
nD3ξ

n, 3ξn+1 + 6ξn,2 − 9ξn) − 1

2
τ(β∂xψ

nD2ξ
n, 10ξn,2 + 5ξn,1 − 7ξn)

+
3

2
τ2(β2∂2

xψ
n(θn)ξn+1, ξn+1) − 2τ(βD1ξ

n, ∂xψ
nD1ξ

n) − 3τ(βD1ξ
n, ∂xψ

nξn)

:= Z1 + Z2 + Z3 + Z4 + Z5. (5.25)

The remaining work is to estimate the above terms separately.
The first two terms Z1 and Z2 can be estimated by property (3.3b) of the weight func-

tion and the trivial relationship given in Lemma 5.2. Using the weighted Cauchy-Schwarz
inequality and Young’s inequality, we have that

Z1 + Z2 ≤ Cβτγ−1h−σ (‖D3ξ
n‖ψn + ‖D2ξ

n‖ψn)
∑

‖ξn,ℓ‖ψn

≤ CT−1
∑

‖ξn,ℓ‖2
ψnτ + CTβ2τγ−2h−2σ

(

‖D3ξ
n‖2
ψn + ‖D2ξ

n‖2
ψn

)

≤ CT−1
∑

‖ξn,ℓ‖2
ψnτ + CTβλ(λ2 + 1)γ−2h1−2σ‖D2ξ

n‖2
ψn

+ CTλ4γ−2h2−2στ−1
(

‖D3η
n‖2
ψn + ‖ζn‖2

ψn

)

, (5.26)

since λ = βτ/(νh) and ν ≤ 1. Here the notation
∑

represents the summation of some
same-type terms for ℓ = 0, 1, 2, 3; also ξn,3 = ξn+1.

Recalling the assumption that γhσ−1 is large enough, at this moment, we assume fur-
thermore that γhσ−1 is over the maximum CFL number λmax. It implies |θn − x| ≤ βτ ≤
λmaxh ≤ γhσ , and thus Proposition 3.1 ensures that |∂2

xψ
n(θn)| ≤ Cγ−2h−2σψn(x). This

yields the estimate to the third term Z3, in the form

Z3 ≤ Cβ2τγ−2h−2σ‖ξn+1‖2
ψnτ = Cβλγ−2h1−2σ‖ξn+1‖2

ψnτ. (5.27)

The last two terms Z4 and Z5 both contain the lower-index argument D1ξ
n. The esti-

mates are a bit more involved, especially for the term Z4.
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For the term Z4, we start from the trivial inequality Z4 ≤ Cβγ−1h−σ‖D1ξ
n‖2
ψnτ , due

to the second inequality (3.3b) in Proposition 3.1. This conclusion holds for both weight
functions ψ := ψ(±1), although the term Z4 is actually not greater than zero for the weight
function ψ(−1), owing to its monotonicity.

Thanks to the generalized slope function M(D1ξ
n) and the reverse relationship described

in Lemma 5.3, as well as the additional numerical stability provided by the TVDRK3 time-
marching, we are able to obtain a sharp estimate to the weighted L2 norm ‖D1ξ

n‖ψn , and
arrive at the following lemma.

Lemma 5.5 Assume the weight function ψ(x, t) satisfies Proposition 3.1 and γhσ−1 is
large enough. Let ε be any positive constant. Then we have

‖D1ξ
n‖2
ψn ≤ C(ε+ λ2γ−2h2−2σ)‖ξn‖2

ψn + Cλ2ε−1h‖[[D1ξ
n]]‖2

ψn,Γh
+ Cε−1ν−2‖D2ξ

n‖2
ψn

+ Cε−1ν−2‖D2η
n‖2
ψn + C‖D1η

n‖2
ψn ,

where the bounding constant C > 0 is independent of ε, ν, λ, β, γ, σ, h, τ , n and T .

We are going to present the proof of this lemma in the appendix and now come back to
the estimate of Z4. Taking ε = νβ−1T−1γhσ in the above lemma, we have

Z4 ≤ C(T−1 + βλ2γ−3h2−3σ)‖ξn‖2
ψnτ + CTβ2λ2ν−1γ−2h1−2σ‖[[D1ξ

n]]‖2
ψn,Γh

τ

+ CTβν−1λγ−2h1−2σ‖D2ξ
n‖2
ψn

+ CTν−1λ2γ−2h2−2στ−1‖D2η
n‖2

ψn +Cβ−1λ2γ−1h2−στ−1‖D1η
n‖2
ψn , (5.28)

since λ = βτ/(νh) and ν ≤ 1.
Now we begin to estimate the last term Z5. Taking the test function vh = Qh(∂xψ

nξn)
in the error equation (4.9a), we have a similar equality as before

Z5 = −3τ2H(ξn, β∂xψ
nξn) − 3τ(D1ξ

n, βQ⊥
h (∂xψ

nξn)) − 3τ(D1η
n, βQh(∂xψ

nξn)).

Each term on the right-hand side is denoted respectively by Z51, Z52, and Z53 in order, and
can be estimated as in Lemma 5.2.

Noticing that |∂xψ(∓)| = ±∂xψ(∓) is also a weight function satisfying Lemma 3.3, we
are allowed to use the inverse properties in Lemma 3.1 and the superconvergence result in
Lemma 3.3, with the new weight function |∂xψ|, to estimate each of the above terms. For
instance, a simple manipulation like that in Lemma 3.4 yields

Z51 =
3τ2

2
β2

∑

j

(∂xψ
n)j+ 1

2

[[ξn]]2
j+ 1

2

− 3τ2

2
(βξn, ∂2

xψ
nβξn)

≤ Cλγ−1h1−σβ‖[[ξn]]‖2
ψn,Γh

τ + Cβλγ−2h1−2σ‖ξn‖2
ψnτ,

where we have used property (3.3b) of the weight function. Further, using Young’s inequality
and Lemma 5.4 about the highest frequency component, we have

Z52 ≤ Cβτ‖N(D1ξ
n)‖|∂xψn|‖Q⊥

h (∂xξ
n)‖|∂xψn|−1

≤ Cβτγ−1h1−σ‖N(D1ξ
n)‖|∂xψn|‖ξn‖|∂xψn| ≤ Cβτγ−2h1−2σ‖N(D1ξ

n)‖ψn‖ξn‖ψn

≤ CT−1‖ξn‖2
ψnτ + CTβ2ν−2λ2γ−4h3−4σ‖[[ξn]]‖2

ψn,Γh
τ + CTλ2γ−4h4−4στ−1‖D1η

n‖2
ψn .
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Similarly we will get the estimate

Z53 ≤ Cβτ‖D1η
n‖|∂xψn|‖ξn‖|∂xψn| ≤ Cβτγ−1h−σ‖D1η

n‖ψn‖ξn‖ψn

≤ CT−1‖ξn‖2
ψnτ + CTλ2γ−2h2−2στ−1‖D1η

n‖2
ψn .

Note that, in the above processes, we have used the simple fact that λ = βτ/(νh) and ν ≤ 1.
Collecting the above equalities about Z51, Z52 and Z53, we will get the estimate to the

last term Z5 in the form

Z5 ≤ C(T−1 + βλγ−2h1−2σ)‖ξn‖2
ψnτ + C(Tβ2λ2ν−2γ−4h3−4σ + βλγ−1h1−σ)‖[[ξn]]‖2

ψn,Γh
τ

+ C(Tλ2γ−4h4−4σ + Tλ2γ−2h2−2σ)τ−1‖D1η
n‖2
ψn . (5.29)

Finally we collect the above inequalities from (5.26) to (5.29), and make a simple amplifi-
cation to the jump’s norms. This completes the proof of this lemma.

6 Numerical experiments

In this section we present some numerical experiments to verify the conclusion given in
Theorem 2.1. The same model problem is considered for all numerical tests.

Let us consider problem (1.1) with β = 1 and the initial condition

U0(x) =











− sin9(4πx), x ∈ (0.25, 0.375),

sin9(4πx), x ∈ (0.375, 0.50),

0, otherwise,

(6.1)

which has a sole discontinuity at x = 0.375 and is piecewise smooth on both sides. We will
adopt the RKDG3 method to compute the solution at the final time T = 0.25, where the
discontinuity moves to x = 0.625. Since the solution is compactly-supported, we would like
to carry out our simulations only on the unit interval [0, 1].

Example 1. We use piecewise quadratic polynomials (k = 2) on uniform spatial meshes,
together with the uniform time stepping with the CFL number λ = 0.18. The ℓ-th mesh
refers to a mesh with the mesh size hℓ = 2−ℓ+1/1000 for ℓ ≥ 1. We compute the errors and
convergence orders at the final time T = 0.25, on the left and the right, respectively, of the
singularity x = 0.625, namely,

RL
T = (−∞, 0.625 − 0.5h1/2), and RR

T = (0.625 + 0.8h1/2,+∞). (6.2)

Note that we did not use a logarithmic in this computational experiment, since it is difficult
to distinguish log(1/h) from a constant for the mesh sizes that we consider. We simply take
the pollution region around the discontinuity as RT = (0.625 − 0.5h1/2, 0.625 + 0.8h1/2)
with the coefficients 0.5 and 0.8 chosen from visual inspection of the errors for the coarsest
mesh.

The errors and convergence orders for k = 2, in the L2-norm and maximum-norm in
different domains, are listed in Table 1. As we can see, the optimal orders of convergence
are realized; this confirms the prediction of Theorem 2.1 that the pollution region sizes on
both sides of the discontinuity are no larger than about the order O(h1/2).
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Table 1: Example 1. Errors and convergence orders in the L2-norm and maximum norm,
to the left and to the right of the singularity. Here k = 2 and λ = 0.18.

Left-hand interval RL
T Right-hand interval RR

T

1/hℓ L2-error order L∞-error order L2-error order L∞-error order

1000 5.901e-8 8.363e-7 4.749e-8 8.205e-7

2000 7.900e-9 2.901 1.039e-7 3.009 7.028e-9 2.756 1.029e-7 2.995

4000 1.033e-9 2.935 1.303e-8 2.995 9.611e-10 2.870 1.290e-8 2.996

8000 1.329e-10 2.958 1.631e-9 2.998 1.270e-10 2.920 1.614e-9 2.998

16000 1.695e-11 2.972 2.040e-10 2.998 1.645e-11 2.949 2.019e-10 2.999

32000 2.147e-12 2.980 2.551e-11 2.999 2.104e-12 2.966 2.525e-11 3.000

Next we would like to investigate the exact power r of the pollution region size O(hr)
based on the above obtained numerical results, to check the sharpness of our result on the
order of the pollution region sizes. To that end, we carry out the following process, as an
example, to find out the convergence order for the left size of the pollution region at the
discontinuity point xd = 0.625. The discussion on the right size is similar.

1. We first compute eℓm for each m ≥ 1 and ℓ ≥ 1, which is the L2-norm error in the
interval (−∞, xd − mhℓ). In our test hℓ+1 = hℓ/2, as given in Table 1. Then we
arrange data eℓm in a rectangular array, each row is for a fixed ℓ, and each column is
for a fixed m.

2. Find out the left boundary position mℓ for each mesh:

(a) Let ℓ = 1. In principle m1 can be chosen arbitrarily, for example we can take
m1 = 1. Different choices of m1 will only affect the coefficient s1 (but not
the power s2) and the speed to enter the asymptotic regime of the least square
procedure below in estimating the pollution region size. For better results within
the sequence of meshes we can simulate, we visually scan the errors e1m from the
first row and choose a suitable boundary position m1 to stay away from the
apparent oscillatory and large error cells near the discontinuity for this mesh.

(b) Define the error threshold by El+1 := eℓmℓ
/(hℓ/hℓ+1)

k+0.95, where k is the degree
of piecewise polynomials, and in our test hℓ/hℓ+1 = 2 due to the mesh refinement.
Then we scan each number eℓ+1

m at the next row from left to right, until the error
eℓ+1
mℓ+1

passes below the threshold Eℓ+1. This scanning gives the position of the
left-hand boundary mℓ+1.

(c) Let ℓ := ℓ + 1, and go back to step (b). Repeat this process until all data have
been scanned.

3. Determine the power s2 from the above collected data (hℓ,mℓ), by a least-square fit
to the rule about the left size of pollution region mℓhℓ = s1h

s2
ℓ , where s1 and s2 are

the unknowns to be obtained by the least-square procedure.
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Carrying out the above process for the numerical solutions, we find out the position of
the left-hand and the right-hand boundary of the pollution region, denoted by mL

ℓ and mR
ℓ

respectively. The collected data are listed in Table 2, where the first column of the data
comes from visual observation on the numerical solution and the error plotted in the left
picture of Figure 1, to stay away from the apparent oscillatory and large error cells near
the discontinuity for this mesh.

Table 2: Example 1. The numerical positions of the left-hand and the right-hand boundaries
of the pollution region at the ℓ-th mesh.

ℓ 1 2 3 4 5 6

mL
ℓ 4 7 11 16 22 29

mR
ℓ 5 9 14 20 27 34

Next we plot the picture of log2(mℓ) versus log2(h1/hℓ) = ℓ in Figure 1 right, where the
circle is for the left-hand boundary, and the square is for the right-hand boundary. The
straight lines are the least square fitted lines to the data points. Note that here we have
dropped the first group of the data which seems to be not in the asymptotic regime. The
remaining points appear to be well fitted by the least square straight lines. The least square
process provides s2 = 0.490 for the left side and s2 = 0.522 for the right side (the slopes of
the least square lines in Figure 1 right are equal to 1 − s2). It appears that the pollution
region size is almost of the same order O(h1/2) on both sides of the discontinuity, suggesting
that our estimate about the pollution region size, O(h1/2 log h−1), is sharp.
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Figure 1: Example 1. Left: numerical solution and the error (in absolute value) for the
coarsest mesh. Right: Dependence of the pollution region size and the mesh length.

At the end of this subsection, we also present two additional numerical experiments to
show that the size of the pollution region does not depend strongly on the CFL number λ
and the degree of the piecewise polynomials.

Example 2. We again use the RKDG3 method to compute the solution at the final time
T = 0.25, with piecewise quadratic polynomials on the uniform meshes. The only difference
is that we use a smaller CFL number λ = 0.09. The errors and convergence orders, in the
L2-norm and maximum-norm on the same two domains (6.2), are listed in Table 3. As we
can see, the optimal orders of convergence are still realized and they seem to be independent
of the CFL number.
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Table 3: Example 2. Errors and convergence orders in the L2-norm and maximum norm,
to the left and to the right of the singularity. Here k = 2 and λ = 0.09.

Left-hand interval RL
T Right-hand interval RR

T

1/hℓ L2-error order L∞-error order L2-error order L∞-error order

1000 4.812e-8 8.018e-7 3.410e-8 7.371e-7

2000 6.496e-9 2.889 9.605e-8 3.061 5.653e-9 2.593 9.606e-8 2.940

4000 8.373e-10 2.956 1.201e-8 2.999 7.924e-10 2.835 1.201e-8 2.999

8000 1.059e-10 2.983 1.502e-9 3.000 1.037e-10 2.934 1.502e-9 3.000

16000 1.329e-11 2.994 1.878e-10 3.000 1.319e-11 2.975 1.878e-10 3.000

32000 1.665e-12 2.997 2.347e-11 3.000 1.660e-12 2.990 2.347e-11 3.000

Example 3. Now we use the piecewise cubic polynomials (k = 3) on uniform meshes,
as the finite element space in the RKDG3 method. We also compute the solution until the
same final time T = 0.25, To obtain the optimal fourth order accuracy, we take the time
step τ = 0.18h4/3, where h is the uniform mesh length. The errors and convergence orders
in the L2-norm and maximum-norm, on the two domains same as (6.2), are listed in Table
4. We can observe that, the optimal orders of convergence is also achieved.

Table 4: Example 3. Errors and convergence orders in the L2-norm and maximum norm,
to the left and to the right of the singularity. Here k = 3.

Left-hand interval RL
T Right-hand interval RR

T

1/hℓ L2-error order L∞-error order L2-error order L∞-error order

1000 1.577e-10 2.002e-9 1.574e-10 2.002e-9

2000 1.046e-10 3.914 1.252e-10 4.000 9.756e-12 4.012 1.252e-10 4.000

4000 7.032e-13 3.895 9.424e-12 3.731 6.351e-13 3.941 7.824e-12 4.000

8000 4.674e-14 3.911 6.522e-13 3.853 4.271e-14 3.894 5.480e-13 3.835

Next, we would like to repeat the investigation on the size of the pollution region, using
the least-square fitting as in Example 1. After finding out the numerical positions of the left
and right boundaries of the pollution region, we plot the discrete data in the right picture
of Figure 2 as before. The circles are for the data log2(m

L
ℓ ) versus log2(h1/hℓ) = ℓ, and the

squares are for the data log2(m
R
ℓ ) versus ℓ. We have again dropped the data for the coarsest

mesh which seems to be not in the asymptotic regime. The least square fitting lines are also
plotted, which seem to fit the data well. The slopes are given by s2 = 0.500000000000000097
for the left boundary and s2 = 0.499999999999999937 for the right boundary, both of them
being very close to 0.5. This seem to suggest that the prediction of Theorem 2.1 about
the order of the pollution region size is sharp and is independent of the degree of piecewise
polynomials.
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Figure 2: Example 3. Left: numerical solution and the error (in absolute value) for the
coarsest mesh. Right: Dependence of the pollution region size and the mesh length.

7 Concluding remarks

In this paper we have considered the a priori error estimate for the RKDG3 scheme for
a linear hyperbolic equation with discontinuous but piecewise smooth initial condition.
The pollution region size at the final time T is shown to be at most in the order of
O(

√
Tβh1/2 log(1/h)), which is independent of the CFL number λ below the stability bound,

and also holds for the semi-discrete DG methods. This analysis is based on the energy esti-
mate with two suitable weight functions, where the additional numerical stability provided
by the TVDRK3 time-marching, the technique in [4] with respect to the generalized slope
function, and the technique using the highest frequency component play important roles. In
future work we will consider the sharp estimate on the pollution region-size if slope limiters
are introduced in the fully discrete DG methods, and extend our result to the nonlinear
conservation laws with discontinuous solutions in one-dimension and multi-dimension.

8 Appendix

8.1 Proof of Lemma 3.3

The second conclusion is obviously the corollary of the first one, so we only prove the first
inequality of Lemma 3.3. To that end, we just need to consider this error estimate in a
given cell Ij, and then summing this result over all elements.

Since the considered projection W is linear and is exact for any piecewise polynomials
vh, we have W⊥(ψvh) = W⊥((ψ− cj)vh), where cj is any arbitrary constant. Starting form
the general approximation property [3], or the conclusion in Lemma 3.2 (with ψ = 1), we
can find a bounding constant C > 0 independent of j and vh, such that

‖W⊥(ψvh)‖Ij + hj‖∂x(W⊥(ψvh))‖Ij ≤ Chj‖∂x((ψ − cj)vh)‖Ij
≤ Chj‖∂xψvh‖Ij + Chj‖(ψ − cj)∂xvh‖Ij . (8.1)

Taking cj = ψ(xj) and noticing γhσ ≥ h ≥ hj , then we will have

RHS of (8.1) ≤ Chj‖∂xψ‖L∞(Ij)‖vh‖Ij + Ch2
j‖∂xψ‖L∞(Ij)‖∂xvh‖Ij

≤ Chj‖∂xψ‖L∞(Ij)‖vh‖Ij ≤ Cγ−1h1−σ
j ‖ψ‖L∞(Ij)‖vh‖Ij , (8.2)
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due to the first inverse property in Lemma 3.1 (with ψ = 1 there), and property (3.3b) of
the weight function ψ(x, t).

Next, we multiply the quantity ψ−1/2(xj) in the above inequality. Using property (3.3a)
of the weight function gives us that

‖W⊥(ψvh)‖ψ−1,Ij + hj‖∂x(W⊥(ψvh))‖Ij ≤ Cγ−1h1−σ
j ‖vh‖ψ,Ij , (8.3)

the sum of which on every cells yields the first conclusion of this lemma.

8.2 Proof of Lemma 3.5

After an integration by parts, we have H(w,ψv) = −∑

j(βψv,wx)j−
∑

j βψj+ 1

2

[[w]]j+ 1

2

v+
j+ 1

2

.

Each term on the right-hand side can be easily estimated by the weighted Cauchy-Schwarz
inequality and the inverse properties in Lemma 3.1, which follows

∑

j

ψj+ 1

2

(v+
j+ 1

2

)2 ≤ µ(νh)−1‖v‖2
ψ ,

∑

j

ψj+ 1

2

[[w]]2
j+ 1

2

≤ 2µ(νh)−1‖w‖2
ψ , (8.4)

form the simple inequality (a−b)2 ≤ 2(a2 +b2), if both w and v belong to the finite element
space Vh. The final upper boundedness reads |H(w,ψv)| ≤ (1 +

√
2)βµ(νh)−1‖w‖ψ‖v‖ψ .

This completes the proof of this lemma.

8.3 Proof of Lemma 4.1

We can prove every conclusion in this lemma along the same way. First we multiply the
test function vh ∈ Vh on both sides of the following three equalities: the definitions (4.4a)
and (4.4b), and the equality

u(x, t+ τ) =
1

3
u(0)(x, t) +

2

3
u(2)(x, t) +

2

3
τu

(2)
t (x, t) + ζ(x, t), (8.5)

which will be proved later. Then we transform the time derivatives into space derivatives
with the application of the hyperbolic equation (4.1). Finally, fixing the time at t = tn and
integration by parts yield the conclusions of this lemma.

Now we prove equation (8.5) and complete the proof of this lemma. Using (4.4b) and
(4.4a) successively, we will get

1

3
u(0) +

2

3
u(2) +

2

3
τu

(2)
t =

5

6
u(0) +

1

6
u(1) +

1

2
τu

(0)
t +

1

3
τu

(1)
t +

1

6
τ2u

(1)
tt

= u(0) + τu
(0)
t +

1

2
τ2u

(0)
tt +

1

6
τ3u

(0)
ttt = u(x, t+ τ) − ζ(x, t),

where the last equality comes from the Taylor’s expansion in time. Here we have dropped
the arguments (x, t) for simplicity of notations.

8.4 Proof of Lemma 5.5

At the firs step we take the test function vh = Qh(ψ
nD1ξ

n) in (5.1a), and obtain the explicit
expression

‖D1ξ
n‖2
ψn = τH(ξn, ψnD1ξ

n) + (D1ξ
n,Q⊥

h (ψnD1ξ
n)) + (D1η

n,Qh(ψ
nD1ξ

n)). (8.6)
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This result has almost the same construction as (5.3). Each term on the right-hand side,
denoted respectively by Y1, Y2 and Y3 in order, will be estimated one by one.

The main work in this proof is how to get a sharp estimate to the first term Y1. To do
that, we have to abandon the conclusion in Lemma 3.5, and adopt the decomposition with
respect to the generalized slope function M(D1ξ

n).

Note that ∂x(D1ξ
n) = M(D1ξ

n)(x−xj)/hj+∂x(M(D1ξ
n))/hj in each cell Ij . Expanding

the spatial derivative ∂x(ψ
nD1ξ

n) in H(ξn, ψnD1ξ
n), and applying the weighted Cauchy-

Schwarz inequality to each term there, we will obtain the inequality

Y1 ≤ 1

2
βτ‖ξn‖ψn‖∂x(M(D1ξ

n))‖ψn + ν−1βτh−1‖ξn‖ψn‖M(D1ξ
n)‖ψn

+ τβ‖ξn‖|∂xψn|‖D1ξ
n‖|∂xψn| +

√
2τβ‖ξn‖ψn,Γh‖[[D1ξ

n]]‖ψn,Γh , (8.7)

where we have also used |(x − xj)/hj | ≤ 1/2 and h−1
j ≤ ν−1h−1 in each cell. Since both

M(D1ξ
n) and ξn belong to Vh, we use the inverse properties (3.5a) and (3.5b), in Lemma

3.1, to estimate the first and the last terms on the right-hand side of (8.7), respectively.
Further, we use property (3.3b) of the weight function to cope with the third term. Together
with the application of Young’s inequality, the above process yields

Y1 ≤ Cλ‖ξn‖ψn(‖M(D1ξ
n)‖ψn + h

1

2‖[[D1ξ
n]]‖ψn,Γh) + Cλγ−1h1−σ‖ξn‖ψn‖D1ξ

n‖ψn

≤ Cε‖ξn‖2
ψn + Cλ2ε−1(‖M(D1ξ

n)‖2
ψn + h‖[[D1ξ

n]]‖2
ψn,Γh

)

+ Cλ2γ−2h2−2σ‖ξn‖2
ψn +

1

6
‖D1ξ

n‖2
ψn ,

where ε is any small positive constant. Hence, Lemma 5.3 about the generalized slope
function gives that

Y1 ≤ C(ε+ λ2γ−2h2−2σ)‖ξn‖2
ψn + Cλ2ε−1h‖[[D1ξ

n]]‖2
ψn,Γh

+
1

6
‖D1ξ

n‖2
ψn

+ Cε−1ν−2(‖D2ξ
n‖2
ψn + ‖D2η

n‖2
ψn). (8.8)

By using the superconvergence results given in Lemma 3.3, the weighted Cauchy-Schwarz
inequality, and Young’s inequality, we have the estimate to the remaining terms

Y2 + Y3 ≤ Cγ−1h1−σ‖D1ξ
n‖2
ψn + C‖D1ξ

n‖ψn‖D1η
n‖ψn ≤ 1

3
‖D1ξ

n‖2
ψn +C‖D1η

n‖2
ψn , (8.9)

here γhσ−1 is assumed to be large enough such that Cγ−1h1−σ ≤ 1/6. Finally we substitute
inequalities (8.8) and (8.9) into (8.6), and solve out ‖D1ξ

n‖2
ψn . This completes the proof of

this lemma.

8.5 Proof of inequality (5.6)

The proof is straightforward by using an integration by parts, and is almost the same as
that in [4]. A simple manipulation yields that

B−
j (M(x)) =

1

4
ψ(xj+ 1

2

)M2(xj+ 1

2

) +
1

4hj

∫

Ij

M
2(x)ψ(x)dx+ Ψ, (8.10)
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where Ψ = −(2h2
j )

−1
∫

Ij
M

2(x)∂xψ(x)(x−xj−1/2)(x−xj)dx. Property (3.3b) of the weight

function implies that

|Ψ| ≤ 1

4γhσ

∫

Ij

M
2(x)ψ(x)dx ≤ 1

8hj

∫

Ij

M
2(x)ψ(x)dx, (8.11)

if γhσ−1 is assumed to be large enough, since |2(x−xj−1/2)(x−xj)| ≤ h2
j in each cell. Thus

we have completed the proof of this lemma.
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