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Abstract In this paper we analyze the explicit Runge-Kutta discontinuous Galerkin (RKDG) methods for

the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells

in biology. The RKDG methods use a third order explicit total-variation-diminishing Runge-Kutta (TVDRK3)

time discretization and upwinding numerical fluxes. By using the energy method, under a standard CFL

condition, we obtain L
2 stability for general solutions and a priori error estimates when the solutions are smooth

enough. The theoretical results are proved for piecewise polynomials with any degree k > 1. Finally, since the

solutions to this system are non-negative, we discuss a positivity-preserving limiter to preserve positivity without

compromising accuracy. Numerical results are provided to demonstrate these RKDG methods.
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1 Introduction

Aggregation and coordinated movement are common behaviors that can be observed in many species

such as schools of fish and flocks of birds, as well as in some cell populations. These behaviors lead to a

variety of forms and patterns and they serve different purposes. For example, the school of fish moving

in a highly organized way is considered a strategy against predation [15], and under starvation conditions

the cells aggregate and form stalks to become fruiting bodies [17]. There are two kinds of factors which

play important roles in influencing these behaviors. One is external signals, such as chemicals, light,

temperature and humidity. The other is interaction between individuals (self-organized movements) that

causes group formation. In this paper we focus on models describing self-organized movements.
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For such movements, the simplest hyperbolic model is the classical Goldstein-Kac theory for correlated

random walk [10, 14] when the turning rates are constants:
{

ut + γux = µ
2 (v − u)

vt − γvx = µ
2 (u − v)

(1.1)

This model describes two kinds of particles moving in opposite directions on a line, where u(x, t) and

v(x, t) are the densities of left-moving and right-moving individuals respectively. The particles move in a

constant speed γ and change their directions with a constant rate µ
2 . In stochastic processes this means

that the probability they do not change their directions in time [0, t) is e−
µt
2 , where µ

2 is the rate param-

eter of a Poisson process. Since most of biological populations live in limited areas, the mathematical

models are often defined on bounded domains. Three types of boundary conditions (Dirichlet, Neumann

and periodic) to (1.1) on bounded domains are discussed in [13]. It is pointed out that the solutions

are as smooth as the initial conditions and singularities are transported along the characteristics for

both Neumann and periodic boundary conditions, while for Dirichlet boundary conditions singularities

disappear and the solutions are regularized in finite time.

Consider the total population density p = u+ v and the flux q = u− v. Then from (1.1) we obtain the

following equations
{

pt + γqx = 0

qt + γpx = −µq
(1.2)

For periodic or Neumann boundary conditions the total density is preserved. Differentiating the equations

of (1.2) with respect to x and t and eliminating ∂2q
∂t∂x and ∂q

∂x (Kac’s trick in [14]), we get the scalar

telegraph equation

ptt + µpt = γ2pxx (1.3)

The relationships among (1.1), (1.2) and (1.3) are investigated in [11].

Since biological phenomena such as splitting, merging and population increase of groups are compli-

cated, the assumption of a constant speed and constant turning rates may not always be true. Often,

individuals in a group change their directions when interacting with their neighbors locally or globally.

These interactions can be direct through neighbors’ densities [7, 8, 12, 15, 17], or indirect through the

chemicals produced by their neighbors [16]. With a constant speed and very simple turning rate func-

tions, it is possible to find exact analytical solutions [12]. However, for general cases, only numerical

and qualitative results (such as existence and asymptotic behavior) are shown [7, 8, 15, 17]. Numerical

results in these works consider alignment, attraction and repulsion between individuals and obtain a

variety of patterns by using first order upwind and second order Lax-Wendroff schemes. To improve

on the efficiency and reliability of the numerical simulations, in this paper we develop high order accu-

rate explicit Runge-Kutta discontinuous Galerkin (RKDG) methods to a semilinear hyperbolic model

and provide theoretical supports to these methods including L2 stability, a priori error estimates, and

positivity-preserving properties.

The DG method was first introduced by Reed and Hill [18] in 1973 to solve the neutron transport

equation, which is a linear hyperbolic conservation law. Later it was developed into RKDG methods

by Cockburn et al [2–6]. They combine the DG discretization in space with explicit total variation

diminishing (TVD) Runge-Kutta method [19] in time and successfully solve nonlinear conservation laws.

The RKDG method has advantages of high-order accuracy, high parallel efficiency and the flexibility in

handling complicated geometry. Stability results for RKDG method applied to linear hyperbolic equations

are obtained in [21], and a priori error estimates for hyperbolic equations without the global source terms

are given in [20, 21]. The analysis in this paper is generalization to the semilinear systems for correlated

random walk.

This paper is organized as follows. In Section 2 we introduce our model and its properties including

its energy-boundedness and positivity-preserving property. In Section 3 we introduce some notations and
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preliminary results to prepare for the analysis later. In Section 4 we first construct the semi-discrete

DG scheme, and prove its L2 stability. We then discuss third order TVD Runge-Kutta discontinuous

Galerkin scheme and, using the energy method, we obtain L2 stability and error estimates under suitable

CFL conditions. The stability result holds for arbitrary solutions and the error estimates are obtained

when the solutions are sufficiently smooth. In Section 5 we first discuss a first order upwind scheme to

serve as building blocks for our higher order DG schemes, and prove its positivity-preserving property

under a suitable CFL condition. We then discuss a positivity-preserving limiter to guarantee positivity of

the numerical solution of higher order DG schemes without compromising its accuracy. In Section 6 we

present some numerical results to demonstrate these numerical methods. Concluding remarks are given

in Section 7. Some of the technical proofs for several lemmas are given in Section 8 which serves as an

appendix.

2 The model and its properties

In this paper, we consider a correlated random walk model in [8]. It is a nonlocal one-dimensional

hyperbolic system with a constant speed γ and density-dependent turning rate functions. The system is

given as















ut + γux = −λ1u+ λ2v, (x, t) ∈ R × [0, T ]

vt − γvx = λ1u− λ2v, (x, t) ∈ R × [0, T ]

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R

(2.1)

We will study system (2.1) on interval [0, L] with periodic boundary conditions

u(0, t) = u(L, t), v(0, t) = v(L, t)

with the solution u, v extended periodically on R with period L. λ1, λ2 are the turning rate functions

defined as follows

λ1 = a1 + a2f(y1[u, v]) = a1 + a2f(0) + a2(f(y1[u, v]) − f(0)) (2.2a)

λ2 = a1 + a2f(y2[u, v]) = a1 + a2f(0) + a2(f(y2[u, v]) − f(0)) (2.2b)

where a1, a2 are positive constants and a1 + a2f(0) is the autonomous turning rate, and a2(f(y1[u, v])−
f(0)) and a2(f(y2[u, v]) − f(0)) are the bias turning rates considered to be influenced by three social

interactions: attraction (y1,a, y2,a), repulsion (y1,r, y2,r) and alignment (y1,al, y2,al).

f(y) = 0.5 + 0.5 tanh(y − y0), p = u+ v,

y1[u, v] = y1,r[u, v] − y1,a[u, v] + y1,al[u, v],

y2[u, v] = y2,r[u, v] − y2,a[u, v] + y2,al[u, v],

y1,r[u, v] = qr

∫ ∞

0

Kr(s)(p(x + s) − p(x− s))ds,

y1,a[u, v] = qa

∫ ∞

0

Ka(s)(p(x + s) − p(x− s))ds,

y1,al[u, v] = qal

∫ ∞

0

Kal(s)(v(x + s) − u(x− s))ds,

y2,r[u, v] = qr

∫ ∞

0

Kr(s)(p(x − s) − p(x+ s))ds,

y2,a[u, v] = qa

∫ ∞

0

Ka(s)(p(x − s) − p(x+ s))ds,

y2,al[u, v] = qal

∫ ∞

0

Kal(s)(u(x − s) − v(x+ s))ds,
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Ki(s) =
1

√

2πm2
i

exp (−(s− si)
2/(2m2

i )), i = r, a, al, s ∈ [0,∞)

Here the parameters are taken as in [7], listed in Table 1. We assume L > 2si for i = r, a, al. We remark

that this is just one of the models for the turning rate functions. The global Lipschitz continuity helps

to simplify the analysis, however the analysis in this paper can be easily generalized also to models with

only locally Lipschitz properties.

Table 1 List of the parameters in the model

Parameter Description Units Fixed value

γ Speed L/T No

a1 Turning rate 1/T No

a2 Turning rate 1/T No

y0 Shift of the turning function 1 2

qa Magnitude of attraction L/N No

qal Magnitude of alignment L/N No

qr Magnitude of repulsion L/N No

sa Attraction range L 1

sal Alignment range L 0.5

sr Repulsion range L 0.25

ma Width of attraction kernel L 1/8

mal Width of alignment kernel L 0.5/8

mr Width of repulsion kernel L 0.25/8

A Total population size N 2

L Domain size L 10

2.1 Energy boundedness

By the expressions of λ1 and λ2 in (2.2) and the definition of the function f(y), we clearly have

0 < a1 6 λi 6 a1 + a2, i = 1, 2 (2.3)

Multiplying the two equations in (2.1) by u and v respectively, we obtain

uut + γuux = − λ1u
2 + λ2uv

vvt − γvvx =λ1uv − λ2v
2

Adding them up and then integrating on [0, L], by using (2.3), Cauchy’s inequality and the periodic

boundary conditions, we get

1

2

d

dt

∫ L

0

(u2 + v2)dx 6

∫ L

0

(−λ1u
2 − λ2v

2 + (λ1 + λ2)uv)dx

6
a2

2

∫ L

0

(u2 + v2)dx

Through Gronwall’s inequality we can get

‖u(·, t)‖2 + ‖v(·, t)‖2
6 ea2t(‖u0‖2 + ‖v0‖2) (2.4)

which is the boundedness of the L2 energy.
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2.2 Positivity-preserving property

We will not discuss in detail the existence, uniqueness, smoothness, and positivity of solutions to (2.1),

and refer to, e.g. [9]. For our purpose, the positivity-preserving property for the densities u and v is

important, hence we will discuss this property through a first order upwind scheme in Section 5.

3 Preliminaries

We divide the domain [0,L] into nx cells, which are Ij = [xj− 1

2

, xj+ 1

2

], j = 1, · · · , nx, 0 = x 1

2

< x 3

2

<

· · · < xnx+ 1

2

= L. Denote hj = xj+ 1

2

− xj− 1

2

, h = max
j
hj, ρ = min

j
hj , and let h 6 1. Assume the mesh

is regular, i.e. there exists a positive constant ν such that

νh 6 ρ 6 h (3.1)

We take the finite element space as

Vh = V k
h = {ϕ : ϕ|Ij

∈ P k(Ij); 1 6 j 6 nx} (3.2)

The L2 norm in L2([0, L]) in this paper is denoted by ‖ · ‖L2([0,L]), ‖ · ‖L2([0,L]) =
√

(·, ·) where (·, ·) is the

inner product on L2([0, L]). For simplicity, we also write ‖ · ‖ instead of ‖ · ‖L2([0,L]). For any function

φ ∈ V k
h defined in (3.2), the jump at the element boundary point is denoted by [[φ]] = φ+ − φ−, and the

L2 norm on Γh, which is the union of all element boundary points, is denoted by

‖φ‖2
Γh

=
∑

j

(

(φ+
j+ 1

2

)2 + (φ−
j+ 1

2

)2
)

Here
∑

j

=
∑

16j6nx

.

Following [21], we introduce two notations to denote the DG spatial operators

B1
j (φ, ψ) =

∫

Ij

γφψxdx− γφ−
j+ 1

2

ψ−
j+ 1

2

+ γφ−
j− 1

2

ψ+
j− 1

2

B2
j (φ, ψ) = −

∫

Ij

γφψxdx+ γφ+
j+ 1

2

ψ−
j+ 1

2

− γφ+
j− 1

2

ψ+
j− 1

2

3.1 Gauss-Radau projection error

Suppose Rh is the Gauss-Radau projection into V k
h , i.e. for any function w, the projection Rhw ∈ V k

h

satisfies
∫

Ii

(Rhw(x) − w(x))ϕ(x)dx = 0, ∀ϕ ∈ P k−1(Ii)

with a value assigned to an endpoint such as Rhw(x−
j+ 1

2

) = w(xj+ 1

2

) or Rhw(x+
j− 1

2

) = w(xj− 1

2

), then

Rhw is unique in V k
h .

For any function w ∈ W k+1
2 ([0, L]) , the projection error η = w − Rhw has following estimate [1].

‖η‖ + h‖ηx‖ + h1/2‖η‖Γh
6 C1h

k+1 (3.3)

Here C1 is a positive constant independent of h.

3.2 Inverse inequalities

We list some inverse inequalities here. For more details one can refer to [1].

‖φx‖ 6 M1h
−1‖φ‖, ∀φ ∈ Vh; (3.4)
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Table 2 Inverse constants for piecewise polynomials of degree k

k= 1 k= 2 k= 3

M1

√
12 ≈ 3.46

√
60 ≈ 7.75

√

2(45 +
√

1605) ≈ 13.04

(M2)
2 6 12 20

‖φ‖Γh
6 M2h

−1/2‖φ‖, ∀φ ∈ Vh. (3.5)

The constants M1 and M2 are dependent of k but independent of φ and h. We denote

M = max{M1, (M2)
2} (3.6)

The values of M1 and (M2)
2 in Table 2 are cited from [21].

3.3 Properties of DG spatial operators

Denote

B1(φ, ψ) =
∑

j

B1
j (φ, ψ) =

∑

j

[

γφ−
j+ 1

2

[[ψ]]j+ 1

2

+

∫

Ij

γφψxdx
]

B2(φ, ψ) =
∑

j

B2
j (φ, ψ) = −

∑

j

[

γφ+
j+ 1

2

[[ψ]]j+ 1

2

+

∫

Ij

γφψxdx
]

Two lemmas are presented as follows. For more details we refer to [21].

Lemma 3.1. ∀ φ, ψ ∈ Vh, we have

|B1(φ, ψ)| 6 (
√

2 + 1)γMh−1‖φ‖ ‖ψ‖,
|B2(φ, ψ)| 6 (

√
2 + 1)γMh−1‖φ‖ ‖ψ‖

Lemma 3.2. ∀φ, ψ ∈ Vh, we have

B1(φ, ψ) +B1(ψ, φ) = −
∑

j

γ[[φ]]j+ 1

2

[[ψ]]j+ 1

2

,

B2(φ, ψ) +B2(ψ, φ) = −
∑

j

γ[[φ]]j+ 1

2

[[ψ]]j+ 1

2

4 Stability and error estimates

4.1 Semi-discrete DG scheme

The semi-discrete DG scheme is a scheme of discretization in space by using discontinuous Galerkin

method, but is kept continuous in time. The semi-discrete DG scheme of (2.1) is defined as follows.

∀ϕ ∈ Vh,

∫

Ij

(uh)tϕdx = B1
j (uh, ϕ) −

∫

Ij

(λ1)huhϕdx +

∫

Ij

(λ2)hvhϕdx (4.1a)

∫

Ij

(vh)tϕdx = B2
j (vh, ϕ) +

∫

Ij

(λ1)huhϕdx −
∫

Ij

(λ2)hvhϕdx (4.1b)

where (λ1)h = λ1(y1[uh, vh]), (λ2)h = λ2(y2[uh, vh]). The integrals in the numerical evaluation of (λ1)h

and (λ2)h can be computed by a numerical quadrature of sufficient accuracy.
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Taking ϕ = uh ∈ Vh in (4.1a) and ϕ = vh ∈ Vh in (4.1b), adding them up and summing them over j,

we can get

1

2

d

dt

∫ L

0

(u2
h + v2

h)dx =B1(uh, uh) +B2(vh, vh) +

∫ L

0

(−λ1(y1[uh, vh])u2
h − λ2(y2[uh, vh])v2

h

+ (λ1(y1[uh, vh]) + λ2(y2[uh, vh]))uhvh)dx

From Lemma 3.2, (2.3) and Cauchy’s inequality, we get

1

2

d

dt

∫ L

0

(u2
h + v2

h)dx 6
a2

2

∫ L

0

(u2
h + v2

h)dx

Through Gronwall’s inequality we then get

‖uh(·, t)‖2 + ‖vh(·, t)‖2
6 ea2t(‖uh(0)‖2 + ‖vh(0)‖2)

which is the the same boundedness of the L2 energy as in the continuous case (2.4).

4.2 Fully discretized RKDG schemes: introduction

We now discuss fully discretized RKDG schemes using the DG method for space discretization and third

order TVD Runge-Kutta method for time discretization. Assume the ODE system from the semidiscrete

DG scheme is

ut = Lh(u)

where Lh is the spatial DG operator independent of the partial derivative of u with respect to t. Then

the third order TVD Runge-Kutta method [19], from time nτ to time (n+ 1)τ , is

u(1) = un + τLh(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
τLh(u(1)) (4.2)

un+1 =
1

3
un +

2

3
u(2) +

2

3
τLh(u(2))

4.3 Third order RKDG schemes

For k = 0 the DG method is the same as the first order upwind method which we considered in Section

2.2. In the following we consider k > 1 only. Assume un
h, vn

h are the numerical solutions at time t = nτ .

The scheme from time nτ to time (n+ 1)τ is defined as follows. ∀ϕ ∈ Vh, we have

∫

Ij

un,1
h ϕdx =

∫

Ij

un
hϕdx+ τ

[

B1
j (un

h, ϕ) −
∫

Ij

(λ1)
n
hu

n
hϕdx+

∫

Ij

(λ2)
n
hv

n
hϕdx

]

(4.3a)

∫

Ij

vn,1
h ϕdx =

∫

Ij

vn
hϕdx+ τ

[

B2
j (vn

h , ϕ) +

∫

Ij

(λ1)
n
hu

n
hϕdx−

∫

Ij

(λ2)
n
hv

n
hϕdx

]

(4.3b)

∫

Ij

un,2
h ϕdx =

3

4

∫

Ij

un
hϕdx +

1

4

∫

Ij

un,1
h ϕdx +

τ

4

[

B1
j (un,1

h , ϕ) −
∫

Ij

(λ1)
n,1
h un,1

h ϕdx

+

∫

Ij

(λ2)
n,1
h vn,1

h ϕdx
]

(4.3c)

∫

Ij

vn,2
h ϕdx =

3

4

∫

Ij

vn
hϕdx +

1

4

∫

Ij

vn,1
h ϕdx+

τ

4

[

B2
j (vn,1

h , ϕ) +

∫

Ij

(λ1)
n,1
h un,1

h ϕdx

−
∫

Ij

(λ2)
n,1
h vn,1

h ϕdx
]

(4.3d)

∫

Ij

un+1
h ϕdx =

1

3

∫

Ij

un
hϕdx +

2

3

∫

Ij

un,2
h ϕdx +

2τ

3

[

B1
j (un,2

h , ϕ) −
∫

Ij

(λ1)
n,2
h un,2

h ϕdx
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+

∫

Ij

(λ2)
n,2
h vn,2

h ϕdx
]

(4.3e)

∫

Ij

vn+1
h ϕdx =

1

3

∫

Ij

vn
hϕdx +

2

3

∫

Ij

vn,2
h ϕdx+

2τ

3

[

B2
j (vn,2

h , ϕ) +

∫

Ij

(λ1)
n,2
h un,2

h ϕdx

−
∫

Ij

(λ2)
n,2
h vn,2

h ϕdx
]

(4.3f)

Here (λ1)
n,i
h = λ1(y1[u

n,i
h , vn,i

h ]), (λ2)
n,i
h = λ2(y2[u

n,i
h , vn,i

h ]), i = 0, 1, 2. (λ1)
n,0
h = (λ1)

n
h , (λ2)

n,0
h = (λ2)

n
h.

4.4 L2 stability of the RKDG scheme (4.3)

Denote λ = γMτ/h and assume τ/h is bounded. For simplicity, we take γτ/h 6 1, and we can get

λ 6 M immediately.

Similar to [21], ∀φ ∈ Vh, we define

D1(φ) = φn,1 − φn, D2(φ) = 2φn,2 − φn,1 − φn, D3(φ) = φn+1 − 2φn,2 + φn

We have three lemmas in the following. The proofs of them are given in the Appendix (Section 8).

Lemma 4.1.
∣

∣

∣

∣

∣

∫ L

0

(λ1)
n,i
h un,i

h ϕdx

∣

∣

∣

∣

∣

6(a1 + a2)‖un,i
h ‖‖ϕ‖, i = 0, 1, 2

∣

∣

∣

∣

∣

∫ L

0

(λ2)
n,i
h vn,i

h ϕdx

∣

∣

∣

∣

∣

6(a1 + a2)‖vn,i
h ‖‖ϕ‖, i = 0, 1, 2

Here un,0
h = un

h, v
n,0
h = vn

h .

Lemma 4.2.

‖un,1
h ‖ 6 α1‖un

h‖ + α2‖vn
h‖, ‖vn,1

h ‖ 6 α1‖vn
h‖ + α2‖un

h‖
‖un,2

h ‖ 6 C3‖un
h‖ + C4‖vn

h‖, ‖vn,2
h ‖ 6 C3‖vn

h‖ + C4‖un
h‖

‖D1(uh)‖ 6 (α1 + 1)‖un
h‖ + α2‖vn

h‖, ‖D1(vh)‖ 6 (α1 + 1)‖vn
h‖ + α2‖un

h‖
‖D2(uh)‖ 6 C5‖un

h‖ + C6‖vn
h‖, ‖D2(vh)‖ 6 C5‖vn

h‖ + C6‖un
h‖

Here α1 = 1 + (
√

2 + 1)M + (a1 + a2)/γ, α2 = (a1 + a2)/γ, C3 = 3
4 + 1

4 (α2
1 + α2

2), C4 = 1
2α1α2,

C5 = 2C3 + α1 + 1, C6 = 2C4 + α2.

Lemma 4.3.

(D1(uh), ϕ) 6τB1(un
h, ϕ) + (a1 + a2)τ(‖un

h‖ + ‖vn
h‖)‖ϕ‖ (4.5a)

(D1(vh), ϕ) 6τB2(vn
h , ϕ) + (a1 + a2)τ(‖un

h‖ + ‖vn
h‖)‖ϕ‖ (4.5b)

(D2(uh), ϕ) 6
τ

2
B1(D1(uh), ϕ) +

C7τ

2
(‖un

h‖ + ‖vn
h‖)‖ϕ‖ (4.5c)

(D2(vh), ϕ) 6
τ

2
B2(D1(vh), ϕ) +

C7τ

2
(‖un

h‖ + ‖vn
h‖)‖ϕ‖ (4.5d)

(D3(uh), ϕ) 6
τ

3
B1(D2(uh), ϕ) +

C8τ

3
(‖un

h‖ + ‖vn
h‖)‖ϕ‖ (4.5e)

(D3(vh), ϕ) 6
τ

3
B2(D2(vh), ϕ) +

C8τ

3
(‖un

h‖ + ‖vn
h‖)‖ϕ‖ (4.5f)

Here C7 = (a1 + a2)(α1 + α2 + 1), C8 = (a1 + a2)(2C3 + 2C4 + α1 + α2 + 1).
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We are now ready to prove the following theorem.

Theorem 4.4. If γMτ/h 6 0.39, where M is the constant defined in (3.6), then for the numerical

solutions to scheme (4.3) we have, for any n,

‖un+1
h ‖2 + ‖vn+1

h ‖2
6 eCτ (‖un

h‖2 + ‖vn
h‖2),

where C is a constant independent of τ, h, uh, vh.

Proof. Taking ϕ = un
h in (4.3a), ϕ = vn

h in (4.3b), ϕ = 4un,1
h in (4.3c), ϕ = 4vn,1

h in (4.3d), ϕ = 6un,2
h in

(4.3e), ϕ = 6vn,2
h in (4.3f) and adding them up, then summing the result over j, we obtain

∫ L

0

S1dx =τ(S2 + S3) (4.6)

Here

S1 = − 2un
hu

n,1
h − (un

h)2 + 4un,1
h un,2

h − (un,1
h )2 + 6un,2

h un+1
h − 2un

hu
n,2
h − 4(un,2

h )2

− 2vn
hv

n,1
h − (vn

h )2 + 4vn,1
h vn,2

h − (vn,1
h )2 + 6vn,2

h vn+1
h − 2vn

hv
n,2
h − 4(vn,2

h )2

=3((un+1
h )2 + (vn+1

h )2) − 3((un
h)2 + (vn

h)2) −
[

(D2(uh))2 + (D2(vh))2
]

− 3(D1 + D2 + D3)(uh) · D3(uh) − 3(D1 + D2 + D3)(vh) · D3(vh)

S2 =B1(un
h, u

n
h) +B2(vn

h , v
n
h ) +B1(un,1

h , un,1
h ) +B2(vn,1

h , vn,1
h ) + 4B1(un,2

h , un,2
h )

+ 4B2(vn,2
h , vn,2

h )

S3 = −
∫ L

0

(λ1)
n
h(un

h)2dx−
∫ L

0

(λ2)
n
h(vn

h )2dx+

∫ L

0

((λ1)
n
h + (λ2)

n
h)un

hv
n
hdx

−
∫ L

0

(λ1)
n,1
h (un,1

h )2dx−
∫ L

0

(λ2)
n,1
h (vn,1

h )2dx+

∫ L

0

((λ1)
n,1
h + (λ2)

n,1
h )un,1

h vn,1
h dx

− 4

∫ L

0

(λ1)
n,2
h (un,2

h )2dx− 4

∫ L

0

(λ2)
n,2
h (vn,2

h )2dx + 4

∫ L

0

((λ1)
n,2
h + (λ2)

n,2
h )un,2

h vn,2
h dx

We note that S1 and S2 are similar to those defined in [21], and S3 is from the source terms. Define

Λ1 =‖D2(uh))‖2 + ‖D2(vh))‖2 + 3
(

D1(uh),D3(uh)
)

+ 3
(

D1(vh),D3(vh)
)

Λ2 =3
(

D2(uh),D3(uh)
)

+ 3
(

D2(vh),D3(vh)
)

Λ3 =3
(

D3(uh),D3(uh)
)

+ 3
(

D3(vh),D3(vh)
)

Then (4.6) can be written as

3(‖un+1
h ‖2 + ‖vn+1

h ‖2) − 3(‖un
h‖2 + ‖vn

h‖2) = Λ1 + Λ2 + Λ3 + τ(S2 + S3) (4.7)

From Lemma 4.3 we get

Λ1 = −
[

‖D2(uh)‖2 + ‖D2(vh)‖2
]

+ 2
[

(

D2(uh),D2(uh)
)

+
(

D2(vh),D2(vh)
)

]

+ 3
[

(

D1(uh),D3(uh)
)

+
(

D1(vh),D3(vh)
)

]

6 −
[

‖D2(uh)‖2 + ‖D2(uh)‖2
]

+ τ
(

B1(D1(uh),D2(uh)) +B1(D2(uh),D1(uh))
)

+ τ
(

B2(D1(vh),D2(vh)) + B2(D2(vh),D1(vh))
)

+ C7τ(‖un
h‖ + ‖vn

h‖)
(‖D2(uh)‖ + ‖D2(vh)‖) + C8τ(‖un

h‖ + ‖vn
h‖)(‖D1(uh)‖ + ‖D1(vh)‖)
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From Lemma 3.2 and Cauchy’s inequality, we get

τ
(

B1(D1(uh),D2(uh)) +B1(D2(uh),D1(uh))
)

+ τ
(

B2(D1(vh),D2(vh))

+B2(D2(vh),D1(vh))
)

= − τγ
∑

j

[[D1(uh)]]j+ 1

2

· [[D2(uh)]]j+ 1

2

− τγ
∑

j

[[D1(vh)]]j+ 1

2

· [[D2(vh)]]j+ 1

2

6
τγ

4

∑

j

(

[[D1(uh)]]2j+ 1

2

+ [[D1(vh)]]2j+ 1

2

)

+ τγ
∑

j

(

[[D2(uh)]]2j+ 1

2

+ [[D2(vh)]]2j+ 1

2

)

From Lemma 4.2 and Cauchy’s inequality, we get

C7τ(‖un
h‖ + ‖vn

h‖)(‖D2(uh)‖ + ‖D2(vh)‖) + C8τ(‖un
h‖ + ‖vn

h‖)(‖D1(uh)‖ + ‖D1(vh)‖)
6(2(C5 + C6)C7 + 2(α1 + α2 + 1)C8)τ(‖un

h‖2 + ‖vn
h‖2)

Define C9 = 2(C5 + C6)C7 + 2(α1 + α2 + 1)C8. We get

Λ1 6 −
[

‖D2(uh)‖2 + ‖D2(vh)‖2
]

+
τγ

4

∑

j

(

[[D1(uh)]]2j+ 1

2

+ [[D1(vh)]]2j+ 1

2

)

+ τγ
∑

j

(

[[D2(uh)]]2j+ 1

2

+ [[D2(vh)]]2j+ 1

2

)

+ C9τ(‖un
h‖2 + ‖vn

h‖2) (4.8)

From Lemma 3.2, Lemma 4.2, Lemma 4.3 and Cauchy’s inequality, we have

Λ2 6 − τγ

2

∑

j

(

[[D2(uh)]]2j+ 1

2

+ [[D2(vh)]]2j+ 1

2

)

+ C10τ(‖un
h‖2 + ‖vn

h‖2) (4.9)

where C10 = 2(C5 + C6)C8.

From Lemma 4.3, Lemma 3.1, Cauchy’s inequality and Cauchy-Schwarz inequality, we get

‖D3(uh)‖2 + ‖D3(vh)‖2
6
τ

3

(

B1(D2(uh),D3(uh)) +B2(D2(vh),D3(vh))
)

+
C8τ

3
(‖un

h‖ + ‖vn
h‖)(‖D3(uh)‖ + ‖D3(vh)‖)

6

√
2 + 1

3
τγM/h

(

‖D2(uh)‖‖D3(uh)‖ + ‖D2(vh)‖‖D3(vh)‖
)

+
2C8

3
τ(‖un

h‖2 + ‖vn
h‖2)1/2(‖D3(uh)‖2 + ‖D3(vh)‖2)1/2

6

√
2 + 1

3
λ
(

‖D2(uh)‖2 + ‖D2(vh)‖2
)1/2(‖D3(uh)‖2 + ‖D3(vh)‖2

)1/2

+
2C8

3
τ(‖un

h‖2 + ‖vn
h‖2)1/2(‖D3(uh)‖2 + ‖D3(vh)‖2)1/2

When ‖D3(uh)‖2 + ‖D3(vh)‖2 6= 0, we have

(

‖D3(uh)‖2 + ‖D3(vh)‖2
)1/2

6

√
2 + 1

3
λ
(

‖D2(uh)‖2 + ‖D2(vh)‖2
)1/2

+
2C8

3
τ(‖un

h‖2 + ‖vn
h‖2)1/2

Clearly, this inequality holds for ‖D3(uh)‖2 + ‖D3(vh)‖2 = 0 as well.

Through Cauchy’s inequality and τ 6 1/γ, we get

Λ3 =3
[

(

‖D3(uh)‖2 + ‖D3(vh)‖2
)1/2

]2

63 × 2
[2

√
2 + 3

9
λ2
(

‖D2(uh)‖2 + ‖D2(vh)‖2
)

+
(2C8

3
τ
)2

(‖un
h‖2 + ‖vn

h‖2)
]
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6σλ2
(

‖D2(uh)‖2 + ‖D2(vh)‖2
)

+
8(C8)

2

3γ
τ(‖un

h‖2 + ‖vn
h‖2) (4.10)

Here σ = (4
√

2 + 6)/3.

From (4.8), (4.9) and (4.10), we have

Λ1 + Λ2 + Λ3 6(σλ2 − 1)
(

‖D2(uh)‖2 + ‖D2(vh)‖2
)

+ C11τ(‖un
h‖2 + ‖vn

h‖2)

+
τγ

4

∑

j

(

[[D1(uh)]]2j+ 1

2

+ [[D1(vh)]]2j+ 1

2

)

+
τγ

2

∑

j

(

[[D2(uh)]]2j+ 1

2

+ [[D2(vh)]]2j+ 1

2

)

Here C11 = C9 + C10 + 8(C8)
2

3γ .

Through Cauchy’s inequality we get

τγ

4

∑

j

(

[[D1(uh)]]2j+ 1

2

+ [[D1(vh)]]2j+ 1

2

)

6
τγ

2

∑

j

(

[[un
h]]2j+ 1

2

+ [[vn
h ]]2j+ 1

2

+ [[un,1
h ]]2j+ 1

2

+ [[vn,1
h ]]2j+ 1

2

)

Through Cauchy’s inequality and the inverse inequality (3.5) we get

τγ

2

∑

j

(

[[D2(uh)]]2j+ 1

2

+ [[D2(vh)]]2j+ 1

2

)

6τγ
(

‖D2(uh)‖2
Γh

+ ‖D2(vh)‖2
Γh

)

6λ
(

‖D2(uh)‖2 + ‖D2(vh)‖2
)

We therefore have

Λ1 + Λ2 + Λ3 6(σλ2 + λ− 1)
(

‖D2(uh)‖2 + ‖D2(vh)‖2
)

+ C11τ(‖un
h‖2 + ‖vn

h‖2)

+
τγ

2

∑

j

(

[[un
h]]2j+ 1

2

+ [[vn
h ]]2j+ 1

2

+ [[un,1
h ]]2j+ 1

2

+ [[vn,1
h ]]2j+ 1

2

)

(4.11)

From Lemma 3.2, we get

S2 = − γ

2

∑

j

[

[[un
h]]2j+ 1

2

+ [[vn
h ]]2j+ 1

2

+ [[un,1
h ]]2j+ 1

2

+ [[vn,1
h ]]2j+ 1

2

+ 4[[un,2
h ]]2j+ 1

2

+ 4[[vn,2
h ]]2j+ 1

2

]

(4.12)

From Lemma 4.1, Lemma 4.2 and Cauchy’s inequality, we have

S3 6
a2

2
(‖un

h‖2 + ‖vn
h‖2 + ‖un,1

h ‖2 + ‖vn,1
h ‖2 + 4‖un,2

h ‖2 + 4‖vn,2
h ‖2)

6C12(‖un
h‖2 + ‖vn

h‖2) (4.13)

Here C12 = a2((α1 + α2)
2 + 4(C3 + C4)

2 + 1)/2.

When λ 6
−3+

√
3(27+16

√
2)

2(6+4
√

2)
≈ 0.39, we have σλ2 + λ− 1 6 0. Hence from (4.11), (4.12) and (4.13) we

can get

Λ1 + Λ2 + Λ3 + τ(S2 + S3) 6 (C11 + C12)τ(‖un
h‖2 + ‖vn

h‖2) (4.14)

Through (4.7) and (4.14), we get

‖un+1
h ‖2 + ‖vn+1

h ‖2
6(1 + C13τ)(‖un

h‖2 + ‖vn
h‖2)

6eC13τ (‖un
h‖2 + ‖vn

h‖2) (4.15)

Here C13 = (C11 + C12)/3 is independent of τ, h. Thus we have obtained the L2 stability of the scheme

(4.3).
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4.5 Error estimates

For smooth solutions we can obtain the following a priori error estimates.

Theorem 4.5. Assume uu, v ∈W 4
∞([0, T ];Hk+1([0, L])) are solutions to (2.1) and uh, vh are the numer-

ical solutions to the scheme (4.3). Let Vh be the finite element space defined in (3.2). If γMτ/h 6 0.39,

where M is the constant defined in (3.6), then we have the following error estimate

max
nτ6T

(

‖un − un
h‖ + ‖vn − vn

h‖
)

6 C(hk+1 + τ3)

where C is a constant independent of τ, h, uh, vh.

First we introduce reference functions which are parallel to un,1
h , vn,1

h , un,2
h , vn,2

h , un+1
h , vn+1

h .

un,1 =un − τγun
x + τ

(

− λn
1u

n + λn
2v

n
)

vn,1 =vn + τγvn
x + τ

(

λn
1u

n − λn
2v

n
)

un,2 =
3

4
un +

1

4
un,1 − τ

4
γun,1

x +
τ

4

(

− λn,1
1 un,1 + λn,1

2 vn,1
)

vn,2 =
3

4
vn +

1

4
vn,1 +

τ

4
γvn,1

x +
τ

4

(

λn,1
1 un,1 − λn,1

2 vn,1
)

un+1 =
1

3
un +

2

3
un,2 − 2τ

3
γun,2

x +
2τ

3

(

− λn,2
1 un,2 + λn,2

2 vn,2
)

+ E1

vn+1 =
1

3
vn +

2

3
vn,2 +

2τ

3
γvn,2

x +
2τ

3

(

λn,2
1 un,2 − λn,2

2 vn,2
)

+ E2

Here λn,i
1 = λ1(y1[u

n,i, vn,i]), λn,i
2 = λ2(y2[u

n,i, vn,i]). We have the estimates for E1 and E2 due to the

properties of the third order Runge-Kutta method:

‖E1(x, t)‖ 6 C14τ
4, ‖E2(x, t)‖ 6 C14τ

4 (4.16)

Here C14 depends on u, v and their partial derivatives. We require ‖utttt‖ and ‖vtttt‖ to be bounded

uniformly in [0, T ]. For more details we refer to [20].

Multiplying these equations with the test function ϕ ∈ Vh, then integrating them on Ij , we get

∫

Ij

un,1ϕdx =

∫

Ij

unϕdx+ τ
[

B1
j (un, ϕ) −

∫

Ij

λn
1u

nϕdx+

∫

Ij

λn
2v

nϕdx
]

(4.17a)

∫

Ij

vn,1ϕdx =

∫

Ij

vnϕdx+ τ
[

B2
j (vn, ϕ) +

∫

Ij

λn
1u

nϕdx−
∫

Ij

λn
2 v

nϕdx
]

(4.17b)

∫

Ij

un,2ϕdx =
3

4

∫

Ij

unϕdx +
1

4

∫

Ij

un,1ϕdx +
τ

4

[

B1
j (un,1, ϕ) −

∫

Ij

λn,1
1 un,1ϕdx

+

∫

Ij

λn,1
2 vn,1ϕdx

]

(4.17c)

∫

Ij

vn,2ϕdx =
3

4

∫

Ij

vnϕdx +
1

4

∫

Ij

vn,1ϕdx+
τ

4

[

B2
j (vn,1, ϕ) +

∫

Ij

λn,1
1 un,1ϕdx

−
∫

Ij

λn,1
2 vn,1ϕdx

]

(4.17d)

∫

Ij

un+1ϕdx =
1

3

∫

Ij

unϕdx +
2

3

∫

Ij

un,2ϕdx +
2τ

3

[

B1
j (un,2, ϕ) −

∫

Ij

λn,2
1 un,2ϕdx

+

∫

Ij

λn,2
2 vn,2ϕdx

]

+

∫

Ij

E1ϕdx (4.17e)

∫

Ij

vn+1ϕdx =
1

3

∫

Ij

vnϕdx +
2

3

∫

Ij

vn,2ϕdx+
2τ

3

[

B2
j (vn,2, ϕ) +

∫

Ij

λn,2
1 un,2ϕdx

−
∫

Ij

λn,2
2 vn,2ϕdx

]

+

∫

Ij

E2ϕdx (4.17f)
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For any function w, define

ξn,j(w) = Rhw
n,j − wn,j

h , ηn,j(w) = Rhw
n,j − wn,j , en,j(w) = ξn,j(w) − ηn,j(w)

j = 0, 1, 2, 3. Here ξn,0(w) = ξn(w), ξn,3(w) = ξn+1(w), ηn,0(w) = ηn(w), ηn,3(w) = ηn+1(w), en,0(w) =

en(w), en,3(w) = en+1(w). When w ∈ W k+1
2 ([0, L]), we have the estimate of η in (3.3). A result cited

from [21] is the following. When wt ∈ W k+1
2 ([0, L]) for any t ∈ [0, T ],

‖
∑

06i63

djη
n,i(w)‖ 6 C15h

k+1τ, ∀
∑

06j63

dj = 0, ∀nτ 6 T. (4.18)

Here C15 is independent of h.

Subtracting (4.17) from (4.3), we can get
∫

Ij

ξn,1(u)ϕdx =

∫

Ij

ξn(u)ϕdx +

∫

Ij

(ηn,1(u) − ηn(u))ϕdx + τ
[

B1
j (ξn(u), ϕ)

−
∫

Ij

(λn
1u

n − (λ1)
n
hu

n
h)ϕdx+

∫

Ij

(λn
2 v

n − (λ2)
n
hv

n
h )ϕdx

]

(4.19a)

∫

Ij

ξn,1(v)ϕdx =

∫

Ij

ξn(v)ϕdx +

∫

Ij

(ηn,1(v) − ηn(v))ϕdx + τ
[

B2
j (ξn(v), ϕ)

+

∫

Ij

(λn
1u

n − (λ1)
n
hu

n
h)ϕdx−

∫

Ij

(λn
2 v

n − (λ2)
n
hv

n
h )ϕdx

]

(4.19b)

∫

Ij

ξn,2(u)ϕdx =
3

4

∫

Ij

ξn(u)ϕdx +
1

4

∫

Ij

ξn,1(u)ϕdx+

∫

Ij

(ηn,2(u) − 3

4
ηn(u) − 1

4
ηn,1(u))ϕdx

+
τ

4

[

B1
j (ξn,1(u), ϕ) −

∫

Ij

(λn,1
1 un,1 − (λ1)

n,1
h un,1

h )ϕdx

+

∫

Ij

(λn,1
2 vn,1 − (λ2)

n,1
h vn,1

h )ϕdx
]

(4.19c)

∫

Ij

ξn,2(v)ϕdx =
3

4

∫

Ij

ξn(v)ϕdx +
1

4

∫

Ij

ξn,1(v)ϕdx +

∫

Ij

(ηn,2(v) − 3

4
ηn(v) − 1

4
ηn,1(v))ϕdx

+
τ

4

[

B2
j (ξn,1(v), ϕ) +

∫

Ij

(λn,1
1 un,1 − (λ1)

n,1
h un,1

h )ϕdx

−
∫

Ij

(λn,1
2 vn,1 − (λ2)

n,1
h vn,1

h )ϕdx
]

(4.19d)

∫

Ij

ξn+1(u)ϕdx =
1

3

∫

Ij

ξn(u)ϕdx +
2

3

∫

Ij

ξn,2(u)ϕdx+

∫

Ij

(ηn+1(u) − 1

3
ηn(u) +

2

3
ηn,2(u))ϕdx

+
2τ

3

[

B1
j (ξn,2(u), ϕ) −

∫

Ij

(λn,2
1 un,2 − (λ1)

n,2
h un,2

h )ϕdx

+

∫

Ij

(λn,2
2 vn,2 − (λ2)

n,2
h vn,2

h )ϕdx
]

+

∫

Ij

E1ϕdx (4.19e)

∫

Ij

ξn+1(v)ϕdx =
1

3

∫

Ij

ξn(v)ϕdx +
2

3

∫

Ij

ξn,2(v)ϕdx +

∫

Ij

(ηn+1(v) − 1

3
ηn(v) − 2

3
ηn,2(v))ϕdx

+
2τ

3

[

B2
j (ξn,2(v), ϕ) +

∫

Ij

(λn,2
1 un,2 − (λ1)

n,2
h un,2

h )ϕdx

−
∫

Ij

(λn,2
2 vn,2 − (λ2)

n,2
h vn,2

h )ϕdx
]

+

∫

Ij

E2ϕdx (4.19f)

The proofs of following three Lemmas are given in the Appendix (Section 8).

Lemma 4.6.
∣

∣

∣

∣

∣

∫ L

0

(λn,i
1 un,i − (λ1)

n,i
h un,i

h )ϕdx

∣

∣

∣

∣

∣

6 C16(‖ξn,i(u)‖ + ‖ξn,i(v)‖)‖ϕ‖ + 2C16C1h
k+1‖ϕ‖,
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∣

∣

∣

∣

∣

∫ L

0

(λn,i
2 vn,i − (λ2)

n,i
h vn,i

h )ϕdx

∣

∣

∣

∣

∣

6 C16(‖ξn,i(u)‖ + ‖ξn,i(v)‖)‖ϕ‖ + 2C16C1h
k+1‖ϕ‖.

i = 0, 1, 2. Here C16 = a2MT (qrCr + qaCa + qalCal/2) + a1 + a2, ‖un,i‖, ‖vn,i‖ 6 MT , ∀t ∈ [0, T ],

i = 0, 1, 2.
(

∫ L

0
(Kr(s))

2ds
)1/2

6 Cr,
(

∫ L

0
(Ka(s))2ds

)1/2

6 Ca,
(

∫ L

0
(Kal(s))

2ds
)1/2

6 Cal.

Lemma 4.7.

‖ξn,1(u)‖ 6β1‖ξn(u)‖ + β2‖ξn(v)‖ + β3h
k+1τ

‖ξn,1(v)‖ 6β1‖ξn(v)‖ + β2‖ξn(u)‖ + β3h
k+1τ

‖ξn,2(u)‖ 6C17‖ξn(u)‖ + C18‖ξn(v)‖ + C19h
k+1τ

‖ξn,2(v)‖ 6C17‖ξn(v)‖ + C18‖ξn(u)‖ + C19h
k+1τ

‖D1(ξ(u))‖ 6(β1 + 1)‖ξn(u)‖ + β2‖ξn(v)‖ + β3h
k+1τ

‖D1(ξ(v))‖ 6(β1 + 1)‖ξn(v)‖ + β2‖ξn(u)‖ + β3h
k+1τ

‖D2(ξ(u))‖ 6C20‖ξn(u)‖ + C21‖ξn(v)‖ + C22h
k+1τ

‖D2(ξ(v))‖ 6C20‖ξn(v)‖ + C21‖ξn(u)‖ + C22h
k+1τ

Here β1 = 1+(
√

2+1)M+2C16/γ, β2 = 2C16/γ, β3 = C15+4C16C1, C17 = 3
4 + 1

4 (β2
1 +β2

2), C18 = 1
2β1β2,

C19 = 1
4 (β1 + β2 + 1)β3, C20 = 2C17 + β1 + 1, C21 = 2C18 + β2, C22 = 2C19 + β3.

Lemma 4.8.

(D1(ξ(u)), ϕ) 6τB1(ξn(u), ϕ) + 2C16τ(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖ + β3h
k+1τ‖ϕ‖

(D1(ξ(v)), ϕ) 6τB2(ξn(v), ϕ) + 2C16τ(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖ + β3h
k+1τ‖ϕ‖

(D2(ξ(u)), ϕ) 6
τ

2
B1(D1(ξ(u)), ϕ) +

C23τ

2
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖

+ C24h
k+1τ‖ϕ‖

(D2(ξ(v)), ϕ) 6
τ

2
B2(D1(ξ(v)), ϕ) +

C23τ

2
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖

+ C24h
k+1τ‖ϕ‖

(D3(ξ(u)), ϕ) 6
τ

3
B1(D2(ξ(u)), ϕ) +

C25τ

3
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖

+ C26h
k+1τ‖ϕ‖ + C14τ

4‖ϕ‖

(D3(ξ(v)), ϕ) 6
τ

3
B2(D2(ξ(v)), ϕ) +

C25τ

3
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖

+ C26h
k+1τ‖ϕ‖ + C14τ

4‖ϕ‖

Here C23 = 2C16(β1 + β2 + 1), C24 = 2C16β3/γ + β3, C25 = C23 + 8C16(C17 + C18), C26 = 4C16((β3 +

2C19)/γ + 4C1)/3 + C15.

We are now ready to prove Theorem 4.5.

Proof. Taking ϕ = ξn(u) in (4.19a), ϕ = ξn(v) in (4.19b), ϕ = 4ξn,1(u) in (4.19c), ϕ = 4ξn,1(v) in

(4.19d), ϕ = 6ξn,2(u) in (4.19e), ϕ = 6ξn,2(v) in (4.19f), summing them over j and adding them up, we

can get

∫ 1

0

Ŝ1dx = τ(Ŝ2 + Ŝ3) + Ŝ4 (4.21)
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Here

Ŝ1 = − 2ξn(u)ξn,1(u) − (ξn(u))2 + 4ξn,1(u)ξn,2(u) − (ξn,1(u))2 + 6ξn,2(u)ξn+1(u)

− 2ξn(u)ξn,2(u) − 4(ξn,2(u))2 − 2ξn(v)ξn,1(v) − (ξn(v))2 + 4ξn,1(v)ξn,2(v)

− (ξn,1(v))2 + 6ξn,2(v)ξn+1(v) − 2ξn(v)ξn,2(v) − 4(ξn,2(v))2

=3((ξn+1(u))2 + (ξn+1(v))2) − 3((ξn(u))2 + (ξn(v))2) −
(

(D2(ξ(u)))
2 + (D2(ξ(v)))

2
)

− 3(D1 + D2 + D3)(ξ(u)) · D3(ξ(u)) − 3(D1 + D2 + D3)(ξ(v)) · D3(ξ(v))

Ŝ2 =B1(ξn(u), ξn(u)) +B2(ξn(v), ξn(v)) +B1(ξn,1(u), ξn,1(u)) +B2(ξn,1(v), ξn,1(v))

+ 4B1(ξn,2(u), ξn,2(u)) + 4B2(ξn,2(u), ξn,2(u))

Ŝ3 = −
∫ L

0

(λn
1u

n − (λ1)
n
hu

n
h)ξn(u)dx +

∫ L

0

(λn
2 v

n − (λ2)
n
hv

n
h)ξn(u)dx

+

∫ L

0

(λn
1u

n − (λ1)
n
hu

n
h)ξn(v)dx −

∫ L

0

(λn
2 v

n − (λ2)
n
hv

n
h )ξn(v)dx

−
∫ L

0

(λn,1
1 un,1 − (λ1)

n,1
h un,1

h )ξn,1(u)dx +

∫ L

0

(λn,1
2 vn,1 − (λ2)

n,1
h vn,1

h )ξn,1(u)dx

+

∫ L

0

(λn,1
1 un,1 − (λ1)

n,1
h un,1

h )ξn,1(v)dx −
∫ L

0

(λn,1
2 vn,1 − (λ2)

n,1
h vn,1

h )ξn,1(v)dx

− 4

∫ L

0

(λn,2
1 un,2 − (λ1)

n,2
h un,2

h )ξn,2(u)dx+ 4

∫ L

0

(λn,2
2 vn,2 − (λ2)

n,2
h vn,2

h )ξn,2(u)dx

+ 4

∫ L

0

(λn,2
1 un,2 − (λ1)

n,2
h un,2

h )ξn,2(v)dx − 4

∫ L

0

(λn,2
2 vn,2 − (λ2)

n,2
h vn,2

h )ξn,2(v)dx

Ŝ4 =
(

ηn,1(u) − ηn(u), ξn(u)
)

+
(

ηn,1(v) − ηn(v), ξn(v)
)

+
(

4ηn,2(u) − 3ηn(u)

− ηn,1(u), ξn,1(u)
)

+
(

4ηn,2(v) − 3ηn(v) − ηn,1(v), ξn,1(v)
)

+ 2
(

3ηn+1(u)−
ηn(u) − 2ηn,2(u), ξn,2(u)

)

+ 2
(

3ηn+1(v) − ηn(v) − 2ηn,2(vu), ξn,2(v)
)

+ 6

∫ L

0

E1ξ
n,2(u)dx+ 6

∫ L

0

E2ξ
n,2(v)dx

Denote

Λ̂1 =
[

‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2
]

+ 3
(

D1(ξ(u)),D3(ξ(u))
)

+ 3
(

D1(ξ(v)),D3(ξ(v))
)

Λ̂2 =3
(

D2(ξ(u)),D3(ξ(u))
)

+ 3
(

D2(ξ(v)),D3(ξ(v))
)

Λ̂3 =3
(

D3(ξ(u)),D3(ξ(u))
)

+ 3
(

D3(ξ(v)),D3(ξ(v))
)

Then (4.21) can be written as

3(‖ξn+1(u)‖2 + ‖ξn+1(v)‖2) − 3(‖ξn(u)‖2 + ‖ξn(v)‖2) = Λ̂1 + Λ̂2 + Λ̂3 + τ(Ŝ2 + Ŝ3) + Ŝ4 (4.22)

Using Lemma 3.2 and Lemma 4.8, we get

Λ̂1 6 −
[

‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2
]

+
τγ

4

∑

j

(

[[D1(ξ(u))]]
2
j+ 1

2

+ [[D1(ξ(v))]]
2
j+ 1

2

)

+ τγ
∑

j

(

[[D2(ξ(u))]]
2
j+ 1

2

+ [[D2(ξ(v))]]
2
j+ 1

2

)

+ C23τ(‖ξn(u)‖ + ‖ξn(v)‖)

(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖) + 2C24h
k+1τ(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖)
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+ C25τ(‖ξn(u)‖ + ‖ξn(v)‖)(‖D1(ξ(u))‖ + ‖D1(ξ(v))‖) + 3C26h
k+1τ(‖D1(ξ(u))‖

+ ‖D1(ξ(v))‖) + 3C14τ
4(‖D1(ξ(u))‖ + ‖D1(ξ(v))‖)

From Lemma (4.7), τ 6 1/γ and Cauchy’s inequality, we have

C23τ(‖ξn(u)‖ + ‖ξn(v)‖)(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖)

6C23(C20 + C21)τ(‖ξn(u)‖ + ‖ξn(v)‖)2 +
2C22C23

γ
hk+1τ(‖ξn(u)‖ + ‖ξn(v)‖)

62C23(C20 + C21)τ(‖ξn(u)‖2 + ‖ξn(v)‖2) +
C22C23

γ
(‖ξn(u)‖2 + ‖ξn(v)‖2 + 2h2k+2τ)

6C27τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C28h
2k+2τ

Here C27 = 2(C20 + C21)C23 + C22C23/γ, C28 = 2C22C23/γ.

Similarly we have

2C24h
k+1τ(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖) 6 C29τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C30h

2k+2τ

C25τ(‖ξn(u)‖ + ‖ξn(v)‖)(‖D1(ξ(u))‖ + ‖D1(ξ(v))‖) 6 C31τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C32h
2k+2τ

3C26h
k+1τ(‖D1(ξ(u))‖ + ‖D1(ξ(v))‖) 6 C33τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C34h

2k+2τ

3C14τ
4(‖D1(ξ(u))‖ + ‖D1(ξ(v))‖) 6 C35τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C36h

k+1τ4 + C37τ
7

Here C29 = (C20+C21)C24, C30 = 2C29+4C22C24/γ, C31 = 2(β1+β2+1)C25+β3C25/γ, C32 = 2β3C25/γ,

C33 = 3
2 (β1 +β2 +1)C26, C34 = 2C33 +6β3C26/γ, C35 = 3

2 (β1 +β2 +1)C14, C36 = 6β3C14/γ, C37 = 2C35.

So we get

Λ̂1 6 −
[

‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2
]

+
τγ

4

∑

j

(

[[D1(ξ(u))]]
2
j+ 1

2

+ [[D1(ξ(v))]]
2
j+ 1

2

)

+ τγ
∑

j

(

[[D2(ξ(u))]]
2
j+ 1

2

+ [[D2(ξ(v))]]
2
j+ 1

2

)

+ C38τ(‖ξn(u)‖2 + ‖ξn(v)‖2)

+ C39h
2k+2τ + C36h

k+1τ4 + C37τ
7 (4.23)

Here C38 = C27 + C29 + C31 + C33 + C35, C39 = C28 + C30 + C32 + C34.

Using Lemma 3.2 and Lemma 4.8, we get

Λ̂2 6 − τγ

2

∑

j

(

[[D2(ξ(u))]]
2
j+ 1

2

+ [[D2(ξ(v))]]
2
j+ 1

2

)

+ C25τ(‖ξn(u)‖ + ‖ξn(v)‖)

(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖) + 3C26h
k+1τ(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖)

+ 3C14τ
4(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖)

From Lemma (4.7), τ 6 1/γ and Cauchy’s inequality, we have

C25τ(‖ξn(u)‖ + ‖ξn(v)‖)(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖) 6 C40τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C41h
2k+2τ

3C26h
k+1τ(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖) 6 C42τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C43h

2k+2τ

3C14τ
4(‖D2(ξ(u))‖ + ‖D2(ξ(v))‖) 6 C44τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C45h

k+1τ4 + C46τ
7

Here C40 = 2(C20 + C21)C25 + C22C25/γ, C41 = 2C22C25/γ, C42 = 3
2 (C20 + C21)C26, C43 = 2C42 +

6C22C26/γ, C44 = 3
2C14(C20 + C21), C45 = 6C14C22/γ, C46 = 2C44.

So we get

Λ̂2 6 − τγ

2

∑

j

(

[[D2(ξ(u))]]
2
j+ 1

2

+ [[D2(ξ(v))]]
2
j+ 1

2

)

+ C47τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C48h
2k+2τ

+ C45h
k+1τ4 + C46τ

7 (4.24)
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Here C47 = C40 + C42 + C44, C48 = C41 + C43.

From Lemma (3.1), Lemma (4.8), Cauchy’s inequality and Cauchy-Schwarz inequality, we get

(

D3(ξ(u)),D3(ξ(u))
)

+
(

D3(ξ(v)),D3(ξ(v))
)

6

√
2 + 1

3
λ(‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2)1/2(‖D3(ξ(u))‖2 + ‖D3(ξ(v))‖2)1/2

+
√

2(
C25

3
τ(‖ξn(u)‖ + ‖ξn(v)‖) + C26h

k+1τ + C14τ
4)(‖D3(ξ(u))‖2 + ‖D3(ξ(v))‖2)1/2

When ‖D3(ξ(u))‖2 + ‖D3(ξ(v))‖2 6= 0, we have

(‖D3(ξ(u))‖2 + ‖D3(ξ(v))‖2)1/2
6

√
2 + 1

3
λ(‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2)1/2

+
√

2(
C25

3
τ(‖ξn(u)‖ + ‖ξn(v)‖) + C26h

k+1τ + C14τ
4)

which also holds for ‖D3(ξ(u))‖2 + ‖D3(ξ(v))‖2 = 0.

Using Cauchy’s inequality and τ 6 1/γ, we get

Λ̂3 63 × 2
[(

√
2 + 1

3
λ(‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2)1/2

)2

+
(√

2
(C25

3
τ(‖ξn(u)‖

+ ‖ξn(v)‖) + C26h
k+1τ + C14τ

4
)

)2]

6σλ2
[

‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2
]

+ C49τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C50h
2k+2τ + C51τ

7 (4.25)

Here C49 = 8(C25)
2/γ, C50 = 36(C26)

2/γ, C51 = 36(C14)
2/γ.

From (4.23), (4.24) and (4.25), we can get

Λ̂1 + Λ̂2 + Λ̂3 6(σλ2 − 1)
[

‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2
]

+
τγ

4

∑

j

(

[[D1(ξ(u))]]
2
j+ 1

2

+ [[D1(ξ(v))]]
2
j+ 1

2

)

+
τγ

2

∑

j

(

[[D2(ξ(u))]]
2
j+ 1

2

+ [[D2(ξ(v))]]
2
j+ 1

2

)

+ C52τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C53h
2k+2τ + C54h

k+1τ4 + C55τ
7

Here C52 = C38 + C47 + C49, C53 = C39 + C48 + C50, C54 = C36 + C45, C55 = C37 + C46 + C51.

Through Cauchy’s inequality, we have

τγ

4

∑

j

(

[[D1(ξ(u))]]
2
j+ 1

2

+ [[D1(ξ(v))]]
2
j+ 1

2

)

6
τγ

2

∑

j

[

[[ξn(u)]]2j+ 1

2

+ [[ξn(v)]]2j+ 1

2

+ [[ξn,1(u)]]2j+ 1

2

+ [[ξn,1(v)]]2j+ 1

2

]

Using Cauchy’s inequality and the inverse inequality (3.5), we have

τγ

2

∑

j

(

[[D2(ξ(u))]]
2
j+ 1

2

+ [[D2(ξ(v))]]
2
j+ 1

2

)

6τγ(‖D2(ξ(u))‖2
Γh

+ ‖D2(ξ(v))‖2
Γh

)

6λ(‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2)

So we have

Λ̂1 + Λ̂2 + Λ̂3 6(σλ2 + λ− 1)
[

‖D2(ξ(u))‖2 + ‖D2(ξ(v))‖2
]

+
τγ

2

∑

j

[

[[ξn(u)]]2j+ 1

2

+ [[ξn(v)]]2j+ 1

2

+ [[ξn,1(u)]]2j+ 1

2

+ [[ξn,1(v)]]2j+ 1

2

]

+ C52τ(‖ξn(u)‖2

+ ‖ξn(v)‖2) + C53h
2k+2τ + C54h

k+1τ4 + C55τ
7 (4.26)



18 Lu J F, Shu C W and Zhang M P Sci China Math

From Lemma 3.2 we get

Ŝ2 = − γ

2

∑

j

[

[[ξn(u)]]2j+ 1

2

+ [[ξn(v)]]2j+ 1

2

+ [[ξn,1(u)]]2j+ 1

2

+ [[ξn,1(v)]]2j+ 1

2

+ 4[[ξn,2(u)]]2j+ 1

2

+ 4[[ξn,2(v)]]2j+ 1

2

]

(4.27)

From Lemma 4.6, we get

τ Ŝ3 62C16τ(‖ξn(u)‖ + ‖ξn(v)‖)2 + 4C16C1h
k+1τ(‖ξn(u)‖ + ‖ξn(v)‖)

+ 2C16τ(‖ξn,1(u)‖ + ‖ξn,1(v)‖)2 + 4C16C1h
k+1τ(‖ξn,1(u)‖ + ‖ξn,1(v)‖)

+ 8C16τ(‖ξn,2(u)‖ + ‖ξn,2(v)‖)2 + 16C16C1h
k+1τ(‖ξn,2(u)‖ + ‖ξn,2(v)‖)

By Lemma (4.7), τ 6 1/γ and Cauchy’s inequality, we have

2C16τ(‖ξn(u)‖ + ‖ξn(v)‖)2 + 4C16C1h
k+1τ(‖ξn(u)‖ + ‖ξn(v)‖)

6C56τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C57h
2k+2τ,

2C16τ(‖ξn,1(u)‖ + ‖ξn,1(v)‖)2 + 4C16C1h
k+1τ(‖ξn,1(u)‖ + ‖ξn,1(v)‖)

6C58τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C59h
2k+2τ,

8C16τ(‖ξn,2(u)‖ + ‖ξn,2(v)‖)2 + 16C16C1h
k+1τ(‖ξn,2(u)‖ + ‖ξn,2(v)‖)

6C60τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C61h
2k+2τ.

Here C56 = 2C16(2 + C1), C57 = 4C16C1, C58 = 2C16(2(β1 + β2)
2 + 2(β1 + β2)β3/γ + (β1 + β2)C1),

C59 = 4C16(2(β1 + β2)β3/γ + 2(β3/γ)
2 + (β1 + β2)C1 + 2β3C1/γ), C60 = 8C16(2(C17 + C18)

2 + 2(C17 +

C18)C19/γ+(C17 +C18)C1), C61 = 16C16(2(C17 +C18)C19/γ+2(C19/γ)
2 +(C17 +C18)C1 +2C1C19/γ).

So we have

τ Ŝ3 6 C62τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C63h
2k+2τ (4.28)

where C62 = C56 + C58 + C60, C63 = C57 + C59 + C61.

From (4.16), (4.18), Cauchy’s inequality, τ 6 1/γ and Lemma 4.7 we get

Ŝ4 6C15h
k+1τ(‖ξn(u)‖ + ‖ξn(v)‖ + ‖ξn,1(u)‖ + ‖ξn,1(v)‖ + 2‖ξn,2(u)‖ + 2‖ξn,2(v)‖)

+ 6C14τ
4(‖ξn,2(u)‖ + ‖ξn,2(v)‖)

6C64τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C65h
2k+2τ + C66h

k+1τ4 + C67τ
7 (4.29)

Here C64 = C15(C17 +C18 + 1
2 (β1 + β2 + 1)) + 3C14(C17 +C18), C65 = C15(2(C17 +C18) + β1 + β2 + 1 +

(2β3 + 4C19)/γ), C66 = 12C14C19/γ, C67 = 6C14(C17 + C18).

From (4.26), (4.27), (4.28), (4.29) and let λ 6 0.39 such that σλ2 + λ− 1 6 0, we obtain

Λ̂1 + Λ̂2 + Λ̂3 + τ(Ŝ2 + Ŝ3) + Ŝ4 6 C68τ(‖ξn(u)‖2 + ‖ξn(v)‖2) + C69(h
k+1 + τ3)2τ (4.30)

Here C68 = C52 + C62 + C64, C69 = max{C53 + C63 + C65,
1
2 (C54 + C66), C55 + C67}.

From (4.22) and (4.30), we can get

‖ξn+1(u)‖2 + ‖ξn+1(v)‖2
6(1 + C68τ/3)(‖ξn(u)‖2 + ‖ξn(v)‖2) + C69(h

k+1 + τ3)2τ

6eC68τ/3(‖ξn(u)‖2 + ‖ξn(v)‖2) + C69(h
k+1 + τ3)2τ

6e2C68τ/3(‖ξn−1(u)‖2 + ‖ξn−1(v)‖2) + C69(h
k+1 + τ3)2τ(1 + eC48τ )

· · ·

6eC68(n+1)τ/3(‖ξ0(u)‖2 + ‖ξ0(v)‖2) + C69(h
k+1 + τ3)2τ

1 − eC68(n+1)τ/3

1 − eC68τ/3
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By Taylor expansion and L2 projection error estimates, we have

eC68τ/3 − 1

τ
> C68/3

‖ξ0(u)‖2 + ‖ξ0(v)‖2
6 C70h

2k+2

Here C70 is independent of h. From (n+ 1)τ 6 T , we get

‖ξn+1(u)‖2 + ‖ξn+1(v)‖2
6 C71(h

k+1 + τ3)2

Here C71 = C70e
C68T/3 + 3C69(e

C68T/3 − 1)/C68.

Therefore finally we get

‖en+1(u)‖2 + ‖en+1(v)‖2
6 (C71 + 2C1)(h

k+1 + τ3)2

where C71 + 2C1 is independent of τ, h, uh, vh. This finishes the proof.

5 Positivity-preserving RKDG schemes

The positivity-preserving property for the densities u and v is important, and we would like to have this

property for our DG schemes. We start this section with a discussion of this property for a first order

upwind scheme.

5.1 First order upwind scheme

Lemma 5.1. If the initial condition u0(x), v0(x) are nonnegative, then the first order upwind scheme

un+1
j − un

j

τ
+ γ

un
j − un

j−1

h
= −(λ1)

n
j u

n
j + (λ2)

n
j v

n
j (5.1a)

vn+1
j − vn

j

τ
− γ

vn
j+1 − vn

j

h
= (λ1)

n
j u

n
j − (λ2)

n
j v

n
j (5.1b)

where un
j and vn

j are approximations to the solution u(xj , t
n) and v(xj , t

n) at the grid point xj = jh and

time level tn = nτ , (λ1)
n
j = λ1(y1[u

n
j , v

n
j ]), (λ2)

n
j = λ2(y2[u

n
j , v

n
j ]), can maintain positivity under the time

step restriction

τ 6 1/(a1 + a2 + γ/h). (5.2)

The integrals in the numerical evaluation of (λ1)
n
j and (λ2)

n
j are obtained by trapezoidal rules.

Proof. Denote κ = τγ/h. We can rewrite (5.1a) as

un+1
j =un

j − κ(un
j − un

j−1) − τ(λ1)
n
j u

n
j + (λ2)

n
j v

n
j

=
(

1 − κ− τ(λ1)
n
j

)

un
j + κun

j−1 + τ(λ2)
n
j v

n
j

By (2.3) and the time step restriction (5.2), we have

1 − κ− τ(λ1)
n
j > 0, κ > 0, τ(λ2)

n
j > 0.

Therefore, un
i , v

n
i > 0, ∀i implies un+1

j > 0. Similarly we can prove vn+1
j > 0. The positivity is thus

preserved.
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5.2 High order DG schemes

In [22], a simple scaling limiter is shown to be able to make the numerical solution satisfying the maximum

principle while maintaining the original high order accuracy of DG or finite volume schemes for solving

scalar conservation laws ut + ux = 0. The result holds for both Euler forward time discretizations and

for TVD Runge-Kutta methods which are convex combinations of Euler forward steps, such as the third

order TVD Runge-Kutta method (4.2).

Assume m = min u0(x), M = maxu0(x), then for scalar conservation laws, the entropy solution

satisfies m 6 u(x, t) 6 M . Assume pj(x) is the numerical DG solution on Ij = [xj−1/2, xj+1/2], which is

a polynomial of degree k. Denote by p̄j the cell average of pj(x). If m 6 p̄j 6 M , then the scaling limiter

can be defined to replace pj(x) with p̃j(x) where

p̃j(x) = θpj(x) + (1 − θ)p̄j(x), θ = min

{∣

∣

∣

∣

M − p̄j

Mj − p̄j

∣

∣

∣

∣

,

∣

∣

∣

∣

m− p̄j

mj − p̄j

∣

∣

∣

∣

, 1

}

(5.3)

Here mj = min
x∈Sj

pj(x), Mj = max
x∈Sj

pj(x), and Sj = {xα,j}N
α=1 are the Gauss-Lobatto quadrature points on

Ij , with the requirement that the Gauss-Lobatto quadrature is exact for all polynomials of degree k, i.e.

2N − 3 > k. As we can see, the limiter does not change the cell averages. It is proved in [22] that, under

suitable CFL condition, the numerical solution that is modified by the scaling limiter (5.3) will guarantee

m 6 p̄j 6 M for all time steps, will satisfy the maximum principle at the points in Sj for all time steps,

and will maintain the original high order accuracy of the unlimited scheme. If the exact solution of the

PDE has only one bound, for example the lower bound zero for the density and pressure of compressible

Euler equations, then a similar scaling limiter, with the term involving the irrelevant bound M and

Mj removed from the list of the minimum in the definition of θ in (5.3), can maintain this one bound

while keeping the order of accuracy. See for example [23] for the positivity-preserving DG scheme for

compressible Euler equations. In the following we will adapt this strategy to obtain positivity-preserving

DG schemes for the system (2.1).

We convert un,i
h , vn,i

h to ũn,i
h , ṽn,i

h by the positivity-preserving limiter

ũn,i
h = θ1,i,ju

n,i
h + (1 − θ1,i,j)ū

n,i
h , θ1,i,j = min

{∣

∣

∣

∣

∣

m− ūn,i
h

m1,i,j − ūn,i
h

∣

∣

∣

∣

∣

, 1

}

(5.4a)

ṽn,i
h = θ2,i,jv

n,i
h + (1 − θ2,i,j)v̄

n,i
h , θ2,i,j = min

{
∣

∣

∣

∣

∣

m− v̄n,i
h

m2,i,j − v̄n,i
h

∣

∣

∣

∣

∣

, 1

}

(5.4b)

Here m = 0, m1,i,j = min
x∈Sj

un,i
h (x), m2,i,j = min

x∈Sj

vn,i
h (x), i = 0, 1, 2, and j = 1, · · · , nx.

As a result, the scheme (4.3) is modified as follows.

ũn
h =θ1,0,ju

n
h + (1 − θ1,0,j)ū

n
h, ṽn

h = θ2,0,jv
n
h + (1 − θ2,0,j)v̄

n
h (5.5a)

∫

Ij

un,1
h ϕdx =

∫

Ij

ũn
hϕdx+ τ

[

B1
j (ũn

h, ϕ) −
∫

Ij

(λ̃1)
n
hũ

n
hϕdx+

∫

Ij

(λ̃2)
n
h ṽ

n
hϕdx

]

(5.5b)

∫

Ij

vn,1
h ϕdx =

∫

Ij

ṽn
hϕdx+ τ

[

B2
j (ṽn

h , ϕ) +

∫

Ij

(λ̃1)
n
hũ

n
hϕdx−

∫

Ij

(λ̃2)
n
h ṽ

n
hϕdx

]

(5.5c)

ũn,1
h =θ1,1,ju

n,1
h + (1 − θ1,1,j)ū

n,1
h , ṽn,1

h = θ2,1,jv
n,1
h + (1 − θ2,1,j)v̄

n,1
h (5.5d)

∫

Ij

un,2
h ϕdx =

3

4

∫

Ij

ũn
hϕdx +

1

4

∫

Ij

ũn,1
h ϕdx +

τ

4

[

B1
j (ũn,1

h , ϕ) −
∫

Ij

(λ̃1)
n,1
h ũn,1

h ϕdx

+

∫

Ij

(λ̃2)
n,1
h ṽn,1

h ϕdx
]

(5.5e)

∫

Ij

vn,2
h ϕdx =

3

4

∫

Ij

ṽn
hϕdx +

1

4

∫

Ij

ṽn,1
h ϕdx+

τ

4

[

B2
j (ṽn,1

h , ϕ) +

∫

Ij

(λ̃1)
n,1
h ũn,1

h ϕdx

−
∫

Ij

(λ̃2)
n,1
h ṽn,1

h ϕdx
]

(5.5f)
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ũn,2
h =θ1,2,ju

n,1
h + (1 − θ1,2,j)ū

n,2
h , ṽn,2

h = θ2,2,jv
n,2
h + (1 − θ2,2,j)v̄

n,2
h (5.5g)

∫

Ij

un+1
h ϕdx =

1

3

∫

Ij

ũn
hϕdx +

2

3

∫

Ij

ũn,2
h ϕdx +

2τ

3

[

B1
j (ũn,2

h , ϕ) −
∫

Ij

(λ̃1)
n,2
h ũn,2

h ϕdx

+

∫

Ij

(λ̃2)
n,2
h ṽn,2

h ϕdx
]

(5.5h)

∫

Ij

vn+1
h ϕdx =

1

3

∫

Ij

ṽn
hϕdx +

2

3

∫

Ij

ṽn,2
h ϕdx+

2τ

3

[

B2
j (ṽn,2

h , ϕ) +

∫

Ij

(λ̃1)
n,2
h ũn,2

h ϕdx

−
∫

Ij

(λ̃2)
n,2
h ṽn,2

h ϕdx
]

(5.5i)

Here (λ̃1)
n,i
h = λ1(y1[ũ

n,i
h , ṽn,i

h ]), (λ̃2)
n,i
h = λ2(y2[ũ

n,i
h , ṽn,i

h ]), i = 0, 1, 2.

We have the following result for the positivity-preserving property of the limited RKDG scheme.

Lemma 5.2. The modified scheme (5.5) is positivity-preserving under the time step restriction

τ 6
ωN

γ
νh + (a1 + a2)

(5.6)

Here, {ωα}N
α=1 > 0 are the weights of the Gauss-Lobatto quadrature for the interval [−1/2, 1/2]. The

integrals for the source term are computed also by the same Gauss-Lobatto quadrature.

Proof. Assume ũn
h(xα,j) > 0, ṽn

h(xα,j) > 0, and therefore also ūn
h > 0, v̄n

h > 0. Taking ϕ = 1/hj in (5.5b),

and using the Gauss-Lobatto quadrature, (2.3) and (3.1), we get

ūn,1
h =¯̃un

h +
τγ

hj
(−ũn

h(x−j+1/2) + ũn
h(x−j−1/2)) −

τ

hj

∫

Ij

(λ̃1)
n
hũ

n
hdx+

τ

hj

∫

Ij

(λ̃2)
n
h ṽ

n
hdx

>

N
∑

α=1

ωαũ
n
h(xα,j) −

τγ

νh
ũn

h(x−j+1/2) +
τγ

h
ũn

h(x−j−1/2) − (a1 + a2)τ
N
∑

α=1

ωαũ
n
h(xα,j)

+ a1τ

N
∑

α=1

ωαṽ
n
h(xα,j)

=

N−1
∑

α=1

(ωα − (a1 + a2)τ)ũ
n
h(xα,j) + (ωN − τγ

νh
− (a1 + a2)τ)ũ

n
h(x−j+1/2)

+
τγ

h
ũn

h(x−j−1/2) + a1τ

N
∑

α=1

ωαṽ
n
h (xα,j)

Notice that ω1 = ωN = min16α6N ωα, hence, under the condition (5.6), we have

ωα − (a1 + a2)τ > 0, α = 1, · · · , N − 1, ωN − τγ

νh
− (a1 + a2)τ > 0.

Therefore, since ũn
h(xα,j) > 0, ṽn

h (xα,j) > 0, ∀α, j, a1 > 0, {ωα}N
α=1 > 0 and τγ/h > 0, we get ūn,1

h > 0

and v̄n,1
h > 0. This is the crucial conclusion needed in the positivity-preserving limiter [22]. The scaling

limiter (5.5d), which does not change the cell averages of un,1
h and vn,1

h , further guarantees ũn,1
h (xα,j) > 0,

ṽn,1
h (xα,j) > 0, ∀α, j. Similar arguments then apply to the remaining Runge-Kutta stages for ũn,i

h and

ṽn,i
h with i = 2, 3, hence finishing the proof of the positivity-preserving property of the limited RKDG

scheme.

We remark that the same proof as in [22] ensures that the scaling limiter does not destroy the original

high order accuracy of the DG scheme.



22 Lu J F, Shu C W and Zhang M P Sci China Math

6 Numerical results

In this section we present some numerical tests using the first order upwind scheme (5.1) and third order

RKDG method (4.3). In the tests we use uniform mesh and periodic boundary conditions. From Table 1,

we have sr = 0.25, sa = 1, sal = 0.5 and mi = si/8 (i=r, a, al), L = 10. We also take γ = 0.1, a1 = 0.2,

a2 = 0.9 during the experiments. The infinite integrals are approximated by finite integrals on [0, 2si],

with i = r, a, al, for the reason that the mass of the kernel functions mostly concentrate on [0, 2si]. In

fact, we have

∫ ∞

2si

Ki(s)ds 6 2 × 10−15, i = r, a, al.

In the scheme (4.3), y1, y2 are computed by the Gauss-Lobatto quadrature with four points. In scheme

(5.1), y1, y2 are computed by the trapezoidal rule. The CFL number is 0.6 for the scheme (5.1) and we

take τ and h satisfying the CFL condition in Theorem 4.5 for the scheme (4.3).

Example 1. Firstly we will test the system without the source term















ut + γux = 0, (x, t) ∈ [0, L] × [0, T ]

vt − γvx = 0, (x, t) ∈ [0, L]× [0, T ]

u0(x) = 1 + sin(2πx), v0(x) = 1 + cos(2πx), x ∈ [0, L]

(6.1)

with periodic boundary conditions

u(0, t) = u(L, t), v(0, t) = v(L, t).

Since the source term is removed, we can find its exact solutions u(x, t) = 1 + sin(2π(x − γt)) and

v(x, t) = 1+cos(2π(x+γt)), which indicates u(x, t) > 0 and v(x, t) > 0. We will show the results of both

RKDG scheme and positivity preserving RKDG scheme.

Take L = 10, k = 2, t = 1 and the same CFL condition as in Theorem 4.2. The errors and orders of

accuracy are listed in Tables 3.

Table 3. Errors and orders of accuracy and average percentage of cells affected by the positivity-

preserving limiter for the equations (6.1) without source terms.

without positivity-preserving limiter with positivity-preserving limiter

n L2 error order L∞ error order L2 error order L∞ error order percentage

20 1.32E-01 – 3.62E-01 – 1.91E-01 – 4.38E-01 – 35.7%

40 2.11E-02 2.64 4.86E-02 2.90 2.87E-02 2.73 9.89E-02 2.15 15.4%

80 2.67E-03 2.98 8.29E-03 2.55 3.29E-03 3.12 1.23E-02 3.00 10.0%

160 3.34E-04 3.00 1.00E-03 3.05 3.42E-04 3.27 1.00E-03 3.62 2.50%

320 4.16E-05 3.00 1.26E-04 2.99 4.17E-05 3.03 1.26E-04 2.99 1.52%

640 5.21E-06 3.00 1.58E-05 3.00 5.21E-06 3.00 1.58E-05 3.00 0.78%

Then we will modify the system (2.1) with an additional source term so that we have an explicit exact

solution to test accuracy. Denote

g(x, t) = λ1(y1[u0(x− γt), v0(x+ γt)])u0(x− γt) − λ2(y2[u0(x− γt), v0(x + γt)])v0(x + γt)

where

u0(x) = 1 + sin(2πx), v0(x) = 1 + cos(2πx).
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We consider the modified system















ut + γux = −λ1u+ λ2v + g, (x, t) ∈ [0, L]× [0, T ]

vt − γvx = λ1u− λ2v − g, (x, t) ∈ [0, L]× [0, T ]

u(x, 0) = 1 + sin(2πx), v(x, 0) = 1 + cos(2πx), x ∈ [0, L]

(6.2)

with periodic boundary conditions

u(0, t) = u(L, t), v(0, t) = v(L, t)

It is easy to verify that the exact solution is given by u(x, t) = 1 + sin(2π(x − γt)) and v(x, t) =

1 + cos(2π(x + γt)), which satisfies u(x, t) > 0 and v(x, t) > 0. Consider this system on [0, 10]. Notice

that min
(x,t)∈[0,L]×[0,T ]

u(x, t) = 0 and min
(x,t)∈[0,L]×[0,T ]

v(x, t) = 0, we also expect this to be a stringent test

case for the positivity-preserving limiter to maintain accuracy. We report numerical results both with

the positivity-preserving limiter and without it. Set the parameters qr = 0.5, qa = 1.6, qal = 2 as Pattern

5 in [8]. Take k = 2, t = 1 and the same CFL condition as in Theorem 4.2. The errors and orders of

accuracy are listed in Tables 4.

Table 4. Errors and orders of accuracy and average percentage of cells affected by the positivity-

preserving limiter for the equations (6.2) with source terms.

without positivity-preserving limiter with positivity-preserving limiter

n L2 error order L∞ error order L2 error order L∞ error order percentage

20 1.55E-01 – 4.50E-01 – 2.12E-01 – 5.24E-01 – 71.4%

40 1.99E-02 2.96 4.76E-02 3.24 2.64E-02 3.00 8.72E-02 2.59 15.4%

80 2.70E-03 2.88 8.33E-03 2.52 3.02E-03 3.13 1.10E-02 2.99 8.00%

160 3.33E-04 3.02 1.00E-03 3.05 3.40E-04 3.15 1.01E-03 3.44 2.75%

320 4.16E-05 3.00 1.26E-04 2.99 4.17E-05 3.03 1.26E-04 3.00 1.52%

640 5.20E-06 3.00 1.58E-05 3.00 5.21E-06 3.00 1.58E-05 3.00 0.79%

We can clearly see that the algorithm achieves its designed third order accuracy either without or with

the positivity-preserving limiter from these two tests. The last column in Table 4 and Table 3 records the

average (over all time steps) percentage of cells in which the positivity-preserving limiter takes effect. We

can see that the limiter has indeed taken effect although the original high order accuracy is maintained.

Example 2. We take the parameters qr = 2.4, qa = 2, qal = 0 in system (2.1) as Pattern 1 in [8]. The

initial conditions are taken from a small random perturbation of amplitude 0.01 of spatially homogeneous

steady states, which are (u, v) = (u∗, u∗∗), u∗, u∗∗ are constants satisfying u∗ + u∗∗ = A, where A is the

total population density. For qal = 0, we have only one steady state (u, v) = (A/2, A/2). For qal 6= 0,

the system (2.1) can have one, three or five solutions. These solutions are obtained by the steady state

equation from (2.1),

−u∗(a1 + a2f(Aqal − 2u∗qal − y0)) + (A− u∗)(a1 + a2f(−Aqal + 2u∗qal − y0)) = 0.

From Table 1 we have A = 2 and we can see that (u, v) = (1, 1) is the homogeneous steady state no

matter what value qal takes. In the following numerical tests we take (u∗, u∗∗) = (1, 1). We generate

random perturbation data satisfying the above requirements and use them as our initial conditions. We

have tested several initial data and have observed no significant differences other than a shift among

them, so we report the result of only one choice of the initial data. The solution evolves into stationary

pulses (i.e. ut = vt = 0), in which high density subgroups emerge. In Figure 1 we plot the total density
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p = u + v from time t = 900 to t = 1000 using scheme (5.1) with nx = 600 and scheme (4.3) with

nx = 200 and k = 2. Note that we have used the same number of degree of freedom for both schemes.

In Figure 2 and 3 we plot u + v, u, v obtained by these two schemes at the time t = 1000. We find the

numerical solutions converge when refining the mesh for the scheme (5.1), starting at around nx = 1600.

Here we choose numerical solution of nx = 2000 as our converged solution.
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(c) converged solution

Figure 1 Stationary pulses, u + v from time t = 900 to t = 1000 of Example 2.

In Figure 1, we can see that the numerical solutions are stationary for both schemes (5.1) and (4.3). In

Figure 2 we can see that both numerical solutions generated by scheme (5.1) and scheme (4.3) perform

well comparing to the converged solution. In Figure 3, the converged solution shows that u = v at time

t = 1000. In Figure 3(a)-(d), u and v generated by the higher order scheme (4.3) almost overlap with

each other, while u and v generated by scheme (5.1) show a slight translation, when the same number of

degree of freedom is used.

Example 3. We take the parameters qr = 0.5, qa = 1.6, qal = 2 in system (2.1) as Pattern 5 in [8]. The

initial conditions here satisfy the requirements described in Example 2. In Figure 4 we plot the total

density p = u + v from time t = 1150 to t = 1300 using scheme (5.1) with nx = 600 and scheme (4.3)

with nx = 200, k = 2. In Figure 5 we plot u + v obtained by these two schemes at the time t = 1300.

Here the numerical solution of nx = 2000 obtained by the scheme (5.1) is still taken as our converged
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Figure 2 Stationary pulses, u + v at time t = 1000 of Example 2.

solution.

In Figure 4 we can see that the numerical solutions are traveling for both schemes (5.1) and (4.3). In

Figure 5 we can see that the numerical solution obtained by the higher order scheme (4.3) is closer to

the converged solution than the lower order scheme (5.1), for the same number of degree of freedom.

7 Concluding remarks

In this paper we present an analysis of the RKDG scheme for a nonlocal hyperbolic system, describing a

correlated random walk model with density dependent turning rates. We construct a first order upwind

scheme and prove its positivity-preserving property under a suitable time step restriction. We then

describe the semi-discrete DG scheme and prove its L2 stability. This is followed by the analysis on

the fully discretized RKDG method using the third order TVD Runge-Kutta time discretization and

discontinuous Galerkin spatial discretization with arbitrary polynomial degree k > 1. By generalizing

the energy method in [21] to our current semilinear system, we obtain L2 stability for general solutions

and optimal a priori L2 error estimates when the solutions are smooth enough under a suitable CFL

condition. Finally, we discuss a positivity-preserving limiter which guarantees positivity of the solution

without compromising the accuracy of the RKDG scheme. Numerical results are presented to demonstrate

that the RKDG method performs well in several test problems.

8 Appendix

We collect the proof of some of the technical lemmas in this section, which serves as an appendix.

8.1 The proof of Lemma 4.1

Proof. From Hölder’s inequality and (2.3), we obtain

∣

∣

∣

∣

∣

∫ L

0

(λ1)
n,i
h un,i

h ϕdx

∣

∣

∣

∣

∣

6 (a1 + a2)‖un,i
h ‖‖ϕ‖, i = 0, 1, 2
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Similarly we can get

∣

∣

∣

∣

∣

∫ L

0

(λ2)
n,i
h vn,i

h ϕdx

∣

∣

∣

∣

∣

6 (a1 + a2)‖vn,i
h ‖‖ϕ‖, i = 0, 1, 2

This finishes the proof.

8.2 The proof of Lemma 4.2

Proof. Taking ϕ = un,1
h in (4.3a) and summing it over j, we can get

‖un,1
h ‖2 =

∫ L

0

un
hu

n,1
h dx+ τ

[

B1(un
h, u

n,1
h ) −

∫ L

0

(λ1)
n
hu

n
hu

n,1
h dx

+

∫ L

0

(λ2)
n
hv

n
hu

n,1
h dx

]

From Hölder’s inequality, Lemma 3.1 and Lemma 4.1, we can obtain

‖un,1
h ‖2

6‖un
h‖‖un,1

h ‖ + (
√

2 + 1)λ‖un
h‖‖un,1

h ‖ + (a1 + a2)τ(‖un
h‖ + ‖vn

h‖)‖un,1
h ‖

If ‖un,1
h ‖ 6= 0, through τ 6 1/γ and 0 < λ 6 M we have

‖un,1
h ‖ 6α1‖un

h‖ + α2‖vn
h‖

Here α1 = 1+(
√

2+1)M +(a1 + a2)/γ, α2 = (a1 + a2)/γ. If ‖un,1
h ‖ = 0, the above inequality also holds.

Similarly we have

‖vn,1
h ‖ 6α1‖vn

h‖ + α2‖un
h‖

‖un,2
h ‖ 6

3

4
‖un

h‖ +
1

4
(α1‖un,1

h ‖ + α2‖vn,1
h ‖)

6
(3

4
+

1

4
(α2

1 + α2
2)
)

‖un
h‖ +

1

2
α1α2‖vn

h‖

‖vn,2
h ‖ 6

(3

4
+

1

4
(α2

1 + α2
2)
)

‖vn
h‖ +

1

2
α1α2‖un

h‖

Define C3 = 3
4 + 1

4 (α2
1 + α2

2), C4 = 1
2α1α2. From the triangle inequality and above inequalities, we get

‖D1(uh)‖ 6(α1 + 1)‖un
h‖ + α2‖vn

h‖
‖D1(vh)‖ 6(α1 + 1)‖vn

h‖ + α2‖un
h‖

‖D2(uh)‖ 6C5‖un
h‖ + C6‖vn

h‖
‖D2(vh)‖ 6C5‖vn

h‖ + C6‖un
h‖

Here C5 = 2C3 + α1 + 1, C6 = 2C4 + α2. Then we get the desired results.

8.3 The proof of Lemma 4.3

Proof. Summing (4.3a) over j, we can get

(D1(uh), ϕ) = τ
[

B1(un
h, ϕ) −

∫ L

0

(λ1)
n
hu

n
hϕdx+

∫ L

0

(λ2)
n
hv

n
hϕdx

]

From Lemma 4.1, we get (4.5a).

Subtracting 1
2 × (4.3a) from 2 × (4.3c), then summing it over j , we get

(D2(uh), ϕ) =
τ

2

[

B1(D1(uh), ϕ) −
∫ L

0

(λ1)
n,1
h un,1

h ϕdx +

∫ L

0

(λ2)
n,1
h vn,1

h ϕdx
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+

∫ L

0

(λ1)
n
hu

n
hϕdx−

∫ L

0

(λ2)
n
hv

n
hϕdx

]

From Lemma 4.1 and Lemma 4.2, we get

(D2(uh), ϕ) 6
τ

2
B1(D1(uh), ϕ) +

τ

2
(a1 + a2)(‖un

h‖ + ‖vn
h‖ + ‖un,1

h ‖ + ‖vn,1
h ‖)‖ϕ‖

6
τ

2
B1(D1(uh), ϕ) +

τ

2
(a1 + a2)(α1 + α2 + 1)(‖un

h‖ + ‖vn
h‖)‖ϕ‖

Define C7 = (a1 + a2)(α1 + α2 + 1), we get (4.5c).

Subtracting 4
3 × (4.3c) and 1

3 × (4.3a) from (4.3e), then summing it over j, we get

(D3(uh), ϕ) =
τ

3

[

B1(D2(uh), ϕ) − 2

∫ L

0

(λ1)
n,2
h un,2

h ϕdx + 2

∫ L

0

(λ2)
n,2
h vn,2

h ϕdx

+

∫ L

0

(λ1)
n,1
h un,1

h ϕdx−
∫ L

0

(λ2)
n,1
h vn,1

h ϕdx +

∫ L

0

(λ1)
n
hu

n
hϕdx

−
∫ L

0

(λ1)
n
hv

n
hϕdx

]

From Lemma 4.1 and Lemma 4.2, we get

(D3(uh), ϕ) 6
τ

3
B1(D2(uh), ϕ) +

(a1 + a2)τ

3
(2‖un,2

h ‖ + 2‖vn,2
h ‖ + ‖un,1

h ‖ + ‖vn,1
h ‖

+ ‖un
h‖ + ‖vn

h‖)‖ϕ‖

6
τ

3
B1(D2(uh), ϕ) +

C8τ

3
(‖un

h‖ + ‖vn
h‖)‖ϕ‖

where C8 = (a1 + a2)(2C3 + 2C4 +α1 +α2 + 1). We have therefore obtained (4.5e). Similarly we can get

(4.5b), (4.5d) and (4.5f).

8.4 The proof of Lemma 4.6

Proof. The function f(y) = 0.5 + 0.5 tanh(y − y0) is Lipschitz continuous in (−∞,+∞), i.e.

|f(x) − f(y)| 6
1

2
|x− y|, x, y ∈ (−∞,+∞) (8.1)

Denote pn,i = un,i + vn,i, pn,i
h = un,i

h + vn,i
h . From periodic conditions, we have

y1,r[u
n,i, vn,i] − y1,r[u

n,i
h , vn,i

h ]

=qr

∫ ∞

0

Kr(s)(p
n,i(x+ s) − pn,i(x− s) − pn,i

h (x+ s) + pn,i
h (x− s))ds

=qr

∞
∑

m=0

∫ (m+1)L

mL

Kr(s)(p
n,i(x+ s) − pn,i(x− s) − pn,i

h (x+ s) + pn,i
h (x− s))ds

=qr

∞
∑

m=0

∫ L

0

Kr(s+mL)(pn,i(x+ s) − pn,i(x− s) − pn,i
h (x+ s) + pn,i

h (x− s))ds

Since we assume L > 2sr, we have
∞
∑

m=0
Kr(s+mL) 6 2Kr(s), s ∈ [0, L].

From Hölder’s inequality and triangle inequality, we get

∣

∣

∣
y1,r[u

n,i, vn,i] − y1,r[u
n,i
h , vn,i

h ]
∣

∣

∣
6qr

∥

∥

∥

∥

∞
∑

m=0

Kr(s+mL)

∥

∥

∥

∥

(2‖un,i − un,i
h ‖ + 2‖vn,i − vn,i

h ‖)
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64qrCr(‖ξn,i(u)‖ + ‖ηn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(v)‖)

Here
(

∫ L

0
Kr(s)

2ds
)1/2

6 Cr .

Similarly we have

∣

∣

∣
y1,a[un,i, vn,i] − y1,a[un,i

h , vn,i
h ]
∣

∣

∣
64qaCa(‖ξn,i(u)‖ + ‖ηn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(v)‖)

∣

∣

∣
y1,al[u

n,i, vn,i] − y1,al[u
n,i
h , vn,i

h ]
∣

∣

∣
62qalCal(‖ξn,i(u)‖ + ‖ηn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(v)‖)

∣

∣

∣
y2,r[u

n,i, vn,i] − y2,r[u
n,i
h , vn,i

h ]
∣

∣

∣
64qrCr(‖ξn,i(u)‖ + ‖ηn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(v)‖)

∣

∣

∣
y2,a[un,i, vn,i] − y2,a[un,i

h , vn,i
h ]
∣

∣

∣
64qaCa(‖ξn,i(u)‖ + ‖ηn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(v)‖)

∣

∣

∣
y2,al[u

n,i, vn,i] − y2,al[u
n,i
h , vn,i

h ]
∣

∣

∣
62qalCal(‖ξn,i(u)‖ + ‖ηn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(v)‖)

Here
(

∫ L

0
Ka(s)

2ds
)1/2

6 Ca,
(

∫ L

0
Kal(s)

2ds
)1/2

6 Cal. So we get

∣

∣

∣
y1[u

n,i, vn,i] − y1[u
n,i
h , vn,i

h ]
∣

∣

∣

6

∣

∣

∣
y1,r[u

n,i, vn,i] − y1,r[u
n,i
h , vn,i

h ]
∣

∣

∣
+
∣

∣

∣
y1,a[un,i, vn,i] − y1,a[u

n,i
h , vn,i

h ]
∣

∣

∣

+
∣

∣

∣
y1,al[u

n,i, vn,i] − y1,al[u
n,i
h , vn,i

h ]
∣

∣

∣
+
∣

∣

∣
y2,r[u

n,i, vn,i] − y2,r[u
n,i
h , vn,i

h ]
∣

∣

∣

+
∣

∣

∣
y2,a[u

n,i, vn,i] − y2,a[un,i
h , vn,i

h ]
∣

∣

∣
+
∣

∣

∣
y2,al[u

n,i, vn,i] − y2,al[u
n,i
h , vn,i

h ]
∣

∣

∣

62(2qrCr + 2qaCa + qalCal)(‖ξn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(u)‖ + ‖ηn,i(v)‖)

From (8.1), (2.3), triangle inequality and the above inequality, we get

∣

∣

∣
λ1(y1[u

n,i, vn,i])un,i − λ1(y1[u
n,i
h , vn,i

h ])un,i
h

∣

∣

∣

6

∣

∣

∣
(λ1(y1[u

n,i, vn,i]) − λ1(y1[u
n,i
h , vn,i

h ]))un,i
∣

∣

∣
+
∣

∣

∣
λ1(y1[u

n,i
h , vn,i

h ])(un,i − un,i
h )
∣

∣

∣

6
a2|un,i|

2

∣

∣

∣
y1[u

n,i, vn,i] − y1[u
n,i
h , vn,i

h ]
∣

∣

∣
+ (a1 + a2)|un,i − un,i

h |

6a2(2qrCr + 2qaCa + qalCal)(‖ξn,i(u)‖ + ‖ξn,i(v)‖ + ‖ηn,i(u)‖ + ‖ηn,i(v)‖)|un,i|
+ (a1 + a2)(|ξn,i(u)| + |ηn,i(u)|) (8.2)

In the following we will estimate un,i, vn,i in L2 norm, i = 0, 1, 2.

From the definitions of un,1, vn,1, τ 6 1/γ and (2.3), we have

‖un,1‖ 6‖un‖ + ‖un
x‖ +

a1 + a2

γ
(‖un‖ + ‖vn‖),

‖vn,1‖ 6‖vn‖ + ‖vn
x‖ +

a1 + a2

γ
(‖un‖ + ‖vn‖)

Before estimating un,2, vn,2, consider ∂
∂xy1[u

n, vn] first. The interchanging of the derivative and the

integral in the following are based on u, v ∈ W k+1
2 ([0, L]).

∂

∂x
y1,r[u

n, vn] =
∂

∂x
qr

∫ ∞

0

Kr(s)(p
n(x+ s) − pn(x− s))ds

=
∂

∂x
qr

∫ L

0

(

∞
∑

m=0

Kr(s+mL)

)

(pn
x(x+ s) − pn

x(x − s))ds

=qr

∫ L

0

(

∞
∑

m=0

Kr(s+mL)

)

(pn
x(x+ s) − pn

x(x − s))ds
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From Hölder’s inequality and periodic boundary conditions, we have

∣

∣

∣

∂

∂x
y1,r[u

n, vn]
∣

∣

∣
64qrCr(‖un

x‖ + ‖vn
x‖)

So we have
∣

∣

∣

∂

∂x
y1[u

n, vn]
∣

∣

∣
62(2qrCr + 2qaCa + qalCal)(‖un

x‖ + ‖vn
x‖)

From (2.3), triangle inequality and periodic boundary conditions, we have

‖
(

λ1(y1[u
n, vn])un

)

x
‖ 6

∥

∥

∥

∥

a2f
′(y1[u

n, vn])

(

∂

∂x
y1[u

n, vn]

)

un

∥

∥

∥

∥

+ (a1 + a2)‖un
x‖

6a2(2qrCr + 2qaCa + qalCal)(‖un
x‖ + ‖vn

x‖)‖un‖ + (a1 + a2)‖un
x‖

Here |f ′| 6 1/2. Similarly we have

‖
(

λ2(y2[u
n, vn])vn

)

x
‖ 6a2(2qrCr + 2qaCa + qalCal)(‖un

x‖ + ‖vn
x‖)‖vn‖ + (a1 + a2)‖vn

x‖

From above inequalities, the definitions of un,1, τ 6 1/γ and triangle inequality, we have

‖un,1
x ‖ 6‖un

x‖ + ‖un
xx‖ +

1

γ
‖
(

λ1(y1[u
n, vn])un

)

x
‖ +

1

γ
‖
(

λ2(y2[u
n, vn])vn

)

x
‖

6‖un
x‖ + ‖un

xx‖ +
a2

γ
(2qrCr + 2qaCa + qalCal)(‖un

x‖ + ‖vn
x‖)(‖un‖ + ‖vn‖)

+
a1 + a2

γ
(‖un

x‖ + ‖vn
x‖)

From above inequality, the definitions of un,2, τ 6 1/γ, (2.3) and triangle inequality, we have

‖un,2‖ 6
3

4
‖un‖ +

1

4
‖un,1‖ +

1

4
‖un,1

x ‖ +
a1 + a2

4γ
(‖un,1‖ + ‖vn,1‖)

6
3

4
‖un‖ +

1

4
‖un,1‖ +

1

4
‖un

x‖ +
1

4
‖un

xx‖ +
a1 + a2

4γ
(‖un,1‖ + ‖vn,1‖)

+
a2

4γ
(2qrCr + 2qaCa + qalCal)(‖un

x‖ + ‖vn
x‖)(‖un‖ + ‖vn‖)

+
a1 + a2

4γ
(‖un

x‖ + ‖vn
x‖)

Similarly we have

‖vn,2‖ 6
3

4
‖vn‖ +

1

4
‖vn,1‖ +

1

4
‖vn

x‖ +
1

4
‖vn

xx‖ +
a1 + a2

4γ
(‖un,1‖ + ‖vn,1‖)

+
a2

4γ
(2qrCr + 2qaCa + qalCal)(‖un

x‖ + ‖vn
x‖)(‖un‖ + ‖vn‖)

+
a1 + a2

4γ
(‖un

x‖ + ‖vn
x‖)

From u, v ∈ W k+1
2 ([0, L]) for all t ∈ [0, T ], we have the boundedness of ‖un,i‖, ‖vn,i‖ < ∞, i = r, a, al.

We set MT as their upper bound, i.e.

‖un,i‖, ‖vn,i‖ 6 MT , i = 0, 1, 2. (8.3)

From (8.2), triangle inequality, Hölder’s inequality, (8.3) and (3.3), we get

∣

∣

∣

∣

∣

∫ L

0

(λ1(y1[u
n,i, vn,i])un,i − λ1(y1[u

n,i
h , vn,i

h ])un,i
h )ϕdx

∣

∣

∣

∣

∣
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6C16(‖ξn,i(u)‖ + ‖ξn,i(v)‖)‖ϕ‖ + 2C16C1h
k+1‖ϕ‖, i = 0, 1, 2.

Here C16 = a2MT (2qrCr + 2qaCa + qalCal) + a1 + a2. Similarly we can get
∣

∣

∣

∣

∣

∫ L

0

(λ2(y2[u
n,i, vn,i])un,i − λ2(y2[u

n,i
h , vn,i

h ])un,i
h )ϕdx

∣

∣

∣

∣

∣

6C16(‖ξn,i(u)‖ + ‖ξn,i(v)‖)‖ϕ‖ + 2C16C1h
k+1‖ϕ‖, i = 0, 1, 2.

8.5 The proof of Lemma 4.7

Proof. Taking ϕ = ξn,1(u) in (4.19a) and summing it over j, we can get

‖ξn,1(u)‖2 =

∫ L

0

ξn(u)ξn,1(u)dx+

∫ L

0

(ηn,1(u) − ηn(u))ξn,1(u)dx+ τ
[

B1(ξn(u), ξn,1(u))

−
∫ L

0

(λn
1u

n − (λ1)
n
hu

n
h)ϕdx +

∫ L

0

(λn
2 v

n − (λ2)
n
hv

n
h )ϕdx

]

From Hölder’s inequality, (4.18), Lemma 3.1 and Lemma 4.6, we can obtain

‖ξn,1(u)‖2
6(1 + (

√
2 + 1)λ+ 2C16τ)‖ξn(u)‖‖ξn,1(u)‖ + 2C16τ‖ξn(v)‖‖ξn,1(u)‖

+ (4C1C16 + C15)h
k+1τ‖ξn,1(u)‖

When ‖ξn,1(u)‖ 6= 0, from τ 6 1/γ and λ 6 M , we have

‖ξn,1(u)‖ 6β1‖ξn(u)‖ + β2‖ξn(v)‖ + β3h
k+1τ

Here β1 = 1 + (
√

2 + 1)M + 2C16/γ, β2 = 2C16/γ, β3 = 4C1C16 + C15. The inequality also holds for

‖ξn,1(u)‖ = 0.

Similarly we can obtain

‖ξn,1(v)‖ 6β1‖ξn(v)‖ + β2‖ξn(u)‖ + β3h
k+1τ

‖ξn,2(u)‖ 6

(

3

4
+

1

4
(β2

1 + β2
2)

)

‖ξn(u)‖ +
1

2
β1β2‖ξn(v)‖

+
1

4
(β1 + β2 + 1)β3h

k+1τ

‖ξn,2(v)‖ 6

(

3

4
+

1

4
(β2

1 + β2
2)

)

‖ξn(v)‖ +
1

2
β1β2‖ξn(u)‖

+
1

4
(β1 + β2 + 1)β3h

k+1τ

Define C17 = 3
4 + 1

4 (β2
1 + β2

2), C18 = 1
2β1β2, C19 = 1

4 (β1 + β2 + 1)β3. From triangle inequality and above

inequalities we get

‖D1(ξ(u))‖ 6(β1 + 1)‖ξn(u)‖ + β2‖ξn(v)‖ + β3h
k+1τ

‖D1(ξ(v))‖ 6(β1 + 1)‖ξn(v)‖ + β2‖ξn(u)‖ + β3h
k+1τ

‖D2(ξ(u))‖ 6(2C17 + β1 + 1)‖ξn(u)‖ + (2C18 + β2)‖ξn(v)‖
+ (2C19 + β3)h

k+1τ

‖D2(ξ(v))‖ 6(2C17 + β1 + 1)‖ξn(v)‖ + (2C18 + β2)‖ξn(u)‖
+ (2C19 + β3)h

k+1τ

Define C20 = 2C17 + β1 + 1, C21 = 2C18 + β2, C22 = 2C19 + β3. Then we get the desired results.
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8.6 The proof of Lemma 4.8

Proof. Summing (4.19a) over j and using Hölder’s inequality, (4.18) and Lemma 4.6, we get

(D1(ξ(u)), ϕ) 6τB1(ξn(u), ϕ) + 2C16τ(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖ + β3h
k+1τ

Similarly we can get

(D1(ξ(v)), ϕ) 6τB2(ξn(v), ϕ) + 2C16τ(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖ + β3h
k+1τ

Subtracting 1
2 × (4.19a) from 2 × (4.19c), then summing it over j and using Hölder’s inequality, (4.18),

Lemma 4.6, Lemma 4.7 and τ 6 1/γ, we get

(D2(ξ(u)), ϕ) 6
τ

2
B1(D1(ξ

n(u)), ϕ) +
C23τ

2
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖ + C24h

k+1τ

Here C23 = 2C16(β1 + β2 + 1), C24 = 2C16β3/γ + β3.

Similarly we have

(D2(ξ(v)), ϕ) 6
τ

2
B2(D1(ξ

n(v)), ϕ) +
C23τ

2
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖ + C24h

k+1τ

Subtracting 4
3 × (4.3c) and 1

3 × (4.3a) from (4.3e), then summing it over j and using Hölder’s inequality,

(4.16), (4.18), Lemma 4.6, Lemma 4.7 and τ 6 1/γ, we get

(D3(ξ(u)), ϕ) 6
τ

3
B1(ξn(u), ϕ) +

C25τ

3
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖

+ C26h
k+1τ‖ϕ‖ + C14τ

4‖ϕ‖

Here C25 = 2C16(1 + β1 + β2 + 2(C17 + C18)), C26 = 4C16((β3 + 2C19)/γ + 4C1)/3 + C15. Similarly we

can get

(D3(ξ(v)), ϕ) 6
τ

3
B2(ξn(v), ϕ) +

C25τ

3
(‖ξn(u)‖ + ‖ξn(v)‖)‖ϕ‖

+ C26h
k+1τ‖ϕ‖ + C14τ

4‖ϕ‖

Then we get the desired results.
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(f) Enlarged view inside the rectangle in fig.(e)

Figure 3 Stationary pulses, u + v at time t = 1000 of Example 2.
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(c) converged solution

Figure 4 Traveling pulses, u + v from time t = 1150 to t = 1300 of Example 3.



Lu J F, Shu C W and Zhang M P Sci China Math 35

x

u
+

v

0 2 4 6 8 10

0

2

4

6

8

scheme (5.2)
scheme (2.5)
converged solution

Figure 5 Traveling pulses, u + v at time t = 1300 of Example 3.


