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ABSTRACT

We investigate the angular distribution ofd.photons transferring in or emergent
from an optically thick medium. Since the evolutions of gfieintensity| in the fre-
guency space and the angular space are coupled from eachveghiast develop the
WENO numerical solver in order to find the time-dependentitohs of the integro-
differential equation of in the space of frequency and angular simultaneously. We
show first that the solutions with the Eddington approximatiwhich assumeéto be
linearly dependent on the angular variapleyield similar frequency profiles of the
photon flux as that without the Eddington approximation. ldeer, the solutions of
the u distribution evolution are significantly fierent from that given by Eddington
approximation. First, the angular distribution bfare found to be substantially de-
pendent on the frequency of photons. For photons with thenaes frequencyy, |
contains only a linear term @f. For photons with frequency at the double peaks of the
flux, the u-distribution is highly anisotropic, in which most photoai® in the direc-
tion of radial forward. Moreover, either ag or at the double peaks, tivdistributions
actually are independent of the initjaldistribution of photons of the source. This is
because the photons with frequency eithergdr of the double peaks have undergone
the process of forgetting their initial conditions due te tesonant scattering. We also
show that the optically thick medium is a collimator of phusaat the double peaks.
Photons from the double peaks form a forward beam with vemgllsspread angle.
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1. Introduction

In this paper we study how radiation transféieets alter the Ly line in context of Lyr emit-
ters, Lyx blob (Fardal et al. 2001; Dijkstra & Loeb 2009; Latif et al. 140, damped Ly system,
Lya forest, fluorescent Ly emission, star-forming galaxies, quasars at high reds(tifaiman et
al. 2000; Latifet al. 2011) as well as optical afterglow ofrgaa ray bursts. Ly photons emergent
from an optically thick halo surrounding a source of thexlghoton would be useful to constrain
the mass density, velocity, temperature and the fractiameotral hydrogen of the optically thick
halo.

The radiative transfer of resonant photons has been extdnsitudied analytically and nu-
merically for more than half a century. Adams et al. (1971uged on the numerical approx-
imation of the redistribution function of resonant scattgr however no solution of the integro-
differential equation of the radiative transfer has been foBedbre that, Field (1958) gave the first
analytical solution of the integro-fierential equation for the case of both medium and source to be
uniformly distributed in the whole space. Analytical soduis of the frequency profile of photons
emergent from optically thick halo are also found based erFtbkker-Planck (F-P) approximation
of the integro-diferential equation (Harrington 1973; Neufeld 1990; Dijlstt al. 2006). Monte
Carlo (MC) simulations are also popular in solving the tfansf resonant photons (e.g. Loeb &
Rybicki 1999; Zheng & Miralda-Escude 2002; Tasitsiomi 2006rhamme et al. 2006; Laursen
& Sommer-Larsen 2007; Pierleoni et al. 2009; Xu & Wu 2010; Xale2011).

Nevertheless, many important topics cannot be seen witalibee-mentioned solutions. Be-
sides the Field’s analytical solution, all others are timgependent, and therefore, they cannot
even be used to describe the formation and evolution of thethysen-Field (W-F) local ther-
malization of the Ly photon frequency distribution (Wouthuysen 1952; Field&9859). The
rich features of the Ly photon transfer referring to the W-F local thermalizatioa aully missed.
The F-P equation is based on the Eddington approximatioighadssumes that the radiation in-
tensity is a linear function of angular (direction) varieblhe solutions of the F-P equation do not
provide the information of the evolution of the angular disition of Lya photons.

Recently, a solver of the radiative transfer of resonantq@mdas been developed based on
the weighted essentially non-oscillatory scheme (WENOj¢ctvis a good numerical solver of the
hydrodynamic equations and the kinetic equations (Jiandhé& 296). With the WENO solver,
many interesting features of byresonant photon transfer have been revealed. It showshéat t
double peaked frequency profile of thed.yphoton emergent from an optically thick medium
generally does not follow the time-independent solutiohthe F-P equation (Fang 2009; Roy
et al. 2009a, 2009b, 2009c, 2010). The solver has also beshtascalculate time-dependent
features: 1) the timescale of the formation of the WfFeet (Roy et al. 2009a, 2009b, 2009c,
2010); 2) the light-curve of a flash source surrounded bycafiyi thick halo (Roy et al. 2010).
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These features have not been seen with previous methodsolar the solve can also be used to
calculate the fects of dust on the double-peak profile of the emergent fhlyotons (Yang et al.
2011).

This paper studies the angular distribution ofelghoton transferring in an optically thick
medium. As discussed above, the evolution of the angulantalision is not taken into account
in any of the methods based on Eddington approximation. Vbhkigon of angular distribution
actually is significant. In a thermalized or statistical #Quum state, the angular distribution
of photons will be isotropic, regardless of the initial ataguistribution. Therefore, one can ex-
pect that the angular distribution of &yphotons with resonant frequeney should be isotropic.
On the other hand, the angular distribution of photons witlgdiency diterent fromvy, might
be anisotropic, as those photons are not involved in theugoeal of thermalization or statistical
equilibrium. Consequently, the angular distributions g&ltesonant photons from optically thick
medium should be frequency-dependent. This feature i&elglio be described by the Edding-
ton approximation. The evolution of the angular distribatiof resonant photons is not trivial.
To numerically compute the solution we have used the WEN®@esalescribed earlier and have
further developed the WENO solver to be able to simultanl@aave the photon transfer in both
frequency and angular spaces.

The paper is organized as follows. Section 2 presents the feasures of Ly photon transfer
given by the WENO solver. In section 3, the precision of thdiBgton approximation will be stud-
ied via a comparison between solutions with and without tdiigton approximation. Section
4 presents the results of the evolution of the angular thstion, especially, on the frequency-
dependence, source-dependence, position-dependeneffesti/e optical depth-dependence of
the Lya photon angular distribution. The discussion and concluaie given in Section 5. Deriva-
tion of the re-distribution functions and mathematicakilstof the WENO algorithm on the radia-
tive transfer equation are given in the Appendix.

2. WENO solver of transfer equations of resonant photons

The WENO solver, some details of which being given in App&liis to solve the following
radiative transfer equation of kyresonant photon in a spherical symmetric medium contaiaimg
infinite homogeneous distribution of neutral hydrogen amarse.
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—¢(x; a)l + fR(x,,u, X, w1 a)l(n,r, X, ))dx'du’ /2 + S, (1)
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wherel(t,rp, X, 1) is the specific intensity, which is a function of tinieradial coordinate,
frequencyx andu = cosé, with 6 being the direction angle with respect to the radial vector
S(t, rp, X, ) is the source of photons.

In eq.(1), we use the dimensionless timgefined ag = cny 0ot and the dimensionless radial
coordinate defined as = ny oor b, Whereny, is the number density of HI, anth/7'/? is the cross
section of HI resonant scattering of d&yphotons at resonant frequengy= 2.46 x 10"° s™%. That
is, n andr are, respectively, in the units of mean free flight-time arehmfree path of photown,
with respect to the resonant scattering without dust stagfend absorption. Without resonant
scattering, a signal propagates in the radial directioh tie speed of light, the orbit of the signal
is thenr = 5 + const.

#(x, @) is the normalized Voigt profile (Hummer 1965) given as

- >
#(x a) = ﬂ%f dy—o 2)

STy e
As usual, the photon frequeneyin eq.(2) is described by the dimensionless frequeney (v —
vo)/Avp, andAvp = vo(vr/C) = 1.06x 10'4(T/10%)Y2 Hz is the Doppler broadening by the thermal
motionvy = V2kgT/my;, T being the gas temperature of the halo. The paranagteeq.(2) is the
ratio of the natural to the Doppler broadening. For thexlipe, a = 4.7 x 10°4(T/10)~Y2. The
optical depth of Ly photons with respect to HI resonant scatterinddgx) = nyo(X)dr,, where
o(X) = oop(X, @) is the cross section of scatteringvaand therefore, the dimensionless size of the
haloRis equal to the optical deptty = Ny ooR.

The re-distribution functiomR(x, u, X', i’; @) of eq.(2), the derivation of which being given
in Appendix A, gives the probability of a photon absorbedrat frequencyx’ directiony’, and
re-emitted at the frequencydirectionu. It depends on the details of the scattering (Henyey &
Greestein 1941; Hummer 1962; Hummer 1969). If we consideent scattering without recoill,
the re-distribution function with the Voigt profile is

21 00 ’ 2171 ERVAY:
R, u, X 1’5 @) = f %f eV a2 + (X+ X _ au) l exp(—(x X) )dud¢, 3)
0 4r B -0

2 4432
whereH = /1- 21— p2cosp + ', @ = B2, andg = (/5. In the case o = 0, i.e.
considering only the Doppler broadening, the re-distridiutunction of equation (2) is
fzﬂ [ 2% — 2xx'H + X
——————exp|- 5

0 272V1-H2 1-H
whereH is exactly the same as in eq. (3). The redistribution fumctibequation (4) is normalized
as

R(X’ M X,’ /J,) = d¢’ (4)

(A )
2 f f R(X, 1, X, (1 )dX Ay’ = (%, 0) = n~ 2™
1 J-
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With this normalization, the total number of photons is @med in the evolution described by
equation (4). That is, the destruction processes af pjiotons, such as the two-photon process
(Spitzer & Greenstein 1951; Osterbrock 1962), are ignoneghjuation (3). The recoil of atoms is
not considered in equation (3) or (4). The dust absorpti@bsis ignored.

In eqg. (1), the term with the parameters due to the expansion of the universe. If the optical
depth of halos is equal to or less tharf lihe term withy of eq.(1) can be ignored (e.g. Roy et al.
2009c) .

2.1. Test with Field’s analytical solution

The WENO solver used in this paper igtérent from the previous version (Roy et al. 2009a,
2009b, 2009c). In the previous version, the evolutiorl @f the u-space is eliminated by the
Eddington approximation, while the current solver trehtsévolution ofl in theu-space governed

by eq.(2).

We first test the WENO solver with analytical solutions. Assg that the specific intensity
and sources are homogeneous in thheandu space, i.el(n,r, X, 1) is independent of variables
andu. Eq.(1) becomes

0 0J

el —p(x)J + f R(x, X)J(n, X)dX +S, (5)

where

09 =3 f (., % 1)l 6)

Takey = 0, Voigt parametea = 0, the source = ¢(xX) = 7~*2e*, and the initial radiative field
J(x,n = 0) = 0. The time-dependent solution of eq.(5) is (Field 1958, iBkik& Dell’Antonio
1994)

I(x, 1) = 77 Y2[1 — explne™)] (7)
+ f eWz[l -1+ ne‘Wz) exp(—ne‘v"z)]erf(w)dw.

Our solver is to directly find the solutionfrom eq.(1). One can then givkvia eq.(6). It is
interesting to see whether the solution eq.(7) can be rejexd if we also assume that the source
Sin eq.(1) is spatially homogeneous, hutlependent, i.eS = O(u)¢(x) = O(u)rY2e™ where
®(u) describes the angular distribution of photons from thes®uwWe consider isotropic source

S=n42e¥ _1<uc<i, (8)



and anisotropic sources

n,—1/2 X2
S:{Z(n+1),u7r e*, O<u<l, )

0, -1<u<0,

wheren is taken to be a positive integer. The larger théhe stronger the emission in the direction
u = 1. The factor 24 + 1) is for normalization:% fol 2(n+ Lu"du = 1.

The numerical results with sources= 0, 4 and 6 are shown in Fig. 1. It is expected that
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Fig. 1.— The WENO numerical solutions (solid lines) of ef|.8bsuming the sources is a)
S = 712 for all u (left); b) S = 10u*rY2e* (middle); and c)S = 14ux~Y2e (right) for
u > 0and S0 foru < 0. The Field’s analytical solution is shown with dot lines.

the numerical solution of source equation (8) (the left pafé-ig. 1) will follow the analytical
solution eq.(7) well, as the isotropic source is the saméatsused to find the analytical solution.

It is interesting to see that the WENO solutionsmoE 4 (middle panel) aneh = 6 (right
panel) also follow the analytical solution eq.(7) well. éesns to indicate that the evolution of the
frequency space is independent of that of ghepace.

2.2. Time scale of the statistical equilibrium of the anguladistribution

An interesting feature of the solutions shown in Fig. 1 isftheplateau in the range| < 2 at
timen > 100. The flat plateau is caused by the Wouthuysen-Field tbeamalization of frequency
distribution of resonant photon (Wouthuysen 1952; Fiel88,9959). The flat plateau actually is
the Boltzmann statistical equilibrium distribution aralx = 0 when the atomic mass is infinite.
If the mass is finite, i.e. considering the recoil in the retdbution functions (3) or (4), the flat
plateau will become 2>, whereb = hvo/mvrc. This is the local Boltzmann distribution required
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by the Wouthuysen-Fieldfect (Roy et al. 2009b). The resonant scattering betweeropb@nd
HI atoms leads to the Boltzmann distribution of the phot@gérency distribution around = 0
with the temperature equal to that of HI atoms.
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Fig. 2.— The WENO numerical solutions of angular distribas from eq.(1) ak = 0, assuming
the sourcesS are a)S = 742 for all i (left) and b)S = 10u*7rY2e* (middle); and c)
S = 14487712 (right) for 4 > 0 and S0 for u < 0.

When resonant photons undergo the local thermalizatioharfrequency space, the angular
distribution should undergo the evolution of approachitagistical equilibrium. The anisotropi¢
distributions have to evolve to isotropic (statistical gigaum). We calculate all th@-distributions
at the timen corresponding to the three panels of Fig. 1. The result iggdan Fig. 2. Theu-
distribution of the left panel is always isotropic. This igected as the source is isotropic, which
is already in the state of statistical equilibrium.

The middle and right panels of Fig. 2 show the evolution of ais@ropicu-distribution
eg.(9) to isotropic. The time scale of approaching isotahstribution seems to be independent
of the anisotropy of sources. It is always equal to abpst100 for bothn = 4 andn = 6, i.e. the
u-distribution will become isotropic after 100 times of resmt scattering. This time scale is about
the same as that of the W-F thermalization (Fig. 1). Theggfthre thermalization in the frequency
space and the isotropic distribution in thespace are realized at about the same time.

3. Precision of the Eddington approximation
3.1. Equations of the Eddington approximation

We now consider the transfer of kyphotons in a spherical halo with an optical source at its
center. The halo is assumed to consist of uniformly distaduHI gas with number densityy,.
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Theu-dependence of the specific intenditgan generally be expressed by a Legendre expansion
[(n,r, % u1) = > Li(n,r,X)P(u). The Eddington approximation is to take only the first twarte of
the Legendre expansion, and drop all terms»f2 (e.g. Rybicki & Lightman, 1979). That is

L (n, 1, % 1) =~ I, 1, X) + 3uF(n, 1, X), (10)

where
+1

1 1
J(m,1,X) = éf | (7, v, X, @)du,  F(mp,1,%) = §f1 pl (m, ¥, X, p)du. (11)

1
They are, respectively, the angularly averaged specifensity and flux.

Defining j = r2J and f = r2F, eq.(1) yields the equations paind f as

g ot _ o ravidy w00 2

g = s+ [ ROxa)idx £y s (12)
ot 10j 2j . of
a—n + :—))5 - 5? = —¢(X, a)f +’)/& (13)

The mean specific intensityn, r, X) describes thex photons trapped in the positionat timen

by the resonant scattering, while the flfig,, r, X) describes the photons in transit. One can test
the precision of the Eddington approximation by a comparigbthe solution of eq.(1) without
Legendre expansion with that of the Eddington approxinmatio

3.2. Profiles ofj and f

For spherical halo with a central source, the t&rof eq.(1) can be replaced by a boundary
condition of I (n, r, X, u) atr = 0. If the angular distribution of photon is independent obfam’s
frequency, we have generally

r2| (77’ r, X, ,U)lr_)o = SOT(U)®(/J)¢(X) (14)

where the function3 (), ®(u), andg(x) describe, respectively, the time-dependence, anguidr- a
frequency-distributions of photons of the source. ThedaSt gives the intensity of the source.

In this case, the source of eq.(14) can be replaced by a bouodadition atr = 0 as
1
£(2.0.%) = ST [ HOG (15)

On the outside of the halo,> R, no photons propagate in the directior: 0. The boundary
condition atr = Rof eq.(1) should be

l(m,Rxu)=0, u<O. (16)
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For eq.(12), we hav%_lul (7, R x, w)du = 0 (Unno 1955), the boundary condition is then

jm.R.x) = 2f(n. R, x). (17)

If the source starts to emit photontat 0, the initial condition should be
1(O,r,x,u) =0, (18)

foreq.(1), and
j(0,r,x) = f(0,r,x) =0, (19)

for eq.(12).
We solve eq.(1) by taking the boundary conditiom &t 0 to be

6un~Y 2e‘xz, u >0,

0, u<O0. (20)

r2| (ns ra X,/l)|r—>0 = {
With eq.(20) one can find from eq.(1), and then fingland f via eqs.(11). The results are given
by the solid curves in Fig. 3, which shows the well-known deyieaks afx| ~ 2.

With eq.(20), the corresponded boundary condition of &x.[d
fg,r =0,X) = V%X, (21)

The profiles off given by the solutions of eqs.(12) and (13) and conditiof2dg.are shown by
the dashed curves of Fig. 3. The profiles of twéelent kinds of curves in Fig. 3 are about the
same, indicating that the Eddington approximation is a gmeelfor this case.

Nevertheless, Fig. 3 shows smallfdrences between the solutions with and without the
Eddington approximation, even though both solutions arergby the same source. Thetdrence
comes from the contribution of the terms lof> 2 in the Legendre expansion. Thefdrence
between the profiles with and without the Eddington appr@tion becomes smaller when the
timen is larger. This is because largecorresponds to larger optical depth. Hence, the Eddington
approximation is generally more suitable for opticallyckhmedium.

In this section we have consideredfdrent sources. We have recalculated the solutiorjs of
andf with eq.(1) by takinds = 6(;1—%) andS = §(u—1). We have used polynomials of degree 6 to
approximate the delta sources. The results are given indkighich shows the same shape of the
profiles. That is, the profiles gfand f are not #&ected by the angular distribution of photons from
the source. It is probably because thdistribution quickly evolves into the statistical eqbiiium
state, the initial anisotropy of thedistribution is forgotten.
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Fig. 3.— A comparison of the solutiopsand f with the Eddington approximation (dashed curves)
and the solutions of without the Eddington approximation (solid curves). Rel@vparameters
arer = R=10?, anda = 1073,

4. Angular distributions
4.1. Frequency dependence

Although the Eddington approximation is acceptable toudate the profile of Ly photons in
the frequency space, it would fail in thespace. The result of Fig. 2 shows that thdistribution
is isotropic at frequency,. On the other hand, the-distribution will no longer be isotropic at
frequency|x| > 2, because photons pf > 2 have not undergone enough number of scattering.
Consequently, the angular distribution of photons emdrffem optically thick halo should be
frequency(energy)-dependent.

We have calculated the-distribution of photons from halo witR = 500 with the central
source given by eq.(20), i.e. photons from the source careberithed by the Eddington approx-
imation eq.(10). The result is shown in Fig. 5. Thelistributions at frequencies = 0 and 0.8
basically are straight lines in the whole rang& < ¢ < 1. That is,| can be described by the
Eddington approximation eq.(10).

At x = 1.6, theu-distribution starts to deviate from a straight line, i.eevihting from an
Eddington approximation. Ax = 2.4, theu-distribution shows a very sharp spikeiat 1. That
is, the angular distribution of photons with frequency a ttvo peaks (Fig. 3) is significantly
different from isotropic, but is dominated by photons:of 1. This result is consistent with the
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Fig. 4.— A comparison of the solutionjsand f with S=6(u—1/2) ands(u—1). Relative parameters
arer = R=100,a= 1073,

“single shot picture” (Adams 1975; Bonilha et al. 1979), ihigh photons with frequendy| < 2
mainly undergo a diusion in the frequency space; once a photdfudes togx| > 2, it will take
“single longest excursion” to leave for outside of the halberefore, the two peaks of the flux

at frequencyk. ~ +(2 — 3) are dominated by photons from “single longest excurshgtons, of
whichu ~ 1.

4.2. Dependence of the initial anisotropy

The source of Fig. 5 given by eq.(20) h@gu) = 6u (u > 0), which is linear ofu. We now
consider sources with higher anisotropy wiu) given by

2N+ 2", O<pu<1,

G)(“):{o, <0

(22)

When the integen is large,®(u) is similar to aé functions(u — 1), i.e. most photons are in the
directionu = 1.

We have repeated the calculation of Fig. 5, but using thecgoeq.(22) witm =1, 2, 4, 6
and 8. The result is plotted in Fig. 6. Itis interesting to $ex theu-distributions are independent
of n, but only depend om. It is easy to explain the-independence of the two top panels of Fig.
6, both of which have frequendy < 2. In this frequency range, the evolution of the specific
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x=2.4

1(n,1,X, 1)

Fig. 5.— Thepu distribution of photons emergent from a halo with radkis= 500, plotted at
r = 0.95R. The frequencies are= 0.0,0.8, 1.6 and 24. The relevant parameters of the calculation
arep =1.2x 10% y =0, anda = 1073,

intensity| is governed by the local thermalization wispace and entropy increasingekpace.
These processes lead to the Boltzmann distribution in teeggrspace and isotropic distribution
in the angular space, regardless of the initial distrimgion either frequency- or angular spaces.
In other words, the initial distribution is forgotten dugithe local thermalization and approaching
statistical equilibrium.

However, the mechanism of the local thermalization and @gghting isotropic distribution
seems to be unable to explain why the two curves=t.& and x2.4 of Fig. 6 also showm-
independence. The-distribution of these two curves of Fig. 6 are highly aniepic. Therefore,
they do not have to be the result of the local thermalizatiwhapproaching statistical equilibrium.
Why do they also show the behavior of forgetting the initiadjalar distributions? The reason is
as follows. In the first phase of resonant photon evolutigm; photons are trapped in the range
of [x] < 2 within the time scales of a few tens or hundred scatteringy (& al. 2009c). The
trapped photons have already forgotten their initial st&te the other hand, photons witkj > 2
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Fig. 6.— Theu-distribution of halo with radiu®k =100 (plotted at = 0.95R) and source eq.(22)
with n=1, 2, 4, 6, and 8. For each X, the curves foffelientn overlap with each other. The
frequencies are taken to xe= 0, 0.8, 1.6, 2.4. The parameters of the halosa#e3500,y = 0,
anda = 1073,

mostly come from the diusion of trapped photons froim| < 2 to|x > 2 (Roy et al. 2009b).
Thus, all photons aix| > 2 emergent from the optically thick halo essentially haveegame initial
condition, given by théx| space diusion of trapped photons. Therefore, the initial distribns
before they are trapped have been forgotten. This propartyatso be seen in Fig. 2, in which,
although the sources of the middle and right panels aferdnt from each other, the behaviors
of the time-evolution of the:-distribution are about the same. This result also impled it is
impossible to find the information of the distribution of gbos emitted by the central source.

4.3. Collimation of photons of the double peaks

A common feature of Fig. 6 is to show a very sharp spike atl when|x| = 1.6 and|x| = 2.4,
corresponding to the double peaks of Figs 3 and 4. Therefweespiky distribution of: indicates
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that the photons with frequency at the double peaks havedaforward beam.

In order to measure the angular size of the 1 spikes, we fit the:-distributions of Fig. 5
atx = 1.6 andx = 2.4 with polynomials ofu. We find that both curves can be well fitted with
polynomials ofu having leading term#w?° + Bu®® + ..., with A, B being the fitting cofficients.
The terms of either?° or 4*° are much sharper than the central source eq22yith n < 6.
Therefore, the radiative transfer at the double peaks gfuieacy space plays the role of forward
collimator. It made the photons to form forward beams.

If we define the spread angeof the forward beam as the angle of half intensity, this numbe
can be estimated by c8% = 1/2, and therefored ~ 0.26rad. This result is again consistent with

the “single shot picture”. The double peaks mainly consigitmtons from a single shot, which
moves in the forward direction.

4.4. Large halo

We calculate the-distribution of Lye photons in a halo with large radii&= 1000, and the

central source is given by eq.(22) and= 6. The results are given in Fig. 7, which shows the
dependence of thedistribution on the radial variablein the halo.

10'f 10 x=2.4 10'F X=2.4
i x=1.6
x=0 x=0.8 / x=0 x=0.8 X=1>6_2 =0 x= - ,
,5: \ J ’:-i: \ ’ ’:_i_: X \(\) x=0.8 x=1.6 !
flo‘),- 5100 f‘lo‘)-
£ | x=2.4 £ £ .
-1 ! ! 1 1 1 -1 1 1 1
10 05 0 05 10 05 0 05 10 05 0 05
n 0 n

Fig. 7.— Theu-distributions at radial positions= 100 (left), 300 (middle), 500 (right) of a halo
with radiusR = 1000. The source is given by eq.(22) amé 6. The frequencies are taken to be
x =0, 0.8, 1.6, 2.4. The dotted curves in the middle and righefsaareu-distributions ar = 100

X = 2.4. Other relevant parameters afe- 1.2 x 10*, y = 0 anda = 10°3.

Although the photons from the sourcemf 6 are highly anisotropic, all the-distributions
of x = 0.0 and 0.8 at = 100, 300, 500 are straight lines. That is, the specific intgrhscan be
well approximated by the Eddington approximation eq.(I0)is result is consistent with section
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4.2. Ther-dependence of thedistribution of|x| = 2.4 photons is also consistent with the result of
section 4.3: the larger the the sharper thg-distribution. Ther transfer leads to the collimation.

The behavior of-dependence of the-distribution atx = 1.6 is very ditferent from that of
x = 0.0, 0.8, and 2.4. The distribution atr = 100 is about the same as Fig. 6, i.e. it has undergone
an evolution of forward collimation, having a sharp spike:at 1. However, theu distribution
will no longer show a spike at = 300 and 500. When is equal to or less than about 200, the
r-dependence of the distribution is similar to théx| = 2.4 photons. While whemn > 200, the
r-dependence qf distribution is similar to théx| = 0 and 0.8 photons. This is because the optical
depth atx| = 1.6 is larger thanx| = 2.4, the “single shot picture” is working well at~ 100 for
both|x = 1.6 and 2.4. However, at> 200, the single shot picture can still work well faf = 2.4,
but not so well forx| = 1.6.

12r T, _c0o(X=2.4)=0.930 121 Tr-500(X=2.4)=0.930
10 10

E T _30o(X=2.0)=3.139 [ T —300(X=2.4)=0.558
_.8fF _8f
3| =2.0)= 3|

< of Tres0o(X=2.0)=5.232 < of Ty p0o(X=2.4)=0.372
£ | T 40y (X=1.6)=13.138 £ |

ar ar T _00(X=2.4)=0.186
] 2f

0 T | r:zoo(XFQ'Q);1J'2'71 Oli\:\—?’\—ﬁr\ — T T
05 0 05 05 0 05

Fig. 8.— Theu-distributions with respect to thefective optical depth. Relevant parameters are
n=12x10%y=0anda=1073.

We consider the evolution of the angular distribution widspect to fective radial optical
deptht,(X) = 71o¢p(x,a). The result is plotted in Fig. 8. The-distribution is isotropic if the
effective radial optical depth is large and it will no longer Isetropic when the depth becomes
small. If we define the transition between isotropic and @nigpic u-distributions to occur when
I(r,x,1) = 2I(r, x, —1), then at the transition, the critical optical depth; ~ 5, as can be found
from Table 1.
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Table 1. Critical &ective optical depthyi

r 100 | 200 | 300 | 400 | 500
X 16| 18| 18| 20| 2.0
7(X) | 441 4.46| 6.69| 4.17| 5.21

4.5. Hfect of anisotropic scattering

All calculations in the previous sections are based on tikgeibution function eq.(3), which
has considered only isotropic scattering. If we considpold scattering, it seems to introduce a
new factor leading to anisotropy and might yield new anwgoit behavior. However, HI atoms
are in thermal equilibrium, and their distribution is ismic. The dipole scattering, in average,
does not contain any parameter of specific direction. It khoaot add any anisotropic behavior.
Therefore, all conclusions in the previous sections shetilichold.

5. Conclusion

The transfer of Ly resonant photons from a central source in a halo consisfikty gener-
ally is considered as a problem of radiative transfer in aticafly thick medium. However, the
“optically thick medium” is true only when the frequency ofd photons lies in a narrow range
Il < 2. The cross section of resonant scattering is very seaditithe photon frequency. It
quickly becomes small when the frequency otilghotons has only a small deviation from the
range|x| < 2. For those photons, the halo is optically moderate thickeven thin. Therefore, in
order to understand the transfer ofd.photons with frequency around the resonant peak, we need
to find the solutions of the integro{tierential equation (1) available simultaneously in optical
thick as well as moderate thick and even thin medium. Thatilspugh halo is optically thick for
resonant photons, one should not treat eq.(1) by using thditoan of optical thick.

To find solution of eq.(1) having desired precision in fregeyeranges of optically thick as
well as moderately thick, the algorithm should be able todhaithe extremely flat distribution
(X < 2) and its sharp boundaryx( ~ 2) of I. These features can be properly captured by the
state-of-the-art numerical method, WENO scheme, as it ltgsdrder of accuracy and good con-
vergence in capturing discontinuities as well as to be figantly superior over piecewise smooth
solutions containing discontinuities. The WENO solver hasn shown to be powerful to solve
the integro-diferential equation of radiative transfer of resonant phstoyr. In this paper, we
develop the WENO algorithm to be able to solve the integriecential equation (1) in frequency
and angular space simultaneously.
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We have first shown that the Eddington approximation cardyiehsonable results of the fre-
guency profile of photons emergent from optically thick IsalSince the Eddington approximation
is to assume thdtlinearly depends op, all the physics of the angular distribution ofdyphotons
is missing. A cost of the simpler Fokker-Planck equationals® to ignore all the féects of the
evolutions of angular distribution.

The physics of the evolution of angular distribution is ticAs has been known, resonant
scattering makes the transfers of resonant photons in th&iqai space and the frequency space
to be coupled between each other. In this paper we have shavthe resonant scattering leads
to the coupling between the evolutions of resonant photottsa frequency space and the angular
space as well. The evolution of resonant photon distrilouiiothe u space is significantly de-
pendent on the frequency. Photons with frequemcy 2 undergo the procedure of approaching
statistical equilibrium, and their angular distributiaisotropic after a few tens or hundred scat-
tering, regardless of whether the initial angular disttibn is isotropic. On the other hand, the
angular distribution of photons witlx| > 2 is substantially anisotropic, even if the initial angular
distribution is isotropic.

An interesting feature of an optically thick halo is that #r@sotropic angular distributions,
at frequencyx| ~ 2, are independent of the initial angular distributionsff&eent initial angular
distributions yield the same anisotropic angular distiitms after a few tens or hundreds scatter-
ings. This is because photons at frequepty- 2 do not originate directly from the source, but
come from the trapped photons withix} < 2, for which the initial distributions have been for-
gotten. Therefore, it seems to be impossible to find the ptpmd the source with the observed
u-distribution of Lya photons either in the range p§ < 2 orin|x > 2.

Another interesting feature of an optically thick halo i ttollimation of photons with fre-
guency of the double peaks. This is also because photorgettdp|x| < 2 are thermal. When
the trapped photonsfliuse to|x| > 2, they have two possible fates. One is to get out of the holes
by a single shot if photons move forward. If a photon has nkénaa single shot, the resonant
scattering will lead it to get back to the region|af < 2. Therefore, photon transfer in optically
thick medium is a collimator. Although photons stored in gtically thick halo are thermal, the
u-distribution is isotropic, the double peak is only to pigk photons of single shot, i.e. moving
forward.

Acknowledgment: This research is partially supported by ARO grants W9118F&520 and
W911NF-11-1-0091.
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A. Re-distribution function

In this section, we proceed to the re-distribution functRix, u, X', ¢’; @) in equation (1). We
consider isotropic scattering and the casa ef 0. The re-distribution function (Hummer, 1962)

1 X2 — 2xX’ cosa + X'?
R(x,n,X,n") = ——exp -
nSina Sirt a

gives the probability that a photon with frequencyand directiomn’” within an element of solid
angledw’ is absorbed and re-emitted with frequencgnd directiom in dw, wherea is the angle
betweem andn’. Choose x-axis such that lies in the xz-plane, then

n’ = (sing,0, cosy’)
and
n = (siné cosg, sind sing, cosh),

where¢ is the azimuthal anglg; = cosg andy’ = cost’. With the above notatiordw = 4—lﬂd¢d/1
and
cosa =N’ - n = sin@sind’ cos¢ + cosH cosy’.

Integrating over, we obtain
fzﬂ 1 22 — 2xx'H + X2
0 212V1-H2 1-H?

whereH = /1 - u2+/1 - 2 cosg + py'. If we considera # 0, follow the same line above, we can
obtain

ROx 1. X 11 8) = fz” a f"" -
s Mo D) 1] 0 47T3B .

whereH = /1-p2+/1-p2cosp + ', @ = |BH, andg = /&P, We can verify numeri-
cally that the angular averaged re-distribution functieexactly the same as the one obtained by
Hummer (1962), i.e.

R(X’ M X,’ /J,) = d¢’ (Al)

, 2171 ,
a® + (X;X - au) l exp(—(xgﬁz)z)dud& (A2)

1t 1t
§f RO u, X1’ @)du’ = §f R, X, 1’3 @)du = R(x, X'; ).
-1 -1

B. Numerical algorithm

To solve equation (1), our computational domainrisx(u) € [0,rmax X [Xeft> Xright] X
[-1.1], wherermax Xjeft @nd Xright are chosen such that the solution vanishes to zero outside
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the boundaries. We choose mesh sizes with grid refinemetsttteensure proper numerical res-
olution. In the following, we describe numerical techniguevolved in our algorithm, including
approximations to spatial derivatives, numerical intéigrg numerical boundary condition and
time evolution.

B.1. Conservation law

To perform the WENO algorithm, we first need to rewrite the atpn into the form of a

conservation law. Noticing the boundary condition (14), definel’ = r?l, then equation (1)
becomes
’ ’ 2\ ’
ov, A 1Al o
on o r ou 0X
—o(X; a)I’+fR(x,u, X,/ a)l (i, r, X, p1)dx du’ /2 + 12S. (B1)

For simplicity, we drop the prime, and usgy, r, X, i) for 1’(n, r, X, 1) below.

B.2. The WENO algorithm: approximations to the spatial derivatives

The spatial derivative terms in equation (B1) are approxaady a fifth-order finite dierence
WENO scheme.

We first give the WENO reconstruction procedure in approxingag—:(,

al(nn’ r',X',/lk) 1 o L
6Ix J ~ E((hm/z —hj_1)2)

with fixedn = ", r = ry andu = ux. The numerical flu>ﬁj+1/2 is obtained by the fifth-order WENO
approximation in an upwind fashion, because the wind dmads fixed (negative). Denote

h; = |(77n,ri,Xj,,Uk), j=-2-1---Nx+3

with fixed n, i andk. The numerical flux from the WENO procedure is obtained by

h — w.hY NG N©)
hj+1/2 = wlhj+1/2 + wghj+1/2 + wghj+1/2, (BZ)
whereﬁﬁ”j)l/2 are the three third-order fluxes on thre@elient stencils given by
- 1 5 1
(-
hj+1/2 = _éhj_l + éhj + :—))hj+1,
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~» 15 1
h?,, = 3+ ghise = ghive
w11 7 1

hj+1/2 = Ehj+1 - éhj+2 + :_))hj+3’
and the nonlinear weights,, are given by

Soidr (e+B)%

wheree is a parameter to avoid the denominator to become zero amtkén tase = 108, The
linear weightsy, are given by

Wm

3
10°
and the smoothness indicat@sare given by

1

3
7225’ Y3 = =

n= 10

13 1

o= 15N =20y + hjs1)? + 7 (-1 —4hy + 3hj.1)?,
13 1

B2 = 1_2(hj — 2hj,1 + hj2)? + Z(hj — hj:2)%,

13 1
Bs = 1_2(hj+1 - 2hJ'+2 + hj+3)2 + Z(3hi+1 - 4hj+2 + hj+3)2'

Similarly, we give the WENO procedure in approximatiﬁg%ﬁz)',
AL = L (", T, Yo 147)
Ou
with fixedn = 5", r = rj andx = X.. The numerical flu>ﬁj+1/2 is also obtained by the fifth-order

WENO approximation in an upwind fashion, however the win@cdlion here is positive, opposite
from that of 2. Denote

h] = (1—/1]'2)'(77n,ri, anuj)’ J =-3,-2,-, Ny +2

with fixed n, i andk. The numerical flux from the WENO procedure is obtained by

1 . .
~ A_u(hj+1/2 —hj_12)

Flj+1/2 = wlﬁﬁ)lﬂ + wgﬁﬁ)l/z + wgﬁﬁ)l/z, (B3)
whereﬁﬁ”j)l/2 are the three third-order fluxes on thre@elient stencils given by
- 1 5 1
1
h§+)1/2 = _éhi+2 + éhj+1 + ghj’
- 1 5 1
2
h§+)1/2 = ghi+1 + éhi - éhj—l’
- 11 7 1
h® = =—h;— hi_; + Sh;_,

j+1/2 — 6

6 3
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and the nonlinear weights,, are given by

Wm o Y

Wm= —_3 <>, W=7"

wheree is taken ag = 10°8. The linear weights, are also given by

3 3 1

1_0’ Y2 = 5’ Y3 = 1_07

and the smoothness indicat@sare given by

Y1 =

13 1
,81 = 1—2(hj+2 - 2hj+1 + hj)2 + Z(hj+2 - 4hj+1 + 3hj)2,

13 1
B2 = 1_2(hj+l —2h; + hj_1)* + Z(hj+1 —hj-1)%,
13

1
,33 = 1—2(hj - 2hj_1 + hj_z)z + Z(3hj - 4hj_1 + hj_z)z.

In the end, we approximate threderivative in equation (B1), following the reconstructio
procedures mentioned above. However, we need to check titedirection at the-boundary of
each cell. Whemu > 0, the wind direction is positive, then we use equation (B3pproximate
the numerical flux, while whep < 0, we use equation (B2).

B.3. High order numerical integration

The integration of the resonance scattering term is caiedlay a fifth order quadrature (Shen
et al.2007)

Hright Ny
[t = 8 Y ot ) + Ol
k=1

Hieft

whereuy = et + (K — %)dp and the weights are defined as,

6463 1457 741 | 5537
“175760 “27 1020 “®*T 620 ““” 5760
5537 741 1457 6463

“NIZE7e0 “N2TEa0 N 1920 “M T 5760

andwy = 1 otherwise.
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B.4. Numerical boundary condition

Following Carrillo et al. (2006), gt = —1 andu = 1, we take the boundary conditions as, for
u>0,

[, r,%,=1—pu) =1(n,r,%x -1+ pu),
[, r, X, 1+ pu) = 1(n,r,x1—p),

motivated by the physical meaning@fs the cosine of the angle to theaxis. We also explicitly
h

imposeﬁ% = hy,.1 = 0 for the first and last numerical fluxes in order to enforceseovation of
mass.

B.5. Time evolution

To evolve in time, we use the third-order TVD Runge-Kuttadidiscretization (Shu & Osher
1988). For system of ODHs = L(u), the third order Runge-Kutta method is

u® = u" + ArL(U", "),

3 1
u@ = 2" U® + A7LU®D, " + A7),

1 2 1
Ml 2o Zy®@ @ -, =
u 3u +3(u + ATL(U®, " + ZAT)).
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