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ABSTRACT

We investigate the angular distribution of Lyα photons transferring in or emergent
from an optically thick medium. Since the evolutions of specific intensityI in the fre-
quency space and the angular space are coupled from each other, we first develop the
WENO numerical solver in order to find the time-dependent solutions of the integro-
differential equation ofI in the space of frequency and angular simultaneously. We
show first that the solutions with the Eddington approximation, which assumeI to be
linearly dependent on the angular variableµ, yield similar frequency profiles of the
photon flux as that without the Eddington approximation. However, the solutions of
the µ distribution evolution are significantly different from that given by Eddington
approximation. First, the angular distribution ofI are found to be substantially de-
pendent on the frequency of photons. For photons with the resonant frequencyν0, I
contains only a linear term ofµ. For photons with frequency at the double peaks of the
flux, theµ-distribution is highly anisotropic, in which most photonsare in the direc-
tion of radial forward. Moreover, either atν0 or at the double peaks, theµ distributions
actually are independent of the initialµ distribution of photons of the source. This is
because the photons with frequency either ofν0 or of the double peaks have undergone
the process of forgetting their initial conditions due to the resonant scattering. We also
show that the optically thick medium is a collimator of photons at the double peaks.
Photons from the double peaks form a forward beam with very small spread angle.
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1. Introduction

In this paper we study how radiation transfer effects alter the Lyα line in context of Lyα emit-
ters, Lyα blob (Fardal et al. 2001; Dijkstra & Loeb 2009; Latif et al. 2011), damped Lyα system,
Lyα forest, fluorescent Lyα emission, star-forming galaxies, quasars at high redshifts (Haiman et
al. 2000; Latif et al. 2011) as well as optical afterglow of gamma ray bursts. Lyα photons emergent
from an optically thick halo surrounding a source of the Lyα photon would be useful to constrain
the mass density, velocity, temperature and the fraction ofneutral hydrogen of the optically thick
halo.

The radiative transfer of resonant photons has been extensively studied analytically and nu-
merically for more than half a century. Adams et al. (1971) focused on the numerical approx-
imation of the redistribution function of resonant scattering, however no solution of the integro-
differential equation of the radiative transfer has been found.Before that, Field (1958) gave the first
analytical solution of the integro-differential equation for the case of both medium and source to be
uniformly distributed in the whole space. Analytical solutions of the frequency profile of photons
emergent from optically thick halo are also found based on the Fokker-Planck (F-P) approximation
of the integro-differential equation (Harrington 1973; Neufeld 1990; Dijkstra et al. 2006). Monte
Carlo (MC) simulations are also popular in solving the transfer of resonant photons (e.g. Loeb &
Rybicki 1999; Zheng & Miralda-Escude 2002; Tasitsiomi 2006; Verhamme et al. 2006; Laursen
& Sommer-Larsen 2007; Pierleoni et al. 2009; Xu & Wu 2010; Xu et al. 2011).

Nevertheless, many important topics cannot be seen with theabove-mentioned solutions. Be-
sides the Field’s analytical solution, all others are time-independent, and therefore, they cannot
even be used to describe the formation and evolution of the Wouthuysen-Field (W-F) local ther-
malization of the Lyα photon frequency distribution (Wouthuysen 1952; Field 1958, 1959). The
rich features of the Lyα photon transfer referring to the W-F local thermalization are fully missed.
The F-P equation is based on the Eddington approximation, which assumes that the radiation in-
tensity is a linear function of angular (direction) variable. The solutions of the F-P equation do not
provide the information of the evolution of the angular distribution of Lyα photons.

Recently, a solver of the radiative transfer of resonant photon has been developed based on
the weighted essentially non-oscillatory scheme (WENO), which is a good numerical solver of the
hydrodynamic equations and the kinetic equations (Jiang & Shu 1996). With the WENO solver,
many interesting features of Lyα resonant photon transfer have been revealed. It shows that the
double peaked frequency profile of the Lyα photon emergent from an optically thick medium
generally does not follow the time-independent solutions of the F-P equation (Fang 2009; Roy
et al. 2009a, 2009b, 2009c, 2010). The solver has also been used to calculate time-dependent
features: 1) the timescale of the formation of the W-F effect (Roy et al. 2009a, 2009b, 2009c,
2010); 2) the light-curve of a flash source surrounded by optically thick halo (Roy et al. 2010).
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These features have not been seen with previous methods. Moreover, the solve can also be used to
calculate the effects of dust on the double-peak profile of the emergent Lyα photons (Yang et al.
2011).

This paper studies the angular distribution of Lyα photon transferring in an optically thick
medium. As discussed above, the evolution of the angular distribution is not taken into account
in any of the methods based on Eddington approximation. The evolution of angular distribution
actually is significant. In a thermalized or statistical equilibrium state, the angular distribution
of photons will be isotropic, regardless of the initial angular distribution. Therefore, one can ex-
pect that the angular distribution of Lyα photons with resonant frequencyν0 should be isotropic.
On the other hand, the angular distribution of photons with frequency different fromν0 might
be anisotropic, as those photons are not involved in the evolution of thermalization or statistical
equilibrium. Consequently, the angular distributions of Lyα resonant photons from optically thick
medium should be frequency-dependent. This feature is unlikely to be described by the Edding-
ton approximation. The evolution of the angular distribution of resonant photons is not trivial.
To numerically compute the solution we have used the WENO solver described earlier and have
further developed the WENO solver to be able to simultaneously solve the photon transfer in both
frequency and angular spaces.

The paper is organized as follows. Section 2 presents the basic features of Lyα photon transfer
given by the WENO solver. In section 3, the precision of the Eddington approximation will be stud-
ied via a comparison between solutions with and without the Eddington approximation. Section
4 presents the results of the evolution of the angular distribution, especially, on the frequency-
dependence, source-dependence, position-dependence andeffective optical depth-dependence of
the Lyα photon angular distribution. The discussion and conclusion are given in Section 5. Deriva-
tion of the re-distribution functions and mathematical details of the WENO algorithm on the radia-
tive transfer equation are given in the Appendix.

2. WENO solver of transfer equations of resonant photons

The WENO solver, some details of which being given in Appendix B, is to solve the following
radiative transfer equation of Lyα resonant photon in a spherical symmetric medium containingan
infinite homogeneous distribution of neutral hydrogen and source.

∂I
∂η
+ µ
∂I
∂r
+

(1− µ2)
r

∂I
∂µ
− γ ∂I
∂x
=

−φ(x; a)I +
∫

R(x, µ, x′, µ′; a)I(η, r, x′, µ′)dx′dµ′/2+ S , (1)
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where I(t, rp, x, µ) is the specific intensity, which is a function of timet, radial coordinaterp,
frequencyx andµ = cosθ, with θ being the direction angle with respect to the radial vectorr .
S (t, rp, x, µ) is the source of photons.

In eq.(1), we use the dimensionless timeη defined asη = cnHIσ0t and the dimensionless radial
coordinater defined asr = nHIσ0rp, wherenHI is the number density of HI, andσ0/π

1/2 is the cross
section of HI resonant scattering of Lyα photons at resonant frequencyν0 = 2.46× 1015 s−1. That
is, η andr are, respectively, in the units of mean free flight-time and mean free path of photonν0
with respect to the resonant scattering without dust scattering and absorption. Without resonant
scattering, a signal propagates in the radial direction with the speed of light, the orbit of the signal
is thenr = η + const.

φ(x, a) is the normalized Voigt profile (Hummer 1965) given as

φ(x, a) =
a
π3/2

∫ ∞

−∞
dy

e−y2

(x − y)2 + a2
. (2)

As usual, the photon frequencyν in eq.(2) is described by the dimensionless frequencyx ≡ (ν −
ν0)/∆νD, and∆νD = ν0(vT/c) = 1.06×1011(T/104)1/2 Hz is the Doppler broadening by the thermal
motionvT =

√
2kBT/mHI, T being the gas temperature of the halo. The parametera in eq.(2) is the

ratio of the natural to the Doppler broadening. For the Lyα line, a = 4.7 × 10−4(T/104)−1/2. The
optical depth of Lyα photons with respect to HI resonant scattering isdτs(x) = nHIσ(x)drp, where
σ(x) = σ0φ(x, a) is the cross section of scattering atν, and therefore, the dimensionless size of the
haloR is equal to the optical depthτ0 = nHIσ0R.

The re-distribution functionR(x, µ, x′, µ′; a) of eq.(2), the derivation of which being given
in Appendix A, gives the probability of a photon absorbed at the frequencyx′ directionµ′, and
re-emitted at the frequencyx directionµ. It depends on the details of the scattering (Henyey &
Greestein 1941; Hummer 1962; Hummer 1969). If we consider coherent scattering without recoil,
the re-distribution function with the Voigt profile is

R(x, µ, x′, µ′; a) =
∫ 2π

0

a
4π3β

∫ ∞

−∞
e−u2













a2
+

(

x + x′

2
− αu

)2










−1

exp

(

−(x − x′)2

4β2

)

dudφ, (3)

whereH =
√

1− µ2
√

1− µ′2 cosφ + µµ′, α =
√

1+H
2 , andβ =

√

1−H
2 . In the case ofa = 0, i.e.

considering only the Doppler broadening, the re-distribution function of equation (2) is

R(x, µ, x′, µ′) =
∫ 2π

0

1

2π2
√

1− H2
exp

[

−22 − 2xx′H + x′2

1− H2

]

dφ, (4)

whereH is exactly the same as in eq. (3). The redistribution function of equation (4) is normalized
as

1
2

∫ 1

−1

∫ ∞

−∞
R(x, µ, x′, µ′)dx′dµ′ = φ(x, 0) = π−1/2e−x2

.
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With this normalization, the total number of photons is conserved in the evolution described by
equation (4). That is, the destruction processes of Lyα photons, such as the two-photon process
(Spitzer & Greenstein 1951; Osterbrock 1962), are ignored in equation (3). The recoil of atoms is
not considered in equation (3) or (4). The dust absorption isalso ignored.

In eq. (1), the term with the parameterγ is due to the expansion of the universe. If the optical
depth of halos is equal to or less than 106, the term withγ of eq.(1) can be ignored (e.g. Roy et al.
2009c) .

2.1. Test with Field’s analytical solution

The WENO solver used in this paper is different from the previous version (Roy et al. 2009a,
2009b, 2009c). In the previous version, the evolution ofI in the µ-space is eliminated by the
Eddington approximation, while the current solver treats the evolution ofI in theµ-space governed
by eq.(1).

We first test the WENO solver with analytical solutions. Assuming that the specific intensity
and sourceS are homogeneous in ther andµ space, i.e.I(η, r, x, µ) is independent of variablesr
andµ. Eq.(1) becomes

∂J
∂η
− γ∂J
∂x
= −φ(x)J +

∫

R(x, x′)J(η, x′)dx′ + S , (5)

where

J(η, x) =
1
2

∫

I(η, r, x, µ)dµ. (6)

Takeγ = 0, Voigt parametera = 0, the sourceS = φ(x) = π−1/2e−x2
, and the initial radiative field

J(x, η = 0) = 0. The time-dependent solution of eq.(5) is (Field 1958, Rybicki & Dell’Antonio
1994)

J(x, η) = π−1/2[1 − exp(−ηe−x2
)] (7)

+

∫ ∞

x
ew2

[1 − (1+ ηe−w2
) exp(−ηe−w2

)]erf(w)dw.

Our solver is to directly find the solutionI from eq.(1). One can then giveJ via eq.(6). It is
interesting to see whether the solution eq.(7) can be reproduced, if we also assume that the source
S in eq.(1) is spatially homogeneous, butµ-dependent, i.e.S = Θ(µ)φ(x) = Θ(µ)π−1/2e−x2

where
Θ(µ) describes the angular distribution of photons from the source. We consider isotropic source

S = π−1/2e−x2
, −1 < µ ≤ 1, (8)
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and anisotropic sources

S =

{

2(n + 1)µnπ−1/2e−x2
, 0 < µ ≤ 1,

0, −1 ≤ µ ≤ 0,
(9)

wheren is taken to be a positive integer. The larger then, the stronger the emission in the direction
µ = 1. The factor 2(n + 1) is for normalization:12

∫ 1

0
2(n + 1)µndµ = 1.

The numerical results with sourcesn = 0, 4 and 6 are shown in Fig. 1. It is expected that
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Fig. 1.— The WENO numerical solutions (solid lines) of eq.(1) assuming the sourcesS is a)
S = π−1/2e−x2

for all µ (left); b) S = 10µ4π−1/2e−x2
(middle); and c)S = 14µ6π−1/2e−x2

(right) for
µ > 0 and S=0 for µ < 0. The Field’s analytical solution is shown with dot lines.

the numerical solution of source equation (8) (the left panel of Fig. 1) will follow the analytical
solution eq.(7) well, as the isotropic source is the same as that used to find the analytical solution.

It is interesting to see that the WENO solutions ofn = 4 (middle panel) andn = 6 (right
panel) also follow the analytical solution eq.(7) well. It seems to indicate that the evolution of the
frequency space is independent of that of theµ-space.

2.2. Time scale of the statistical equilibrium of the angular distribution

An interesting feature of the solutions shown in Fig. 1 is theflat plateau in the range|x| < 2 at
timeη > 100. The flat plateau is caused by the Wouthuysen-Field localthermalization of frequency
distribution of resonant photon (Wouthuysen 1952; Field 1958, 1959). The flat plateau actually is
the Boltzmann statistical equilibrium distribution around x = 0 when the atomic mass is infinite.
If the mass is finite, i.e. considering the recoil in the re-distribution functions (3) or (4), the flat
plateau will becomee−2bx, whereb = hν0/mvT c. This is the local Boltzmann distribution required
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by the Wouthuysen-Field effect (Roy et al. 2009b). The resonant scattering between photons and
HI atoms leads to the Boltzmann distribution of the photon frequency distribution aroundx = 0
with the temperature equal to that of HI atoms.
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Fig. 2.— The WENO numerical solutions of angular distributions from eq.(1) atx = 0, assuming
the sourcesS are a)S = π−1/2e−x2

for all µ (left) and b)S = 10µ4π−1/2e−x2
(middle); and c)

S = 14µ6π−1/2e−x2
(right) for µ > 0 and S=0 for µ < 0.

When resonant photons undergo the local thermalization in the frequency space, the angular
distribution should undergo the evolution of approaching statistical equilibrium. The anisotropicµ-
distributions have to evolve to isotropic (statistical equilibrium). We calculate all theµ-distributions
at the timeη corresponding to the three panels of Fig. 1. The result is plotted in Fig. 2. Theµ-
distribution of the left panel is always isotropic. This is expected as the source is isotropic, which
is already in the state of statistical equilibrium.

The middle and right panels of Fig. 2 show the evolution of an anisotropicµ-distribution
eq.(9) to isotropic. The time scale of approaching isotropic distribution seems to be independent
of the anisotropy of sources. It is always equal to aboutη ∼ 100 for bothn = 4 andn = 6, i.e. the
µ-distribution will become isotropic after 100 times of resonant scattering. This time scale is about
the same as that of the W-F thermalization (Fig. 1). Therefore, the thermalization in the frequency
space and the isotropic distribution in theµ-space are realized at about the same time.

3. Precision of the Eddington approximation

3.1. Equations of the Eddington approximation

We now consider the transfer of Lyα photons in a spherical halo with an optical source at its
center. The halo is assumed to consist of uniformly distributed HI gas with number densitynHI.
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Theµ-dependence of the specific intensityI can generally be expressed by a Legendre expansion
I(η, r, x, µ) =

∑

l Il(η, r, x)Pl(µ). The Eddington approximation is to take only the first two terms of
the Legendre expansion, and drop all terms ofl ≥ 2 (e.g. Rybicki & Lightman, 1979). That is

I(η, r, x, µ) ≃ J(η, r, x) + 3µF(η, r, x), (10)

where

J(η, r, x) =
1
2

∫

+1

−1
I(η, r, x, µ)dµ, F(η, r, x) =

1
2

∫

+1

−1
µI(η, r, x, µ)dµ. (11)

They are, respectively, the angularly averaged specific intensity and flux.

Defining j = r2J and f = r2F, eq.(1) yields the equations ofj and f as

∂ j
∂η
+
∂ f
∂r
= −φ(x; a) j +

∫

R(x, x′; a) jdx′ + γ
∂ j
∂x
+ r2S , (12)

∂ f
∂η
+

1
3
∂ j
∂r
− 2

3
j
r
= −φ(x; a) f + γ

∂ f
∂x
. (13)

The mean specific intensityj(η, r, x) describes thex photons trapped in the positionr at timeη
by the resonant scattering, while the fluxf (η, r, x) describes the photons in transit. One can test
the precision of the Eddington approximation by a comparison of the solution of eq.(1) without
Legendre expansion with that of the Eddington approximation.

3.2. Profiles of j and f

For spherical halo with a central source, the termS of eq.(1) can be replaced by a boundary
condition ofI(η, r, x, µ) at r = 0. If the angular distribution of photon is independent of photon’s
frequency, we have generally

r2I(η, r, x, µ)|r→0 = S 0T (η)Θ(µ)φ(x). (14)

where the functionsT (η),Θ(µ), andφ(x) describe, respectively, the time-dependence, angular- and
frequency-distributions of photons of the source. The factor S 0 gives the intensity of the source.

In this case, the source of eq.(14) can be replaced by a boundary condition atr = 0 as

f (η, 0, x) = S 0T (η)φ(x)
1
2

∫

µΘ(µ)dµ. (15)

On the outside of the halo,r > R, no photons propagate in the directionµ < 0. The boundary
condition atr = R of eq.(1) should be

I(η,R, x, µ) = 0, µ < 0. (16)
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For eq.(12), we have
∫ −1

0
µI(η,R, x, µ)dµ = 0 (Unno 1955), the boundary condition is then

j(η,R, x) = 2 f (η,R, x). (17)

If the source starts to emit photon att = 0, the initial condition should be

I(0, r, x, µ) = 0, (18)

for eq.(1), and
j(0, r, x) = f (0, r, x) = 0, (19)

for eq.(12).

We solve eq.(1) by taking the boundary condition atr = 0 to be

r2I(η, r, x, µ)|r→0 =

{

6µπ−1/2e−x2
, µ > 0,

0, µ < 0.
(20)

With eq.(20) one can findI from eq.(1), and then findj and f via eqs.(11). The results are given
by the solid curves in Fig. 3, which shows the well-known double peaks at|x| ∼ 2.

With eq.(20), the corresponded boundary condition of eq.(15) is

f (η, r = 0, x) = π−1/2e−x2
. (21)

The profiles off given by the solutions of eqs.(12) and (13) and condition eq.(21) are shown by
the dashed curves of Fig. 3. The profiles of two different kinds of curves in Fig. 3 are about the
same, indicating that the Eddington approximation is a goodone for this case.

Nevertheless, Fig. 3 shows small differences between the solutions with and without the
Eddington approximation, even though both solutions are given by the same source. The difference
comes from the contribution of the terms ofl > 2 in the Legendre expansion. The difference
between the profiles with and without the Eddington approximation becomes smaller when the
timeη is larger. This is because largerη corresponds to larger optical depth. Hence, the Eddington
approximation is generally more suitable for optically thick medium.

In this section we have considered different sources. We have recalculated the solutions ofj
and f with eq.(1) by takingS = δ(µ− 1

2) andS = δ(µ−1). We have used polynomials of degree 6 to
approximate the delta sources. The results are given in Fig.4, which shows the same shape of the
profiles. That is, the profiles ofj and f are not affected by the angular distribution of photons from
the source. It is probably because theµ-distribution quickly evolves into the statistical equilibrium
state, the initial anisotropy of theµ distribution is forgotten.
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Fig. 3.— A comparison of the solutionsj and f with the Eddington approximation (dashed curves)
and the solutions off without the Eddington approximation (solid curves). Relevant parameters
arer = R = 102, anda = 10−3.

4. Angular distributions

4.1. Frequency dependence

Although the Eddington approximation is acceptable to calculate the profile of Lyα photons in
the frequency space, it would fail in theµ-space. The result of Fig. 2 shows that theµ-distribution
is isotropic at frequencyν0. On the other hand, theµ-distribution will no longer be isotropic at
frequency|x| ≥ 2, because photons of|x| ≥ 2 have not undergone enough number of scattering.
Consequently, the angular distribution of photons emergent from optically thick halo should be
frequency(energy)-dependent.

We have calculated theµ-distribution of photons from halo withR = 500 with the central
source given by eq.(20), i.e. photons from the source can be described by the Eddington approx-
imation eq.(10). The result is shown in Fig. 5. Theµ distributions at frequenciesx = 0 and 0.8
basically are straight lines in the whole range−1 ≤ µ ≤ 1. That is,I can be described by the
Eddington approximation eq.(10).

At x = 1.6, theµ-distribution starts to deviate from a straight line, i.e. deviating from an
Eddington approximation. Atx = 2.4, theµ-distribution shows a very sharp spike atµ = 1. That
is, the angular distribution of photons with frequency at the two peaks (Fig. 3) is significantly
different from isotropic, but is dominated by photons ofµ = 1. This result is consistent with the
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Fig. 4.— A comparison of the solution sj and f with S=δ(µ−1/2) andδ(µ−1). Relative parameters
arer = R = 100,a = 10−3.

“single shot picture” (Adams 1975; Bonilha et al. 1979), in which photons with frequency|x| < 2
mainly undergo a diffusion in the frequency space; once a photon diffuses to|x| ≥ 2, it will take
“single longest excursion” to leave for outside of the halo.Therefore, the two peaks of the fluxf
at frequencyx± ≃ ±(2− 3) are dominated by photons from “single longest excursion”photons, of
whichµ ∼ 1.

4.2. Dependence of the initial anisotropy

The source of Fig. 5 given by eq.(20) hasΘ(µ) = 6µ (µ > 0), which is linear ofµ. We now
consider sources with higher anisotropy withΘ(µ) given by

Θ(µ) =

{

2(n + 2)µn, 0 < µ ≤ 1,
0, µ < 0.

(22)

When the integern is large,Θ(µ) is similar to aδ functionδ(µ − 1), i.e. most photons are in the
directionµ = 1.

We have repeated the calculation of Fig. 5, but using the source eq.(22) withn = 1, 2, 4, 6
and 8. The result is plotted in Fig. 6. It is interesting to seethat theµ-distributions are independent
of n, but only depend onx. It is easy to explain then-independence of the two top panels of Fig.
6, both of which have frequency|x| ≤ 2. In this frequency range, the evolution of the specific
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Fig. 5.— Theµ distribution of photons emergent from a halo with radiusR = 500, plotted at
r = 0.95R. The frequencies arex = 0.0, 0.8, 1.6 and 2.4. The relevant parameters of the calculation
areη = 1.2× 104, γ = 0, anda = 10−3.

intensityI is governed by the local thermalization ofx-space and entropy increasing ofµ-space.
These processes lead to the Boltzmann distribution in the energy space and isotropic distribution
in the angular space, regardless of the initial distributions in either frequency- or angular spaces.
In other words, the initial distribution is forgotten during the local thermalization and approaching
statistical equilibrium.

However, the mechanism of the local thermalization and approaching isotropic distribution
seems to be unable to explain why the two curves at x=1.6 and x=2.4 of Fig. 6 also shown-
independence. Theµ-distribution of these two curves of Fig. 6 are highly anisotropic. Therefore,
they do not have to be the result of the local thermalization and approaching statistical equilibrium.
Why do they also show the behavior of forgetting the initial angular distributions? The reason is
as follows. In the first phase of resonant photon evolution, Lyα photons are trapped in the range
of |x| ≤ 2 within the time scales of a few tens or hundred scattering (Roy et al. 2009c). The
trapped photons have already forgotten their initial state. On the other hand, photons with|x| ≥ 2
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Fig. 6.— Theµ-distribution of halo with radiusR =100 (plotted atr = 0.95R) and source eq.(22)
with n=1, 2, 4, 6, and 8. For each x, the curves for differentn overlap with each other. The
frequencies are taken to bex = 0, 0.8, 1.6, 2.4. The parameters of the halos areη = 3500,γ = 0,
anda = 10−3.

mostly come from the diffusion of trapped photons from|x| ≤ 2 to |x| ≥ 2 (Roy et al. 2009b).
Thus, all photons of|x| ≥ 2 emergent from the optically thick halo essentially have the same initial
condition, given by the|x| space diffusion of trapped photons. Therefore, the initial distributions
before they are trapped have been forgotten. This property can also be seen in Fig. 2, in which,
although the sources of the middle and right panels are different from each other, the behaviors
of the time-evolution of theµ-distribution are about the same. This result also implies that it is
impossible to find the information of the distribution of photons emitted by the central source.

4.3. Collimation of photons of the double peaks

A common feature of Fig. 6 is to show a very sharp spike atµ ∼ 1 when|x| = 1.6 and|x| = 2.4,
corresponding to the double peaks of Figs 3 and 4. Therefore,the spiky distribution ofµ indicates
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that the photons with frequency at the double peaks have formed a forward beam.

In order to measure the angular size of theµ = 1 spikes, we fit theµ-distributions of Fig. 5
at x = 1.6 andx = 2.4 with polynomials ofµ. We find that both curves can be well fitted with
polynomials ofµ having leading termsAµ20

+ Bµ19
+ ..., with A, B being the fitting coefficients.

The terms of eitherµ20 or µ19 are much sharper than the central source eq.(22)µn with n ≤ 6.
Therefore, the radiative transfer at the double peaks of frequency space plays the role of forward
collimator. It made the photons to form forward beams.

If we define the spread angleβ of the forward beam as the angle of half intensity, this number
can be estimated by cos20β = 1/2, and therefore,β ∼ 0.26rad. This result is again consistent with
the “single shot picture”. The double peaks mainly consist of photons from a single shot, which
moves in the forward direction.

4.4. Large halo

We calculate theµ-distribution of Lyα photons in a halo with large radiusR = 1000, and the
central source is given by eq.(22) andn = 6. The results are given in Fig. 7, which shows the
dependence of theµ distribution on the radial variabler in the halo.
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Fig. 7.— Theµ-distributions at radial positionsr = 100 (left), 300 (middle), 500 (right) of a halo
with radiusR = 1000. The source is given by eq.(22) andn = 6. The frequencies are taken to be
x = 0, 0.8, 1.6, 2.4. The dotted curves in the middle and right panels areµ-distributions atr = 100
x = 2.4. Other relevant parameters areη = 1.2× 104, γ = 0 anda = 10−3.

Although the photons from the source ofn = 6 are highly anisotropic, all theµ-distributions
of x = 0.0 and 0.8 atr = 100, 300, 500 are straight lines. That is, the specific intensity I can be
well approximated by the Eddington approximation eq.(10).This result is consistent with section
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4.2. Ther-dependence of theµ-distribution of|x| = 2.4 photons is also consistent with the result of
section 4.3: the larger ther, the sharper theµ-distribution. Ther transfer leads to the collimation.

The behavior ofr-dependence of theµ-distribution atx = 1.6 is very different from that of
x = 0.0, 0.8, and 2.4. Theµ distribution atr = 100 is about the same as Fig. 6, i.e. it has undergone
an evolution of forward collimation, having a sharp spike atµ = 1. However, theµ distribution
will no longer show a spike atr = 300 and 500. Whenr is equal to or less than about 200, the
r-dependence of theµ distribution is similar to the|x| = 2.4 photons. While whenr ≥ 200, the
r-dependence ofµ distribution is similar to the|x| = 0 and 0.8 photons. This is because the optical
depth at|x| = 1.6 is larger than|x| = 2.4, the “single shot picture” is working well atr ∼ 100 for
both|x| = 1.6 and 2.4. However, atr ≥ 200, the single shot picture can still work well for|x| = 2.4,
but not so well for|x| = 1.6.
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Fig. 8.— Theµ-distributions with respect to the effective optical depth. Relevant parameters are
η = 1.2× 104, γ = 0 anda = 10−3.

We consider the evolution of the angular distribution with respect to effective radial optical
depthτr(x) = τ0φ(x, a). The result is plotted in Fig. 8. Theµ-distribution is isotropic if the
effective radial optical depth is large and it will no longer be isotropic when the depth becomes
small. If we define the transition between isotropic and anisotropicµ-distributions to occur when
I(r, x, 1) = 2I(r, x,−1), then at the transition, the critical optical depthτcrit ≈ 5, as can be found
from Table 1.



– 16 –

Table 1. Critical effective optical depthτcrit

r 100 200 300 400 500
x 1.6 1.8 1.8 2.0 2.0
τr(x) 4.41 4.46 6.69 4.17 5.21

4.5. Effect of anisotropic scattering

All calculations in the previous sections are based on the re-distribution function eq.(3), which
has considered only isotropic scattering. If we consider dipole scattering, it seems to introduce a
new factor leading to anisotropy and might yield new anisotropic behavior. However, HI atoms
are in thermal equilibrium, and their distribution is isotropic. The dipole scattering, in average,
does not contain any parameter of specific direction. It should not add any anisotropic behavior.
Therefore, all conclusions in the previous sections shouldstill hold.

5. Conclusion

The transfer of Lyα resonant photons from a central source in a halo consisting of HI gener-
ally is considered as a problem of radiative transfer in an optically thick medium. However, the
“optically thick medium” is true only when the frequency of Lyα photons lies in a narrow range
|x| ≤ 2. The cross section of resonant scattering is very sensitive to the photon frequency. It
quickly becomes small when the frequency of Lyα photons has only a small deviation from the
range|x| ≤ 2. For those photons, the halo is optically moderate thick, or even thin. Therefore, in
order to understand the transfer of Lyα photons with frequency around the resonant peak, we need
to find the solutions of the integro-differential equation (1) available simultaneously in optically
thick as well as moderate thick and even thin medium. That is,although halo is optically thick for
resonant photons, one should not treat eq.(1) by using the condition of optical thick.

To find solution of eq.(1) having desired precision in frequency ranges of optically thick as
well as moderately thick, the algorithm should be able to handle the extremely flat distribution
(|x| < 2) and its sharp boundary (|x| ∼ 2) of I. These features can be properly captured by the
state-of-the-art numerical method, WENO scheme, as it has high order of accuracy and good con-
vergence in capturing discontinuities as well as to be significantly superior over piecewise smooth
solutions containing discontinuities. The WENO solver hasbeen shown to be powerful to solve
the integro-differential equation of radiative transfer of resonant photons Lyα. In this paper, we
develop the WENO algorithm to be able to solve the integral-differential equation (1) in frequency
and angular space simultaneously.
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We have first shown that the Eddington approximation can yield reasonable results of the fre-
quency profile of photons emergent from optically thick halos. Since the Eddington approximation
is to assume thatI linearly depends onµ, all the physics of the angular distribution of Lyα photons
is missing. A cost of the simpler Fokker-Planck equations isalso to ignore all the effects of the
evolutions of angular distribution.

The physics of the evolution of angular distribution is rich. As has been known, resonant
scattering makes the transfers of resonant photons in the physical space and the frequency space
to be coupled between each other. In this paper we have shown that the resonant scattering leads
to the coupling between the evolutions of resonant photons in the frequency space and the angular
space as well. The evolution of resonant photon distribution in theµ space is significantly de-
pendent on the frequency. Photons with frequency|x| ≤ 2 undergo the procedure of approaching
statistical equilibrium, and their angular distribution is isotropic after a few tens or hundred scat-
tering, regardless of whether the initial angular distribution is isotropic. On the other hand, the
angular distribution of photons with|x| ≥ 2 is substantially anisotropic, even if the initial angular
distribution is isotropic.

An interesting feature of an optically thick halo is that theanisotropic angular distributions,
at frequency|x| ∼ 2, are independent of the initial angular distributions. Different initial angular
distributions yield the same anisotropic angular distributions after a few tens or hundreds scatter-
ings. This is because photons at frequency|x| ∼ 2 do not originate directly from the source, but
come from the trapped photons within|x| ≤ 2, for which the initial distributions have been for-
gotten. Therefore, it seems to be impossible to find the property of the source with the observed
µ-distribution of Lyα photons either in the range of|x| ≤ 2 or in |x| ≥ 2.

Another interesting feature of an optically thick halo is the collimation of photons with fre-
quency of the double peaks. This is also because photons trapped in |x| ≤ 2 are thermal. When
the trapped photons diffuse to|x| ≥ 2, they have two possible fates. One is to get out of the holes
by a single shot if photons move forward. If a photon has not taken a single shot, the resonant
scattering will lead it to get back to the region of|x| ≤ 2. Therefore, photon transfer in optically
thick medium is a collimator. Although photons stored in an optically thick halo are thermal, the
µ-distribution is isotropic, the double peak is only to pick up photons of single shot, i.e. moving
forward.

Acknowledgment: This research is partially supported by ARO grants W911NF-08-1-0520 and
W911NF-11-1-0091.
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A. Re-distribution function

In this section, we proceed to the re-distribution functionR(x, µ, x′, µ′; a) in equation (1). We
consider isotropic scattering and the case ofa = 0. The re-distribution function (Hummer, 1962)

R(x, n, x′, n′) =
1
πsinα

exp

[

− x2 − 2xx′ cosα + x′2

sin2α

]

gives the probability that a photon with frequencyx′ and directionn′ within an element of solid
angledω′ is absorbed and re-emitted with frequencyx and directionn in dω, whereα is the angle
betweenn andn′. Choose x-axis such thatn′ lies in the xz-plane, then

n′ = (sinθ′, 0, cosθ′)

and
n = (sinθ cosφ, sinθ sinφ, cosθ),

whereφ is the azimuthal angle,µ = cosθ andµ′ = cosθ′.With the above notation,dω = 1
4πdφdµ

and
cosα = n′ · n = sinθ sinθ′ cosφ + cosθ cosθ′.

Integrating overφ, we obtain

R(x, µ, x′, µ′) =
∫ 2π

0

1

2π2
√

1− H2
exp

[

−22 − 2xx′H + x′2

1− H2

]

dφ, (A1)

whereH =
√

1− µ2
√

1− µ′2 cosφ+µµ′. If we considera , 0, follow the same line above, we can
obtain

R(x, µ, x′, µ′; a) =
∫ 2π

0

a
4π3β

∫ ∞

−∞
e−u2













a2
+

(

x + x′

2
− αu

)2










−1

exp

(

−(x − x′)2

4β2

)

dudφ, (A2)

whereH =
√

1− µ2
√

1− µ′2 cosφ + µµ′, α =
√

1+H
2 , andβ =

√

1−H
2 . We can verify numeri-

cally that the angular averaged re-distribution function is exactly the same as the one obtained by
Hummer (1962), i.e.

1
2

∫ 1

−1
R(x, µ, x′, µ′; a)dµ′ =

1
2

∫ 1

−1
R(x, µ, x′, µ′; a)dµ = R(x, x′; a).

B. Numerical algorithm

To solve equation (1), our computational domain is (r, x, µ) ∈ [0, rmax] × [xleft, xright] ×
[−1, 1], wherermax, xleft and xright are chosen such that the solution vanishes to zero outside



– 19 –

the boundaries. We choose mesh sizes with grid refinement tests to ensure proper numerical res-
olution. In the following, we describe numerical techniques involved in our algorithm, including
approximations to spatial derivatives, numerical integration, numerical boundary condition and
time evolution.

B.1. Conservation law

To perform the WENO algorithm, we first need to rewrite the equation into the form of a
conservation law. Noticing the boundary condition (14), wedefineI′ = r2I, then equation (1)
becomes

∂I′

∂η
+ µ
∂I′

∂r
+

1
r
∂(1− µ2)I′

∂µ
− γ∂I

′

∂x
=

−φ(x; a)I′ +
∫

R(x, µ, x′, µ′; a)I′(η, r, x′, µ′)dx′dµ′/2+ r2S . (B1)

For simplicity, we drop the prime, and useI(η, r, x, µ) for I′(η, r, x, µ) below.

B.2. The WENO algorithm: approximations to the spatial derivatives

The spatial derivative terms in equation (B1) are approximated by a fifth-order finite difference
WENO scheme.

We first give the WENO reconstruction procedure in approximating ∂I
∂x ,

∂I(ηn, ri, x j, µk)

∂x
≈ 1
∆x

(ĥ j+1/2 − ĥ j−1/2)

with fixedη = ηn, r = ri andµ = µk. The numerical flux̂h j+1/2 is obtained by the fifth-order WENO
approximation in an upwind fashion, because the wind direction is fixed (negative). Denote

h j = I(ηn, ri, x j, µk), j = −2,−1, · · · ,Nx + 3

with fixed n, i andk. The numerical flux from the WENO procedure is obtained by

ĥ j+1/2 = ω1ĥ(1)
j+1/2 + ω2ĥ(2)

j+1/2 + ω3ĥ(3)
j+1/2, (B2)

whereĥ(m)
j+1/2 are the three third-order fluxes on three different stencils given by

ĥ(1)
j+1/2 = −

1
6

h j−1 +
5
6

h j +
1
3

h j+1,
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ĥ(2)
j+1/2 =

1
3

h j +
5
6

h j+1 −
1
6

h j+2,

ĥ(3)
j+1/2 =

11
6

h j+1 −
7
6

h j+2 +
1
3

h j+3,

and the nonlinear weightsωm are given by

ωm =
ω̆m

∑3
l=1 ω̆l

, ω̆l =
γl

(ǫ + βl)2
,

whereǫ is a parameter to avoid the denominator to become zero and is taken asǫ = 10−8. The
linear weightsγl are given by

γ1 =
3
10
, γ2 =

3
5
, γ3 =

1
10
,

and the smoothness indicatorsβl are given by

β1 =
13
12

(h j−1 − 2h j + h j+1)
2
+

1
4

(h j−1 − 4h j + 3h j+1)
2,

β2 =
13
12

(h j − 2h j+1 + h j+2)
2
+

1
4

(h j − h j+2)
2,

β3 =
13
12

(h j+1 − 2h j+2 + h j+3)
2
+

1
4

(3h j+1 − 4h j+2 + h j+3)
2.

Similarly, we give the WENO procedure in approximating∂(1−µ
2)I

∂µ
,

∂(1− µ2
j)I(η

n, ri, xk, µ j)

∂µ
≈ 1
∆µ

(ĥ j+1/2 − ĥ j−1/2)

with fixed η = ηn, r = ri andx = xk. The numerical flux̂h j+1/2 is also obtained by the fifth-order
WENO approximation in an upwind fashion, however the wind direction here is positive, opposite
from that of ∂I

∂x . Denote

h j = (1− µ2
j)I(η

n, ri, xk, µ j), j = −3,−2, · · · ,Nµ + 2

with fixed n, i andk. The numerical flux from the WENO procedure is obtained by

ĥ j+1/2 = ω1ĥ(1)
j+1/2 + ω2ĥ(2)

j+1/2 + ω3ĥ(3)
j+1/2, (B3)

whereĥ(m)
j+1/2 are the three third-order fluxes on three different stencils given by

ĥ(1)
j+1/2 = −

1
6

h j+2 +
5
6

h j+1 +
1
3

h j,

ĥ(2)
j+1/2 =

1
3

h j+1 +
5
6

h j −
1
6

h j−1,

ĥ(3)
j+1/2 =

11
6

h j −
7
6

h j−1 +
1
3

h j−2,
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and the nonlinear weightsωm are given by

ωm =
ω̆m

∑3
l=1 ω̆l

, ω̆l =
γl

(ǫ + βl)2
,

whereǫ is taken asǫ = 10−8. The linear weightsγl are also given by

γ1 =
3
10
, γ2 =

3
5
, γ3 =

1
10
,

and the smoothness indicatorsβl are given by

β1 =
13
12

(h j+2 − 2h j+1 + h j)
2
+

1
4

(h j+2 − 4h j+1 + 3h j)
2,

β2 =
13
12

(h j+1 − 2h j + h j−1)
2
+

1
4

(h j+1 − h j−1)
2,

β3 =
13
12

(h j − 2h j−1 + h j−2)
2
+

1
4

(3h j − 4h j−1 + h j−2)
2.

In the end, we approximate ther-derivative in equation (B1), following the reconstruction
procedures mentioned above. However, we need to check the wind direction at ther-boundary of
each cell. Whenµ > 0, the wind direction is positive, then we use equation (B3) to approximate
the numerical flux, while whenµ < 0, we use equation (B2).

B.3. High order numerical integration

The integration of the resonance scattering term is calculated by a fifth order quadrature (Shen
et al.2007)

∫ µright

µle f t

f (µ)dµ = ∆µ
Nµ
∑

k=1

ωk f (µk) + O(∆µ5),

whereµk = µle f t + (k − 1
2)dµ and the weights are defined as,

ω1 =
6463
5760

, ω2 =
1457
1920

, ω3 =
741
640
, ω4 =

5537
5760

,

ωNµ−3 =
5537
5760

, ωNµ−2 =
741
640
, ωNµ−1 =

1457
1920

, ωNµ =
6463
5760

,

andωk = 1 otherwise.
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B.4. Numerical boundary condition

Following Carrillo et al. (2006), atµ = −1 andµ = 1, we take the boundary conditions as, for
µ > 0,

I(η, r, x,−1− µ) = I(η, r, x,−1+ µ),

I(η, r, x, 1+ µ) = I(η, r, x, 1− µ),

motivated by the physical meaning ofµ as the cosine of the angle to thez−axis. We also explicitly
imposeĥ 1

2
= ĥNµ+ 1

2
= 0 for the first and last numerical fluxes in order to enforce conservation of

mass.

B.5. Time evolution

To evolve in time, we use the third-order TVD Runge-Kutta time discretization (Shu & Osher
1988). For system of ODEsut = L(u), the third order Runge-Kutta method is

u(1)
= un

+ ∆τL(un, τn),

u(2)
=

3
4

un
+

1
4

(u(1)
+ ∆τL(u(1), τn

+ ∆τ)),

un+1
=

1
3

un
+

2
3

(u(2)
+ ∆τL(u(2), τn

+
1
2
∆τ)).
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