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Abstract

Two-dimensional interaction between two Taylor vortices is simulated systematically

through solving the two-dimensional, unsteady compressible Navier-Stokes equations using a

fifth order weighted essentially nonoscillatory finite difference scheme. The main purpose of

this study is to reveal the mechanism of sound generation in two-dimensional interaction of

two Taylor vortices. Based on an extensive parameter study on the evolution of the vorticity

field, we classify the interaction of two Taylor vortices into four types. The first type is the

interaction of two counter-rotating vortices with similar strengths. The second type is the

interaction of two co-rotating vortices without merging. The third type is the merging of two

co-rotating vortices. The fourth type is the interaction of two vortices with a large difference

in their strengths or scales. The mechanism of sound generation is analyzed.
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1 Introduction

Since the pioneering work of Lighthill [1] in 1952 on aerodynamic sound generation, the

sound generated by unsteady flows has received increasing attention. Many theories have

been developed [2, 3, 4, 5, 6, 7, 8, 9]. Typical examples include the vortex sound theory of

Powell [2], the wave antenna theory of Crow [3], the instability wave model of Ffowcs Williams

and Kempton [4] and the stagnation enthalpy theory of Doak [5]. These theories do offer

better understandings to the generation of aerodynamic noise and provide good methods in

engineering to calculate the noise generated by unsteady flows such as shear layer [6, 10],

jet [7, 8, 11], wake [12] and airframes [13]. However, from the earliest stress tensor theory

of Lighthill [1] to the recent stagnation enthalpy theory of Doak [5], the theoretical sound

sources are rather abstract and difficult to measure. See [14, 15, 16, 17] for discussions on

turbulence measurements for sound source modeling.

It is well known that sound can be generated by turbulent flows. However, owing to

the difficulty in studying turbulent flows, it is necessary to first study simpler flow models.

Vortices are building blocks of turbulent flows. In compressible turbulence, the interaction

among these vortices plays an important role.

Mitchell et al. [18] studied the pairing process of two Gaussian vortices by a direct

numerical simulation. The sound generated by the leapfrogging (referring to two or more

vortices or vortex structures rotating around) and pairing is revealed. It is found that

strong noise is generated at the instant of vortex merging. Besides, the sound wave obtained

by the direct numerical simulation and the traditional theory is compared. In the direct

numerical simulation for a plane mixing layer [10] and an axisymmetric jet [19], it is found

that the vortex pairing is a key mechanism of sound generation in shear layer turbulent

flows. However, the Gaussian vortex is just one type of vortices. There may be features of

vortex interactions in real turbulent flows that can not be described by Gaussian vortices.

Therefore, it is worthwhile to study the interaction of two Taylor vortices. For example, in

the wake of a school of fish [20, 21], vortex dipoles often are formed from the interaction of
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two counter-rotating vortices, which are similar to those in the interaction of two counter-

rotating Taylor vortices [22, 23]. Tang and Ko [24, 25] studied the interaction of inviscid

two-dimensional vortices by the method of contour dynamics and the mechanism of sound

generation by the vortex sound theory. It is found that the motions of the velocity centroid

and the unsteady deformation of the vortex cores are the sources of sound generated in the

interaction. The sound wave generated by the interaction of two identical vortices results

from the leapfrogging and coalescence, while the sound wave generated by the interaction of

unequal vortices results from leapfrogging, shearing and tearing processes. The advantage of

using contour dynamics is that the vortices and their boundaries are explicitly defined, which

allows the Möhring source terms [18, 26] to be easily broken down into contributions from

each vortex. However, real fluid effects, such as viscosity and nearfield compressibility, are

obviously ignored in this approach, and such effects may have direct or indirect consequences

on aeroacoustics. Non-uniform distributions of vorticity can not be simulated, and therefore

the effect of this non-uniformity on the magnitude of the acoustic field components cannot

be assessed.

Using a vortex particle method and direct numerical simulation for two-dimensional full

Navier-Stokes equations, Eldredge [27] studied the dynamics and sound generation of viscous

two-dimensional leapfrogging vortex pairs. The relationship between the deformation of the

vortex core and the filament stripped from the outer region of the vortex is analyzed. It is

demonstrated that both the initial distribution of the vortex and the viscous diffusion are

crucially important for the sound generation.

Shock vortex interaction is another simple model to study the sound generation of com-

pressible turbulent flow due to the coexistence of shock waves and vortices in compressible

turbulence. Compared to the study on the interaction of vortices, there are more studies on

shock vortex interaction, which contains the interaction between a shock wave and a single

vortex and the interaction between a shock wave and a pair of vortices. We will not discuss

this issue in detail and refer the readers to the references [22, 23, 28, 29, 30, 31, 32].
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In fact, both vortex-vortex interaction and shock-vortex interaction may take place at

the same time. In past few years, we have studied the interaction between a shock wave and

a strong Taylor vortex [31] and the interaction between a shock wave and a pair of Taylor

vortices [22, 23]. We have found that the interaction of a shock wave and a strong vortex has

multistage feature and predicted that the sound generated has also multistage feature, which

has been demonstrated by Chatterjee and Vijayaraj [33]. For the interaction of a shock and

a pair of Taylor vortices, we have found that there are two regimes of sound generation in the

interaction. The first regime is linear which corresponds to the shock interaction with two

isolated vortices, in which the sound wave generated by the interaction between the shock

wave and a pair of vortices equals to the linear combination of the sound waves generated

by the interactions between the same shock wave and each vortex. The second regime is

nonlinear which corresponds to the shock interaction with a coupled vortex pair, in which

the sound wave comes from two processes. One is the vortex coupling, and the second is the

interaction between the shock wave and the coupled vortex pair. The work in this paper is an

extension of our previous work in [23]. Using a fifth order weighted essentially nonoscillatory

(WENO) finite difference scheme [34], we systematically study the interaction between two

Taylor vortices through simulating the two-dimensional unsteady Navier-Stokes equations.

Our purpose is to study the mechanism of sound generation by the interaction of two Taylor

vortices to reveal the mechanism of sound generation of the first process in the second regime

of the interaction of a shock and a pair of strong vortices [23]. The effect of the strength

of the vortices and the geometry parameters are studied systematically. The mechanism

of sound generation is analyzed by comparing the characteristics of sound waves and the

dynamic process of two-dimensional interaction of two Taylor vortices.

This paper is organized as follows. In Section 2, the numerical method and the physical

model are briefly introduced. In Section 3, we present our simulation results and provide

a detailed discussion for the sound generation. In Section 4, we revisit the interaction

between two Gaussian vortices to show the difference in the sound generation between two
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different types of vortices. In Section 5, the classification for the two-dimensional interaction

of two Taylor vortices is partly demonstrated by a decaying two-dimensional homogeneous

turbulence through direct numerical simulation. Section 6 contains our concluding remarks.

2 The physical model for the interaction of two Taylor

vortices

2.1 The numerical method

The fifth order finite difference WENO scheme developed by Jiang and Shu [34] is used to

simulate the following two-dimensional unsteady compressible Navier-Stokes equations.

Ut + F (U)x + G(U)y =
1

Re
(Fν(U)x + Gν(U)y) (1)

where U = (ρ, ρu, ρv, e)T , F (U) = (ρu, ρu2 + p, ρuv, u(e + p))T , G(U) = (ρv, ρuv, ρv2 +

p, v(e + p))T , Fν(U) = (0, τxx, τxy, uτxx + vτxy + qx)
T , Gν(U) = (0, τxy, τyy, uτxy + vτyy + qy)

T .

Here ρ is the density, (u, v) is the velocity, e is the total energy, p is the pressure, which is

related to the total energy by e = p
γ−1

+ 1
2
ρ(u2 + v2), the ratio of specific heats γ = 1.4.

Re is the Reynolds number defined by Re = ρ∞a∞R/µ∞, where ρ∞, a∞ and µ∞ are the

density, sound speed and viscosity for the free stream and R is the radius of the vortex core

of the larger or stronger Taylor vortex defined by the distance from the vortex center to the

location where the tangential velocity attains its maximum. τij and qj (where i, j = 1 for x

and i, j = 2 for y) are the stress tensor and the heat flux respectively and are given as:

τij = µ

(

∂ui

∂xj
+

∂uj

∂xi
−

2

3
δij

∂uk

∂xk

)

, qj =
µ

(γ − 1)Pr

∂T

∂xj

where Pr = 0.75 is the Prandtl number, µ = T
3

2
1+c
T+c

is the viscosity computed by the

Sutherland law, with c = 110.4/T∞ and T∞ = 300, and T = γp/ρ is the temperature.

The nonlinear first derivative terms of the Navier-Stokes equations are discretized by the

fifth order finite difference WENO scheme. It has fifth order accuracy in smooth regions. The

solution is essentially non-oscillatory and gives sharp shock transitions near discontinuities.

We refer to [34] and [35] for more details.

5



Md

Mu

d

Xl Xr
Yl

Yr

Rcd

Rcu

Figure 1: Schematic diagram of the flow model for the interaction of two Taylor vortices.

The viscous terms are discretized by a fourth order central difference scheme and the time

derivative is discretized by the third order TVD Runge-Kutta method of Shu and Osher [36].

We again refer to [35] for more details.

2.2 The physical model for the interaction of two Taylor vortices

Figure 1 is the schematic diagram of the flow model for the interaction of two Taylor vortices.

Mυu and Mυd are the strengths of the upper and lower vortices respectively. d is the initial

separation distance of the two vortices. The computational domain is prescribed to be

rectangular xl < x < xr, yl < y < yr. In our simulation, we choose xl = yl = −220 and

xr = yr = 220.

The initial value of a single Taylor vortex [31, 35, 37] is set as follows:

tangential velocity: uθ(r) = Mυre
(1−r2)/2,

radial velocity: ur = 0,

pressure: p(r) = 1
γ
[1 − γ−1

2
M2

υe1−r2

]
γ

γ−1 ,

density: ρ(r) = [1 − γ−1
2

M2
υe1−r2

]
1

γ−1

where r =
√

(x − xv)2 + (y − yv)2/Rc. (xv, yv) is the center of the initial vortex. Rc is the

critical radius of a single vortex for which the vortex has the maximum strength. Mυ is the

strength of a single Taylor vortex. The initial flow field for the interaction of two vortices
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is prescribed by the superposition of the flow field produced by each single vortex. In our

simulation, the strengths of the upper (Mυu) and the lower vortices (Mυd) are chosen from

0.01, 0.2, 0.25, 0.45, 0.5, 0.75 and 0.8. The separation distance of the two vortices is set

to be d = 2, 2.2, 3, 4, 6 or 8. The initial locations of the upper and lower vortices are

set to be (xu, yu) = (0., 1
2
d) and (xd, yd) = (0.,−1

2
d) respectively. The radius of upper and

bottom vortices Rcu and Rcd are set to be Rcu = Rcd = 1.0 or Rcu = 1.0 and Rcd = 0.2. The

computational cases consist of an extensive list of combinations of above listed parameters,

which contain more than one hundred numerical cases. Throughout these computations, a

Reynolds number of 800 is used. Only representative cases are shown to save space and to

highlight the main conclusions.

After a grid convergence study to confirm sufficient grid resolution, we use an uniform

mesh with the grid density of 6000× 6000, which can offer numerically resolved solution for

the vorticity field and sound waves under study.

3 Classification and sound generation of the two-dimensional

interaction of two Taylor vortices

3.1 Classification of the two-dimensional interaction of two Taylor

vortices

The interaction of two Taylor vortices has a close relationship with four parameters that

contain the rotating direction, the strength, the radius and the initial separation distance of

the two vortices. Based on a wide range parameter study and the evolution of the vorticity

field, we classify the interaction into four types. They are the interaction of two counter-

rotating vortices with similar strengths, the interaction of two co-rotating vortices without

merging, the merging of two co-rotating vortices and the interaction between two Taylor

vortices with a large difference in their strengths or scales.

Type I: The interaction of two counter-rotating vortices with similar strengths

The interaction between two counter-rotating vortices with similar strengths will result in
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a new flow structure and will generate sound waves if they are close enough. Figure 2 is the

evolution of the vorticity in the interaction of two counter-rotating vortices. The strengths

of both the upper and the lower vortex are the same with Mυu = −0.5 and Mυd = 0.5. They

have the same radius with Rcu = Rcd = 1. The upper vortex rotates clockwise and the lower

vortex rotates in the opposite direction. The initial distance of the two vortices is d = 4. As

can be seen from Figure 2(a), the initial Taylor vortex has two layers, the inner layer and the

outer layer. The sign of the vorticity is opposite in the inner layer and the outer layer. The

interaction results in a significant change in their shapes. The vortex cores are pressed to

an approximately elliptical shape from the initially circular shape and they gradually form

a vortex dipole, which is advected to the left by the induced velocity. The outer layers move

toward the symmetry line and gradually separate from the vortex core. They form a weak

vortex dipole which moves to the right.

In practice, the strengths of two vortices are often not equal exactly, which results in

the strengths of two vortex cores of each vortex dipole being not equal. Hence, the evolved

vortex dipoles are often asymmetric and the trace of the vortex dipoles are curved. Figure

3 contains the evolution of two Taylor vortices with a slight difference in their strengths.

The strength of the upper vortex Mυu = −0.5 and it is Mυd = 0.45 for the lower vortex.

This kind of slightly asymmetric vortex dipoles often appear in the wake of a school of fish

[20, 21]. The evolution of the interaction of two Taylor vortices is similar to that of the

Taylor-type vortex pair coupling [38] and is observed in the experiment by Schmidt et al.

[39].

Type II: The interaction of two co-rotating vortices without merging

There are two types in the interaction of two co-rotating vortices. The first type is the

interaction of two co-rotating vortices without merging. The second type is the merging of

two co-rotating vortices.

Figure 4 contains the evolution of the vorticity field in the interaction of two co-rotating
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Figure 2: The evolution of the vorticity field in the interaction of two counter-rotating
vortices in the case of Mυu = −0.5, Mυd = 0.5, d = 4 and Rcu = Rcd = 1.
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vortices without merging. The strength of both vortices is Mυu = Mυd = 0.5. The initial

separation distance is d = 4. The interaction has the following features: (1) The interaction

evolves into two non-symmetric vortex structures, each of which contains three vortex cores;

(2) Essentially different from the interaction of two counter-rotating vortices in the first

type, three vortex cores of each vortex structure evolve from the same initial vortex, with

the stronger one resulting from the inner layer of the initial vortex. The outer layer becomes

a vortex strip and separates into two vortex cores around the stronger one.

Type III: The merging of two co-rotating vortices

Under certain conditions, the interaction of two co-rotating vortices will result in their

merger [40], which is a key phenomenon in shear layers and wake flows. Though there are

many studies on the phenomenon of vortex merging, most studies focus on the condition

for two vortices to merge together [41]. In fact, the merging process plays a very important

role in the generation of aeroacoustics. Figure 5 contains the evolution of the vorticity

field in the merging process of two co-rotating vortices. The strength of both vortices is

Mυu = Mυd = 0.5. The initial separation distance is d = 2. Preceding the merger, the

cores of the two vortices move closer, and the resulting elliptical vortices evolve into a single

circular vortex with two arms. In the tail region of each arm, a weaker vortex is formed from

the outer layer of the original vortex. The sign of vorticity of this weaker vortex is opposite

to that of the merged core. As a result, a triple polar vorticity field takes a leapfrogging

motion.

Type IV: The interaction of two vortices with a large difference in their

strengths or scales

This type of interaction contains two different regimes. One is the interaction of two

Taylor vortices with a large difference in their strengths. The other is the interaction between

two Taylor vortices with a large difference in their spatial scales.
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Figure 4: The evolution of the vorticity field in the interaction of two co-rotating vortices in
the case of Mυu = Mυd = 0.5, d = 4 and Rcu = Rcd = 1.
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Figure 6 contains the contours of the evolution of the vorticity field in the interaction

between two counter-rotating vortices with a large difference in their strengths. The strength

of the upper vortex is Mυu = −0.8 and it is Mυd = 0.25 for the lower vortex. The lower

vortex is much weaker than the upper vortex. Similar to the interaction between two counter-

rotating vortices of the same strength, the interaction evolves into two vortex dipoles. The

cores of the two initial vortices move closer and form a stronger vortex dipole. The outer

layers then separate from the initial vortices and move closer to form a weaker vortex dipole.

Because there is a large difference in their strengths, both vortex dipoles are strongly non-

symmetric. As a result, it seems that the weaker vortex core rotates around the stronger

one quickly. At the same time, the weaker vortex dipole rotates around the stronger vortex

dipole.

The same phenomenon is observed in the interaction of two co-rotating vortices with a

large difference in their strengths. Figure 7 contains the evolution of the interaction between

two co-rotating vortices with a large difference in their strengths. The strength of the upper

vortex is Mυu = 0.8 and that of the lower vortex is Mυd = 0.25. The initial separation

distance is d = 4. We can observe that the interaction also results in the formation of two

vortex dipoles. Different from the above case, each vortex dipole comes from one of the

initial vortices. The inner layer of the initial vortex forms the stronger vortex core of the

vortex dipole and the outer layer forms the weaker core of the vortex dipole. The weaker

vortex core rotates around the stronger one. The distance between the two vortex dipoles

becomes larger during the evolution.

To study the effect of spatial scales, we study the interaction of two vortices with a large

difference in their radii. Figure 8 contains the contours of the evolution of the vorticity field

in the interaction between two counter-rotating vortices with a large difference in their spatial

scales. The strengths of the upper and the lower vortices are the same with Mυu = −0.5 and

Mυd = 0.5, while there is a large difference in the radii of the vortices. They are Rcu = 1.0

and Rcd = 0.2 respectively. As can be seen from Figure 8, we find that the smaller vortex
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Figure 6: The evolution of the vorticity field in the interaction of two counter-rotating
vortices with a large difference in their strengths in the case of Mυu = −0.8, Mυd = 0.25,
d = 4 and Rcu = Rcd = 1.
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goes into the outer layer of the larger vortex and rotates around the larger one. After a

time period, two weaker vortices are formed around the larger one. The initial circular

vortices are pressed into elliptical shapes. A triple polar vortex structure is formed. It takes

a leapfrogging motion.

Comparing the interactions in these four types, we find that the first type is a basic

type. Except for the merging of two co-rotating vortices in some specific conditions (which

we have not attempted to determine), two vortex dipoles and triple polar vortex structures

are formed. If there is a large difference in their scales, either in the strengths or in spatial

scales, the vortex dipoles are strongly non-symmetric. As a result, the weaker vortex core of

the dipole rotates around the stronger one continuously just like a satellite.

3.2 Sound generation in the two-dimensional interaction of two

Taylor vortices

In the previous section, we have shown the dynamic feature of the two dimensional interaction

of two Taylor vortices. This dynamic process can generate acoustic noise. In this section,

we will explore the sound waves generated by the two-dimensional interaction and study the

relationship between the sound generation and the dynamic process.

Figure 9 contains the instantaneous contours and radial distribution of far field sound

pressure fluctuations ∆p = p−p0

p0
at the typical time t = 200 for two typical cases. One is

the interaction of two counter-rotating vortices in the case of Mυu = −0.5, Mυd = 0.5, d = 4

and Rcu = Rcd = 1, belonging to the first type of interaction. Another is the interaction of

two co-rotating vortices in the case of Mυu = 0.5, Mυd = 0.5, d = 4 and Rcu = Rcd = 1,

corresponding to the second type of interaction. The sound waves generated by these types of

interaction are quite different. For the first case, there are only a few sound pulses generated,

but strong noise, which is quite similar to the case of two co-rotating Gaussian vortices [18],

is generated in the second case. In the other types, such as the third and fourth types of the

interaction, the instantaneous contours of the sound pressure are quite similar to those in

Figure 9(b). Figure 10 contains the time history of the sound pressure at a monitored point
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Figure 8: The evolution of the vorticity field in the interaction of two counter-rotating
vortices with a large difference in their spatial scales in the case of Mυu = −0.5, Mυd = 0.5,
d = 2.2, Rcu = 1 and Rcd = 0.2.
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(x, y) = (100, 0) for six different cases of interactions. Because the non-dimensional speed of

sound wave is 1, it takes approximately a non-dimensional time t = 100 for the sound wave

generated in the center of the vortex to propagate to the monitored point. We can observe

that there are sharp sound pulses just at the setup of the interaction for all cases, which

belong to the initial transient. Following the initial transient are the sound waves generated

by the interaction of the two vortices. Again, we can find there are only a few sound waves

generated by the first type of interaction. The noises generated by the other interactions

contain two components. One is the high frequency component with a high amplitude. The

other is the low frequency component with a low amplitude. Since the sound waves generated

by the first type of interaction is essentially different with the other types of interaction, we

discuss the mechanism of sound generation for the two types of interaction separately.

3.2.1 The mechanism of sound generation by the first type of interaction

To analyze the sound waves generated by the first type of interaction, we again plot the

time history of the sound pressure at the two monitored points (x, y) = (100, 0) and (x, y) =

(0, 100), which is shown in Figure 11. The solid line represents the time history of the

sound pressure at the point (x, y) = (100, 0), while the dashed line represents the sound

pressure at the point (x, y) = (0, 100). We can observe that the pressure fluctuations at

the point (x, y) = (0, 100) have the same magnitude but opposite sign to those at the point

(x, y) = (100, 0). To analyze the mechanism of sound generation in this interaction, we plot

the instantaneous contour in Figure 12 of the Lamb vector ∇• (ρω × u), which is the source

term of the sound equation given by Powell [2]

(

1

c2
0

∂2

∂t2
−∇2

)

P ′ = ∇ • (ρω × u). (2)

From Figure 12, we can observe that the contours have a similar pattern with the contours

of vorticity given in Figure 2. Two vortex dipoles are formed, which are advected to opposite

directions by the induced velocity. The difference is that the contours of the Lamb vector

have three regions. The first is the region of the vortex core. The second is the outer region
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Figure 9: The instantaneous contours (left) and radial (middle) distributions (right) of the
sound pressure ∆p = p−p0

p0
at the typical time t = 200 in the two dimensional interaction of

two Taylor vortices. Solid lines in the contours represent ∆p > 0 while dashed lines represent
∆p < 0.

20



Time

S
ou

nd
 P

re
ss

ur
e

0 50 100 150 200 250

-0.04

-0.02

0

0.02

0.04

Time

S
ou

nd
 P

re
ss

ur
e

0 50 100 150 200 250

-0.04

-0.02

0

0.02

0.04

(a) (b)

Time

S
ou

nd
 P

re
ss

ur
e

0 50 100 150 200 250-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time

S
ou

nd
 P

re
ss

ur
e 

0 100 200

-0.1

-0.05

0

0.05

0.1

(c) (d)

Time

S
ou

nd
 P

re
ss

ur
e

0 100 200-0.1

-0.05

0

0.05

0.1

Time

S
ou

nd
 P

re
ss

ur
e

0 100 200-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(e) (f)

Figure 10: The time history of the sound pressure at the monitored point (100,0) in the two
dimensional interaction of two Taylor vortices. (a) The interaction of two counter-rotating
vortices in the case of Mυu = −0.5, Mυd = 0.5, d = 4 and Rcu = Rcd = 1. (b) The interaction
of two co-rotating vortices in the case of Mυu = Mυd = 0.5, d = 4 and Rcu = Rcd = 1. (c)
The merging of two co-rotating Taylor vortices in the case of Mυu = Mυd = 0.5, d = 2 and
Rcu = Rcd = 1. (d) The interaction of two counter-rotating vortices with a large difference
in their strengths in the case of Mυu = −0.8, Mυd = 0.25, d = 4 and Rcu = Rcd = 1.. (e)
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Figure 11: The time history of the sound pressure at the two monitored points (solid for
(100,0) and dash for (0,100)) in the interaction of two counter-rotating vortices in the case
of Mυu = −0.5, Mυd = 0.5, d = 4. and Rcu = Rcd = 1.

of the vortex and the third is the region connecting the two vortices. Tang and Ko [24, 25]

showed that the vortex sound is generated by the motion of vortex centroid and the unsteady

deformation. In this interaction, the outer region of the initial vortices is stripped out from

the vortex core and forms a weaker vortex dipole. The cores of the initial vortices form

a stronger vortex dipole. This process finishes at approximately t = 50. After the vortex

dipoles are formed, they are advected to opposite directions and keep moving. This belongs

to the motion of the vortex centroid. The time history of the sound pressure shown in

Figure 11 indicates that the sound waves are generated before t = 50, which means that it is

generated by the process of the distortion of the initial vortices and the formation of vortex

dipoles. However, after t = 50, there is no significant pressure fluctuation. There might

be two reasons. The first might be that the sound pressure generated by the motions of

two vortex dipoles is very weak compared to those generated by the formation of the vortex

dipoles. The second might be that the Reynolds number is small and the viscous effect is

significant.
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Figure 12: The evolution of the Lamb vector in the interaction of two counter-rotating
vortices in the case of Mυu = −0.5, Mυd = 0.5, d = 4 and Rcu = Rcd = 1.
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3.2.2 The mechanism of sound generation by the other types of interaction

The sound waves generated by the second, third and fourth types of interactions have similar

patterns. Hence, we use a representative case to analyze the mechanism of sound generation.

It is the interaction of two Taylor vortices with a large difference in their strengths and spatial

scales.

Figure 13 contains the time history of the sound pressure at two monitored points, (x, y) =

(100, 0) and (0, 100) in the interaction of two co-rotating vortices in the case of Mυu = −0.8,

Mυd = 0.25, d = 2.2, Rcu = 1 and Rcd = 0.2. Again, the solid line represents the time

history of the point (x, y) = (100, 0) and the dashed line represents that of the point (x, y) =

(0, 100). They have similar magnitude but opposite sign. Before the instant t = 140,

which corresponds to t = 40 of the interaction time, the sound wave has higher frequency

with a large amplitude. After the instant, the sound has a decaying sinusoid feature. The

frequency of the sound wave is lower and its magnitude is smaller. Figure 14 contains the

time evolution of the Lamb vector (left) and vorticity (right). We can observe that both the

contours of the Lamb vector and vorticity have similar patterns. The interaction has three

distinguished motions. First, the initial circular vortices are distorted. The weaker vortex

is teared to two vortex stripes. They interact with the stronger vortex. Second, though

the position of the center of the stronger vortex does not change, the vortex core is pressed

into an elliptical shape. The major axis is represented by a solid line and the minor axis

is represented by a dashed line. Third, the interaction between the two vortex stripes and

the core of the stronger vortex results in their leapfrogging motion. As can be seen from

the time history of Figure 13, the instants of positive peaks P1, P2, P3, P4, P5, P6 and P7

are 103, 121, 139, 163, 190, 223, and 262 respectively. After considering the propagation

time of the sound wave from the vortex region to the monitored point, they correspond

approximately to the instants that the major axis of the elliptical vortex core is located in

the y-direction. While, the instants of the negative peaks M1, M2, M3, M4, M5, M6 and M7

are 114, 130, 151, 176, 206, 241 and 285. They correspond approximately to the instants that
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the major axis is located in the x-direction. This means that the acoustic noise is generated

by the leapfrogging motion, while the high frequency component is the combination of the

leapfrogging and the distortion of the initial vortices.

In the case of the second type of interaction shown in the evolution of the vorticity field

in Figure 4, there is the similar motion that contains the deformation of the initial vortices,

the formation of the vortex stripes and the leapfrogging motion. The difference is that the

vortex stripes are formed from the outer region of each vortex. There are two vorticity

fields, each containing an elliptical vortex and two vortex stripes. Both of them take the

leapfrogging motion which results in the generation of sound waves.

There are a lot of studies on the merging process of two co-rotating vortices [18, 27],

the mechanism of sound generation in the merging process is relatively clear. However, in

our case, the distribution and the structure of the initial vortices are different from those of

Gaussian vortices. The merging process is different with those in [18]. Hence, the dynamic

process of vortex paring and the mechanism of sound generation may be different. In Figure

15, we plot the time evolution of the Lamb vector for the third type of interaction. The
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Figure 14: The evolution of the Lamb vector (left) and vorticity (right) in the interaction
of two co-rotating vortices with a large difference in their spatial scales and strengths in the
case of Mυu = −0.8, Mυd = 0.25, d = 2.2, Rcu = 1 and Rcd = 0.2.
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Figure 14: Continued.
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Figure 14: Continued.
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strengths of the vortices are Mυu = Mυd = 0.5. The initial separation of the two vortices

is d = 2. They are the same with those in the previous section. Compared with the time

evolution of the vorticity field given in Figure 5, we can find that there are also three distin-

guished motions. The distortion of the initial vortices, the coalescence and the leapfrogging

of three polar vortex fields. Though the separation of the initial vortices is small and vortices

rotate very quickly, we can not distinguish the distortion process in this case. The structure

of the initial vortices is broken. The distortion of the initial vortices is a necessary process.

The coalescence is similar to that of Gaussian vortices. After the coalescence, a triple polar

vortex is formed. It contains an elliptical vortex core, two weaker vortices around the vortex

core and two arm-like vortex filaments. This vortex structure takes a leapfrogging motion.

This dynamic process is different with that in the interaction of two Gaussian vortices [18].

The interaction of two Gaussian vortices results in the leapfrogging motion at the setup of

the interaction due to the larger far field velocity and larger initial separation. After a long

time leapfrogging motion, coalescence takes place and forms a single vortex. From the time

history of the sound pressure at the observed point (x, y) = (100, 0) in Figure 10 (c), we

find that the first positive peak takes place at the instant t = 120, which corresponds to the

instant t = 20 of coalescence. The following peaks correspond approximately to the instants

that the connection line of the three vortex cores is in the x-direction. The minimum points,

on the other hand, correspond approximately to the instants that the connection line of the

three vortex centers is located in the y-direction. This means that the coalescence generates

the large amplitude sound waves and the leapfrogging motion generates the low frequency

sound waves with smaller amplitude. The second mechanism is similar to the mechanism of

sound generation in the interaction of two vortices with a large difference in their strengths.

Because there are many vortices, eddies and structures of different scales in a turbulent

flow, the interactions among these structures are very common. From the sound generated

by the interactions of two Taylor vortices over all four types, we would like to emphasize the

importance of the interactions among the structures with large differences in their strengths
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Figure 15: The evolution of the Lamb vector in the merging process of two co-rotating
vortices in the case of Mυu = Mυd = 0.5, d = 2 and Rcu = Rcd = 1.
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or scales as a key source of turbulent noise.

4 Revisit the interaction of two co-rotating Gaussian

vortices

Like Taylor vortex, Gaussian vortex is also a typical vortex. There are a lot of studies

[18, 42, 43] on the sound generation by the merging of two co-rotating Gaussian vortices.

In this Section, we revisit the merging of two co-rotating Gaussian vortices to show the

difference of sound generation with the different initial distribution and different structure.

4.1 Revisit the interaction of two co-rotating Gaussian vortices

The initial condition of the Gaussian vortex is the same as that in the papers [18, 42, 43].

The initial distribution of tangential velocity of each Gaussian vortex is given by

uθ =
Γ

2πr
(1 − e−αr2/R2

c ) (3)

with α = 1.256431. The initial distribution of the pressure field is obtained by solving

a Poisson equation with a convergence condition ǫ = 10−12. Unlike Taylor vortex in the

previous section, all quantities are scaled by the initial half spacing between the vortices

and the speed of sound a∞ of the free stream. For comparison, all quantities including the

strengths of Gaussian vortices, the initial separation distance and Reynolds number are the

same with those in [18, 42, 43].

Figure 16 is the evolution of the vorticity field of the interaction of two Gaussian vortices.

It is clear that coalescence takes place after a long time of leapfrogging motion. Figure 17 is

the time history of dilatation at the point (x, y) = (0, 1.2) and the comparison with that of

Eldredge et al [43]. It is obvious that the comparison is satisfactory. Figure 18 contains the

time history of separation distance of two co-rotating Gaussian vortices. It indicates that

two co-rotating Gaussian vortices merges at the instant t = 500, which is the same with that

of Eldredge et al [43], but different with that given by Mitchell et al [18].
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Figure 19 is the third time derivative of the source terms

Q1 = 2

∫ ∫

xyωdxdy

Q2 =

∫ ∫

(y2 − x2)ωdxdy

(4)

in Möhring’s equation [26] to predict the far-field pressure fluctuation given by the equation

P ′(x, t) =
ρ0

8πa2
∞

∫

∞

0

[
...
Q1(t

∗)cos(2θ) +
...
Q2(t

∗)sin(2θ)]dξ (5)

where t∗ = t − r
c0

cosh(ξ), and θ is measured with respect to the x axis. Figure 20 contains

the far-field pressure fluctuation and its comparison with that given by equation (5). Our

numerical result agrees with that given by Eldredge et. al [43]. However, because of the

difference in the merging instant, it is different with that given by Mitchell et al [18].

4.2 Discussion on the differences between Gaussian vortex and

Taylor vortex and their effect on the sound generation

There are two main differences between Gaussian vortex and Taylor vortex. (1) The decay

(with respect to r) towards free-stream flow of the physical variables such as tangential

velocity, vorticity, pressure and density is much faster for a Taylor vortex than for a Gaussian

vortex. For example, the tangential velocity of Taylor vortex becomes 0.00225 and 0.0000307

at the position of r
Rc

= 4 and 5 respectively, while they are 0.349 and 0.280 for the Gaussian

vortex. Even at a very far position to the vortex center such as r
Rc

= 20, the tangential

velocity for the Gaussian vortex is still 0.0699. Thus, the effective influence region of a

Gaussian vortex is much larger than that of the Taylor vortex. This can be observed in

Figure 21 for the comparison of the tangential velocity distribution between Gaussian and

Taylor vortices. This fact leads to a great decrease for the transient effect during vortex-

vortex interactions for the Taylor vortices compared with the Gaussian vortices. The large

velocity in the far field of the Gaussian vortex may be the main reason of the slow and

long time leapfrogging motion in the setup of the interaction between two Gaussian vortices

with large initial separation. It is easier for the Taylor vortices to distinguish the different
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Figure 16: The evolution of the vorticity field in the interaction of two co-rotating Gaussian
vortices.
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mechanism of sound generation in different dynamic processes. (2) The vortex structure is

different. There are two different layers in a Taylor vortex. The vorticity has different signs

in these two layers. In comparison, there is only one layer in the Gaussian vortex. Figure 22

contains the comparison of vorticity between these two different vortices. The interaction

of two Taylor vortices results in the separation of these two layers and the formation of

more complex vortex structures than that of the Gaussian vortices. The difference between

the initial structures of the two types of vortices results the different mechanism of sound

generation.

5 Discussion on the interaction of two vortices in a

complex flow

Vortex is a basic element of fluid. The interaction between two or among more vortices is very

common. In this section, we are interested in the decaying two-dimensional homogeneous

isotropic turbulence which has a close relationship to the interaction of two vortices. The

purpose of this section is to show that the the vortex-vortex interactions studied in the

previous section do actually take place in two-dimensional turbulence.
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Two-dimensional homogeneous decaying turbulence is an incompressible flow problem

in which the kinetic energy decays. Due to the inverse energy cascade in two-dimensional

turbulence, it has been receiving a lot of studies [44, 45, 46, 47].

The computational domain is a square with length 2π. Periodic boundary conditions are

applied. The initial energy spectrum in the Fourier space is given by [44]

E(k) =
as

2

1

kp

(

k

kp

)2s+1

exp

[

−

(

s +
1

2

) (

k

kp

)2
]

where k = |k| =
√

kx
2 + ky

2, kp = 12 and as = (2s+1)s+1

2ss!
. The initial flow field contains many

vortices. The problem of the free decay of two-dimensional turbulence is to determine how

abundant populations of vortices freely evolve with time. In this study, we solve this problem

to examine the types of interaction of two vortices given in Section 3. The Reynolds number

is chosen as 1000. After the study of grid convergence to confirm sufficient grid resolution,

we use an uniform mesh with the grid density of 2048×2048 to simulate the two-dimensional

decaying turbulence.

Figure 23 contains the time evolution of the two-dimensional decaying turbulence at

typical times. The details for the turbulent characteristics can be found in [44, 45, 46, 47].

Here, we are only interested in the types of the interaction of two vortices. In Figure 23,
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there are three boxed regions, which represent the starting time of different types of vortex

interaction. The boxed region in Figure 23(b) is the starting time of an interaction of two

vortices in opposite signs of vorticity. Figure 24 contains the evolution of this interaction. We

can clearly observe the formation and the evolution of a vortex dipole. The boxed region in

Figure 23(a) is the starting time of an interaction of two vortices in the same sign of vorticity.

Figure 25 contains the process of vortex merging. It is clear that during the interaction

the two co-rotating vortices merge together to form a single vortex. Vortex merging is a

dominating phenomenon for two dimensional turbulence, which is the mechanism of the

inverse cascade energy [47]. The boxed region in Figure 23(c) is the starting time of an

interaction of two vortices with a large difference in their scales. The time evolution of this

interaction is shown in Figure 26. We can clearly observe that the smaller vortex rotates

around the bigger one.

6 Concluding remarks

The two-dimensional interaction between two Taylor vortices is simulated systematically

through solving the two-dimensional, unsteady compressible Navier-Stokes equations using

a fifth order weighted essentially nonoscillatory finite difference scheme. The mechanism of

sound generation is analyzed.

Based on an extensive parameter study on the evolution of vorticity, the two-dimensional

interaction between two Taylor vortices is classified into four types. They are the interaction

between two counter-rotating vortices with similar strength, the interaction between two co-

rotating vortices without merging, the merging of two co-rotating vortices and the interaction

of two Taylor vortices with a large difference in their strengths or scales.

The Taylor vortex considered in this paper has two layers, inner layer and outer layer.

The sign of vorticity is opposite in the inner layer and the outer layer. After the distortion

of the initial vortices at the setup of the interaction, new complex vorticity field is formed.

In the interaction of two counter-rotating vortices with similar strengths, two vortex
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(a) t = 0.85,[−25, 25]20Levels (b) t = 1.0,[−25, 25]10Levels

(c) t = 1.95,[−25, 25]10Levels (d) t = 4.0,[−25, 25]10Levels

Figure 23: The time evolution of vorticity in two-dimensional decaying turbulence.
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(a) t = 1.0 (b) t = 1.5

(c)t = 2.0 (d) t = 2.5

(e)t = 3.0 (f) t = 3.5

Figure 24: The time evolution of vorticity for vortex dipole in two-dimensional decaying
turbulence.
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(a) t = 0.85 (b) t = 1.1

(c)t = 1.75 (d) t = 2.0

(e)t = 2.25 (f) t = 2.45

Figure 25: The time evolution of vorticity for vortex merging in two-dimensional decaying
turbulence.
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(a) t = 1.95 (b) t = 2.25

(c)t = 2.50 (d) t = 3.00

(e)t = 3.50 (f) t = 4.00

Figure 26: The time evolution of vorticity for the interaction of two vortices with large
difference in their strengths in two-dimensional decaying turbulence.
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dipoles are formed. One is stronger which results from the inner layer of the initial vortices.

The other is weaker which results from the outer layer of the initial vortices. They are

advected in opposite directions by the induced velocity.

All other types of interactions result in one or two multi-polar vortex structures which

take leapfrogging motion. Under certain specific conditions, two co-rotating vortices will

merge together to form a three polar vortex structure. The cores of the two initial vortices

merge together to form a stronger vortex core. The outer layers separate from the inner

layers and form two weaker vortices near the stronger vortex. The weaker vortices rotate

in opposite direction around the stronger vortex. This three polar vortex structure takes a

leapfrogging motion.

All four types of interaction can generate sound waves. The distortion is the basic motion

of the interaction of two Taylor vortices. The distortion and formation of two vortex dipoles

of the interaction of two counter-rotating vortices can generates several sound waves. But the

unsteady motions of the vortex dipoles do not generated much sound wave. The distortion

and coalescence of two co-rotating vortices can generate high-frequency sound waves with

large amplitude, while the leapfrogging of multi-polar vortex structure can generate low

frequency sound waves with low amplitude.

Three types of interaction are found in the two dimensional decaying turbulence by direct

numerical simulation, which partly demonstrate our classification for the two dimensional

interaction of two Taylor vortices.
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