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Abstract

In this work a simple method to enforce the positivity-preserving property for gen-

eral high-order conservative schemes is proposed. The method detects critical

numerical fluxes which may lead to negative density and pressure, and

then imposes a simple flux limiter combining the high-order numerical

flux with the first-order Lax-Friedrichs flux to satisfy a sufficient con-

dition for preserving positivity. Though an extra time-step size condition is

required to maintain the formal order of accuracy, it is less restrictive than those in

previous works. A number of numerical examples suggest that this method, when

applied on an essentially non-oscillatory scheme, can be used to prevent positivity

failure when the flow involves vacuum or near vacuum and very strong discontinu-

ities.
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1 Introduction

Compressible flow problems are usually solved by conservative schemes. High-

order conservative schemes are suitable for simulating flows with both shock

waves and rich flow features (acoustic waves, turbulence) since they are ca-

pable of handling flow discontinuities and accurately resolve a broad range

of length scales. One important issue of high-order conservative schemes is

that non-physical negative density or pressure (failure of positivity) can lead

to an ill-posed system, which may cause blow-up of the numerical solution.

While for some first-order schemes negative density or pressure can occur when

vacuum or near vacuum is reached, for higher-order conservative schemes pos-

itivity failure can also occur due to interpolation errors at or near very strong

discontinuities even though the flow physically is far away from vacuum.

It is known that many first order Godunov-type schemes [4, 20, 5] have the

so called positivity-preserving property and can maintain positive density and

pressure. It has been also proved that some second-order conservative schemes

[19, 7] are positivity-preserving with or without a more restrictive Courant-

Friedrichs-Lewy (CFL) condition. For even higher-order conservative schemes,

Perthame and Shu [15] proved that, given a first-order positivity-preserving

scheme, such as a Godunov-type scheme, one can always build a higher-order

positivity-preserving finite volume scheme under the following constraints: (a)

the cell-face values for the numerical flux calculation have positive density

and pressure, (b) additional limits on the interpolation under a more restric-

tive CFL-like condition. With a different interpretation of these constraints

based on certain Gauss-Lobatto quadratures, positivity-preserving methods

have been successfully developed for high-order discontinuous Galerkin (DG)
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methods [22] and weighted essentially non-oscillatory (WENO) finite volume

and finite difference schemes [23, 24].

In this paper, we propose an alternative method to enforce the positivity-

preserving property with a simple flux limiter. The flux limiter first detects

critical numerical fluxes which may lead to negative density and pressure,

then limits these fluxes by combining the high-order numerical flux with the

first-order Lax-Friedrichs flux to satisfy a sufficient condition for preserving

positivity. Unlike the approaches in [22, 23, 24], in which positivity-preserving

and the maintenance of high order accuracy are considered simultaneously

when designing the limiter, here we design the flux limiter to satisfy positivity

only, and then prove a posteriori the maintenance of high order accuracy

for smooth flow involving near vacuum situations under a time step

restriction. It appears that, as implied by our numerical experiments, a much

less restrictive time-step size condition is sufficient for preserving positivity

without destroying overall accuracy. An advantage of the approach in this

paper is that the flux limiter is directly applied to the numerical flux and that

it can be employed for arbitrary high-order conservative schemes.

2 Method

For the presentation of the positivity-preserving flux limiters we assume that

the fluid is inviscid and compressible, described by the one-dimensional Euler

equations as

∂U

∂t
+

∂F(U)

∂x
= 0, (1)
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where U = (ρ, m, E)T , and F(U) = [m, ρu2 + p, (E + p)u]T . This set of equa-

tions describes the conservation laws for mass density ρ, momentum density

m ≡ ρu and total energy density E = ρe + ρu2/2, where e is the specific

internal energy. To close this set of equations, the ideal-gas equation of state

p = (γ − 1)ρe with a constant γ is used. Note that the density and pressure

have the following relations with the conservative variables

ρ(U) = ρ, p(U) = (γ − 1)

(
E − 1

2

m2

ρ

)
. (2)

It is easy to find that they are locally Lipschitz continuous, i.e.

|ρ(U2) − ρ(U1)| ≤Lρ||U2 − U1||, (3)

|p(U2) − p(U1)| ≤Lp||U2 −U1||, if ρ(U1) > 0, ρ(U2) > 0, (4)

where Lρ and Lp are Lipschitz constants. For 1 ≥ θ ≥ 0, ρ(U) and p(U) have

the properties

ρ [(1 − θ)U1 + θU2] = (1 − θ)ρ(U1) + θρ(U2), (5)

p [(1 − θ)U1 + θU2]≥ (1 − θ)p(U1) + θp(U2), if ρ(U1), ρ(U2) > 0, (6)

where Eq. (5) is straightforward and Eq. (6) is implied by Jensen’s inequality

since p(U) is a concave function of U.

2.1 Finite-volume and finite-difference conservative schemes

When Eq. (1) is discretized within the spatial domain such that xi = i∆x, i =

0, ..., N , where ∆x is the spatial step, a general explicit kth-order conservative

scheme with Euler-forward time integration can be written as

Un+1
i = Un

i + λ
(
F̂i−1/2 − F̂i+1/2

)
, (7)
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where the superscript n and n + 1 represent the old and new time steps,

respectively, and λ = ∆t/∆x, where ∆t is the time-step size. Note that with

the CFL condition

∆t =
CFL · ∆x

(|u| + c)max

, (8)

where c =
√

γp/ρ is the sound speed and the CFL number 0 < CFL < 1, one

has the relation

λ =
CFL

(|u| + c)max

. (9)

For a finite-volume scheme, Un
i and Un+1

i are the cell averaged conservative

variables on the cell i defined on the computational cell between (i− 1/2)∆x

and (i + 1/2)∆x, i.e. Ii = [xi−1/2, xi+1/2], F̂i±1/2 = Fi±1/2 + O(∆xk+1) are the

numerical fluxes, which are based on the cell-face values Ui±1/2 reconstructed

from the cell averages {Uj} and Fi±1/2 = F(Ui±1/2).

For a finite-difference scheme, Un
i and Un+1

i are the nodal values, and (F̂i+1/2−

F̂i−1/2)/∆x is a kth order approximation to ∂F(U)/∂x at x = xi. Assume

there exists a function H(x) depending on ∆x such that

F [U(x)] =
1

∆x

x+∆x/2∫

x−∆x/2

H(ξ)dξ, (10)

then the same reconstruction procedure as for a finite-volume scheme can be

used to obtain the numerical fluxes F̂i±1/2 = Hi±1/2 + O(∆xk+1) based on the

cell-face values of H(x) reconstructed from its cell-average values F [Uj ] =

∫ xj+∆x/2

xj−∆x/2
H(ξ)dξ/∆x. We refer to [18] for the discussion of this formulation of

conservative finite difference schemes.
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2.2 Positivity preserving flux limiter

The positivity-preserving property for the scheme Eq. (7) refers to the property

that the density and pressure are positive for Un+1
i when Un

i has positive

density and pressure. Since Eq. (7) can be rewritten as a convex combination

Un+1
i =

1

2

(
Un

i + 2λF̂i−1/2

)
+

1

2

(
Un

i − 2λF̂i+1/2

)

=
1

2
U−

i +
1

2
U+

i , (11)

a sufficient condition for preserving positivity is that U±

i have positive density

and pressure, i.e. g(U±

i ) > 0, where g represents either ρ or p. Since the first-

order Lax-Friedrichs flux

F̂LF
i+1/2 =

1

2

[
Fi + Fi+1 + (|u| + c)max(U

n
i −Un

i+1)
]

(12)

has the property g(ULF,±
i ) = g(Un

i ∓ 2λF̂LF
i±1/2) > 0, under an additional CFL

condition

CFL ≤ 1

2
(13)

(see [22]), a straightforward way to ensure positivity is to limit the magnitude

of F̂i+1/2 by utilizing the properties in Eqs. (5) and (6). The positive density

is first enforced by:

Flux limiter for positive density

1. For all i: initialize θ+

i+1/2
= 1, θ−i+1/2

= 1.

2. If ρ(U+
i ) < ǫρ , solve θ+

i+1/2
from (1 − θ+

i+1/2
)ρ(ULF,+

i ) + θ+

i+1/2
ρ(U+

i ) = ǫρ.

3. If ρ(U−

i+1) < ǫρ, solve θ−i+1/2
from (1−θ−i+1/2

)ρ(ULF,−
i+1 )+θ−i+1/2

ρ(U−

i+1) = ǫρ.

4. Set θρ,i+1/2 = min(θ+

i+1/2
, θ−i+1/2

), F̂∗

i+1/2 = (1−θρ,i+1/2)F̂
LF
i+1/2+θρ,i+1/2F̂i+1/2.
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Here, ǫρ = min {10−13, ρ0
min}, where ρ0

min is the minimum density in the initial

condition, F̂∗

i+1/2 is the limited flux, 0 ≤ θ±i+1/2
≤ 1 are the limiting factors

corresponding to the two neighboring cells, which share the same flux F̂i+1/2.

After applying this flux limiter, Eq. (11) becomes

Un+1
i =

1

2

(
Un

i + 2λF̂∗

i−1/2

)
+

1

2

(
Un

i − 2λF̂∗

i+1/2

)

=
1

2
U∗,−

i +
1

2
U∗,+

i . (14)

Clearly, by Eq. (5), both U∗,−
i and U∗,+

i have positive density, so does Un+1
i .

Note that, step 4 above suggests that the positivity of density is pre-

served as soon as ǫρ ≤ min(θ+

i+1/2
, θ−i+1/2

). This is important to enforce

simultaneously both density and pressure positiveness, i.e., further

decreasing the contribution of the high-order flux for positive pres-

sure does not violate the positivity of density. The positive pressure is

further enforced by:

Flux limiter for positive pressure

1. For all i: initialize θ+

i+1/2
= 1, θ−i+1/2

= 1.

2. If p(U∗,+
i ) < ǫp , solve θ+

i+1/2
from (1−θ+

i+1/2
)p(ULF,+

i )+θ+

i+1/2
p(U∗,+

i ) = ǫp.

3. If p(U∗,−
i+1) < ǫp, solve θ−i+1/2

from (1−θ−i+1/2
)p(ULF,−

i+1 )+θ−i+1/2
p(U∗,−

i+1) = ǫp.

4. Set θp,i+1/2 = min(θ+

i+1/2
, θ−i+1/2

), F̂∗∗

i+1/2 = (1−θp,i+1/2)F̂
LF
i+1/2+θp,i+1/2F̂

∗

i+1/2.

Again, ǫp = min {10−13, p0
min}, where p0

min is the minimum pressure in the

initial condition, and F̂∗∗

i+1/2 is the further limited flux. After applying this

flux limiter, Eq. (14) becomes

Un+1
i =

1

2

(
Un

i + 2λF̂∗∗

i−1/2

)
+

1

2

(
Un

i − 2λF̂∗∗

i+1/2

)

=
1

2

(
U∗∗,−

i + U∗∗,+
i

)
. (15)
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Clearly, by Eqs. (5) and (6), both U∗∗,−
i and U∗∗,+

i have positive density and

pressure, so does Un+1
i . The final limited flux can be written as

F̂∗∗

i+1/2 = (1 − θi+1/2)F̂
LF
i+1/2 + θi+1/2F̂

∗

i+1/2

= (1 − θρ,i+1/2θp,i+1/2)F̂
LF
i+1/2 + θρ,i+1/2θp,i+1/2F̂i+1/2, (16)

which implies θi+1/2 = θρ,i+1/2θp,i+1/2 ≤ min(θρ,i+1/2, θp,i+1/2). Note that

these limiters can be applied at each sub-stage of a TVD Runge-Kutta [17]

method, which is a convex combination of Euler-forward time steps.

2.3 Consistency and accuracy

Now we address two important issues for the flux limiter. First, the limited

flux is a consistent flux since it is the convex combination of two consistent

fluxes, i.e. the first-order Lax-Friedrichs flux ULF
i+1/2 and the original high-order

numerical flux F̂o
i+1/2, which represents either F̂i+1/2 or F̂∗

i+1/2. Second, when

the limiter is active, the difference between the original flux F̂o
i+1/2 and the

limited flux F̂lim
i+1/2 representing either F̂∗

i+1/2 or F̂∗∗

i+1/2, is

||F̂lim
i+1/2 − F̂o

i+1/2|| = (1 − θg,i+1/2)||F̂o
i+1/2 − F̂LF

i+1/2||. (17)

We only need to consider accuracy maintenance when θg,i+1/2 < 1, for other-

wise the limiter does not take any effect. Without loss of generality we may

assume θg,i+1/2 = θ+

g,i+1/2
. In this situation we have g(Uo,+

i ) < ǫg, in which

Uo,+
i represents either U+

i or U∗,+
i , and

1 − θg,i+1/2 =
ǫg − g(Uo,+

i )

g(ULF,+
i ) − g(Uo,+

i )
≤ |ǫg − g(Uo,+

i )|
g(ULF,+

i ) − ǫg

. (18)
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Since F̂o
i+1/2 and F̂LF

i+1/2 are both bounded in smooth regions, it is sufficient to

show that the accuracy is not destroyed if the limiting factor satisfies

1 − θg,i+1/2 = O(∆xk+1), (19)

a sufficient condition for which would be |ǫg − g(Uo,+
i )| = O(∆xk+1) and

g(ULF,+
i ) − ǫg is bounded away from zero.

Similarly to Zhang and Shu [22], we assume that the exact solution U(x) is

smooth and is near but not at vacuum under the condition g(Ũi) ≥ M ,

where Ũi is either the cell-average (for the finite-volume scheme) or the nodal

value (for the finite-difference scheme) of the exact solution U(x) and M > 0

is a constant. Since g(Ui) is obtained from a kth order approximation, one

has g(Ui) ≥ M − O(∆xk+1) > M/2 if ∆x is sufficiently small, therefore

g(ULF,+
i ) − ǫg = g

[
(1 − ŵ)Ui + ŵ

(
Ui −

2λ

ŵ
F̂LF

i+1/2

)]
− ǫg

≥ (1 − ŵ)g(Ui) + ŵg

(
Ui −

2λ

ŵ
F̂LF

i+1/2

)
− ǫg (20)

≥ (1 − ŵ)

2
M − ǫg > 0,

where 1 > ŵ > 0 is any positive constant less than one, under an extra CFL

condition

CFL ≤ ŵ

2
<

1

2
. (21)

Furthermore, one has

Uo,+
i =Un

i − 2λF̂o
i+1/2

=ULF,+
i + 2λ

(
F̂LF

i+1/2 − F̂o
i+1/2

)

=ULF,+
i + 2λ

(
F̂LF

i+1/2 − F̃i+1/2

)
+ O(∆xk+1), (22)
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where F̃i+1/2 = Fi+1/2 for the finite-volume scheme, and F̃i+1/2 = Hi+1/2 for

the finite-difference scheme. Let Us
i = ULF,+

i +2λ
(
F̂LF

i+1/2 − F̃i+1/2

)
, and with

Eqs. (3) and (4), one has

|g(Us
i ) − g(Uo,+

i )| ≤ Lg||Uo,+
i − Us

i || = O(∆xk+1), (23)

where Lg is the respective Lipschitz constant. Note that the first term on

the right-hand-side of Us
i has positive density and pressure. For the second

term, notice that the first-order Lax-Friedrichs flux F̂LF
i+1/2 is a first order

approximation to the exact flux F̃i+1/2, that is ||F̂LF
i+1/2 − F̃i+1/2|| = O(∆x).

With bounded g(ULF,+
i ) from Eq. (20), one has

ρ(Us
i ) ≥

(1 − ŵ)

2
M − O(∆x) ≥ (1 − ŵ)

4
M > 0

for sufficiently small ∆x, according to Eq. (3), and furthermore p(Us
i ) > ǫp

according to Eq. (4). Since g(Us
i ) > ǫg and g(Uo,+

i ) < ǫg, i.e. ρ(U+
i ) < ǫρ while

enforcing positive density and p(U∗,+
i ) < ǫp but ρ(U∗,+

i ) > ǫρ while enforcing

positive pressure, Eq. (23) leads to |ǫg−g(Uo,+
i )| = O(∆xk+1). Hence, we have

proved that the flux limiter preserves high-order accuracy.

Note that, for given values of M and fixed grid size, Eqs. (20) and (22) suggest

that the errors introduced by the the flux limiter decrease with the time-

step sizes. Also note that, the condition Eq. (21) is less restrictive than the

time-step size conditions in Refs. [22, 23, 24], which is beneficial for higher

computational efficiency.
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2.4 Assessment of accuracy

As a simple way to test the accuracy of the present flux limiters, we consider

the one-dimensional linear advection equation

∂u

∂t
+

∂u

∂x
= 0 (24)

with initial condition u(x) > 0. For a finite volume scheme, applying the flux

limiter to preserve positivity results in the limiter (denoted as HAS)

f ∗

i+1/2 = θ(u−

i+1/2
− un

i ) + un
i , θ = min

{
un

i

un
i − umin

, 1

}
,

umin =min
{
un

i − 2λu−

i+1/2
, un

i+1 + 2λu−

i+1/2
, 10−13

}
. (25)

Here un
i is the cell average and u−

i+1/2
is the reconstructed upwind flux at the

cell face i + 1/2. Note that only one of un
i − 2λu−

i+1/2
or un

i+1 + 2λu−

i+1/2
being

negative will activate the limiter. The limiter of Zhang and Shu [23] (denoted

as ZS) for Eq. (24) can be written as

f ∗

i+1/2 = θ(u−

i+1/2
− un

i ) + un
i , θ = min

{
un

i

un
i − umin

, 1

}
,

umin =min





un
i − ŵ1(u

+

i−1/2
+ u−

i+1/2
)

1 − 2ŵ1

, u+

i−1/2
, u−

i+1/2
, 10−13



 , (26)

where u+

i−1/2
and u−

i+1/2
are the reconstructed value of u at the cell

faces i + 1/2 from the left and i − 1/2 from the right, respectively.

Here, ŵ1 is the weight of the first abscissa in the N-point (where

2N − 3 > k) Legendre-Gauss-Lobatto quadrature. Comparing umin in

Eqs. (25) and (26), it can be observed that the HAS limiter does not directly

constrain the cell-face values to be non-negative.
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To further illustrate the accuracy of the HAS limiter and its relation to the ZS

limiter, we compute the advection of a function u = 1+10−6+cos(2πx) in do-

main [0, 1] with a fifth-order conservative finite difference WENO-5 scheme [9]

with third-order TVD Runge-Kutta time integration [17]. A periodic bound-

ary condition is applied at x = 0 and x = 1. The final time is t = 1, which

corresponds to one period. This problem is computed on different grids with

N = 50, 100, 200, 400 and 800 grid points. Figure 1a shows the error dis-

tributions for the results on 200 grid points. It can be observed that if the

maximum admissible CFL number of 0.5 is used, the HAS limiter produces

larger errors than the ZS limiter. However, the HAS limiter is already as accu-

rate as the ZS limiter when a smaller CFL number of 1/12, which corresponds

to the maximum admissible value for the latter, is used. If the time-step size

is decreased further, errors produced by the ZS limiter do not change con-

siderably, whereas the errors produced by the HAS limiter decrease further.

This behavior is also shown in Fig. 1b for the evolution of the L∞ error with

decreasing grid size. Here, the time-step size ∆t = 0.5∆x5/3 is used to keep the

spatial errors dominant. Note that Fig. 1b clearly shows that the theoretical

order of accuracy is achieved.

2.5 Extension to multiple dimensions

To present the extension of the positivity-preserving flux limiters to multiple

dimensions we consider the two-dimensional Euler equation

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= 0. (27)

12



where U = (ρ, ρu, ρv, E)T , F(U) = [ρu, ρu2 + p, ρuv, (E + p)u]T and G(U) =

[ρv, ρvu, ρv2+p, (E+p)v]T . Compared to the one-dimensional equation Eq. (1),

the momentum density is ρv = (ρu, ρv), where u and v are velocities in the x

and y directions, respectively, and the total energy density is E = ρe+ρ|v|2/2.

As an extension of Eq. (11), the conservative scheme for Eq. (27) can be

rewritten as a convex combination

Un+1
i,j =

αx

2

(
Un

i,j + 2λxF̂i−1/2,j

)
+

αx

2

(
Un

i,j − 2λxF̂i+1/2,j

)

+
αy

2

(
Un

i,j + 2λyĜi,j−1/2

)
+

αy

2

(
Un

i,j − 2λyĜi,j+1/2

)
, (28)

where λx = ∆t/∆xαx and λy = ∆t/∆yαy, αx + αy = 1, with αx > 0 and

αy > 0 being partitions of the contribution in the x and y directions. A simple

way to obtain this partition is to set αx = αy = 1/2 as in Zhang and Shu

[22, 24]. Another straightforward way to determine αx and αy = 1 − αx is

αx =
τx

τx + τy
, τx =

(|u| + c)max

∆x
, τy =

(|v| + c)max

∆y
. (29)

Note that, since the time-step size for integrating Eq. (28) is given by

∆t =
CFL

τx + τy
, (30)

one has the relation

λx =
CFL

(|u| + c)max

and λy =
CFL

(|v| + c)max

, (31)

which gives an extended form from Eq. (9). Also note that, since the compo-

nents in Eq. (28) and Eq. (11) have the same form, it is straightforward to

implement the positivity-preserving flux limiters in a dimension-by-dimension

fashion.
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3 Test cases

In the following, we illustrate that a number of typical numerical test cases,

where the original high-order conservative schemes fail, can be simulated by

using the proposed positivity-preserving flux limiters. For the first type of

cases involving vacuum or near vacuum, the flux limiters are combined with

the finite difference WENO-5 scheme [9], which is a shock-capturing scheme

with fifth-order accuracy for smooth solutions. For the second type of cases

involving very strong discontinuities, the flux limiters are combined with the

WENO-CU6-M1 scheme [6], which can be used for implicit large eddy simu-

lation (LES) of turbulent flow and has sixth-order accuracy for smooth solu-

tions. For both variants of the WENO schemes the Roe matrix and

its eigenvectors are used for the characteristic decomposition at the

cell faces. The Lax-Friedrichs flux or the Roe flux with entropy fix

is used for the building-block numerical flux, as indicated for each

example. The third-order TVD Runge-Kutta scheme is used for time integra-

tion [17]. If not mentioned otherwise, the computations are carried out with

a CFL number of 0.5.

3.1 One-dimensional problems involving vacuum or near vacuum

Here we show that the proposed method passes two one-dimensional test prob-

lems involving vacuum or near vacuum: the double rarefaction problem [7],

where a vacuum occurs, and the planar Sedov blast-wave problem [16, 24],

where a point-blast wave propagates. For the first problem, the initial condi-
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tion is

(ρ, u, p) =





(1,−2, 0.1) if 0 < x < 0.5

(1, 2, 0.1) if 1 > x > 0.5
,

∆x = 2.5 × 10−3 and the final time is t = 0.1. For the second problem, the

initial condition is

(ρ, u, p) =





(1, 0, 4× 10−13) if 0 < x < 2 − 0.5∆x, 2 + 0.5∆x < x < 4

(1, 0, 2.56× 108) if 2 − 0.5∆x < x < 2 + 0.5∆x
,

∆x = 5 × 10−3 and the final time is t = 10−3.

Figure 2 gives the computed pressure, density and velocity distributions, which

show good agreement with the exact solutions. Although a vacuum occurs in

the solution of the double rarefaction problem, the results still exhibit accu-

rate density and pressure profiles in the rarefaction-wave regions. As a vacuum

occurs, the solution at the center of the domain strictly speaking has no phys-

ical meaning. Note that compared to Zhang and Shu [24] (see their Fig. 5.1

(right)) for the planar Sedov blast-wave problem a slightly sharper blast wave

is obtained in the present results. This may be due to the fact that Zhang

and Shu [24] have modified the original Lax-Friedrichs flux to use a single

maximum signal speed other than the respective maximum eigenvalues.

3.2 Two-dimensional problems involving vacuum or near vacuum

We consider two two-dimensional problems involving vacuum or near vacuum.

The first problem is the two-dimensional Sedov problem which has been stud-

ied in Zhang and Shu [22, 24]. The computation is performed on the domain

[0, 0] × [1.1, 1.1], where a high pressure region occupies the computation cell
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at the lower-left corner. The initial condition is given by

(ρ, u, v, p) =





(1, 0, 0, 4 × 10−13) if x > ∆x, y > ∆y

(1, 0, 0, 9.79264
∆x∆y

× 104) else
,

where ∆x = ∆y = 1.1/160. The final time is t = 1.0 × 10−3. A reflective

boundary condition is applied at the lower and left boundaries, and an outflow

condition is applied at the right and upper boundaries. Figure 3 gives the

computed density profiles. One can observe that these results are in very good

agreement with the exact solution.

The second problem is the Mach-2000 jet problem, which has been computed

in Zhang and Shu [22, 23, 24]. The computation is performed on the domain

[0, 1] × [0, 0.25], Initially, the entire domain is filled with ambient gas with

(ρ, u, v, p) = (0.5, 0, 0, 0.4127). A reflective condition is applied at the lower

boundary, an outflow condition is applied at the right and upper boundaries,

and an inflow condition is applied at the left boundary with states (ρ, u, v, p) =

(5, 800, 0, 0.4127) if y < 0.05 and (ρ, u, v, p) = (0.5, 0, 0, 0.4127) otherwise. A

CFL number of 0.25 is used and the final time is 0.001. Since γ = 5/3 is

used, the speed of the jet 800 gives about Mach 2100 with respect to the

sound speed in the jet gas. Figure 4 gives the computed density and pressure

profiles in logarithmic scale. One can observe that these results are in very

good agreement with those in Zhang and Shu [22] (their Fig. 4.6) computed

with the same resolution.

3.3 One-dimensional problems involving very strong discontinuities

We show that, combined with the proposed flux limiters, the WENO-CU6-M1

scheme passes two one-dimensional test problems, which cannot be computed
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with the original scheme without limiting, involving very strong discontinu-

ities: the two blast-wave interaction problem [21], and the Le Blanc problem

[13]. The latter is an extreme shock-tube problem. For the first problem, the

initial condition is

(ρ, u, p) =





(1, 0, 1000) if 0 < x < 0.1

(1, 0, 0.01) if 0.1 < x < 0.9

(1, 0, 100) if 1 > x > 0.9

,

∆x = 2.5×10−3, and the final time is t = 0.038. Reflective boundary conditions

are applied at both x = 0 and x = 1. The reference “exact” solution is a high-

resolution numerical solution on 3200 grid points calculated by the WENO-

CU6 scheme [8]. For the second problem, the initial condition is

(ρ, u, p) =





(1, 0, 2

3
× 10−1) if 0 < x < 3

(10−3, 0, 2

3
× 10−10) if 3 < x < 9

,

γ = 5/3, ∆x = 9/800 and the final time is t = 6.

Figure 5 gives the computed pressure, density and velocity distributions, with

relatively coarse meshes, which show a good agreement with the exact or ref-

erence solutions. The magnitudes of the small over-shoots (see Fig. 5 (left))

and the small errors at the shock position (see Fig. 5 (right)) decrease when

the grid resolution is increased (not shown here). For the two blast-wave in-

teraction problem the present results are comparable to those obtained by the

WENO-CU6-M2 scheme [6] at the same resolution (see their Fig. 3). Note

that the WENO-CU6-M2 scheme stabilizes for very strong discontinuities in

a different way, but still cannot compute the Le Blanc problem.
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3.4 Two-dimensional problems involving very strong discontinuities

We first consider the problem from Woodward and Colella [21] on the double

Mach reflection of a strong shock. A Mach 10 shock in air is reflected from

the wall with incidence angle of 60◦. The initial condition is

(ρ, u, v, p) =





(1.4, 0, 0, 1) if y < 1.732(x− 0.1667)

(8, 7.145,−4.125, 116.8333) else
,

and the final time is t = 0.2. The computational domain for this problem is

[0, 0] × [4, 1]. Initially, the shock extends from the point x = 0.1667 at the

bottom to the top of the computational domain. Along the bottom boundary,

at y = 0, from x = 0 to x = 0.1667 the post-shock conditions are imposed,

whereas a reflective condition is set from x = 0.1667 to x = 4. Inflow and

outflow conditions are applied at the left and right boundaries, respectively.

The states at the top boundary are set to describe the exact motion of a Mach

10 shock. Figure 6 shows the pressure and density contours of the solution on a

240×60 grid. Note that compared to the results obtained by WENO-CU6-M2

[6] (their Fig. 4) a good agreement is observed, except for a slightly sharper

slip-line due to the less dissipative Roe-flux used here. Especially,

both predict a strong near-wall jet, which is usually smeared in the previous

computations with the same resolution [12, 11, 8].

We then consider a shock-bubble interaction problem, when a Mach 6 shock

wave in air impacts on a cylindrical helium bubble. Air and helium are treated

as the same ideal gas fluid for simplicity. Numerical computations for this
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problem can be found in Bagabir and Drikakis [2]. The initial conditions are





(ρ = 1, u = −3, v = 0, p = 1) pre-shocked air

(ρ = 5.268, u = 2.752, v = 0, p = 41.83) post-shocked air

(ρ = 0.138, u = −3, v = 0, p = 1) helium bubble

, (32)

and the final time is t = 0.15. The computational domain for this problem is

[0, 0] × [1, 0.5]. Initially, the shock wave is at x = 0.05, and the half helium

bubble of radius 0.15 is at (0,0.25). Note that a frame velocity u = −3 is

applied to keep the bubble approximately in the center of the computational

domain. Reflective conditions are applied at the lower and upper boundaries,

an outflow condition is applied at the right boundary, and an inflow condition

is applied to the left boundary with the post-shocked state. Figure 7 shows

the pressure and density contours of the solution on a 200 × 100 grid. These

results show a fairly good agreement with those in Bagabir and Drikakis [2]

(their Fig. 6) at the same resolution. The secondary reflected shock wave

and triple-wave configurations are calculated with good resolution. Note that

since the WENO-CU6-M1 scheme has smaller numerical dissipation than the

MUSCL scheme used in Bagabir and Drikakis [2], the present results show a

less smeared bubble interface and more detailed structures near the triple-wave

region.

3.5 Three-dimensional Noh problem

At last, we consider the Noh problem, an implosion with infinite

Mach number [14, 10], defined by the three dimensional Eulerian

equations with γ = 5/3. The computational domain is [0, 0, 0]×[0.256, 0.256, 0.256].

The initial conditions are (ρ, u, v, w, p) = (1,−x/r,−y/r,−z/r, 10−8), where
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r =
√

x2 + y2 + z2, the grid sizes are ∆x = ∆y = ∆z = 1/64 and the

final time is t = 0.6. The symmetry conditions are applied at the

three boundary sides passing through the origin. For other bound-

ary sides, the in-flow pressure and velocity are imposed with the

initial condition and the density is set from the analytical solution.

This problem is solved by the Roe-flux WENO-CU6-M1 scheme

combined with our positivity-preserving flux limiter. Figure 8 gives

the computed contours and iso-surfaces of pressure and profiles of

density and specific internal energy along y = 0 and z = 0. It can

be observed that, as the strong spherical shock wave travels out-

ward, the flow loses its spherical symmetry and develops very fast

to complex structures behind the shock front. Because the complex

structures contain much more kinetic energy than that of the in-

viscid analytical solution, the intensity of the computed shock wave

is slightly weaker. Note that, unlike the previous results on coarse

grids, such as in Ref. [10], no clear unphysical “overheating” phe-

nomenon is present in the solution. This is not unexpected since

the very small numerical dissipation of the WENO-CU6-M1 scheme

prevents the production of spurious heat.

4 Concluding remarks

In this paper we have proposed a very simple method to enforce the positivity-

preserving property for general high-order conservative schemes. The method

is an a posteriori detection-correction approach, similar to many

hybrid-type methods [1, 3]. In such type of methods one first detects the
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critical numerical fluxes which may lead to negative density and pressure,

then limits the fluxes to satisfy a sufficient condition for preserving positivity.

Though an extra time-step size condition is required to maintain the formal

order of accuracy, it is less restrictive than those in previous works. In addition,

since the method uses the general form of a conservative scheme, similarly as

the approaches of Zhang and Shu [24], it can be applied to flows with a general

equation of state and source terms in a straightforward way.
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Figure 1. Linear advection problem at t = 1: (a) Error distribution vs. time-step

sizes on 200 grid points; (b) Evolution of the L∞ error with decreasing grid size..
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Figure 2. One-dimensional problems involving vacuum or near vacuum: (left) double

rarefaction problem; (right) planar Sedov blast-wave problem.
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(right) density profile along y = 0.

Figure 4. Mach-2000 jet problem: (upper) 30 density contours of logarithmic scale

from -4 to 4; (lower) 30 pressure contours of logarithmic scale from -1 to 13.

27



x

P
re

ss
ur

e

0.2 0.4 0.6 0.8

100

200

300

400 Exact
Present

x

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1
0

5

10

15
Exact
Present

x

V
el

oc
ity

0 2 4 6 8
0

0.2

0.4

0.6

0.8
Exact
Present

x

D
en

si
ty

0.2 0.4 0.6 0.8
0

2

4

6
Exact
Present

x

D
en

si
ty

0 2 4 6 810-3

10-2

10-1

100
Exact
Present

x

P
re

ss
ur

e

0 2 4 6 8

10-9

10-7

10-5

10-3

10-1
Exact
Present

Figure 5. One-dimensional problems involving very strong discontinuities: (left) two

blast wave problem; (right) Le Blanc shock-tube problem.
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Figure 6. Double-Mach reflection of a Mach 10 shock wave at t = 0.2: (upper) 30
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Figure 8. Three-dimensional Noh problem: (left) 16 pressure contours and iso-sur-

faces from 2 to 32; (right) profiles of density and specific internal energy along y = 0

and z = 0.
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