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Abstract

The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes
with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous
studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing
of the discontinuity caused by the discretization of the advection term. The present study focuses only on solving
the reactive system by the fractional step method using the Strang splitting. Studies shows that the degree of wrong
propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in
which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical
dissipation being employed play major roles. Depending on the numerical method, time step and grid spacing, the
numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent
solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of
the discretized counterparts but are not solutions of the governing equations. The findings might shed some light on
the reported difficulties in numerical combustion and problems with stiff nonlinear (homogeneous) source terms and
discontinuities in general.

Keywords: High order numerical methods, Numerical combustion, Chemical reacting flows, Nonequilibrium flows,
Stiff source terms, Numerical methods for stiff source terms with shocks, Wrong propagation speed of discontinuities

1. Introduction

Consider 3D reactive Euler equations of the form

Ut + F(U)x + G(U)y + H(U)z = S (U), (1)

where U, F(U), G(U), H(U) and S (U) are vectors. Here, S (U) is restricted to be homogeneous in U; that is,
(x, y, z) and t do not appear explicitly in S (U). If the time scale of the ordinary differential equation (ODE) Ut =

S (U) for the source term is orders of magnitude smaller than the time scale of the homogeneous conservation law
Ut + F(U)x + G(U)y + H(U)z = 0, then the problem is said to be stiff due to the source terms. In combustion or
high speed chemical reacting flows the source term represents the chemical reactions which may be much faster than
the gas flow. This leads to problems of numerical stiffness due to chemical reactions. Insufficient spatial/temporal
resolution may cause an incorrect propagation speed of discontinuities and nonphysical states for standard dissipative
numerical methods that were developed for non-reacting flows.

This numerical phenomenon was first observed by Colella et al. [6] in 1986 who considered both the reactive Euler
equations and a simplified system obtained by coupling the inviscid Burgers equation with a single convection/reaction
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equation. LeVeque and Yee [24] showed that a similar spurious propagation phenomenon can be observed even with
scalar equations, by properly defining a model problem with a stiff source term. They introduced and studied the
simple one-dimensional scalar conservation law with an added nonhomogeneous parameter dependent source term

ut + ux = S (u), (2)

S (u) = −µu(u −
1
2

)(u − 1). (3)

When the parameter µ is very large, a wrong propagation speed of discontinuity phenomenon by dissipative numerical
methods will be observed in coarse grids. In reacting flows, 1

µ
can be described as the reaction time. In order to isolate

the problem, LeVeque and Yee solved 2 and 3 by the fractional step method using the Strang splitting [37] . For
this particular source term, the reaction (ODE) step of the fractional step method can be solved exactly. In their
study using pointwise evaluation of the source term (S (u) is evaluated at the j grid point index, i.e., S (u j) for each
time evolution), the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of
the discontinuity caused by the spatial discretization of the advection term. They found that the propagation error
is due to the numerical dissipation contained in the scheme, which smears the discontinuity front and activates the
source term in a nonphysical manner. The smearing introduces a nonequilibrium state into the calculation. Thus
as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores
equilibrium, while at the same time shifting the discontinuity to a cell boundary. By increasing the spatial resolution
by an order of magnitude, they were able to improve towards the correct propagation speed. It is remarked here that
in a general stiff source term problem, a sufficient spatial resolution is as important as temporal resolution when the
reaction step of the fractional step method cannot be solved exactly. As will be shown in the present study, on one
hand, the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical
method. On the other hand, the manner in which the smearing of discontinuities is contained by the numerical method
and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time
steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shock-capturing methods
for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals
surprising counter-intuitive results.

Based on the work of [24, 48, 8, 20, 21, 56], in addition to the incorrect propagation speed of discontinuities, other
spurious numerics, that are directly tied to the amount of numerical dissipation contained in the chosen scheme and
the numerical treatment of source terms may result in

• Possible spurious steady-state numerical solutions and spurious standing waves [48, 8, 20, 21]: It was
shown in Lafon & Yee [20, 21] and Griffiths et al. [48] that various ways of discretizing the nonlinear reaction
terms can affect the stability of, and convergence to, the spurious numerical steady states and/or the exact
steady states. Pointwise evaluation of the source terms appears to be the least stable. The studies of Lafon
& Yee [20, 21] indicated that numerical phenomena of incorrect propagation speeds of discontinuities may be
linked to the existence of some stable spurious steady-state numerical solutions. More importantly, the different
combination of time step, grid spacing and initial condition plays a major role in obtaining the correct solution.
In addition, it was shown in Yee et al. [48] and Griffiths et al. [8] that spurious discrete traveling waves can
exist, depending on the method of discretizing the source term. Recently, Wang et al. [43] indicated that a
well-balanced scheme for reacting flows can minimize certain spurious numerics.

Studies linking spurious numerical standing waves for Eq. (2) and Eq. (3) by first and second-order spatial and
temporal discretizations can be found in Lafon and Yee [20, 21] and Griffiths, Stuart and Yee [8, 51].

• Possible wrong prediction of transition point Reynolds number by DNS due to spurious bifurcation that
created a false transition point: Inaccuracy of the scheme or insufficient grid points might lead to possible
spurious bifurcation as well as creating wrong propagation speed of discontinuities and smearing of turbulent
fluctuations. See [51] for a discussion.

The term “spurious (numerical) solutions” here refers to computed solutions that are solutions of the discretized
counterparts but are not solutions of the considered governing equation. Pointwise evaluation of the source term here
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means that, for each time evolution, S (U) is evaluated at the single grid point S (U j,k,l), where ( j, k, l) is the grid point
index.

For the last two decades, the wrong speed phenomenon has attracted a large volume of research work in the
literature (see, e.g., [2, 30, 3, 39, 5, 51, 23, 13, 4, 26, 1, 10, 40]). Various strategies have been proposed to overcome
this wrong speed difficulty for one to two species cases with a single reaction. Since numerical dissipation that spreads
the discontinuity front is the cause of the wrong propagation speed of discontinuities, a natural strategy is to avoid
any numerical dissipation in the scheme. In combustion, level set and front tracking methods were used to track the
wave front to minimize this spurious behavior [23, 13, 4, 26]. See Wang et al. [42] for a comprehensive overview
of the last two decades of development. Wang et al. also proposed a new high order finite difference method with
subcell resolution for advection equations with stiff source terms for a single reaction for Eq. (eq:3D-reacting-Euler)
to overcome the difficulty. Research for multi-species (3 or more species and multi-reactions) is forthcoming.

1.1. Objective

This is a follow on work to Wang, Shu, Yee & Sjögreen, Yee, Kotov & Sjögreen and related earlier work [42,
45, 48, 8, 20, 21]. The objective of this paper is to study spurious behavior of high order shock-capturing methods
using the pointwise evaluation of stiff homogenous source terms for problems containing discontinuities. Pointwise
evaluation is used in the current study in spite of the fact that Lafon & Yee [20, 21] and Griffiths et al. [8] indicated two
decades ago that pointwise evaluation of the source term (for first and second-order schemes) appears to be the least
stable. They suggested using non-pointwise evaluation of the source term that is more compatible with the convection
difference operator. The current study presents a more in-depth understanding of the pointwise evaluation approach as
the majority of the schemes in use for numerical combustion and problems containing stiff sources and discontinuities
employ this approach. In addition, spurious behavior in this type of highly nonlinear coupling system cases using
finite time steps and grid spacings is not fully understood.

Special focus is on the behavior of the recently developed high order finite difference method with subcell res-
olution [42], and the filter counterparts [47, 54] of the new high order subcell resolution method as time step and
grid spacing are refined. The finite difference method with subcell resolution method solve the reactive system by the
fractional step approach using the Strang splitting. The study also accounts for the scheme behavior as the stiffness of
the source term increases. Early and less extensive study on the subject has been reported in [18]. Comparison with
the performance of the Harten & Yee second-order TVD method [50, 44], and standard fifth-order and seventh-order
WENO schemes (WENO5 and WENO7) [15] are included. Although the subcell resolution idea and its filter coun-
terparts are applicable to any high order shock-capturing method, here the study is focused on the class of WENO
schemes. From here on, the subcell resolution counterparts of WENO5 and WENO7 will be denoted by WENO5/SR
and WENO7/SR [42], whereas their filter counterparts will be denoted by WENO5fi/SR and WENO7fi/SR.

1.2. Outline

The outline of this paper is as follows: A practical stiff hypersonic chemical nonequilbrium viscous computation
is illustrated in Section 2 to motivate the current study. The high order methods with subcell resolution and their filter
counterparts [42, 47, 54] are summarized in Section 3. The problem setup for the two stiff detonation test cases with
numerical results comparing the performance among WENO5, WENO7, and the associated filter version of WENO5
(WENO5fi) [47, 54], WENO5/SR and WENO5fi/SR are then presented in Section 4. The present investigation for
three very different system cases confirms the findings of Lafon & Yee and LeVeque & Yee for a model scalar PDE.
In all of the computations, the classical fourth-order Runge-Kutta method (RK4) and the Roe flux with Roe’s average
states [31] are used. Performance using the third-order TVD Runge-Kutta [32] is similar but with a slightly smaller
CFL limit. All the WENO schemes are the original form of Jiang & Shu [15], except for one case where the finite
difference form of the recently developed positive WENO scheme [58] using the Lax-Friedrichs was tested.

2. Motivation: An Unsteady Nonequilibrium Navier-Stokes Computation [17]

In general, the reacting terms that arise from nonequilibrium flows in hypersonic aeronautics are less stiff than
their counterparts in combustion. However, there are stiff chemical nonequilibrium flows that are due to the reaction
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terms. Before the study of two stiff detonation test cases, a stiff 13-species, one temperature nonequilibrium model
related to the NASA Ames Electric Arc Shock Tube (EAST) experiment is briefly investigated. Detailed study is
reported in [17]. See [25] for a brief introduction and earlier simulations. The reason for this introductory example
is to illustrate that it is unlike earlier work in [24, 48, 8, 20, 21], where detailed analysis using dynamical system
theory were possible. A complex high Mach number and high temperature problem like EAST is very costly even for
a 3D coarse grid complete unsteady simulation. The length of the EAST shock tube experiment is very long and the
associated flow physics is multiscale with multi-reaction terms [25].

2.1. Governing Equations
In component form of 1, a 3D nonequilibrium Navier-Stokes system for the 8.5m (meter) EAST problem (with

the thermo-nonequilibrium part neglected) for a preliminary study is given by:

∂ρs

∂t
+

∂

∂x j
(ρsu j + ρsds j) = Ωs (4)

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j + pδi j − τi j) = 0 (5)

∂

∂t
E +

∂

∂x j

u j(E + p) + q j +
∑

s

ρsds jhs − uiτi j

 = 0, (6)

where U = (ρs, ρui, E) are the conservative variables, ρs are the partial densities with k = 1, . . . ,Ns for a mixture of
Ns species. Here i = 1, 2, 3 for 3D. ui, i = 1, 2.3 are the mixture x, y and z-velocities, E is the mixture total energy per
unit volume, p is the pressure, K(T ) is the chemical reaction rate and T is the temperature. The mixture total density,
the pressure and the total energy per unit volume are

ρ =
∑

s

ρs, p = RT
Ns∑
s=1

ρs

Ms
, E =

Ns∑
s=1

ρs

(
es(T ) + h0

s

)
+

1
2
ρv2, (7)

where R is the universal gas constant, h0
s are the species formation enthalpies, and Ms indicates the species molar

masses.
The viscous stress tensor is given by:

τi j = µ

(
∂ui

∂x j
+
∂u j

∂xi

)
− µ

2
3
∂uk

∂xk
δi j. (8)

The diffusion flux is given by:

ds j = −Ds
∂Xs

∂x j
, (9)

where Ds is the diffusion coefficient and Xs is the mole fraction of species s.
The conduction heat flux is given by:

q j = −λ
∂T
∂x j

, (10)

where λ is the thermal conductivity of the mixture. The chemical source term is given by:

Ωs = Ms

Nr∑
r=1

(
bs,r − as,r

) k f ,r

Ns∏
m=1

(
ρm

Mm

)am,r

− kb,r

Ns∏
m=1

(
ρm

Mm

)bm,r
 , (11)

where a and b are the stoichiometric coefficients, and the forward reaction rates k f ,r coefficients are given by Arrhe-
nius’ law:

k f ,r = A f ,rT n f ,r exp(−E f ,r/kT ). (12)

The backward reactions rates coefficients are computed as kb,r = k f ,r/K
eq
c,r, where Keq

c,r is the equilibrium constant.

4



ρ 1.10546 kg/m3

T 6000 K
p 12.7116 MPa
YHe 0.9856
YN2 0.0144

ρ 3.0964 × 10−4kg/m3

T 300 K
p 26.771 Pa
YO2 0.21
YN2 0.79

Table 1: High (left) and low (right) pressure region initial data

Due to the multiscale and multi-stiffness of the problem [25], numerical simulations for 1D (i = 1) and 2D (i =

1, 2) are considered first in [17]. Numerical study of grid size and numerical method dependence of the computed shear
and shock locations as the grid is refined for 1D and 2D simplifications of the 3D EAST problem will be illustrated
here. All the computations employ a multi-D high order single/overset grid nonequilibrium code ADPDIS3D [22].
Due to high computational cost, only single grid results for a very early stage of the unsteady flow development are
presented. The desired simulation requires that the shock wave propagates to a 8.5 meter distance. The MUTATION
library [29], developed by Thierry Magin and Marco Panesi, is used for the numerical experiment to provide reaction
rate and transport properties. Here, for this viscous simulation, all the CFL values are based on the convection and
viscous part of the PDEs.

2.2. 1D 13 Species EAST Test Case
The computational domain has a total length of 8.5m. The left part of the domain with length 0.1m is a high

pressure region. The right part of the domain with length 8.4m is a low pressure region. The gas mixture consists of
13 species:

e−,He,N,O,N2,NO,O2,N+
2 ,NO+,N+,O+

2 ,O
+,He+.

The initial conditions of the high and low pressure regions are listed in the Table 1. For the left-side boundary the
Euler (slip) wall condition is applied, and for the right-side, the zero gradient condition is applied for all variables.

Figure 1 shows the results from the computation using the Harten-Yee second-order TVD scheme [50, 44] for
four grids with ∆x = 10−3 m, 5 × 10−4 m, 5 × 10−5 m and 2.5 × 10−5 m at time tend = 0.325 × 10−4 sec. One can
observe a significant shift in the shear (left discontinuity) and the shock (right discontinuity) locations as the grid is
refined. The distance between the shear and the shock shrinks as the grid is refined. The difference between shock
locations obtained on the grids with ∆x = 5 × 10−5 m and 2.5 × 10−5 m is less than 0.3%. Thus the solution using
∆x = 5 × 10−5 m can be considered as the reference solution.

The left subfigure of Fig. 2 shows a comparison among five methods obtained on a coarse grid (∆x = 10−3 m)
with the reference solution. The scheme’s labels are defined as follows:

• ACMTVDfi: Second-order central base scheme using ACM flow sensor. See [52] for further information on
filter schemes.

• WENO5-llf: Fifth-order WENO (WENO5) using the local Lax-Friedrichs flux.

• WENO5P-llf: Positive WENO5 of [58] using the local Lax-Friedrichs flux.

• WENO5PH-llf: Positive WENO5 of [12] using the local Lax-Friedrichs flux.

The right subfigure of Fig. 2 shows a comparison of ACMTVDfi using a different weight κ parameter of the
ACM flow sensor. The smaller the κ, the smaller the amount of TVD dissipation that is used. Among the considered
schemes, Fig. 2 indicates that the least dissipative scheme predicts the shear and shock locations best when compared
with the reference solution. The results indicate that ACMTVDfi is slightly more accurate than WENO5-llf. This
is due to the fact that ACMTVDfi reduces the amount of numerical dissipation away from high gradient regions.
Using the subcell resolution method of [42] for one reaction case by applying it to only one of the reactions in this
multireaction flow does not improve the performance over standard schemes. Further research on the generalization
of subcell resolution to multi-reactions needs to be explored.
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Figure 1: 13 species 1D EAST problem: Second-order Harten-Yee TVD simulation for three grids: ∆x = 10−3 m (line 1), 5×10−4 m
(line 2), 5 × 10−5 m (line 3), 2.5 × 10−5 m (line 4), and Tend = 0.325 × 10−4 s, with CFL = 0.8.

Figure 2: 1D, 13 species EAST problem: Comparison among methods using 601 point grids with CFL = 0.6 and tend = 3.25 × 10−5 sec. Left
subfigure: Reference solution (TVD on a 10, 001 point grid) (line 1), TVD (line 2), ACMTVDfi (TVDfi) using κ = 0.5 (line 3), WENO5-llf (line
4), WENO5P-llf (line 5), WENOPH-llf (line 6). Right: ACMTVDfi, κ = 0.15 (line 2), κ = 0.2 (line 3), κ = 0.3 (line 4), κ = 0.5 (line 5), κ = 1 (line
6). See text for method notation.
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Figure 3: Schematic of a 13 species 2D EAST problem.

Figure 4: 2D 13 species EAST simulation by TVD for CFL = 0.7 and Tend = 10−5 s: Top Row - Three x-direction grid refinement 601 × 121,
1201× 121 and grid clustering between shear and shock in the x-direction of 691× 121. All y-grid use boundary grid stretching with a minimum of
∆y = 10−5. Bottom Row: Two x-direction grid refinement 1201× 121 and grid clustering between shear and shock in the x-direction of 691× 121.
All y-grid use boundary grid stretching with a minimum of ∆y = 5 × 10−6.
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grid Nx 601 1201 1201 691 691
refine no no no yes yes
min hy 1.e-5 1.e-5 5.e-6 1.e-5 5.e-6
Shock Tmax,K 15,846 18,851 18,848 25,098 25,015
Shear Tmax,K 11,301 11,203 11,203 10,598 10,598

Table 2: Shock and Shear maximum temperature grid dependence at time Tend = 10−5 s. Nx indicates the grid spacing in the x-direction. The last
two columns are for the grid clustering results for two different minimum y-grid stretching.

2.3. 2D 13 Species EAST Test Case
The computational domain is half of the 2D shock tube y-height with total length 8.5m, height 0.0508m and

symmetry boundary condition imposed on the top. The left part of the x-domain with length 0.1m is a high pressure
region. The right part of the domain with length 8.4m is a low pressure region. The gas mixture consists of the same
13 species as the 1D simulation:

e−,He,N,O,N2,NO,O2,N+
2 ,NO+,N+,O+

2 ,O
+,He+.

The initial conditions of the high and low pressure regions are listed in the Table 1.
For the left boundary the slip (Euler) wall condition is applied. For the right-side the zero gradient condition

is applied for all variables. The bottom boundary is treated as an isothermal wall with the constant temperature
Twall = 300 K. The top boundary is treated as a symmetric boundary condition. Figure 3 shows the schematic of the
2D EAST simulation.

For this 2D test case a very accurate reference solution is not practical to obtain due to the CPU intensive nature of
the problem. Here, three levels of refinement are conducted. Figure 3 shows the schematic of the 2D EAST simulation
at time Tend = 10−5s using CFL = 0.7 by TVD. Figure 4 shows the computed temperature contour results by TVD
for three levels x- and y-direction grid refinement simulations. The top row shows three x-direction grid refinements
of 601 × 121, 1201 × 121 and grid clustering between shear and shock in the x-direction of 691 × 121. All y grids
use boundary grid stretching with a minimum of ∆y = 10−5. The bottom row shows the same two x-direction grid
refinements 1201 × 121 and grid clustering between shear and shock in the x-direction of 691 × 121. All y grids use
boundary grid stretching with a minimum of ∆y = 5×10−6. Comparing the two rows of grid refinement study indicates
that by refining the x-direction grid with the y-direction the same has a big effect on the locations of the shear/shock.
This is due to the fact that aside from the boundary layer, the shear and shock are nearly one dimensional. However,
comparing the last two columns of the grid refinement study indicates that by refining the y-direction grid with the
x-direction the same has no effect on the locations of the shear/shock, but increases the boundary layer prediction.
As in the 1D EAST simulation, the discontinuity locations shift as the x-direction grid is refined. The width of the
distance between the shear and the shock shrank as the grid was refined. The shear and shock strength are also
different. Table 2 indicates the maximum shear and contact temperature for each set of grids. For the minimum grid
stretching of ∆y = 10−5, the maximum shear temperature is 11, 301K, and maximum shock temperature is 15, 846K
for the 601 × 121 grid. However, the shear and shock strength are with maximum shear temperature = 11, 203K, and
maximum shock temperature = 18, 851K for the 1201 × 121 grid. For the stretched grid the shear and shock strength
are with maximum shear temperature = 10, 598K, and maximum shock temperature = 25, 098K. As we decrease
the minimum grid stretching to ∆y = 5 × 10−6, the shear and shock strength are with maximum shear temperature
= 11, 203K, and maximum shock temperature = 18, 848K for the 1201 × 121 grid. For the stretched grid the shear
and shock strength are with maximum shear temperature = 10, 598K, and maximum shock temperature = 25, 015K.
Aside from the different shock/shear locations the result indicated in the last column shows the maximum temperature
at the shock location is higher than the result indicated in the the middle and the first columns. Results comparing
with WENO5-llf, and with further grid refinement and longer time evolution are reported in [17].

These results indicate that the numerical method and grid dependence of the shear and shock locations are related
to the stiffness of the source terms. Note that for non-reacting flows, numerical method and grid dependence of
the solution normally do not affect the location of the discontinuities, but rather affect the degree of the smearing
of the discontinuities. However for extreme non-reacting flows there are studies reporting the grid dependence of
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the shear and shock locations. Studies comparing the previous 1D EAST test case with S (U) = 0 (using the same
flow condition) indicate a similar spurious behavior. See Kotov et al. [18] and references cited therein for details.
The implication of the EAST computation exercise is to illustrate the danger of practical numerical simulation for
problems containing stiff source terms where there is no reliable means of assessing the accuracy of the computed
result other than by extreme grid refinement, which is beyond the capability of the current super computer. Before
the detailed numerical study for the two stiff detonation test cases, the next section gives a brief description of our
recently developed high order shock-capturing method with specific numerical dissipation controls [42, 47, 54].

3. Overview of Two Recently Developed High Order Shock-Capturing Schemes

Here only the newly developed high order finite difference method with subcell resolution for advection equations
with stiff source terms ([42]) in 2D is briefly summarized. The key aspects of the filter counterpart of the WENO
schemes are included at the end of the section. For simplicity of discussion only 2D reactive Euler equations are
considered. It is noted that the considered schemes are applicable to 3D reactive flows. The Wang et al. high order
scheme with subcell resolution [42] is only developed for a single reaction case and further extension to multi-reaction
cases is still under investigation. The regular WENO scheme and the Yee & Sjogreen and Sjogreen & Yee high order
nonlinear filter scheme [47, 54, 35, 55, 43] are applicable for any number of species and reactions. The high order
nonlinear filter scheme with local flow sensor is applied to further control the amount of numerical dissipation being
used for turbulence with strong shocks.

3.1. 2D Reactive Euler Equations

Consider a 2D inviscid combustion flow containing two species

(ρ1)t + (ρ1u)x + (ρ1v)y = K(T )ρ2 (13)
(ρ2)t + (ρ2u)x + (ρ2v)y = −K(T )ρ2 (14)

(ρu)t + (ρu2 + p)x + (ρuv)y = 0 (15)
(ρv)t + (ρuv)x + (ρv2 + p)y = 0 (16)

Et + (u(E + p))x + (v(E + p))y = 0 (17)

where ρ1 is the density of burned gas, ρ2 is the density of unburned gas, u and v are the mixture x- and y-velocities, E is
the mixture total energy per unit volume, p is the pressure, K(T ) is the chemical reaction rate and T is the temperature.
The pressure is given by

p = (γ − 1)(E −
1
2
ρ(u2 + v2) − q0ρ2), (18)

where the temperature T = p/ρ and q0 is the chemical heat released in the reaction.
The mass fraction of the unburnt gas is z = ρ2/ρ. The mixture density is ρ = ρ1 + ρ2.

The reaction rate K(T ) is modeled by an Arrhenius law

K(T ) = K0 exp
(
−Tign

T

)
, (19)

where K0 is the reaction rate constant and Tign is the ignition temperature. The reaction rate may be also modeled in
the Heaviside form

K(T ) =

{
K0 T ≥ Tign

0 T < Tign.
(20)
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3.2. High Order Finite Difference Methods with Subcell Resolution for Advection Equations with Stiff Source Terms

The general fractional step approach based on Strang-splitting [37] for the 2D reactive Euler equations written in
vector notation

Ut + F(U)x + G(U)y = S (U) (21)

is as follows. The numerical solution at time level tn+1 is approximated by

Un+1 = A
(
∆t
2

)
R(∆t)A

(
∆t
2

)
Un. (22)

The reaction operator R is over a time step ∆t and the convection operator A is over ∆t/2. The two half-step
reaction operations over adjacent time steps can be combined to save cost. The convection operator A is defined to
approximate the solution of the homogeneous part of the problem on the time interval, i.e.,

Ut + F(U)x + G(U)y = 0, tn ≤ t ≤ tn+1. (23)

The reaction operator R is defined to approximate the solution on a time step of the reaction problem:

dU
dt

= S (U), tn ≤ t ≤ tn+1. (24)

Here, the convection operator consists of, e.g., WENO5 with Roe flux and RK4 for time discretization. If there is
no smearing of discontinuities in the convection step, any ODE solver can be used as the reaction operator. However,
all the standard shock-capturing schemes will produce a few transition points in the shock when solving the convection
equation. These transition points are usually responsible for causing incorrect numerical results in the stiff case. Thus,
a direct application of a standard ODE solver at these transition points will create incorrect shock speed. To avoid
this, here the Harten’s subcell resolution technique [9] in the reaction step is employed. The general idea is as follows.
If a point is considered a transition point of the shock, information from its neighboring points which are deemed not
transition points will be used instead. In 2D case we apply the subcell resolution procedure dimension by dimension.
Here, UT = (ρ1, ρ2, ρu, ρv, E) and we select the mass fraction z as the stiffness indicator. The algorithm proceeds as
follows.

(1) Use a “shock indicator” to identify cells in which discontinuities are believed to be situated. One can use any
indicator suitable for the particular problem. Here the minmod-based shock indicator in [9, 33] is considered. Identify
“troubled cell” Ii j in both x- and y-directions by applying the shock indicator to, e.g., the mass fraction z. Define the
cell Ii j as troubled in the x-direction if |sx

i j| ≥ |s
x
i−1, j| and |sx

i j| ≥ |s
x
i+1, j| with at least one strict inequality, where

sx
i j = minmod{zi+1, j − zi j, zi j − zi−1, j}. (25)

Similarly we can define sy
i j, the cell Ii j as troubled in the y-direction.

If Ii j is only troubled in one direction, we apply the subcell resolution along this direction. If Ii j is troubled in both
directions, we choose the direction which has a larger jump. Namely, if |sx

i j| ≥ |s
y
i j|, subcell resolution is applied along

the x-direction, otherwise it is done along the y-direction. In the following steps (2)-(3), without loss of generality,
we assume the subcell resolution is applied in the x-direction. Assuming Ii j is troubled in the x-direction, we apply
subcell resolution along the x-direction.

In a troubled cell identified above, we continue to identify its neighboring cells. For example, we can define
Ii+1, j as troubled if |sx

i+1, j| ≥ |s
x
i−1, j| and |sx

i+1, j| ≥ |s
x
i+2, j| and similarly define Ii−1, j as troubled if |sx

i−1, j| ≥ |s
x
i−2, j| and

|sx
i−1, j| ≥ |s

x
i+1, j|. If the cell Ii−s, j and the cell Ii+r, j (s, r > 0) are the first good cells from the left and the right (i.e.,

Ii−s+1, j and Ii+r−1, j are still troubled cells), we compute the fifth-order ENO interpolation polynomials pi−s, j(x) and
pi+r, j(x) for the cells Ii−s, j and Ii+r, j, respectively.
(2) Modify the point values zi j, Ti j and ρi j in the troubled cell Ii j by the ENO interpolation polynomials{

z̃i j = pi−s, j(xi; z), T̃i j = pi−s, j(xi; T ), ρ̃i j = pi−s, j(xi; ρ), if θ ≥ xi

z̃i j = pi+r, j(xi; z), T̃i j = pi+r, j(xi; T ), ρ̃i j = pi+r, j(xi; ρ), if θ < xi
, (26)
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where the location θ is determined by the conservation of energy E∫ θ

xi−1/2

pi−s, j(x; E)dx +

∫ xi+1/2

θ

pi+r, j(x; E)dx = Ei j∆x. (27)

Under certain conditions, it can be shown that there is a unique θ satisfying Eq. (27), which can be solved using, for
example, a Newton’s method. If there is no solution for θ or there is more than one solution, we choose z̃i j = zi+r, j,
T̃i j = Ti+r, j and ρ̃i j = ρi+r, j. For particular problems one can choose any other suitable method for the reconstruction.

(3) Use Ũi j instead of Ui j in the ODE solver if the cell Ii j is a troubled cell. For simplicity, explicit Euler is used as
the ODE solver.

(ρz)n+1
i j = (ρz)n

i j + ∆tS (T̃i j, ρ̃i j, z̃i j). (28)

Here we would like to remark that, implicit temporal discretization cannot be used in this step because the troubled
values need to be modified explicitly. However, there is no small time step restriction in the explicit method used here,
because once the stiff points have been modified, the modified source term S (T̃i j, ρ̃i j, z̃i j) is no longer stiff. Therefore, a
regular CFL number is allowed in the explicit method. (Note that if however, a linearized form of a two-level implicit
time discretization might be suitable for the reaction step operator. This will be investigated in the future.)

Earlier study reported in [42], in general, a regular CFL = 0.1 using the explicit Euler to solve the reaction
operator step can be used in the subcell resolution scheme to produce a stable solution. But the solution is very coarse
in the reaction zone because of the underresolved mesh in time. In order to obtain more accurate results in the reaction
zone, we evolve one reaction step via Nr sub steps, i.e.,

un+1 = A
(
∆t
2

)
R

(
∆t
Nr

)
· · ·R

(
∆t
Nr

)
A

(
∆t
2

)
un (29)

in some numerical examples studied in [42]. For the present numerical experiment for the 1D detonation problem,
Nr = 2. See [18] for additional Nr value studies. The study in [18] using Nr = 1, 2, 4, 5, 10, 1000 indicated that Nr ≥ 2
is a reasonable choice for the 1D test case. For the 2D detonation problem, a higher Nr value is desirable.

3.3. Well-Balanced High Order Filter Schemes for Reacting Flows ([47, 54, 35, 55, 43])
The high order nonlinear filter scheme of [47, 54, 35] , if used in conjunction with a dissipative portion of a well-

balanced shock-capturing scheme as the nonlinear numerical flux, is a well-balanced scheme [43]. The well-balanced
high order nonlinear filter scheme for reacting flows, solving the fully coupled system 1 consists of three steps.

3.3.1. Preprocessing Step
Before the application of a high order non-dissipative spatial base scheme, the pre-processing step to improve

stability had split inviscid flux derivatives of the governing equation(s) in the following three ways, depending on the
flow types and the desire for rigorous mathematical analysis or physical argument.

• Entropy splitting of [28] and [49, 46]: The resulting form is non-conservative and the derivation is based on
entropy norm stability with boundary closure for the initial value boundary problem.

• The system form of the Ducros et al. splitting [7]: This is a conservative splitting and the derivation is based on
physical arguments.

• Tadmor entropy conservation formulation for systems [36]: The derivation is based on mathematical analysis. It
is a generalization of Tadmor’s entropy formulation to systems and has not been fully tested on complex flows.

See Honein [11] for a comparison of the entropy splitting and other earlier momentum conservation methods.

3.3.2. Base Scheme Step
A full time step is advanced using a high order non-dissipative (or very low dissipation) spatially central scheme

on the split form of the governing partial differential equations (PDEs). Summation-by-parts (SBP) boundary operator
[27, 34] and matching order conservative high order free stream metric evaluation for curvilinear grids [41] are used.
High order temporal discretization such as the third-order or fourth-order Runge-Kutta (RK3 or RK4) temporal is
used. It is remarked that other temporal discretizations can be used for the base scheme step. Numerical experiments
only focused on RK4 using Roe’s approximate Riemann solver.
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3.3.3. Post-Processing (Nonlinear Filter Step)
After the application of a non-dissipative high order spatial base scheme on the split form of the governing equa-

tion(s), to further improve nonlinear stability from the non-dissipative spatial base scheme, the post-processing step
of [47, 54, 35] nonlinearly filtered the solution by a dissipative portion of a high order shock-capturing scheme with
a local flow sensor. The flow sensor provides locations and amounts of built-in shock-capturing dissipation that can
be further reduced or eliminated. The idea of these nonlinear filter schemes for turbulence with shocks is that, in-
stead of solely relying on very high order high-resolution shock-capturing methods for accuracy, the filter schemes
[52, 49, 35, 47, 53] take advantage of the effectiveness of the nonlinear dissipation contained in good shock-capturing
schemes as stabilizing mechanisms (a post-processing step) at locations where needed. At each grid point, a local
flow sensor, e.g., a multi-resolution wavelet would be employed to analyze the regularity of the computed flow data.
Only the discontinuity locations would received the full amount of shock-capturing dissipation. At smooth regions, no
shock-capturing dissipation would be added. At turbulent regions, a small fraction of the shock-capturing dissipation
would be added to improve stability. The nonlinear dissipative portion of a high-resolution shock-capturing scheme
can be any shock-capturing scheme. For reacting flow, it is best to employ the dissipative portion of a well-balanced
shock-capturing scheme. By design, the flow sensors, spatial base schemes and nonlinear dissipation models are stan-
dalone modules. Unlike standard shock-capturing and/or hybrid shock-capturing methods, the nonlinear filter method
requires one Riemann solve per dimension per time step, independent of time discretizations. The nonlinear filter
method is more efficient than its shock-capturing method counterparts employing the same order of the respective
methods. See [54] for the recent improvements of the work [52, 49, 35, 47] that are suitable for a wide range of
flow speed with minimal tuning of scheme parameters. For all the computations shown, if the pre-processing step is
used, the Ducros et al. splitting is employed. This is due to the fact that for the subject test cases we need a robust
conservative splitting as the preprocessing step. Some attributes of the high order filter approach are:

• Spatial Base Scheme: High order and conservative (no flux limiter or Riemann solver)

• Physical Viscosity: Contribution of physical viscosity, if it exists, is automatically taken into consideration by
the base scheme in order to minimize the amount of numerical dissipation to be used by the filter step

• Efficiency: One Riemann solve per dimension per time step, independent of time discretizations (less CPU time
and fewer grid points than their standard shock-capturing scheme counterparts)

• Accuracy: Containment of numerical dissipation via a local wavelet flow sensor

• Well-balanced scheme: These nonlinear filter schemes are well-balanced schemes for certain chemical reacting
flows [43]

• Stiff Combustion with Discontinuities: For some stiff reacting flow test cases, it appears that the high order filter
scheme is able to obtain the correct propagation speed of discontinuities on coarse, underresolved meshes for
which the standard high order shock-capturing (e.g., WENO) schemes cannot (see the result below)

• Parallel Algorithm: Suitable for most current supercomputer architectures

The nonlinear filter counterpart of the subcell resolution method employing, e.g., WENO5 or WENO7 as the
dissipative portion of the filter numerical flux (WENO5fi or WENO7fi) can be obtained in a similar manner with the
convection operator replaces by the nonlinear filter scheme and will be denoted by WENO5fi/SR or WENO7fi/SR.

4. Numerical Results

Here “coarse grids” means standard mesh density requirement for accurate simulation of typical non-reacting
flows of similar problem setup. The two well known stiff detonation test cases consist of the Arrhenius 1D Chapman-
Jouguet (C-J) detonation wave [10, 40] and a 2D Heaviside detonation wave [1]. These are the same two test cases
considered in [42]. The considered six schemes are WENO5, “WENO5/SR” [42]), “WENO5fi” (the Yee & Sjögreen
nonlinear filter version of WENO5 using a local flow sensor to further limit the amount of WENO5 numerical dis-
sipation), “WENO5fi+split” (the Ducros et al. splitting of the governing equations [7] of WENO5fi [47, 54] ), and
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Figure 5: 1D C-J detonation problem, Arrhenius case for the original stiffness K0 at t = 1.8: Pressure and density comparison among three standard
shock-capturing methods (TVD, WENO5, WENO7) using 50 uniform grid points with CFL = 0.05.

Figure 6: 1D C-J detonation problem, Arrhenius case for the original stiffness K0 at t = 1.8: Temperature and density comparison among
standard high order shock-capturing methods and low dissipative methods (WENO5, WENO5/SR, WENO5fi+split and WENO5fi/SR+split) using
50 uniform grid points with CFL = 0.05.

13



Figure 7: 1D C-J detonation problem, Arrhenius case at t = 1.8: Pressure comparison between the original stiffness K0 and 4K0 of the source term
computed by WENO5 using 50 uniform grid points. All the CFL values for the inviscid simulations are based on the convection part of the PDEs.

Figure 8: C-J detonation problem, Arrhenius case at t = 1.8: Density comparison between WENO5/SR and WENO5fi/SR+split for 100K0 and
1000K0 using 50 uniform grid points with CFL = 0.05.
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”WENO5fi/SR+split ” (the nonlinear filter version of WENO5/SR with Ducros et al. splitting of the governing equa-
tions). All of the considered methods use the Roe’s average states. For the temporal discretization the classical
fourth-order Runge-Kutta method (RK4) is used since the TVD RK3 has lower CFL limit than RK4 but with a similar
behavior as RK4. The results by RK3 are not considered here. Note that all the CFL values for the inviscid simula-
tions are based on the convection part of the PDEs. In addition, the computed solutions and their spurious behavior
by the studied schemes presented here could be slightly different from the results presented in [42] due to the minor
differences in the formulation of the governing equation; e.g., different choice of variables.

Remark: The following study (also the EAST simulations shown earlier) focuses only on solving the reactive
system using the Strang splitting. In addition, the high order new subcell resolution method utilizes the Strang
splitting procedure and it is natural to compare among methods using the same procedure in solving the governing
equations. Moreover, for the following 1D and 2D detonation test cases, all of the results include a cut off safeguard
if densities are outside the permissible range. Spurious behavior of the same schemes by solving the fully coupled
reactive system without the Strang splitting is reported in our companion study [18]. Some comparisons between the
two approaches are briefly summarized here. The main reason for the present focus study on the Strang splitting is due
to the fact that it is widely used in combustion and reactive flow simulations. The simple cut off safeguard procedure
is also commonly used by practitioners in computational physics and engineering simulations.

4.1. 1D Chapman-Jouguet (C-J) Detonation Wave (Arrhenius Case)

The test case is the 1D C-J detonation wave (Arrhenius case) [10, 40]. The initial values consist of totally burnt
gas on the left-hand side and totally unburnt gas on the right-hand side. The density, velocity, and pressure of the
unburnt gas are given by ρu = 1, uu = 0 and pu = 1.

The initial state of the burnt gas is calculated from C-J condition:

pb = −b + (b2 − c)1/2, (30)

ρb =
ρu[pb(γ + 1) − pu]

γpb
, (31)

S CJ = [ρuuu + (γpbρb)1/2]/ρu, (32)
ub = S CJ − (γpb/rhob)1/2, (33)

where

b = −pu − ρuq0(γ − 1), (34)
c = p2

u + 2(γ − 1)puρuq0/(γ + 1). (35)

The heat release q0 = 25 and the ratio of specific heats is set to γ = 1.4. The ignition temperature Tign = 25 and
K0 = 16, 418. The computation domain is [0, 30]. Initially, the discontinuity is located at x = 10. At time t = 1.8,
the detonation wave has moved to x = 22.8. The reference solution is computed by the regular WENO5 scheme with
10, 000 uniform grid points and CFL=0.05.

4.1.1. Initial Study of Scheme Behavior [45]
Figure 5 shows the pressure and density comparison among the standard TVD, WENO5 and WENO7 using 50

uniform grid points and CFL = 0.05 for the same stiffness K0 = 16, 418 used in [45]. Figure 6 shows the pressure
and density comparison among the standard WENO5 scheme, WENO5/SR, WENO5fi and WENO5fi+split using
50 uniform grid points. For this particular problem and grid size, all standard TVD WENO5 and WENO7 exhibit
wrong shock speed of propagation with the lower order and more dissipative schemes exhibiting the largest error.
WENO5fi+split compares well with WENO5/SR for the computed pressure solution. WENO5/SR and WENO5fi+split
can capture the correct structure using fewer grid points than those in [10] and [40]. A careful examination of the 50
coarse grid mass fraction solutions indicates that WENO5fi+split is 0.7 grid point ahead of WENO5/SR at the dis-
continuity location when compared to the reference solution. Since WENO5fi+split is less dissipative than WENO5,
the restriction of the shock-capturing dissipation using the wavelet flow sensor helps to improve the wrong propaga-
tion speed of discontinuities without the subcell resolution procedure. It is interesting to see that all of the methods
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Figure 9: 1D C-J detonation problem, Arrhenius case using 50 uniform grid points: Density comparison for seven CFL numbers by WENO5/SR
(left). Number of grid point away from the reference solution (Err) as a function of the CFL number (128 CFL values with 6.316455696 × 10−3

equal increment) for three stiffness coefficients (100K0, 1000K0, 10000K0 by WENO5SR. A negative ”Err” value indicates the number of grid
points behind the reference shock solution. For certain values of CFL, divergent solutions might occur that are outside the plotting area. See e.g.,
the red and green negative values of Err. All the CFL values for the inviscid simulations are based on the convection part of the PDEs.

(except WENO5) produce oscillatory solutions in the vicinity of the reaction front (figures not shown). This behavior
prompted us to perform a systematic six levels of uniform grid refinements (200, 400, 800, 1600, 3200 and 6400, fig-
ures not shown). As the number of grid points increases, this oscillatory behavior in the vicinity of the reaction front
becomes more pronounced. However, for the more dissipative scheme WENO5, as we refine the grid, the computed
solution gets closer and closer to the reference solution. The spurious oscillation might be contributed by the use of
the Roe’s average state without any correction for reacting flows. See Jenny et al. [14] and related development for
details.

4.1.2. Scheme Behavior with Increase in Stiffness of the Source Terms
Figure 7 indicates the behavior of WENO5 for two stiffness coefficients of the reaction rate using 50 grid points

and CFL = 0.05. As the stiffness of the source term increases, the wrong shock location gets further and further
away from the reference solution. It seems that the reference solution is independent of the stiffness coefficient. The
subcell resolution technique developed in [42] is only designed for the spatial discretization and is frozen during the
time step evolution. As the stiffness increases, the CFL number in WENO5/SR needs to decease in order to obtain
sufficient temporal resolution to capture the correct shock location. Figure 8 indicates that as we increase the stiffness
coefficient further, WENO5/SR needs a smaller CFL=0.01 in order to obtain the correct shock speed for the 1000K0
stiffness, whereas WENO5fi/SR+split was able to maintain the correct shock speed for this grid with CFL=0.05. For
this problem it is indicated in Eq. (4.15) in Bao & Jin [1], that the shock speed depends on the initial condition and
γ has a closed form solution. It appears that the shock location is independent of the stiffness coefficient for this
problem. We use that formula to judge if the reference solution is close to the true shock location. For the original K0
case the distance between the reference (10, 000 grid) and the exact solution is 5 points which is 0.025 point on the 50
grid point spacing. Due to the high cost of obtaining a closer to the exact reference solution, we consider the current
reference solution as the reference shock location. For the stiffer cases we also use the reference solution for the K0
(although the spike at the detonation front is not the same, the shock location should be within one grid point of the
coarse grid solution). It would be too costly to obtain a better detonation front spike value for the stiffer case as all of
the coarse grid solutions are far removed from resolving the detonation front.
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Figure 10: 1D C-J detonation problem, Arrhenius case at t = 1.8: Number of grid points away from the reference shock solution (Err) as a
function of the CFL number (128 discrete CFL values with 6.316455696×10−3 equal increment) for three standard shock-capturing methods using
50, 150, 300 uniform grid points (across) and for stiffness K0, 100K0, 1000K0 (top to bottom). See Fig. 9 for additional captions.
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Figure 11: 1D C-J detonation problem, Arrhenius case at t = 1.8: Number of grid point away from the reference shock solution (Err) as a function
of the CFL number (128 discrete CFL values with 6.316455696 × 10−3 equal increment) for three low dissipative shock-capturing methods using
50, 150, 300 uniform grid points (across) and for stiffness K0, 100K0, 1000K0 (top to bottom). See Fig. 9 for additional captions
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Figure 12: 1D C-J detonation problem, Arrhenius case at t = 1.8: Comparison of the same spatial discretization with RK4 and RK3 temporal
discretization for three low dissipative shock-capturing methods using 150, 300 uniform grid points and for stiffness K0.

Figure 13: LeVeque and Yee linear advection and nonlinear stiff source term test case [24]: Number of grid points away from the reference shock
solution (Err) as a function of the CFL number (128 discrete CFL values between (0.001, 8) with 6.291338583×10−3 equal increment) by WENO5
and WENO5/SR using 50, 150, 300 uniform grid points (across) and for stiffness K0, 100K0, 1000K0 (top to bottom). See Fig. 9 for additional
captions.
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4.1.3. Scheme Behavior as a Function of CFL, Grid Refinement and Stiffness of the Source Terms
The result from Figure 7 prompted us to perform a more systematic study on the spurious numerics for the test

case. Figure 9 shows the effect of the time steps for seven CFL values that are under the CFL limit (left sub-figure),
using 50 grid points and WENO5/SR. The right sub-figure shows the error in terms of the number of grid points
away from the reference shock location (Err) for three stiffness coefficients K0, 100K0 and 1000K0 as the function
of 128 discrete CFL values. The 128 discrete CFL values are (0.0001 ≤ CFL ≤ 0.803) with 6.316455696 × 10−3

equal increment. Here, Err is round down to the nearest integer number. Note that the CFL limit for WENO5/SR and
its filter counterparts are lower than 0.8 due to the explicit Euler reaction step. A negative ”Err” value indicates the
number of grid points behind the reference shock solution. For certain values of CFL, divergent solutions might occur
that are outside the plotting area. See e.g., the red and green negative values of Err. All the CFL values for the inviscid
simulations are based on the convection part of the PDEs. As the stiffness coefficient increases, it is more and more
difficult to obtain the correct shock locations by WENO5/SR.

Figures 10 and 11 illustrate the error for 128 discrete CFL values for the three standard shock-capturing schemes
(TVD, WENO5 and WENO7) and the three improved high order shock-capturing schemes (WENO5/SR, WENO5fi+split
and WENO5fi/SR+split). The study is for three uniform grids 50, 150 and 300 (left to right columns in the plot) and
the three stiffness coefficients K0, 100K0 and 1000K0 (top to bottom in the plot). Results indicated that even for
CFL = 0.001 using the original K0 stiffness, TVD, and WENO5, are not able to obtain the correct shock location
using the three considered grid points and the three stiffness coefficients as indicated on the Err plot (Fig. 10). For
WENO7 for the three grids with the original stiffness k0, the correct shock speed can be obtained for most of the
CFL values. As a matter of fact, for larger CFL, it performed better than WENO5/SR and its filter counterpart. In
additions WENO5 produces less “Err” for larger CFL. This again indicates that the more accurate scheme results in
a better chance of avoiding the wrong shock speed spurious numerics. As the stiffness increases, WENO7 no longer
produces the correct shock speed by the considered three grids. On the contrary, for certain CFL values the improved
high order shock-capturing methods for reacting flows, e.g., WENO5/SR, WENO5fi+split and WENO5fi/SR+split,
are able to obtain the correct shock speed. These time steps (CFL values) that can avoid spurious numerics do not
have to be very small, but they consist of disjoint segments for the time steps that are within the CFL limit. It ap-
pears that the special dissipation control exhibits more spurious behavior than WENO7 for the original K0 case. In
addition, WENO5fi/SR+split performs better for the stiffer cases 100K0 and 1000K0 than the original K0, whereas
WENO5fi+split performs better than WENO5 for larger CFL.

The current study indicated that using the standard CFL condition for the homogeneous part of the PDEs (non-
reacting part of the governing equations) does not guarantee a correct solution or the correct speed of propagation
of discontinuities. A stiff ODEs solver with variable time step control in solving the reaction part of the operator
using the fractional step approach allows the stiffness of the source terms to come into play. However, as indicated
in [56, 57, 51, 38], spurious numerics due to the spatial discretization are more difficult to avoid because of the
nonlinearity of the source terms. The search for further improvement of the aforementioned scheme continues. See
further discussion on possible improvement on the source term treatment numerical strategy in the subsection after
next.

4.1.4. Scheme Behavior by RK3 and By a Single Scalar PDE Case
All of the results shown are by RK4 temporal discretization. Figure 12 shows that the RK4 and RK3 exhibit a

similar trend but with slight variation in solution behavior for the 1D detonation problem. As an illustration, the above
behavior of the studied schemes also occurs for a simple scalar case Eqn. 2 and Eqn. 3 studied by LeVeque and Yee
[24] in 1990 for second-order schemes. Figure 13 shows a general trend of the scheme behavior by WENO5/SR.
However, WENO5 behaves differently from the system test case. In this case all the nonlinearity and stiffness con-
tained in the governing equation are due to the source term as the convection term in the LeVeque & Yee’s scalar
model PDE is linear. It appears that the nonlinearity due to the convection terms does not alter the general spurious
behavior pattern.

4.1.5. Effect of the Nr parameter in Strang Splitting of the Reactive Equations [18]
All of the previous computations use Nr = 2. The effect of the Nr value on the accuracy of the solution is

investigated in [18]. Figure 14, taken from [18], summarizes the comparison among the different values of Nr =
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Figure 14: Nr = 1, 5, 10, 100 study using Strang splitting by improved schemes for the 1D C-J detonation problem, Arrhenius case at t = 1.8.
Number of grid points away from the reference shock solution (Err) as a function of the CFL number (128 discrete CFL values with 6.316455696×
10−3 equal increments) using 50, 150, 300 uniform grid points (across) and for stiffness K0: WENO5, WENO5/SR, WENO5fi, WENO5fi+split
and WENO5fi/SR+split. All of the computations use RK4.
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Figure 15: No Strang splitting results for the 1D C-J detonation problem, Arrhenius case at t = 1.8: Number of grid point away from the reference
shock solution (Err) as a function of the CFL number (128 discrete CFL values with 6.316455696× 10−3 equal increment) for three low dissipative
shock-capturing methods using 50, 150, 300 uniform grid points (across) and for stiffness K0.

1, 5, 10, 100 for case (a) (Strang/Safeguard) using K0 and 50, 150 and 300 grid points. The results indicate that a
sufficient number of sub-reaction steps improves the overall accuracy and yields a reduction in spurious numerics.
Further increase of Nr does not show a significant improvement. However, the results of the same study for case
(b) (Strang/No-safeguard) indicate that a less spurious behavior for large Nr values (Figures not shown). In this case
WENO5/SR and WENO5fi+split are able to obtain the correct solution using an increased CFL number as Nr is
increases.

One method to further improve the spurious behavior is to use variable time step control. Preliminary studies
indicate a significant reduction of spurious behavior in some cases when checking the positivity after each RK stage
and refining the timestep by a factor of 2 in case of failing the positivity criteria.

4.1.6. Solving Fully Coupled Reactive Equations vs. Strang Splitting of the Reactive Equations
All of the above computations (also the 2D case to be shown) are by solving the reactive equations via the Strang

splitting procedure. Comparison of the solution behavior between solving the fully coupled reactive equations (with-
out the Strang Splitting procedure) and the Strang splitting procedure is reported in [18]. Studies show that solving the
fully coupled reactive equations is very unstable for standard shock-capturing schemes as well as for their high order
filter counterparts. Using a very small CFL for K0, and the same three grids and CFL range, a similar wrong prop-
agation speed of discontinuities is observed by standard shock-capturing schemes for all considered CFL (with the
exception one grid point error for WENO7fi+split using a 50 grid). However, WENO5fi+split and WENO7fi+split
are able to obtain the correct shock speed using the same small CFL. For stiffness coefficients 100K0 and 1000K0
using the same three grids, no stable solutions are obtained except in the case of 100K0 and 300 grid points using
CFL= 6.316455696× 10−3 (a wrong speed solution is obtained). See Fig. 15 for the K0 result. To further examine the
difference between the two procedures in solving the reactive equations, we compare the fully coupled solution pro-
cedure with the Strang splitting procedure using a 10, 000 grid. For fine enough grid points, both procedures produce
the same result.

4.1.7. Effect of Employing a Cut Off Safeguard Procedure
All of the results presented employ a cut off safeguard procedure if densities are outside the permissible range.

Figure 16 shows the same computation without the cut off safeguard procedure using the Strang splitting. The pro-
cedure is also very unstable. In addition, if the Zhang & Shu positivity-preserving WENO5 [58] using the Lax-
Freidrichs flux without a cut off safeguard procedure is employed, again a similar behavior as their standard WENO5
counterparts. See [18] for some discussion. (One possible scheme improvement is to use the positivity preserv-
ing version of the studied schemes [12]. This will be a subject of the future investigation.) For K0, and the same
three grids and CFL range, a similar wrong propagation speed of discontinuities is observed by WENO5 for small
CFL. However, WENO5/SR and WENO5fi+split are able to obtain the correct shock speed using the same small
CFL. WENO5fi/SR+split is not able to obtain the correct shock speed for even the smallest considered CFL value
(CFL= 6.316455696 × 10−3). One of the possible causes might be due to the incompatibility of the combined
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Figure 16: No cutoff safeguard procedure and Strang splitting results for the 1D C-J detonation problem, Arrhenius case at t = 1.8: Number of
grid point away from the reference shock solution (Err) as a function of the CFL number (128 discrete CFL values with 6.316455696 × 10−3 equal
increment) for three low dissipative shock-capturing methods using 50, 150, 300 uniform grid points (across) and for stiffness K0.

Strang splitting using Nr = 2, and the nonlinear filter procedure. For stiffness coefficients 100K0 and 1000K0 us-
ing the same three grids, no stable solutions are obtained except in the case of 100K0 and 300 grid points using
CFL= 6.316455696 × 10−3 (a wrong speed solution is obtained). See Fig. 16 for the K0 result. The solution behavior
of solving the fully coupled reactive equations is similar to using the Strang splitting without the cut off safeguard
procedure. Studies in [18] also indicate that there is no visible difference in solution behavior in using the cut off

safeguard procedure or not when solving the fully coupled reactive equations.

4.1.8. Positivity-Preserving High Order Methods [19]
The newly developed positivity-preserving flux limiters for general high-order schemes of [12] keep the original

scheme unchanged and detect critical numerical fluxes that may lead to negative density and pressure, and then
imposes a cut-off flux limitation to satisfy a positivity-preserving condition. The [12] method appears to be a better
strategy than the simple safeguard procedure considered above.

Comparative study among [12] and [58] positivity-preserving schemes and the standard WENO counterparts in
conjunction with the Strang splitting without the safeguard procedure has been performed. The results indicate that
in case of using positivity-preserving methods it is possible to perform a computation with a slightly larger CFL than
in the case of using the standard WENO counterparts (figure not shown). Figure 17 indicates the Hu et al. positivity-
preserving scheme [12] (top row) exhibits a similar behavior as the Zhang & Shu positivity scheme [58] (bottom row)
using the same Nr = 10 and WENO5/LLF as the base scheme. Here “LLF” stands for the local Lax-Friedrichs flux.
For more information, see our companion paper [19].

4.1.9. Are Pointwise Evaluation of the Source Term and Roe’s Average State Appropriate?
On all of the above numerical computations, the pointwise evaluation of the source term was used. However, the

studies by Lafon & Yee [20, 21] and Griffiths et al. [8] indicated that pointwise evaluation of the source term appears
to be the least stable. One approach suggested in Lafon & Yee and Griffiths et al. is to use non-pointwise evaluation
of the source term that is more compatible with the convection difference operator. The non-pointwise evaluation of
the source term might improve numerical stability and minimize the wrong speed of propagation. In addition, there
are studies in the literature showing that using the standard Roe’s average state for reacting/multi-phrase flows can
create spurious oscillations near the discontinuities. See for example Jenny, Müller & Thomann [14] and related later
articles. Further investigation along these directions is planned. The current investigation is to confirm part of the
spurious behavior in the studies by Lafon & Yee and Griffiths et al. for system cases.

4.2. 2D Detonation Waves

This example is taken from ([1]). The chemical reaction is modeled by the Heaviside form with the parameters

γ = 1.4, q0 = 0.5196 × 1010, K0 = 0.5825 × 1010, Tign = 0.1155 × 1010
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Figure 17: Strang splitting no safeguard schemes based on Hu et al. positivity-preserving method (top) and Zhang & Shu positivity-preserving
method (bottom) for the 1D C-J detonation problem, Arrhenius case at t = 1.8. Number of grid points away from the reference shock solution
(Err) as a function of the CFL number (128 discrete CFL values with 6.316455696×10−3 equal increments) using 50, 150, 300 uniform grid points
(across) and for stiffness K0: WENO5, WENO5/SR, WENO5fi, WENO5fi+split and WENO5fi/SR+split. All of the computations use RK3, Strang
splitting with Nr = 10.

Figure 18: Schematic of the 2D detonation test case initial data.

in CGS units. Consider a two-dimensional channel of width 0.005 with solid walls at the upper and lower boundaries.
The computational domain is [0, 0.025] × [0, 0.005]. The initial conditions are

(ρ, u, v, p, z) =

{
(ρb, ub, 0, pb, 0), if x ≤ ξ(y),
(ρu, uu, 0, pu, 1), if x > ξ(y), (36)

where

ξ(y) =

{
0.004 |y − 0.0025| ≥ 0.001,
0.005 − |y − 0.0025| |y − 0.0025| < 0.001, (37)

and uu = 0, ρu = 1.201×10−3, pu = 8.321×105 and ub = 8.162×104. Values of pb and ρb are defined by Eq. (30) and
(31). In this case ub is greater than defined by Eq. (33). Figure 18 shows the schematic of the 2D detonation problem.

4.2.1. Initial Study of Scheme Behavior
One important feature of this solution is the appearance of triple points, which travel in the transverse direction and

reflect from the upper and lower walls. A discussion of the mechanisms driving this solution is given in [16]. Again,
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Figure 19: 2D detonation problem at t = 0.3× 10−7 and K0 = 0.5825× 1010: Density computed by different methods. From left to right: reference
solution by the standard WENO5 method using 4000 × 800 uniform grid points, WENO5, WENO5/SR and WENO5fi+split using 500 × 100
uniform grid points with CFL = 0.05

Figure 20: 2D detonation problem at t = 1.7× 10−7 and K0 = 0.5825× 1010: Density computed by different methods. From left to right: reference
solution by the standard WENO5 method using 4000 × 800 uniform grid points, WENO5, WENO5/SR and WENO5fi+split using 500 × 100
uniform grid points with CFL = 0.05.
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Figure 21: 1D cross-section of density at t = 1.7× 10−7 by four high order shock-capturing methods for the 2D detonation problem using 200× 40
uniform grid points, CFL = 0.05 and K0 = 0.5825 × 1010. The left figure zoomed in the vicinity of the discontinuity.

a pointwise evaluation of the source is employed for the 2D test case. Figures 19 and 20 show the density comparison
among the standard WENO5 scheme, WENO5/SR and WENO5fi+split using 500 × 100 uniform grid points at two
different times for stiffness K0 = 0.5825×1010. Figure 21 shows the density comparison among the standard WENO5
scheme, WENO5/SR, WENO5fi and WENO5fi+split using 200×40 and 500×100 uniform grid points. The reference
solutions are computed by standard WENO5 with 4000 × 800 grid points. Again, WENO5/SR and WENO5fi+split
are able to obtain the correct shock speed with similar accuracy. WENO5fi gives a slightly oscillatory solution near
x = 0.004. WENO5 and WENO5/SR produce no oscillations at the same location. Further improvement of the flow
sensor of the filter scheme is needed in order to remove the spurious oscillations. Furthermore, for the 500× 100 grid,
WENO5fi also obtained the correct shock speed. For CFL = 0.05, however, WENO5fi/SR+split is not able to obtain
the correct shock speed for the stiff coefficient K0.

4.2.2. Scheme Behavior as a Function of CFL, Grid Refinement and Stiffness of the Source Terms
Figure 22 illustrates the error (number of grid points away from the reference shock location) for 128 discrete CFL

values by the three high order shock-capturing schemes WENO5/SR, WENO5fi+split and WENO5fi/SR+split. The
128 discrete CFL values are (0.01 ≤ CFL ≤ 0.8) with 6.22047244094488 × 10−3 equal increment. For this 2D case,
to reduce computational cost, the smallest CFL is 0.01 instead of 0.001 in the 1D case. Figure 22 shows the error
(Err) for two uniform grids 200 × 40 and 500 × 100 (left to right) and three stiffness coefficient K0, 100K0, 1000K0
(top to bottom). (Note that for the 2D case K0 = 0.5825 × 1010. ) Again, as can be seen in this figure, a similar
spurious solution behavior as in the 1D detonation case carries over to the 2D detonation case. However, for this 2D
case, WENO5fi+split performs better than WENO5fi/SR+split (the reverse of the 1D case). Overall, WENO5/SR and
WENO5fi+split perform better than the other methods.

4.3. Scheme Performance and Extreme Grid Refinement

Here, the relative CPU time performance by WENO5/SR, WENO5fi+split and WENO5fi/SR+split using the
same computer and within the ADPDIS3D code by the pointwise evaluation of the source term is included. Fig. 23
shows the 1D and 2D detonation problem using 50 uniform grid for CFL = 0.05 and RK4 time discretization. In all
cases WENO5fi+split and WENO5fi/SR+split consume less CPU time than WENO5 and WENO5/SR, respectively.
(Note that the larger the number indicated on the table implies less CPU.) Figure 24 shows the extreme refinement
computation using 10, 000 grid points for the 1D test case with CFL = 0.05. It appears that for this particular CFL,
WENO5/SR is very close to the reference solution but with slight oscillation. WENO5fi/SR+split behaves similarly to
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Figure 22: 2D detonation problem at t = 1.7 × 10−7 and K0 = 0.5825 × 1010: Number of grid point away from the reference shock solution as a
function of the CFL number (128 discrete CFL values with 6.22047244094488 × 10−3 equal increment) for three low dissipative shock-capturing
methods using 200 × 40 and 500 × 100 uniform grid points (across) and for stiffness K0, 100K0, 1000K0 (top to bottom). See Fig. 9 for additional
captions. 27



Figure 23: Sample of scheme performance of WENO5, WENO5/SR, WENO5fi+split and WENO5fi/SR+split for CFL = 0.05. 50
grid points are used for the 1D case, and 200 × 40 grid points are used for the 2D case with RK4 as the temporal discretization.
The CPU times comparison here is based on 8 processor computations.

WENO5/SR except with an increase in small oscillations. However, WENO5fi+split and WENO7fi+ split are not able
to obtain the correct shock location. This is another counter-intuitive spurious behavior of the considered schemes.

5. Concluding Remarks

In [45] we concluded that the filter version of the WENO5 in conjunction with the Ducros et al. splitting
(WENO5fi+split) is able to obtain the correct propagation speed of discontinuities for two detonation problems. The
results show that WENO5/SR and WENO5fi+split are able to obtain the correct shock speed with similar accuracy,
whereas this is not the case for WENO5 & WENO5fi using the same coarse grids. Using its original form [54] without
further modification, the accuracy of WENO5fi+split was found to be nearly as good as WENO5/SR. That conclusion
was for one single CFL = 0.05 and the original K0 stiffness. In addition, the studies in [45] focus only on solving the
reactive system using the Strang splitting. The present more in-depth study also concentrates on solving the reactive
system using the Strang splitting. All of the results include a cut off safeguard if densities are outside the permissi-
ble range. Spurious behavior of the same schemes by solving the fully coupled reactive system (without the Strang
splitting) is reported in our companion study [18]. The main reason for the present focus study on the Strang splitting
is due to the fact that it is widely used in combustion and reactive flow simulations. In addition, the high order new
subcell resolution method utilizes the Strang splitting procedure and it is natural to compare among methods using the
same procedure in solving the governing equations. The simple cut off safeguard procedure is also commonly used
by practitioners in computational physics and engineering simulations.

With the present more extensive study the summary of the scheme behavior reported in [45] needs to be quantified.
The behavior of these high order shock-capturing schemes is more complicated and does not fall in the standard non-
reacting flow numerical solution behavior and practices. Aside from the accuracy of the scheme, the manner in which
the spreading of discontinuities is contained plays a major role in obtaining the correct shock location. Choosing the
right combination of time step and grid spacing also plays an equal role. Several counter-intuitive spurious behaviors
are observed as discussed in the numerical result sections. For certain instances, smaller CFLs (not extremely small but
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Figure 24: 1D C-J detonation problem, Arrhenius case at t = 1.8: Behavior of WENO5/SR, WENO5fi+split and WENO5fi/SR+split
under extreme grid refinement with CFL = 0.05 and 10, 000 grid points. The value ”k” is the κ value to control the amount of
numerical dissipation indicated in the formula for the filter numerical fluxes [54].

practical for computation) exhibit more spurious behavior. Traditionally, for non-separable finite difference methods
for non-reacting flow computations, a bigger CFL would give more accurate solutions for non-reacting problems, e.g.,
the MacCormack method. For problems with nonlinear stiff source terms using the Strang splitting and the cut off

safe guide procedure, in some instances, it is the larger CFL which exhibits less spurious behavior. The results imply
that the traditional concept of CFL guideline needs to be revised for this type of numerical procedure. Unlike the von
Neumann analysis for constant coefficient model PDEs containing zero source terms, the linearized stability region for
nonhomogeneous PDEs can consist of disjoint intervals, instead of a single continuous interval. The implication is that
in practical computations where the exact values of these intervals are not known, one can easily land in regions that
exhibit spurious solutions. One might suspect that our CFL guideline of using the homogeneous part of the governing
equation is to blame. However, for very small CFL, the stiffness due to the reaction term has been accounted for.

In spite of the counter intuitive results, overall, the more accurate the numerical method, especially the less dis-
sipative scheme in conjunction with the containment of spreading the discontinuity, the better the performance for
very coarse grids (based on fixed grid spacing studies). It performs better than most of the previously suggested im-
proved methods reported in the literature for problems containing stiff source terms and discontinuities. The subcell
resolution method and its nonlinear filter counterparts delay the onset of wrong speed of propagation for stiffer coef-
ficients on the same two stiff detonation test cases more than the methods reported in the literature. This study also
indicated that since this type of scheme is designed for coarse grids and moderate stiff source terms, it has additional
spurious behavior as the grid is refined and the stiffness is further increased. This finding might shed some light on
the reported difficulties in numerical combustion and problems with stiff nonlinear (homogeneous) source terms and
discontinuities in general.

In order to get a first hand examination of the behavior for practical problems, simplified EAST experiment setup
simulations for a 13 species nonequilibrium flow were conducted. Due to the CPU intensive nature of the flow,
less in-depth numerical investigations than for the two detonation test cases were conducted. Results indicate that the
numerical method and grid dependence of the shear and shock locations are related to the stiffness of the source terms.
The reason is that for non-reacting flows, numerical method and grid dependent solutions do not affect the location of
the discontinuities, but rather change the degree of the smearing of the discontinuities. The implication of this exercise
is to illustrate the danger of practical numerical simulation for problems containing stiff source terms where there is
no reliable means of assessing the accuracy of the computed result other than by extreme grid refinement as good and
reliable experimental data are not available . This extreme grid refinement approach is beyond the capability of the
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current super computer for most practical simulations.
Several thoughts on the causes of the observed spurious behavior that are topics of future research are: (a) the

spurious oscillations in the vicinity of discontinuities might be due to the use of Roe’s average states [14], (b) the use
of a stiff ODE solver with adaptive error control might alleviate some of the spurious numerics due to the reaction
operator (however, it might present complications in the subcell resolution approach), and (c) as discussed in the
1D test case section, the non-pointwise evaluation of the source term that is more compatible with the convection
difference operator might play a major role in minimizing spurious numerics. Studies by Lafon & Yee [20, 21] and
Griffiths et al. [8] indicated that pointwise evaluation of the source term appears to be the least stable for higher than
first-order numerical methods. All three of the above will be subjects of the future investigation with emphasis on (c)
for higher than second-order methods.
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