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Abstract

In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve

hyperbolic equations involving δ-singularities. Negative-order norm error estimates for the

accuracy of DG approximations to δ-singularities are investigated. We first consider linear

hyperbolic conservation laws in one space dimension with singular initial data. We prove

that, by using piecewise k-th degree polynomials, at time t, the error in the H−(k+2) norm

over the whole domain is (k + 1/2)-th order, and the error in the H−(k+1)(R\Rt) norm is

(2k + 1)-th order, where Rt is the pollution region due to the initial singularity with the

width of order O(h1/2 log(1/h)) and h is the maximum cell length. As an application of

the negative-order norm error estimates, we convolve the numerical solution with a suitable

kernel which is a linear combination of B-splines, to obtain L2 error estimate of (2k + 1)-th

order for the post-processed solution. Moreover, we also obtain high order superconvergence

error estimates for linear hyperbolic conservation laws with singular source terms by applying

Duhamel’s principle. Numerical examples including an acoustic equation and the nonlinear

rendez-vous algorithms are given to demonstrate the good performance of DG methods for

solving hyperbolic equations involving δ-singularities.
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1 Introduction

In this paper, we develop and analyze discontinuous Galerkin (DG) methods for solving

hyperbolic conservation laws

ut + f(u)x = g(x, t), (x, t) ∈ R× (0, T ],
u(x, 0) = u0(x), x ∈ R,

(1.1)

where the initial condition u0, or the source term g(x, t), or the solution u(x, t) contains

δ-singularities. Such problems appear often in applications and are difficult to approximate

numerically. Many numerical techniques rely on modifications with smooth kernels and hence

may severely smear such singularities, leading to large errors in the approximation. On the

other hand, the DG methods are based on weak formulations and can be designed directly to

solve such problems without modifications, leading to very accurate results. We will provide

numerical examples in this paper to demonstrate this advantage. More importantly, we will

give rigorous error estimates for the DG methods on model problems involving δ-singularities.

The DG method, first introduced in 1973 by Reed and Hill [24], was generalized by John-

son and Pitkäranta to solve scalar linear hyperbolic equations with Lp-norm error estimates

[18]. Subsequently, Cockburn et al. studied Runge-Kutta discontinuous Galerkin (RKDG)

methods for hyperbolic conservation laws in a series of papers [10, 7, 8, 11]. In [9] Cock-

burn et al. proved high order superconvergence error estimates of DG methods including

their divided differences for hyperbolic equations with smooth solutions in negative-order

norms. They also demonstrated that the application of the post-processing techniques of

Bramble and Schatz [1] can yield superconvergence in the strong L2-norm. Other related

works include [26, 29, 30, 25], where one-sided filter and local derivative post-processing were

considered.

It is well known that generic solutions of hyperbolic equations are not smooth. Discon-

tinuities or even δ-singularities may appear in the solutions. The DG methods have been

shown to be L2 stable for nonlinear hyperbolic equations with L2 solutions which may contain

discontinuities [15, 14]. A simple example of non-smooth solutions for hyperbolic equations
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is the following problem

ut + ux = 0, (x, t) ∈ R× (0, T ],
u(x, 0) = u0(x), x ∈ R,

(1.2)

where the initial solution u0(x) has compact support, has a discontinuity at x = 0, but is

otherwise smooth. Clearly, the exact solution of (1.2) is discontinuous along the characteristic

line x = t and the numerical DG solution has spurious oscillations around this discontinuity

line, which we refer to as the pollution region. There are not too many works in the literature

studying error estimates of DG methods for problems with discontinuous solutions. The first

work in this direction seems to be that of Johnson et al. [17, 18, 19] for DG methods in both

space and time. They have shown that, with linear space-time elements, the width of the

pollution region is of the size at most O(h1/2 log 1/h). More recently, Cockburn and Guzmán

[6] and Zhang and Shu [31] revisited this problem with the RKDG methods and obtained

similar results. Especially, in [6], the left boundary of the pollution region is shown to be at

most O(h2/3 log(1/h)) from the singularity for piecewise linear DG method with second order

Runge-Kutta time discretization on uniform meshes. The first problem we consider in this

paper is (1.2) with the initial condition u0(x) having a δ-singularity at x = 0. We consider

semi-discrete DG method and use the result in [31] to prove the superconvergence results

estimated in negative-order norms outside the pollution region. Further, by convolving

the DG solution with a suitable kernel, the post-processed approximation is (2k + 1)-th

order accurate in a region slightly smaller than the one we mentioned above. The rate of

convergence agrees with that in [9], in which the initial datum u0(x) was assumed to be

sufficiently smooth.

Hyperbolic conservation laws with source terms have been analyzed by several authors

[3, 12, 20, 28, 21]. In particular, in [12], the authors studied the following problem

ut + f(u)x = g(x, t), (x, t) ∈ R× (0, T ],
u(x, 0) = u0(x), x ∈ R,

(1.3)

where f is a smooth convex function (f ′′(u) > 0 for all u) and g(x, t) = Gx(x, t) with G being

a bounded, piecewise smooth function, and constructed L∞ stable Godunov-type difference
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schemes. In [27], Santos and de Oliveira studied hyperbolic conservation laws whose source

terms contain δ-singularities, and investigated the convergence of numerical discretization by

using a finite volume scheme. Later, they also considered a class of high resolution methods

in [23]. In [22], Noussair studied the wave behavior of (1.3), where the source term also

depends on u but not on the time variable t. We note that all these previous works did not

provide any error estimates in the smooth region away from the singularities. In this paper,

we investigate a simpler case by assuming f(u) = u and g(x, t) = G′(x) in the source term in

(1.3), where G(x) is a step function which does not depend on the time variable t. We show

that by convolving the DG solution with a suitable kernel, the post-processed approximation

turns out to be (2k + 1)-th order superconvergent in the smooth region.

The organization of this paper is as follows. In section 2, we present preliminaries, includ-

ing a brief introduction of the DG methods under consideration, some essential properties

of finite element spaces as well as the post-processing technique. Sections 3 and 4 are the

main body of this paper where we investigate the negative-order norm error estimates for

hyperbolic conservation laws with singular initial condition and source term respectively.

In section 5, we provide numerical evidences to validate our theoretical results. Moreover,

additional numerical results for more general nonlinear equations will also be given to demon-

strate the good performance of DG methods for problems containing δ-singularities. We will

end in section 6 with some concluding remarks. A few technical details are contained in the

appendix.

2 Preliminaries

In this section we consider the conservation law (1.1) on the interval [0, 2π].

2.1 The DG scheme

First, we divide the computational domain Ω = [0, 2π] into N cells

0 = x 1

2

< x 3

2

< · · · < xN+ 1

2

= 2π,
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and denote

Ij =
(

xj− 1

2

, xj+ 1

2

)

, xj =
1

2

(

xj− 1

2

+ xj+ 1

2

)

,

as the cells and cell centers respectively. hj = xj+ 1

2

− xj− 1

2

denotes the length of each cell.

We also denote h = maxj hj as the length of the largest cell.

Next, we define

Vh = {v : v|Ij
∈ Pk(Ij), j = 1, · · · , N}

as the finite element space, where Pk(Ij) denotes the space of polynomials in Ij of degree at

most k. We also define

H1
h = {φ : φ|Ij

∈ H1(Ij), ∀j}.

The DG scheme we consider is the following: find uh ∈ Vh, such that for any vh ∈ Vh

((uh)t, vh)j = (f(uh), (vh)x)j − f̂j+ 1

2

v−h |j+ 1

2

+ f̂j− 1

2

v+
h |j− 1

2

+ (g(x, t), vh)j , (2.1)

where (w, v)j =
∫

Ij
wvdx, and v−h |j+ 1

2

= vh(x
−
j+ 1

2

) denotes the left limit of the function vh at

xj+ 1

2

. Likewise for v+
h . Moreover, the numerical flux f̂ is a single valued function defined at

the cell interfaces and in general depends on the values of the numerical solution uh from

both sides of the interfaces

f̂i+ 1

2

= f̂(uh(x
−
i+ 1

2

), uh(x
+
i+ 1

2

)).

In general,we use monotone fluxes. For the linear case f(u) = u, we consider the upwind

fluxes f̂ = u−h , then the numerical scheme (2.1) can be written as

((uh)t, vh)j = (uh, (vh)x)j − u−h v
−
h |j+ 1

2

+ u−h v
+
h |j− 1

2

+ (g(x, t), vh)j (2.2)

= −((uh)x, vh)j − [uh]v
+
h |j− 1

2

+ (g(x, t), vh)j , (2.3)

where [uh]j− 1

2

= uh(x
+
j− 1

2

) − uh(x
−
j− 1

2

) is the jump of uh across xj− 1

2

. We use the above two

equations in sections 3 and 4 for the error estimates. We also define

Hj(uh, vh) = (f(uh), (vh)x)j − f̂j+ 1

2

v−h |j+ 1

2

+ f̂j− 1

2

v+
h |j− 1

2

, (2.4)
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then the DG scheme can be written as ((uh)t, vh)j = Hj(uh, vh)+(g(x, t), vh)j . If we consider

linear equations, (2.4) can be written as

Hj(uh, vh) = (uh, (vh)x)j − u−h v
−
h |j+ 1

2

+ u−h v
+
h |j− 1

2

, (2.5)

2.2 Norms

We now define some norms that we use throughout the paper.

Denote ‖u‖0,Ij
as the standard L2-norm of u on cell Ij . For any natural number ℓ, we

also define the norm and seminorm of the Sobolev space Hℓ(Ij) as

‖u‖ℓ,Ij
=

{

∑

0≤α≤ℓ

‖Dαu‖2
0,Ij

}1/2

, |u|ℓ,Ij
= ‖Dℓu‖0,Ij

.

For convenience, if ℓ = 0, the corresponding index will be omitted.

We also define the L∞-norm and seminorm by

‖u‖ℓ,∞,Ij
= max

0≤α≤ℓ
‖Dku‖∞,Ij

, |u|ℓ,∞,Ij
= ‖Dℓu‖∞,Ij

,

where ‖u‖∞,Ij
is the standard L∞-norm of u on cell Ij . Clearly, the L∞-norm is stronger

than the L2-norm, and in one cell Ij, we have

‖u‖Ij
≤ h

1/2
j ‖u‖∞,Ij

. (2.6)

Moreover, we define the norms on D = ∪j∈ΛIj for some index set Λ as follows:

‖u‖ℓ,D =

(

∑

j∈Λ

‖u‖2
ℓ,Ij

)1/2

, ‖u‖ℓ,∞,D = max
j∈Λ

‖u‖ℓ,∞,Ij
.

For convenience, if D = Ω = [0, 2π], the corresponding index will be omitted.

Finally, the negative order Sobolev norm can be defined as

‖u‖−ℓ,D = sup
φ∈C∞

0
(D)

∫

D
u(x)φ(x)dx

‖φ‖ℓ,D

.
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2.3 Properties of the finite element space

We use the classical inverse property.

Lemma 2.1 Assume v ∈ Vh, then there exists a constant C > 0 independent of h and v

such that
∑

Ij∈D

(∣

∣

∣
v−

j+ 1

2

∣

∣

∣
+
∣

∣

∣
v+

j− 1

2

∣

∣

∣

)

≤ Ch−1/2‖v‖D, (2.7)

where D can be either the single cell Ij or the whole computational domain Ω.

We define Pℓ(p) as the ℓ-th order L2 projection of p into Vh, such that

(Pℓ(p), v)j = (p, v)j , ∀v ∈ Pℓ(Ij). (2.8)

In addition, if ℓ ≥ 1, we can also define two Gauss-Radau projections P+ and P− as:

(P+(p), v)j = (p, v)j , ∀v ∈ Pℓ−1(Ij) , and P+(p)(x+
j−1/2) = p(x+

j−1/2), (2.9)

(P−(p), v)j = (p, v)j , ∀v ∈ Pℓ−1(Ij) , and P−(p)(x−j+1/2) = p(x−j+1/2). (2.10)

For the projection Ph, which is either Pk, P+ or P−, we denote the error operator by P
⊥
h =

I − Ph, where I is the identity operator. By the scaling argument, we obtain the following

property [4].

Lemma 2.2 Let Ph be a projection, either Pk, P− or P+. For any sufficiently smooth func-

tion p(x), there exists a positive constant C independent of h and p, such that

‖P
⊥
h p‖D + h‖∂x(P

⊥
h p)‖D + h1/2‖P

⊥
h p‖∞,D ≤ Chk+1|p|k+1,D, (2.11)

where D can be either the single cell Ij or the whole computational domain Ω.

Now, we consider the projection of functions depending not only on the spatial variable

x but also on the time variable t. Suppose u(x, t) is a function differentiable and integrable

with respect to t, also assume t1 and t2 are two real values such that t1 < t2, then we have

Ph (ut(x, t)) = (Phu(x, t))t , and Ph

(
∫ t2

t1

u(x, t)dt

)

=

∫ t2

t1

(Phu(x, t))dt. (2.12)

Because of this, we do not need to distinguish Ph(ut(x, t)) and (Phu(x, t))t, and can simply

denote them as Phut.
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2.4 Properties of the DG spatial discretization

In this subsection, we present some basic properties about the bilinear form Hj and the L2

stability condition [5]. We consider the linear case, namely (1.1) with f(u) = u.

Lemma 2.3 Suppose uh is the DG numerical solution which satisfies (2.2) in each cell with

g = 0. By using the upwind flux, we have

‖uh(T )‖2 +

∫ T

0

∑

1≤j≤N

[uh(t)]
2
j+1/2 dt ≤ ‖uh(0)‖2. (2.13)

Lemma 2.4 Suppose vh ∈ Vh and q(x) ∈ H1
h, the two Gauss-Radau projections satisfy the

following properties

Hj(P
⊥
−q(x), vh) = 0, and Hj(vh,P

⊥
+q(x)) = 0. (2.14)

If we define (uh, vh) =
∑

j(uh, vh)j and H(p, q) =
∑

j Hj(p, q), then

Lemma 2.5 Suppose p(x) ∈ H1
h and vh ∈ Vh, there holds

H(P⊥
−p(x), vh) = 0, and H(vh,P

⊥
+p(x)) = 0. (2.15)

2.5 Post-processing

Now, we proceed to describe the type of post-processing to be considered, following Bramble

and Schatz [1]. Let χ be the indicator function of the interval (−1
2
, 1

2
), We define recursively

the functions ψ(l) as

ψ(1) = χ, ψ(n+1) = ψ(n) ∗ ψ(1), for n ≥ 1.

We post-process the numerical solution by convolving it with a kernel K(ν,l)(x) which satisfies

the following properties:

(1) It has a compact support.

(2) It reproduces polynomials p of degree ν − 1 by convolution: K(ν,l) ∗ p = p.

(3) It is a linear combination of B-splines and is of the form

K(ν,l)(x) =
∑

γ∈Z

kν,l
γ ψ

(l)(x− γ).
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The weights kν,l
γ ∈ R are chosen so that (2) is satisfied. See [1, 9] for more details. We also

define K
(ν,l)
H (x) = K(ν,l)(x/H)/H and ψ

(l)
H (x) = ψ(l)(x/H)/H and it is not difficult to verify

that

Dα(ψ(β)) ∗ v = ψ
(β−α)
H ∗ ∂α

Hv,

where ∂Hv(x) = 1
H

(v(x+ 1
2
H)− v(x− 1

2
H)). In general, we take H = nh, n = 1, 2, · · · . This

property is really important because it allows us to express derivatives of the convolution

with the kernel in terms of simple difference quotients.

2.6 An approximation result

In this subsection, we investigate the relationship between u−K2k+2,k+1
h ∗uh and the negative-

order norm estimates of divided differences of the error u− uh.

Theorem 2.1 (Bramble and Schatz [1]) Suppose the kernel Kν,l
h satisfies the properties

listed in section 2.5. Let v be a function in L2(Ω1), where Ω1 is an open set in Ω, and u be a

function in Hν(Ω1). Further assume Ω0 to be an open set in Ω1 such that Ω0+2supp(Kν,l
h ) ⊂⊂

Ω1. Then we have

‖u−Kν,l
h ∗ v‖Ω0

≤ hν

ν!
C1|u|ν,Ω1

+ C1C2

∑

α≤l

‖∂α
h (u− v)‖−l,Ω1

,

where C1 =
∑

γ∈Z
|kν,l

γ | and C2 only depends on Ω0,Ω1, ν, and l.

There is a straightforward corollary.

Corollary 2.1 Suppose the conditions in theorem 2.1 are satisfied. Further assume that

‖∂α
h (u− v)‖−l,Ω1

≤ Chµ is valid for all α ≤ l and ν ≥ µ. Then we have

‖u−Kν,l
h ∗ v‖Ω0

≤ Chµ,

where C only depends on Ω0,Ω1, ν, and l.
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3 Singular initial condition

In this section we consider problem (1.2) and use upwind fluxes. We first state the main

results in theorem 3.1 and then give the proofs. We provide the negative-order norm error

estimates in the whole space as well as in the region away from the singularities.

3.1 Main results

The following lemma is the semi-discrete version of the result in Zhang and Shu [31]. For

completeness we will give its proof in the appendix.

Lemma 3.1 Let u be the exact solution of the initial value problem (1.2), where the initial

condition u0(x) ∈ Ck+2 except for one singularity at x = 0. Let uh be the solution of the

DG method (2.2) at time T , where the finite element space Vh is made up of the piecewise

polynomials of degree k ≥ 1. Suppose h is the maximum cell length. Then there holds the

following error estimate

‖u(T ) − uh(T )‖Ω\RT
≤ Chk+1, (3.1)

where RT = (T −Ch1/2 log(1/h), T +Ch1/2 log(1/h)), and the bounding constant C > 0 does

not depend on h.

We will use lemma 3.1 to prove the following theorem.

Theorem 3.1 Suppose u ∈ C2k+2 and the conditions of Lemma 3.1 are satisfied. Then by

taking Ω0 + 2supp(K2k+2,k+1
h ) ⊂⊂ Ω1 ⊂⊂ Ω\RT , we have

‖u(T ) − uh(T )‖−(k+1) ≤ Chk, (3.2)

‖u(T ) − uh(T )‖−(k+2) ≤ Chk+1/2, (3.3)

‖u(T ) − uh(T )‖−(k+1),Ω1
≤ Ch2k+1, (3.4)

‖u(T ) −K2k+2,k+1
h ∗ uh(T )‖Ω0

≤ Ch2k+1, (3.5)

where the positive constant C does not depend on h. Here the mesh is assumed to be uniform

for (3.5) but can be regular and non-uniform for the other three inequalities.
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Remark 3.1 To obtain equation (3.5), we have to assume the mesh is uniformly distributed,

that is hj = h, ∀ j. This is because of the negative-order norm estimates of the divided

differences. Actually, we denote w = ∂hu and wh = ∂huh. Clearly, w satisfies equation

(1.2) with initial condition w(x, 0) = ∂hu(x, 0). If we shift the mesh by h
2
, then wh satisfies

numerical scheme (2.2). By the same analysis for the proof of equation (3.4), we obtain

‖∂h(u− uh)‖−(k+1),Ω1
= ‖w − wh‖−(k+1),Ω1

≤ Ch2k+1.

The estimates for higher order divided differences can be obtained by exactly the same line

in this remark. Therefore, equation (3.5) follows directly from Corollary 2.1.

Remark 3.2 The error estimates in −(k + 1)-th order norm are used for problems with

singular initial conditions while the estimates in −(k+2)-th order norm are used for problems

with singular source terms.

3.2 A proof of Theorem 3.1

In this subsection, we give the initial discretization and prove the first three estimates in

Theorem 3.1.

3.2.1 Initial discretization

From now on, we assume the δ-singularity of the initial datum is contained in cell Ii. For

simplicity, we also assume the singularity is concentrated at 0, denoted as δ(x). We apply

the L2 projection Pk to discretize the initial condition to obtain ‖uh(0)‖ ≤ Ch−1/2. At t = 0,

for any function φ ∈ C∞
0 (Ω), we have, for the cell Ii which contains the δ-singularity,

(u− uh, φ)i = (u− uh, φ− Pkφ)i

= (u, φ− Pkφ)i

≤ ‖φ− Pkφ‖∞,Ii

≤ Chk+ 1

2 |φ|k+1,Ii
.
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In other cells, following the same analysis above, we have

(u− uh, φ)j = (u− Pku, φ− Pkφ)j ≤ Ch2k+2|u0|k+1,Ij
|φ|k+1,Ij

. (3.6)

3.2.2 The −(k + 1)-th order error estimate on Ω

In this subsection, we proceed to prove equation (3.2). The proof mostly follows [9]. We

begin by considering the solution to the dual problem: Find a function φ such that φ(·, t)

satisfies

φt + φx = 0, (x, t) ∈ Ω × (0, T ),
φ(x, T ) = Φ(x), x ∈ Ω.

(3.7)

Assuming Φ is an arbitrary function in C∞
0 (Ω), we have, following [9],

(u(T ) − uh(T ),Φ) = (u− Pku, φ)(0) −
∫ T

0

[((uh)t, φ) + (uh, φt)]dt (3.8)

= (u− Pku, φ)(0) −
∫ T

0

N
∑

j=1

[uh](φ− Pkφ)+|j− 1

2

(3.9)

≤ Chk+1/2|Φ|k+1 + Chk+1/2|Φ|k+1

∫ T

0

(

N
∑

j=1

[uh]
2
j− 1

2

)1/2

dt.

Using Cauchy-Schwarz inequality and lemma 2.3, we have

∫ T

0

(

N
∑

j=1

[uh]
2
j− 1

2

)1/2

dt ≤ T 1/2

(

∫ T

0

N
∑

j=1

[uh]
2
j− 1

2

dt

)1/2

≤ T 1/2‖uh(0)‖

≤ CT 1/2h−1/2.

Combining the above, we can see

‖u(T ) − uh(T )‖−(k+1) = sup
Φ∈C∞

0
(Ω)

(u(T ) − uh(T ),Φ)

‖Φ‖k+1

≤ sup
Φ∈C∞

0
(Ω)

Chk+1/2|Φ|k+1 + CT 1/2hk|Φ|k+1

‖Φ‖k+1

≤ CT 1/2hk + Chk+1/2.

Now, we consider the extension to higher dimensions. The proof of the following corollary

is straightforward and is similar to the one-dimensional case, and is thus omitted.
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Corollary 3.1 Let Ω be an open set in R
d, and u be the exact solution of the following

initial value problem

ut +
∑d

j=1 uxj
= 0, (x, t) ∈ Ω × (0, T ],

u(x, 0) = δ(f(x)), x ∈ Ω,

where f(x) : R
d → R is a smooth function. Denote Γh = {K} as a regular triangulation

of R
d, whose elements K are open and have diameter hK less than or equal to h. In each

K, denote ∂K− and ∂K+ as the inflow and outflow edges respectively. Let uh be the DG

approximation which satisfies

(uht, vh)K =
d
∑

i=1

(uh, (vh)xi
)K +

d
∑

i=1

(u−h , v
+
h )∂K−

−
d
∑

i=1

(u−h , v
−
h )∂K+

, vh ∈ Vh,

where the finite element space Vh is made up of the piecewise polynomials of degree k ≥ 1.

Suppose the total measure of the cells which contain δ-singularities initially is mh, then there

holds the following estimate

‖u(T ) − uh(T )‖−k−1 ≤ C
√
mT 1/2hk + Chk+d/2, (3.10)

where the bounded constant C > 0 does not depend on h or T .

3.2.3 The −(k + 2)-th order error estimate on Ω

In this subsection, we prove equation (3.3). To do so, we apply P+ to estimate the term

(uht, φ) + (uh, φt). By using equation (2.4) and lemma 2.5, we obtain

(uht, φ) + (uh, φt) = (uht,P
⊥
+φ) + (uht,P+φ) − (uh, φx)

= (uht,P
⊥
+φ) + H(uh,P+φ) −H(uh, φ)

= (uht,P
⊥
+φ). (3.11)

Integrating in t, we obtain

∫ T

0

(uht, φ) + (uh, φt)dt = (uh,P
⊥
+φ)(T ) − (uh,P

⊥
+φ)(0) −

∫ T

0

(uh,P
⊥
+φt)dt. (3.12)

Applying lemma 2.3, we have

∫ T

0

(uht, φ) + (uh, φt)dt ≤ ‖uh(0)‖
(

‖(P⊥
+φ)(0)‖ + ‖(P⊥

+φ)(T )‖
)

+

∫ T

0

‖uh(0)‖ ‖P
⊥
+φt(t)‖dt
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≤ C‖uh(0)‖
(

hk+1|Φ|k+1 +

∫ T

0

hk+1|Φ|k+2dt

)

≤ C(1 + T )hk+1‖uh(0)‖‖Φ‖k+2.

From the above we can see

‖u(T ) − uh(T )‖−(k+2) = sup
Φ∈C∞

0
(Ω)

(u(T ) − uh(T ),Φ)

‖Φ‖k+2

≤ sup
Φ∈C∞

0
(Ω)

Chk+ 1

2 |Φ|k+1 + C(1 + T )hk+ 1

2‖Φ‖k+2

‖Φ‖k+2

≤ C(1 + T )hk+ 1

2 .

3.3 The negative-order error estimate on Ω1 ⊂⊂ Ω\RT

In this subsection we proceed to prove equation (3.4). To estimate the negative-order norm

of u − uh at time T on Ω1, we need to assume Φ ∈ C∞
0 (Ω1) instead of C∞

0 (Ω). Moreover,

we also assume the exact solution u ∈ C(Ω), this is because we are allowed to modify the

exact solution in the cell which contains the δ-singularity, keeping the numerical solution

uh untouched. More details of this assumption can be found in [31, 6] or Appendix A.2.

Therefore, in equation (3.9), we have

N
∑

j=1

[uh](φ− Pkφ)+|j− 1

2

=
N
∑

j=1

[uh − Pku+ Pku− u](φ− Pkφ)+|j− 1

2

≤ Chk (‖u− Pku‖Ω1
+ ‖Pku− uh‖Ω1

) |φ|k+1

≤ Chk (‖u− Pku‖Ω1
+ ‖u− uh‖Ω1

) |φ|k+1

≤ Ch2k+1|φ|k+1,

where, we use lemmas 2.1 and 2.2 in the second inequality and lemma 3.1 in the last one.

Plugging the above estimate into (3.9), we have

(u(T ) − uh(T ),Φ) ≤ (u− Pku, φ)(0) + Ch2k+1|φ|k+1. (3.13)
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By using equation (3.6), we obtain the estimate we want

‖u(T ) − uh(T )‖−(k+1),Ω1
= sup

Φ∈C∞

0
(Ω1)

(u(T ) − uh(T ),Φ)

‖Φ‖k+1

≤ sup
Φ∈C∞

0
(Ω1)

Ch2k+1‖Φ‖k+1 + Ch2k+2‖Φ‖k+1

‖Φ‖k+1

≤ Ch2k+1,

where the constant C > 0 is independent of h.

4 Singular source term

In this section, we briefly discuss a linear inhomogeneous evolution equation of a function

u(x, t) : Ω × (0,∞) → R

of the form
{

ut(x, t) + Lu(x, t) = f(x, t), (x, t) ∈ Ω × (0,∞),
u(x, 0) = 0, x ∈ Ω,

(4.1)

with L being a linear differential operator that does not involve time derivatives. If we

multiply the above equation by a smooth function φ(x, t), then integrate over space and

time, we obtain

∫ ∞

0

∫

Ω

[φut + φLu] dxdt =

∫ ∞

0

∫

Ω

f(x, t)φ(x, t)dxdt.

Integrating by parts and assuming zero boundary condition, we have

∫ ∞

0

∫

Ω

[uφt + uL∗φ] dxdt+

∫ ∞

0

∫

Ω

f(x, t)φ(x, t)dxdt = 0, (4.2)

where L∗ is the dual operator of L.

Definition 4.1 The function u(x, t) is called a weak solution of the equation (4.1), if (4.2)

holds for all functions φ ∈ C1
0 (Ω × R

+).

15



4.1 Duhamel’s principle

Now, we consider linear hyperbolic conservation laws with source terms. To deal with such

problems we apply Duhamel’s principle, which is applicable to linear parabolic and hyperbolic

partial differential equations (PDE) and yields an integral representation in terms of the

solutions of more tractable PDEs.

Lemma 4.1 (Duhamel’s principle) The solution to equation (4.1) is

u(x, t) =

∫ t

0

(P sf)(x, t)ds,

where P sf is the solution of the problem

{

Pt(x, t) + LP (x, t) = 0, (x, t) ∈ Ω × (s,∞),
P (x, s) = f(x, s), x ∈ Ω.

(4.3)

Notice that P sf is the solution to the homogeneous PDE with the source term f serving

as the initial condition at time t = s. To prove the lemma, we can simply check that the

expression of u in the lemma satisfies equation (4.1). More details and a proof can be found

in [16], in which the PDE is a second order wave equation. The above lemma requires

suitable regularity of u, however, the Duhamel’s principle is also valid in the following weak

sense.

Lemma 4.2 Suppose u(x, t) is the weak solution of equation (4.1), then

u(x, t) =

∫ t

0

(P sf)(x, t)ds

in the sense of distribution, where P sf is the weak solution of equation (4.3).

The proof directly follows from the definition of the weak solution and the proof of the

Duhamel’s principle, so we omit it here.

Finally, we extend the Duhamel’s principle to the DG schemes. For simplicity, we only

consider the following equation

{

ut(x, t) + ux(x, t) = δ(x), (x, t) ∈ Ω × (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

(4.4)
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with u0 = 0. For general smooth u0(x), the same result can be obtained by superposition.

We define the finite element approximation uh : [0, T ] → Vh as the solution to

(uht, χ)j = Hj(uh, χ) + (δ(x), χ)j, ∀χ ∈ Vh,
uh(0) = 0,

(4.5)

where Hj(·, ·) is the same DG bilinear form as we defined in (2.5). Then the semi-discrete

version of Duhamel’s principle is given in Lemma 4.3.

Lemma 4.3 The solution of equation (4.5) can be written in the form uh =
∫ t

0
ps(x, t)ds

where ps(x, t) is the solution of the following scheme: find p ∈ Vh such that

(pt, χ)j = Hj(p, χ), ∀χ ∈ Vh,
p(s) = Pkδ(x).

(4.6)

The proof is straightforward, since uh in (4.5) and
∫ t

0
ps(x, t)ds share the same initial condi-

tion and the same system of ODEs, noticing the fact that (Pkδ, χ) = (δ, χ).

In what follows, we would like to rewrite the inhomogeneous equations (4.4) and (4.5)

into homogeneous ones (4.11) and (4.6) by using lemma 4.2 and lemma 4.3 respectively.

Then we apply the estimates of P sf − ps, which have been given in theorem 3.1, to prove

the main result in this section, theorem 4.1.

4.2 Error estimates

In this subsection, we first state the main result theorem 4.1 and then give the proof.

Theorem 4.1 Suppose u is the exact solution of equation (4.4), and uh is the numerical

solution which satisfies (4.5). Denote RT = Ii ∪ (T − C log(1/h)h1/2, T + C log(1/h)h1/2),

where Ii is the cell which contains the concentration of the δ-singularity on the source term.

Then we have the following estimates

‖u(T ) − uh(T )‖−(k+1) ≤ Chk, (4.7)

‖u(T ) − uh(T )‖−(k+2) ≤ Chk+1/2, (4.8)

‖u− uh‖−(k+1),Ω1
≤ Ch2k+1, (4.9)
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‖u(T ) −K2k+2,k+1
h ∗ uh(T )‖Ω0

≤ Ch2k+1, (4.10)

where Ω0 + 2supp(K2k+2,k+1
h ) ⊂⊂ Ω1 ⊂⊂ R\RT . Here the mesh is assumed to be uniform

for (4.10) but can be regular and non-uniform for the other three inequalities.

Remark 4.1 As mentioned in remark 3.1, equation (4.10), which requires uniform meshes,

follows from equation (4.9). Moreover, we also skip the proofs of equations (4.7) and (4.8),

since they follow easily from equations (3.2) and (3.3) in theorem 3.1.

Now we proceed to prove equation (4.9). Denote vs as the exact solution of the following

equation

ut + ux = 0, (x, t) ∈ Ω × (s, T ],
u(x, s) = δ(x), x ∈ Ω,

(4.11)

and vs
h as the solution of the numerical scheme (4.6). For convenience, if s = 0, the superscript

will be omitted. We consider the dual problem defined the same as equation (3.7). By lemma

4.3 and lemma 4.2, we have

(u− uh,Φ)(T ) =

∫ T

0

(vs − vs
h,Φ)(T )ds. (4.12)

By using equation (3.8) and equation (3.11), and noticing the fact that vh is the L2 projection

of v at t = 0, we obtain

(vs − vs
h,Φ)(T ) = ((v − vh)(0),P⊥

+φ(s)) −
∫ T

s

(vht(t− s),P⊥
+φ(t))dt,

which further yields

(u− uh,Φ)(T ) = Π1 − Π2,

where Π1 =
∫ T

0
((v − vh)(0),P⊥

+φ(s))ds, and Π2 =
∫ T

0

∫ T

s
(vht(t − s),P⊥

+φ(t))dtds. We first

consider the second term,

Π2 = −
∫ T

0

∫ t

0

((vh)s(t− s),P⊥
+φ(t))dsdt

=

∫ T

0

(vh(t) − vh(0),P⊥
+φ(t))dt.

18



Therefore,

(u− uh,Φ)(T ) =

∫ T

0

(v(0),P⊥
+φ(s))ds−

∫ T

0

(vh(t),P
⊥
+φ(t))dt

= G1 −G2.

We claim G1 = 0. Actually, for any τ ∈ Ii,
∫ T+τ

τ
Φ(x)dx does not depend on τ , since Φ(x)

vanishes in the neighborhood of x = 0 and x = T . Therefore,

G1 =

(

δ(x),P⊥
+

∫ T

0

φ(x, s)ds

)

=

(

δ(x),P⊥
+

∫ x+T

x

Φ(y)dy

)

i

= 0.

Now, we only need to estimate G2. Since

(vh(t),P
⊥
+φ(t)) = (vh(t) − v(t) + v(t) − Pk−1v,P

⊥
+φ(t)),

by lemma 3.1 and lemma 2.2, we have G2 ≤ Ch2k+1|φ|k+1. Finally, we obtain

‖u− uh‖−(k+1),Ω1
≤ Ch2k+1

and complete the proof of theorem 4.1.

5 Numerical examples

In this section, we provide numerical experiments to demonstrate our theoretical results for

the post-processor in the first two subsections and to illustrate the good performance of the

DG schemes for nonlinear rendez-vous algorithms which involve δ-singularities in the last one.

We denote by d the distance between the singularities and the region under consideration. In

all the figures, if not otherwise stated, the numerical solutions are plotted using six Gaussian

points in each cell.

5.1 Singular initial condition

Example 1. We solve the following problem

ut + ux = 0, (x, t) ∈ [0, π] × (0, 1],
u(x, 0) = sin(2x) + δ(x− 0.5), x ∈ [0, π],

(5.1)
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with periodic boundary condition u(0, t) = u(π, t). Clearly, the exact solution is

u(x, t) = sin(2x− 2t) + δ(x− t− 0.5).

We use ninth order SSP Runge-Kutta discretization in time [13] and take the time step

∆t = 0.1h. We test the example by using Pk polynomials with k = 1, 2, 3 on uniform meshes,

and compute the L2-norm of the error after post-precessing in the region away from the

singularity at t = 0.5. By taking d = 0.2, the region under consideration is [0, 0.8] ∪ [1.2, π].

In table 5.1, we can observe at least (2k + 1)-th order convergence. Moreover, we observe

that the rate of convergence settles to the asymptotic value when the total number of cells

is around dN
π

= 0.2×500
π

≈ 30, no matter which degree of polynomials we use. The initial

discretization is obtained by taking the L2 projection.

Table 5.1: L2-norm of the error between the numerical solution and the exact solution for
equation (5.1) after post-processing in the region away from the singularity.

P1 polynomial P2 polynomial P3 polynomial
N d error order error order error order
200 0.2 6.88E-05 - 8.40e-07 - 1.48E-09 -
300 0.2 1.41E-05 3.92 3.56e-10 19.2 3.98E-13 20.3
400 0.2 5.89E-06 3.02 1.98e-11 10.1 4.42E-16 23.7
500 0.2 3.01E-06 3.01 6.13e-12 5.25 7.49E-17 7.95
600 0.2 1.74E-06 3.00 2.37e-12 5.21 1.76E-17 7.94

Figure 5.1 shows the numerical solution with and without post-processing. We use P2

polynomials and take h = 0.01. From the figure we can observe some localized oscillations

near the discontinuity and the post-processor does not smear the singularity too much.

Example 2. We consider the following two dimensional problem

ut + ux + uy = 0, (x, y, t) ∈ [0, 2π] × [0, 2π] × (0, 1],
u(x, 0) = sin(x+ y) + δ(x+ y − 2π), (x, y) ∈ [0, 2π] × [0, 2π],

(5.2)

with periodic boundary condition. Clearly, the exact solution is

u(x, t) = sin(x+ y − 2t) + δ(x+ y − 2t) + δ(x+ y − 2t− 2π).
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Figure 5.1: Numerical solution for (5.1) at t = 0.5 with (right) and without (left) post-
processing.

We use Qk polynomial approximation spaces with k = 1 and 2, where Qk is the space

of tensor product polynomials of degree at most k ≥ 0. We also apply the same time

discretization as in example 1 and compute the L2-norm of the error after post-precessing

in the region away from the singularity at t = 0.5. Moreover, we take d = 0.4. In table 5.2,

we can observe (2k + 1)-th order convergence.

Table 5.2: L2-norm of the error between the numerical solution and the exact solution for
equation (5.2) after post-processing in the region away from the singularity.

Q1 polynomial Q2 polynomial
N d error order error order
400 0.4 2.60E-05 - 3.23e-08 -
500 0.4 1.24E-05 3.32 2.47e-10 20.0
600 0.4 7.16E-06 3.01 1.19e-11 16.6
700 0.4 4.50E-06 3.01 5.11e-12 5.47
800 0.4 3.01E-06 3.02 2.53e-12 5.29

It appears that similar results are valid in two dimensions. However, the technique of

proof in this paper, in particular the part related to the special projections in (2.9) and

(2.10), does not seem to be easily extendable to two dimensions.
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Moreover, figure 5.2 shows the numerical solution by plotting the numerical cell averages.

We use Q2 polynomials and take N = 100. From the figure we can observe two lines of δ-

singularities.
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2.5

3

Figure 5.2: Numerical solution (left) and the cut plot along x = y (right) for (5.2) at t = 0.5.

Example 3. Even though the theory in this paper is given only for scalar linear equations

for simplicity, it generalizes to linear systems in a straightforward way. We solve the following

linear system

ut − vx = 0, (x, t) ∈ [0, 2] × (0, 0.4],
vt − ux = 0, (x, t) ∈ [0, 2] × (0, 0.4],
u(x, 0) = δ(x− 1), v(x, 0) = 0, x ∈ [0, 2].

(5.3)

Clearly, the exact solution (the Green’s function) is

u(x, t) =
1

2
δ(x− 1 − t) +

1

2
δ(x− 1 + t), v(x, t) =

1

2
δ(x− 1 + t) − 1

2
δ(x− 1 − t).

We use third order SSP Runge-Kutta discretization in time [13] and take the time step

∆t = 0.1h. Figure 5.3 shows the numerical solutions at t = 0.4 with P3 polynomials and

h = 0.01. We observe that the numerical solutions capture the profiles of the exact solutions

quite well. Since we have not used any limiter, there are some localized oscillations near the

singularities.
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Figure 5.3: Solutions of u (left) and v (right) for (5.3) at t = 0.4.

5.2 Singular source term

Example 4. We solve the following problem

ut + ux = δ(x− π), (x, t) ∈ [0, 2π] × (0, 1],
u(x, 0) = sin(x), x ∈ [0, 2π],
u(0, t) = 0, t ∈ (0, 1].

(5.4)

Clearly, the exact solution is

u(x, t) = sin(x− t) + χ[π,π+t],

where χ[a,b] denotes the indicator function of the interval [a, b]. We use the same time dis-

cretization as in the previous example, and use both P1 and P2 polynomials to approximate

the exact solution on uniform meshes, then compute the L2-norm of the error after post-

precessing in the region away from the singularities at t = 0.5. In this example, we also take

d = 0.2, and the region under consideration is [0, π − 0.2] ∪ [π + 0.2, π + 0.3] ∪ [π + 0.7, 2π].

In table 5.3, we can observe (2k+1)-th order convergence. The initial discretization is again

obtained by taking the L2 projection.

Moreover, figure 5.4 shows the numerical solutions with and without post-processing. We

use P2 polynomials and take h = 0.01. From the figure we can observe the post-processor
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Table 5.3: L2-norm of the error between the numerical solution and the exact solution for
equation (5.4) after post-processing in the region away from the singularity.

P1 polynomial P2 polynomial
N d error order error order
401 0.2 1.74E-06 - 4.29E-08 -
801 0.2 5.92E-09 8.22 6.80E-13 15.9
1601 0.2 7.36E-10 3.03 1.34E-17 12.3
3201 0.2 9.19E-11 3.01 3.86E-18 5.13
6401 0.2 1.15E-11 3.01 1.16E-19 5.07

does not smear the singularity too much and it can effectively damp out the the oscillations

near the left singularity.
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Figure 5.4: Numerical solutions for (5.4) at t = 0.5 with (right) and without (left) post-
processing.

Example 5. We solve the following problem

ut + ((x+ 1)u)x = δ(x− c), (x, t) ∈ [0, 1.5] × (0, 1],
u(x, 0) = 0, x ∈ [0, 1.5],
u(0, t) = 0, t ∈ (0, 1].

(5.5)

The exact solution is

u(x, t) =
1

1 + x
[H(x− c) −H(x+ 1 − (c+ 1)et)],
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where H(x) is the Heaviside function defined as

H(x) =

{

0, x < 0,
1, x ≥ 0.

We take c = π
20

and compute the solution at t = 0.5 with P1 and P2 polynomials. Since

(x+1) is always positive, by using upwind fluxes, we always consider u−h to be the numerical

flux at the cell interfaces. For time discretization, the classical fourth order Runge-Kutta

method is used with ∆t = h2. In this example, we take d = 0.1, and the region under

consideration is [0, π
20
−0.1]∪ [ π

20
+0.1, ( π

20
+1)

√
e−1.1]∪ [( π

20
+1)

√
e−0.9, 1.5]. In table 5.4,

we can observe (k+1)-th and (2k+1)-th order convergence before and after post-processing

respectively.

Table 5.4: L2-norm of the error between the numerical solution with and the exact solution
for equation (5.5) before and after post-processing in the region away from the singularity.

P1 polynomial P2 polynomial
N d error order error order

before post-processing 400 0.1 7.08E-07 - 1.10E-08 -
800 0.1 1.21E-07 2.56 4.37E-11 7.98
1600 0.1 3.02E-08 2.00 5.46E-12 3.00
3200 0.1 7.55E-09 2.00 6.83E-13 3.00
6400 0.1 1.89E-09 2.00 8.53E-14 3.00

after post-processing 400 0.1 4.92E-07 - 8.65E-09 -
800 0.1 7.49E-11 12.7 4.54E-14 17.5
1600 0.1 7.43E-12 3.33 5.13E-19 16.4
3200 0.1 9.31E-13 3.00 1.76E-20 4.86
6400 0.1 1.16E-13 3.00 5.75E-22 4.94

Moreover, figure 5.5 shows the numerical solution with P2 polynomials and h = 0.01.

We use the cell averages to plot the left panel of the figure. From the figure we can observe

that the numerical solution agrees well with the exact solution away from the singularities.

Since we have not used any limiter, there are some localized oscillations near the singularity

on the right. It is interesting to observe that there are very few numerical oscillations near

the left singularity. In the middle panel of figure 5.5, we use six Gaussian points to plot, and
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the detailed zoom for the left singularity is given in the right panel. Clearly, the numerical

solution only oscillates in the cell [0.15,0.16]. No oscillation is observed in the left figure for

cell averages, and only one undershoot can be observed in the middle and right panels for

which six Gaussian points are plotted. This can be explained by the size of the pollution

region. In theorem 4.1, we have proved that, for such singularities, RT contains only one

cell. This implies that the numerical solution will oscillate within that cell, which clearly

agrees with our observation.
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Figure 5.5: Numerical solutions for (5.5) at t = 0.5 plotted for the cell averages (left), six
Gaussian points (middle) and the detailed zoom (right). In the left panel, the solid line is
the exact solution and the symbols are the cell averages of the numerical solution.

5.3 Rendez-vous algorithm

Example 6. We solve the following problem

ρt + Fx = 0, x ∈ [0, 1], t > 0,
ρ(0, t) = u0(x), t > 0,

(5.6)

where ρ is the density function, which is always positive. The flux F is given by

F (t, x) = v(t, x)ρ(t, x),

and the velocity v is defined by

v(t, x) =

∫

Rn

(y − x)ξ(y − x)ρ(t, y)dy,
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where ξ(x) is a positive function and supported on a ball centered at zero with radius R. In [2]

Canuto et al. investigated the discretized version of the PDE and proved that when t tends

to infinity, the density function ρ will converge to some δ-singularities, and the distances

between any of them cannot be less than R. Some computational results are shown in [2]

based on a first order finite volume method. We consider u0(x) = 1 and ξ(x) = χ[−R,R]

as an example. In figure 5.6, we apply the positivity-preserving limiter in [32] and use

P1 polynomials, as well as the third order SSP Runge-Kutta discretization in time with

∆t = 0.1h. In each time level, we first compute the value of v at the cell interfaces, then

choose the numerical flux based on upwinding. Figure 5.6 shows the numerical approximation

of ρ(x) at t = 1000, with h = 1/400, R = 0.02 and zero boundary condition. We can observe

22 δ-singularities, agreeing with the numerical result in [2]. The algorithm is quite stable

in this simulation. We observe that the P1 solution in the middle panel is more accurate

than the P0 solution in the left panel, since the heights of the δ-singularities are almost

doubled, which means less smearing of these singularities because the scheme is conservative.

Moreover, we also plot in the right panel the detailed zoom of the middle one. We observe

that there is no oscillation near the δ-singularities.
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Figure 5.6: numerical density ρ for (5.6) at t = 1000 with h = 1/400 for example 4 when
using P0 (left) and P1 (middle) polynomials. The right panel is the detailed zoom of the
middle one.
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6 Concluding remarks

In this paper, we use the discontinuous Galerkin (DG) method to solve hyperbolic conserva-

tion laws involving δ-singularities. We investigate the negative-order norm error estimates

for the accuracy of the DG approximations to linear hyperbolic conservation laws with singu-

lar initial data or singular source terms. We also obtain error estimates in the L2-norm after

post-processing in one space dimension. Numerical experiments demonstrate that the rates

of convergence we obtain are optimal. Numerical experiment with the nonlinear rendez-

vous problem illustrates the stability and good resolution of the DG method for nonlinear

problems involving δ-singularities. The results in this paper give us evidence that the DG

method is a good algorithm for problems involving δ-singularities in their solutions. In fu-

ture work we will apply the DG method to more nonlinear hyperbolic equations involving

δ-singularities.

References

[1] J.H. Bramble and A.H. Schatz, High order local accuracy by averaging in the finite

element method, Mathematics of Computation, 31 (1977), 94-111.

[2] C. Canuto, F. Fagnani and P. Tilli, An Eulerian approach to the analysis of Rendez-vous

algorithms, 17th IFAC World Congress 2008, M.J. Chung and P. Misra, editors, Volume

17, Part 1, Curran, Red Hook, New York, 2009.

[3] A. Chalaby, On convergence of numerical schemes for hyperbolic conservation laws with

stiff source terms, Mathematics of Computation, 66 (1997), 527-545.

[4] P.G. Ciarlet, Finite Element Method For Elliptic Problems, North-Holland, Amsterdam,

1978.

[5] B. Cockburn, A Introduction to the discontinuous Galerkin methods for convection dom-

inated problems, High-Order Method for Computational Physics (T. Barth and H. De-

28



conink, eds.), Lecture Notes in Computational Science and Engineering, vol. 9, Springer-

Verlag Berlin Heidelberg, 1999, 69-224.

[6] B. Cockburn and J. Guzmán, Error estimate for the Runge-Kutta discontinuous

Galerkin method for the transport equation with discontinuous initial data, SIAM Jour-

nal on Numerical Analysis, 46 (2008), 1364-1398.

[7] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws IV: the multidimensional case,

Mathematics of Computation, 54 (1990), 545-581.

[8] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinu-

ous Galerkin finite element method for conservation laws III: one-dimensional systems,

Journal of Computational Physics, 84 (1989), 90-113.

[9] B. Cockburn, M. Luskin, C.-W. Shu and E. Süli, Enhanced accuracy by post-processing
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A Proof of lemma 3.1

In this appendix we prove lemma 3.1. The main line of proof is based on the idea in [6, 31].

For simplicity, we only consider δ-singularity in equation (1.2), hence u0(x) = δ(x) + f(x),

where f(x) is sufficiently smooth and has a compact support on the computational domain

Ω.

A.1 The weight function

Let ϕ(x) be a positive bounded function, which can be taken as a weight function. For any

function q ∈ H1
h, we define the weighted L2-norm as

‖q‖ϕ,D =

(
∫

D

q2ϕdx

)
1

2

in the domain D. If ϕ = 1 or D = Ω, the corresponding subscript will be omitted.

In this paper, we will consider two weight functions ϕ1(x, t) and ϕ−1(x, t), respectively,

in order to determine the left-hand and right-hand boundary of the region RT such that,

outside this region, we can resume the (k+1)-th order accuracy in the L2-norm. Both weight

functions are related to the cut-off of the exponent function φ(r) ∈ C1 : Ω → R,

φ(r) =

{

2 − er, r < 0,
e−r, r > 0,

and they are defined as the solutions of the linear hyperbolic problem,

ϕa
t + ϕa

x = 0, (A.1)

ϕa(x, 0) = φ

(

a(x− xc)

γhσ

)

, (A.2)

where γ > 0, 0 < σ < 1 and xc are three parameters which will be chosen later. We always

assume γhσ−1 ≥ 1 in this section.
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In [31], the authors have listed several properties about the two weight functions. Here,

we state some of them that will be used.

Proposition A.1 For each of the weight function ϕa(x, t), the following properties hold

1 ≤ ϕa(x, t) ≤ 2, a(x− xc − t) ≤ 0, (A.3)

0 < ϕa(x, t) < hs, a(x− xc − t) > s log(1/h)γhσ. (A.4)

Lemma A.1 Let V be a Gauss-Radau projection, either P− or P+. For any sufficiently

smooth function p(x), there exists a positive constant C independent of h and p, such that

‖V
⊥p‖ϕ,D ≤ Chk+1‖∂k+1

x p‖ϕ,D, (A.5)

‖V
⊥(ϕvh)‖ϕ−1,D ≤ Cγ−1h1−σ‖vh‖ϕ,D, (A.6)

‖V(ϕvh)‖ϕ−1,D ≤ C‖vh‖ϕ,D. (A.7)

where D is either the single cell Ij or the whole computational domain Ω.

Lemma A.2 For any function v ∈ Vh there holds the following identity

H(v, ϕv) = −1

2

∑

j

ϕj+ 1

2

[v]2
j+ 1

2

+
1

2
(v, ϕxv). (A.8)

A.2 The smooth solution

We consider the following problem

vt + vx = 0, (A.9)

v(x, 0) = v0(x), (A.10)

where the initial condition v0(x), is a sufficiently smooth function modified from the original

initial condition u0(x) = δ(x) + f(x) such that it agrees with u0(x) for all x ∈ Ω\Ii, and

satisfies

|∂α
x v0(x)| ≤ Ch−α−1, x ∈ Ii,

where Ii is the cell containing x = 0.

33



A.3 Error representation and error equations

Denote the error by e = v − uh, where uh approximates to equation (1.2) or equation(A.9).

Clearly, e also satisfies the scheme (2.2) with g(x, t) = 0. We divide the error into the form

e = η − ξ, where

η = v − P−v = P
⊥
−v, and ξ = uh − P−v.

Then following [31], we obtain

d‖ξ‖2
ϕ

dt
= 2

(

ξt,P
⊥
+(ϕξ)

)

+ 2 (ηt,P+(ϕξ)) + 2H(ξ, ϕξ)− (ξ, ϕxξ)

= 2Π1 + 2Π2 − Π3,

where

Π1 =
(

ξt,P
⊥
+(ϕξ)

)

, Π2 = (ηt,P+(ϕξ)) , Π3 =
∑

j

ϕj+ 1

2

[ξ]2
j+ 1

2

.

First we estimate Π1. Denote w = ξt − Pk−1ξt. From the scheme (2.3), we have

(ξt, w)j = (ηt, w)j − (et, w)j = (ηt, w)j − [ξ]j− 1

2

w+
j− 1

2

.

Plugging the above into Π1 and defining ψ =
√
ϕ, we obtain

(ξt,P
⊥
+(ϕξ))j =

(

(ξt, w)j

‖w‖2
Ij

w,P⊥
+(ϕξ)

)

j

=

(

(

(ηt, w)j − [ξ]j−1/2w
+
j− 1

2

) w

‖w‖2
Ij

,P⊥
+(ϕξ)

)

j

≤ C

‖w‖Ij

(

|(ψηt, w)j| +
∣

∣

∣
[ψξ]j−1/2w

+
j− 1

2

∣

∣

∣

)

∥

∥ψ−1
P
⊥
+(ϕξ)

∥

∥

Ij

≤ Ch1−σ

γ

(

‖ηt‖2
ϕ,Ij

+ ‖ξ‖2
ϕ,Ij

)

+
Ch1/2−σ

γ

(

ϕj−1/2[ξ]
2
j−1/2 + ‖ξ‖2

ϕ,Ij

)

.

Summing up with respect to j, we obtain

(ξt,P
⊥
+(ϕξ)) ≤ Ch1−σ

γ

(

‖ηt‖2
ϕ + ‖ξ‖2

ϕ

)

+
Ch1/2−σ

γ

(

∑

j

ϕj−1/2[ξ]
2
j−1/2 + ‖ξ‖2

ϕ

)

.

For Π2, it is not difficult to find out that

Π2 ≤ C‖ηt‖ϕ ‖ξ‖ϕ ≤ C(‖ηt‖2
ϕ + ‖ξ‖2

ϕ).
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Then if γ is large enough and σ = 1
2
, we have

2Π1 + 2Π2 − Π3 ≤ C
(

‖ηt‖2
ϕ + ‖ξ‖2

ϕ

)

.

By Gronwall’s inequality,

‖ξ(T )‖2
ϕ ≤ C

∫ T

0

‖ηt‖2
ϕdt+ C‖ξ(0)‖2

ϕ. (A.11)

A.4 The final estimate

This part is almost the same as in [31]. We will only discuss the left-hand boundary of RT

since the discussion for the right one is similar. Denote xL(t) = t+ xc with

xc = −2s log(1/h)γhσ,

where s and γ are sufficiently large and σ = 1/2. As we have mentioned before, the δ-

singularity in the initial datum is contained in the cell Ii. Then by proposition A.1, we

obtain 0 < φ(x) < hs for any x ∈ Ii. We choose v0 to satisfy Pkv0 = Pku0 = uh(0), then

‖ξ(0)‖ϕ ≤ ‖ξ(0)‖ϕ,L2(R\Ii) + ‖ξ(0)‖ϕ,L2(Ii) ≤ Chk+1‖f‖k+2 + Chs−1/2.

If s is large enough, then ‖ξ(0)‖ϕ ≤ Chk+1.

Define the domain R+
T = (xL(T ),∞), then

‖uh − v‖
R\R+

T
≤ ‖uh − v‖ϕ,R\R+

T
≤ ‖η‖ϕ,R\R+

T
+ ‖ξ‖ϕ ≤ Chk+1‖f‖k+1 + ‖ξ‖ϕ.

To estimate the second term on the right hand side, we need to use (A.11). Denote

w(t) = max{xj+ 1

2

: xj− 1

2

< t+
1

2
xc, ∀j},

and R1(t) = (−∞, w(t)), R2(t) = R\R1(t) = (w(t),∞). If γhσ−1 is large enough, R1(t)

stays away from the bad interval [t− h, t+ h] where v(x, t) 6= u(x, t), then we have

‖ηt‖ϕ,R1(t) ≤ Chk+1‖f‖k+2.
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Now we proceed to estimate ‖ηt‖ϕ,R2(t). Since R2 contains the whole bad region, we will

use the property of the weight function. By (A.4) we have ϕ ≤ hs in this zone. Then we

obtain

‖ηt‖ϕ,R2(t) ≤ Chs/2‖ηt‖R2(t) ≤ Chs/2+k+1‖∂k+2
x v‖R2(t) ≤ Ch(s−3)/2 + Chs/2+k+1‖f‖k+2,R2(t).

Similarly, we can estimate the right-hand side of the non-smooth region. If we take s large

enough, we have

‖uh − u(x, T )‖
R\R+

T
= ‖uh − v(x, T )‖

R\R+

T
≤ Chk+1‖f‖k+2 + Ch(s−3)/2 ≤ Chk+1.
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