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Abstract

We propose second order accurate discontinuous Galerkin (DG) schemes which satisfy

a strict maximum principle for general nonlinear convection-diffusion equations on unstruc-

tured triangular meshes. Motivated by genuinely high order maximum-principle-satisfying

DG schemes for hyperbolic conservation laws [14, 26], we prove that under suitable time

step restriction for forward Euler time stepping, for general nonlinear convection-diffusion

equations, the same scaling limiter coupled with second order DG methods preserves the

physical bounds indicated by the initial condition while maintaining uniform second order

accuracy. Similar to the purely convection cases, the limiters are mass conservative and

easy to implement. Strong stability preserving (SSP) high order time discretizations will

keep the maximum principle. Following the idea in [30], we extend the schemes to two-

dimensional convection-diffusion equations on triangular meshes. There are no geometric

constraints on the mesh such as angle acuteness. Numerical results including incompressible

Navier-Stokes equations are presented to validate and demonstrate the effectiveness of the

numerical methods.
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1 Introduction

1.1 Motivation

In this paper we are interested in constructing maximum-principle-satisfying discontinuous

Galerkin (DG) schemes for nonlinear convection-diffusion equations:

ut + f(u)x = a(u)xx, u(x, 0) = u0(x), (1.1)

or equivalently,

ut + f(u)x = (b(u)ux)x, u(x, 0) = u0(x), (1.2)

where b(u) = a′(u) ≥ 0, and their two-dimensional versions. The exact solution of (1.1) or

(1.2) satisfies a strict maximum principle, i.e., if maxu0(x) = M , min u0(x) = m, then

u(x, t) ∈ [m, M ], ∀x ∈ R, ∀t ≥ 0. (1.3)

In particular, for the case m = 0, it is the positivity-preserving property, which is preferred for

numerical schemes in many applications. For physical quantities like densities and probability

distributions, negative values are non-physical in the numerical simulations, for instance,

radionuclide transport calculations [9], and may lead to ill-posedness and instability for

certain nonlinear equations such as chemotaxis problems [18].

The discrete maximum principle (DMP) for numerical schemes solving elliptic type equa-

tions were studied since 1960s. Even though DMP is more difficult to achieve for parabolic

type equations, maximum-principle-satisfying finite element methods were also well studied

in a similar fashion. The earliest work about DMP for parabolic equations is [8] in which

Fujii investigated DMP for the heat equation using piecewise linear finite elements. For

the most recent results on nonlinear parabolic equations, see [7] and the references therein.

The main techniques to achieve DMP for parabolic equations in the literature appear to

be mainly algebraic, for instance, the lumped mass method. Such approaches tend to pose

certain restrictions on the spatial mesh such as angle acuteness [19] and also the rather un-

natural time step restriction that the time step must be larger than a threshold, in order to

use the larger numerical viscosity for implicit time discretization with larger time steps.
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On the other hand, to have a maximum-principle-satisfying scheme for a convection-

diffusion problem (1.1) which has a significant or dominate convection part, one would

rather use an explicit time discretization and would first need to construct such schemes

for the purely convection case. It turns out that one can construct arbitrarily high order

maximum-principle-satisfying DG schemes solving scalar conservation laws on unstructured

triangular meshes [26, 30]. The most interesting observations in [26, 30] consist of two parts.

First, if an intuitively reasonable sufficient condition is satisfied, i.e., the values of the DG

polynomials at the current time level and at certain quadrature points are in the desired

range [m, M ], then the cell averages of the numerical solutions at the next time step will also

be in this range under suitable time step restrictions with an explicit Euler forward time

stepping. Second, a simple scaling limiter can enforce the sufficient condition of keeping the

DG polynomials at these quadrature points in the desired bounds, once we know their cell

averages are already in these bounds, without destroying accuracy and conservation. High

order accuracy in time can be achieved by strong stability preserving Runge-Kutta or multi-

step methods, which are convex combinations of Euler forward steps. Thus DG methods

with this simple scaling limiter will satisfy the maximum principle for scalar conservation

laws.

It would be appealing if one can extend the results in [26, 30] to convection-diffusion

equations in a straightforward way since the method is very easy to implement without

any constraint on the spatial mesh. Unfortunately, it is quite difficult to do so, at least

for arbitrarily high order schemes. We will explain in more detail about this difficulty in

the next subsection. In this paper, we will discuss the generalization of this technique for

piecewise linear DG methods in solving general nonlinear convection-diffusion problems.
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1.2 The methodology

A maximum-principle-satisfying DG scheme for (1.1) can be constructed in two steps. First

we consider the purely convection case:

ut + f(u)x = 0, u(x, 0) = u0(x). (1.4)

Motivated by [14], a general framework to construct genuinely high order maximum principle

satisfying DG scheme for (1.4) was proposed in [26, 30] . It was the first time that genuinely

high order maximum-principle-satisfying finite volume and DG schemes for multidimensional

nonlinear scalar conservation laws on arbitrary triangular meshes became available. This

methodology has been successfully applied to various problems [22, 27, 20, 29, 23, 24, 15,

17, 3] for positivity-preserving of physically relevant properties such as density, pressure and

water height, where bound preserving is a desirable property for applications. For a survey

of the recent developments of such schemes and applications, see [28].

To illustrate the ideas regarding maximum-principle-satisfying DG schemes for (1.4) in

[26], we consider the forward Euler time discretization. On the mesh x 1

2

< x 3

2

< · · · <

xN− 1

2

< xN+ 1

2

, the equation satisfied by the cell averages of the numerical solutions obtained

for the DG scheme is:

un+1
j = un

j − ∆t

h

[
f̂
(
u−

j+ 1

2

, u+
j+ 1

2

)
− f̂

(
u−

j− 1

2

, u+
j− 1

2

)]
(1.5)

where h = xj+ 1

2

− xj− 1

2

is the mesh size, assumed to be uniform for simplicity, n refers

to the time level and j denotes the spatial cell, and uj is the numerical approximation to

the cell average obtained by the DG scheme. u±
j+ 1

2

are the values of the numerical solution

at the point xj+ 1

2

evaluated from the cell Ij+1 and Ij respectively at time level n. f̂(·, ·)

is a monotone flux, which is an increasing function of the first argument and a decreasing

function of the second argument, for example, the global Lax-Friedrichs flux.

The key ingredients in constructing a high order maximum-principle-satisfying DG scheme

for (1.4) in [26] are:
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• The cell average at the next time step by forward Euler time stepping, i.e., (1.5) is a

monotone function with respect to certain point values (Gauss-Lobatto points for the

one-dimensional case), under a suitable CFL condition.

• A simple limiter modifies the DG polynomial pj(x) on cell Ij into p̃j(x) such that

p̃j(x) ∈ [m, M ] at these special points without changing its cell average. Moreover, it

can be proven that the modified polynomial p̃j(x) is also a high order approximation

just as pj(x). Thus we have un+1
j ∈ [m, M ] if all the degree of freedoms at time level n

in the right hand side of (1.5) are replaced by those of modified polynomials p̃j(x).

• Replace the forward Euler by the strong stability preserving (SSP) high order time

discretizations which are convex combinations of forward Euler thus will keep the

bounds. So it suffices to prove maximum principle for (1.5).

Therefore we reach the conclusion that the DG scheme with the simple scaling limiter is

high order accurate and will satisfy the maximum principle in the sense that the cell averages

and point values at certain quadrature points will not go out of the range [m, M ].

To extend the idea above to convection-diffusion equations (1.1) or (1.2), it suffices to

consider the purely diffusion equations with f(u) = 0. However, it appears very difficult to

seek a direct generalization for arbitrary high order DG schemes. The main difficulty lies in

the first step above, namely to write the formula for obtaining the cell average at the next

time step by forward Euler time stepping, in terms of certain point values and to ensure

monotonicity with respect to these point values, which is a key ingredient in [26]. To achieve

arbitrary high order approximation, a non-conventional maximum-principle-satisfying finite

volume scheme for convection-diffusion equations was developed in [25]. The main idea is to

define a quantity called double cell average over the interval Ij, by utilizing the cell averaging

operator twice on the original solution. Unlike conventional finite volume schemes whose

numerical solutions are cell averages, in [25], the high order approximations are reconstructed

from those double cell averages. It turns out that the formula for obtaining those double cell
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averages at the next time step by forward Euler time stepping can be written as monotone

functions with respect to point values at certain quadrature points, just like in the purely

convective cases. It is then straightforward to apply the methodology in [26] including

the scaling limiter to ensure a strict maximum principle for the numerical solutions while

keeping high order accuracy. Even though this finite volume method suggests a possible

alternative when looking for high order maximum-principle-satisfying numerical schemes for

convection-diffusion equations, it is an unconventional finite volume method requiring new

implementations. It is also not obvious how to generalize the technique to finite volume

methods on arbitrary unstructured meshes, or to DG methods.

The main content of this paper is to extend the framework in [26, 30] to second order

accurate P1-DG schemes solving one- and two-dimensional convection-diffusion equations on

arbitrary triangular meshes. The second order accurate maximum-principle-satisfying DG

schemes designed in this paper share all the good properties as those in [26, 30] including mass

conservation and easiness of implementation. We also discuss applications of this scheme to

nonlinear degenerate parabolic equations and incompressible Navier-Stokes equations.

We remark that most schemes satisfying DMP for parabolic equations in the literature use

implicit time discretizations. But the small time step ∆t = O(h2) turns out to be necessary

even for implicit time discretizations to have the contraction property, see [6]. We use explicit

time discretizations which are advantageous for solving nonlinear equations, especially for

convection dominated problems. Moreover, our method is straightforward to implement.

The limiter is a local operator on each cell. In practice, for each time step in a multistep

method or each time stage in a Runge-Kutta method, one only needs to add the limiter to

the DG scheme as a pre-processing step. See Section 3.3 for an easy implementation.

1.3 Organization of the paper

This paper is organized as follows: we first discuss maximum-principle-satisfying second or-

der DG schemes in one space dimension in Section 2. In Section 3, we show an extension to
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two space dimensions on arbitrary triangular meshes. In Sections 4 and 5, numerical tests for

the maximum-principle-satisfying DG schemes in one and two dimensions will be shown re-

spectively. In Section 6, we discuss the application of this maximum-principle-satisfying DG

scheme to two-dimensional incompressible Navier-Stokes equations in the vorticity stream-

function formulation. Concluding remarks are given in Section 7.

2 Maximum-principle-satisfying DG schemes in one di-

mension

For simplicity, we will assume periodic boundary condition from now on. All the results

regarding maximum principle can be easily incorporated into any initial-boundary value

problems.

2.1 Preliminaries

We first review briefly how to establish the monotonicity of (1.5).

The equation satisfied by the cell averages of a DG method with forward Euler time

discretization for a one-dimensional scalar conservation laws (1.4) can be written as (1.5).

Any monotone numerical fluxes can be used, for example the global Lax-Friedrichs flux

f̂(u, v) =
1

2
(f(u) + f(v) − a(v − u)) , a = max

u
|f ′(u)|. (2.1)

The important property we will use for the monotone flux f̂(u, v) is that it is an increasing

function (a non-decreasing function) of u and a decreasing function of v, hence the first order

scheme

Hλ(u, v, w) = v − λ(f̂(v, w) − f̂(u, v)) (2.2)

is a monotonically increasing function of all three arguments u, v and w provided a CFL

condition is satisfied. For the Lax-Friedrichs flux (2.1) the CFL condition is

λa ≤ 1, (2.3)

where λ = ∆t
h

.
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Let the piecewise polynomials pj(x) of degree k denote the DG polynomials at time level

n and un
j denote the cell averages of pj(x). u±

j+ 1

2

are the values of the numerical solution at

the point xj+ 1

2

evaluated from the cell Ij+1 and Ij respectively at time level n. We consider

an N -point Legendre Gauss-Lobatto quadrature rule on the interval Ij = [xj− 1

2

, xj+ 1

2

], which

is exact for the integral of polynomials of degree up to 2N − 3. We denote these quadrature

points on Ij as

Sj = {xj− 1

2

= x̂1
j , x̂

2
j , · · · , x̂N−1

j , x̂N
j = xj+ 1

2

}. (2.4)

Let ω̂β be the quadrature weights for the interval [−1
2
, 1

2
] such that

N∑
β=1

ω̂β = 1. Choose N to

be the smallest integer satisfying 2N − 3 ≥ k, then

un
j =

1

h

∫

Ij

pj(x) dx =

N∑

β=1

ω̂βpj(x̂
β
j ) =

N−1∑

β=2

ω̂βpj(x̂
β
j ) + ω̂1u

+
j− 1

2

+ ω̂Nu−
j+ 1

2

. (2.5)

With (2.5), by adding and subtracting f̂
(
u+

j− 1

2

, u−
j+ 1

2

)
, the scheme (1.5) can be rewritten

as

un+1
j =

N−1∑

β=2

ω̂βpj(x̂
β
j ) + ω̂N

(
u−

j+ 1

2

− λ

ω̂N

[
f̂
(
u−

j+ 1

2

, u+
j+ 1

2

)
− f̂

(
u+

j− 1

2

, u−
j+ 1

2

)])

+ω̂1

(
u+

j− 1

2

− λ

ω̂1

[
f̂
(
u+

j− 1

2

, u−
j+ 1

2

)
− f̂

(
u−

j− 1

2

, u+
j− 1

2

)])

=

N−1∑

β=2

ω̂βpj(x̂
β
j ) + ω̂NHλ/bωN

(u+
j− 1

2

, u−
j+ 1

2

, u+
j+ 1

2

) + ω̂1Hλ/bω1
(u−

j− 1

2

, u+
j− 1

2

, u−
j+ 1

2

).

(2.6)

At this point, noticing the property of the first order monotone operator (2.2) under

condition (2.3) and that ω̂1 = ω̂N , it is clear that under the CFL condition λa ≤ ω̂1, un+1
j

is a monotonically increasing function of all the arguments involved, namely u−
j− 1

2

, u+
j+ 1

2

and

pj(x̂
β
j ) for 1 ≤ j ≤ N . Therefore, if all these point values are in [m, M ], then un+1

j ∈ [m, M ]

as well. A sufficient condition to make un+1
j ∈ [m, M ] is then pj(x̂

β
j ) ∈ [m, M ] for all j and

β. This can be achieved by a scaling limiter which will be described later.
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2.2 Maximum-principle-satisfying DG schemes for convection-diffusion

equations: one-dimensional case

There exist several different types of DG formulations to treat the second order viscous

terms. In this paper we focus on three different formulations: the DG formulation of Cheng

and Shu for higher order derivatives [2], the interior penalty DG (IPDG) scheme [21, 1, 16]

and the local DG (LDG) scheme [5]. We start with the Cheng-Shu DG scheme to take care

of the second order derivatives in [2]. For (1.1), their scheme can be described as: For a

computational mesh of the domain [a, b]: a = x 1

2

< x 3

2

< · · · < xN− 1

2

< xN+ 1

2

= b, where

the mesh size h = xi+ 1

2

− xi− 1

2

is assumed to be uniform here only for simplicity, define

the approximation space V k
h = {v : v|Ij

∈ P k(Ij), ∀j}, where P k(Ij) denotes the set of all

polynomials up to degree k defined on the cell Ij . For any test function v ∈ V k
h , the DG

formulation is to find u ∈ V k
h such that,

∫

Ij

utvdx −
∫

Ij

f(u)vxdx −
∫

Ij

a(u)vxxdx + f̂j+ 1

2

v−
j+ 1

2

− f̂j− 1

2

v+
j− 1

2

− âxj+ 1

2

v−
j+ 1

2

+ âxj− 1

2

v+
j− 1

2

+ âj+ 1

2

(vx)
−
j+ 1

2

− âj− 1

2

(vx)
+
j− 1

2

= 0, (2.7)

where the convection flux f̂j+ 1

2

= f̂(u−
j+ 1

2

, u+
j+ 1

2

) is chosen as described in the previous sub-

section, and the diffusion fluxes are chosen in an alternating way with additional penalty on

the second order derivative term:

âx(u) =
[a(u)]

[u]

(
u−

x +
α

h
[u]
)

, â(u) = a(u+). (2.8)

Here α is a sufficiently large positive coefficient, and [u] = u+ − u− denotes the jump across

the cell boundaries. It is proved in [2] that, by this treatment of the diffusion fluxes (2.8),

the DG scheme (2.7) is stable with a sub-optimal error estimate. Numerical experiments

indicate optimal (k+1)-th order convergence in L2.

By taking the test function v = 1, we obtain the evolutionary equation for the cell

averages of the numerical scheme:

d

dt
uj = −1

h

(
(f̂j+ 1

2

− f̂j− 1

2

) − (âxj+ 1

2

− âxj− 1

2

)
)

. (2.9)
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We consider the first order forward Euler time discretization for (2.9); higher order time

discretization will be discussed later. Our first result is:

Theorem 2.1. For the P1-DG scheme (2.7) with forward Euler time stepping, the maximum

principle holds for the cell averages un+1
j ∈ [m, M ] for all j, if u±

j+ 1

2

∈ [m, M ] for all j and

the following CFL conditions hold

α ≥ 1, λ max
u

|f ′(u)| ≤ 1

4
, µ(α + 1) max

u
(a′(u)) ≤ 1

4
(2.10)

where µ = λ
h

= ∆t
h2 .

Proof. Applying forward Euler time stepping on (2.9), we obtain the formula for the cell

averages of the numerical solution at the next time step

un+1
j = un

j − λ(f̂j+ 1

2

− f̂j− 1

2

) + λ
(
(âx)j+ 1

2

− (âx)j− 1

2

)
. (2.11)

To utilize the result in the purely convection case [26], we divide the cell average un
j into two

halves:

un+1
j =

(
1

2
un

j − λ(f̂j+ 1

2

− f̂j− 1

2

)

)
+

(
1

2
un

j + λ((âx)j+ 1

2

− (âx)j− 1

2

)

)
. (2.12)

This decomposition may not lead to the optimal CFL restriction for the proof but is adopted

for easy presentation.

The diffusion term:

Dj =
1

2
un

j + λ((âx)j+ 1

2

− (âx)j− 1

2

). (2.13)

By the linearity of the approximation space with k = 1:

uj =
u−

j+ 1

2

+ u+
j− 1

2

2
, (u−

x )j+ 1

2

=
u−

j+ 1

2

− u+
j− 1

2

h

(âx)j+ 1

2

= ξj+ 1

2

αu+
j+ 1

2

− (α − 1)u−
j+ 1

2

− u+
j− 1

2

h
, ξj+ 1

2

=
[a]j+ 1

2

[u]j+ 1

2

.

By the mean value theorem, there exists ξ0 such that ξj+ 1

2

=
[a]

j+ 1
2

[u]
j+1

2

= a′(ξ0) ≥ 0. Rewriting

(2.13), omitting the superscript denoting time level n, we have

Dj =
1

4
u−

j+ 1

2

+
1

4
u+

j− 1

2

+ µ
(
ξj+ 1

2

αu+
j+ 1

2

− ξj+ 1

2

(α − 1)u−
j+ 1

2

− (ξj+ 1

2

+ αξj− 1

2

)u+
j− 1

2
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+ξj− 1

2

(α − 1)u−
j− 1

2

+ ξj− 1

2

u+
j− 3

2

)

= µξj+ 1

2

αu+
j+ 1

2

+

(
1

4
− µξj+ 1

2

(α − 1)

)
u−

j+ 1

2

+

(
1

4
− µ(ξj+ 1

2

+ αξj− 1

2

)

)
u+

j− 1

2

+µ(α − 1)ξj− 1

2
u−

j− 1

2

+ µξj− 1

2
u+

j− 3

2

.

The convection term:

Cj =
1

2
un

j − λ(f̂j+ 1

2

− f̂j− 1

2

). (2.14)

According to the discussion in the preliminaries, in the P 1-DG case, we can choose the

2-point Gauss-Lobatto quadrature with the weights ω̂1 = ω̂2 = 1
2
. Then we have

Cj =
1

4
H1 +

1

4
H2 (2.15)

where

H1 = u−
j+ 1

2

− 4λ
(
f̂(u−

j+ 1

2

, u+
j+ 1

2

) − f̂(u+
j− 1

2

, u−
j+ 1

2

)
)

= H4λ

(
u+

j− 1

2

, u−
j+ 1

2

, u+
j+ 1

2

)
,

H2 = u+
j− 1

2

− 4λ
(
f̂(u+

j− 1

2

, u−
j+ 1

2

) − f̂(u−
j− 1

2

, u+
j− 1

2

)
)

= H4λ

(
u−

j− 1

2

, u+
j− 1

2

, u−
j+ 1

2

)
.

Combining the results for the convection and diffusion terms together, under the CFL con-

ditions (2.10), un+1
j becomes a monotonically increasing function of point values ranging in

[m, M ], thus it also belongs to [m, M ].

Remark 2.2. The key ingredient in the proof above is to write Dj in (2.13) as a convex

combination of point values in the current time step under suitable time step restriction. If

we attempt to follow the same route for the piecewise quadratic case k = 2, we encounter

difficulties even for the linear case a(u) = u. We can see from the above derivation that

we only need to pay attention to (ux)
−
j−1/2. Rewriting the DG polynomial in cell Ij−1 as an

Lagrangian interpolation of three point values, one being u−
j− 1

2

and the other two point values

inside Ij−1 being denoted as ua and ub. We then have (ux)
−
j−1/2 = aua + bub + cu−

j− 1

2

for three

constants a, b and c, and simple algebra indicates that, in order to ensure Dj is written as a

convex combination of point values in the current time step, we would need the coefficients
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a and b to be both non-positive. It can be easily checked that this is not possible. Thus our

current approach does not work for DG methods of order higher than 2.

Remark 2.3. We have only proved the result for the first order forward Euler time stepping.

The result also holds for high order SSP Runge-Kutta or multistep methods [10] as they are

convex combinations of forward Euler steps. For instance, the second order SSP Runge-Kutta

method (with the CFL coefficient c = 1) is

u(1) = un + ∆tF (un)

un+1 =
1

2
un +

1

2
(u(1) + ∆tF (u(1))) (2.16)

where F (u) is the spatial operator, the CFL coefficient c for a SSP time discretization refers

to the fact that, if we assume the forward Euler time discretization for solving the equation

ut = F (u) is stable in a norm or a semi-norm under a time step restriction ∆t ≤ ∆t0, then

the high order SSP time discretization is also stable in the same norm or semi-norm under

the time step restriction ∆t ≤ c∆t0.

Remark 2.4. This P1-DG result can also be extended to other penalty type DG formulations

for second order derivatives, for example the interior penalty Galerkin methods [21, 1, 16],

with slightly different CFL conditions and stability coefficient restrictions. If we consider the

interior penalty DG formulation for (1.2): for any test function v ∈ V k
h , the IPDG scheme

is to find u ∈ V k
h , such that

∫

Ω

utvdx =
N∑

j=1

(∫

Ij

f(u)vxdx − f̂j+ 1

2

v−
j+ 1

2

+ f̂j− 1

2

v+
j− 1

2

)

−
N∑

j=1

(∫

Ij

b(u)uxvxdx + {bux}j+ 1

2

[v]j+ 1

2

± {bvx}j+ 1

2

[u]j+ 1

2

+
α

h
[u]j+ 1

2

[v]j+ 1

2

)

where {bux} = 1
2
((bux)

+ +(bux)
−), and α is the penalty coefficient. The plus and minus signs

above in front of the {bvx}j+ 1

2

[u]j+ 1

2

term refer to symmetric [21, 1] and nonsymmetric [16]

penalty methods respectively. The diffusion term (2.13) then becomes:

Dj =
1

2
un

j + λ
(
{bux}j+ 1

2

− {bux}j− 1

2

+
α

h
[u]j+ 1

2

− α

h
[u]j− 1

2

)
(2.17)
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which can be written out as (omitting the superscript denoting the time level n):

Dj =
1

4
u−

j+ 1

2

+
1

4
u+

j− 1

2

+ µ

(
1

2
b+
j+ 1

2

u−
j+ 3

2

+ (α − 1

2
b+
j+ 1

2

)u+
j+ 1

2

−(α +
1

2
b+
j− 1

2

− 1

2
b−
j+ 1

2

)u−
j+ 1

2

− (α +
1

2
b−
j+ 1

2

− 1

2
b+
j− 1

2

)u+
j− 1

2

+ (α − 1

2
b−
j− 1

2

)u−
j− 1

2

+
1

2
b−
j− 1

2

u+
j− 3

2

)
.

Collecting the terms, we obtain:

Dj =
1

2
µb+

j+ 1

2

u−
j+ 3

2

+ µ(α − 1

2
b+
j+ 1

2

)u+
j+ 1

2

+ (
1

4
− µ(α +

1

2
b+
j− 1

2

− 1

2
b−
j+ 1

2

))u−
j+ 1

2

+(
1

4
− µ(α +

1

2
b−
j+ 1

2

− 1

2
b+
j− 1

2

))u+
j− 1

2

+ µ(α − 1

2
b−
j− 1

2

)u−
j− 1

2

+
1

2
µb−

j− 1

2

u+
j− 3

2

here b±
j+ 1

2

= b(u±
j+ 1

2

) ≥ 0. Collecting terms and using simple algebra, we can easily show

that, if u±
j+ 1

2

∈ [m, M ] for all j, then under the CFL condition specified in Table 2.1, the

conclusion of Theorem (2.1) holds.

Remark 2.5. This P1-DG result can also be extended to the LDG method for second order

derivatives. To obtain an LDG formulation for (1.2), we first rewrite it as:

ut + f(u)x = (b∗(u)q)x, q − B(u)x = 0 (2.18)

where b∗(u) =
√

b(u), B(u) =
∫ u

b∗(s)ds. We then seek u, q ∈ V k
h , such that for test

functions v, p ∈ V k
h :

∫

Ij

utvdx −
∫

Ij

(f(u) − b∗(u)q)vxdx + (f̂ − b̂∗q̂)j+ 1

2

v−
j+ 1

2

− (f̂ − b̂∗q̂)j− 1

2

v+
j− 1

2

= 0 (2.19)

∫

Ij

qpdx +

∫

Ij

B(u)pxdx − B̂j+ 1

2

p−
j+ 1

2

+ B̂j− 1

2

p+
j− 1

2

= 0 (2.20)

where the diffusion fluxes are :

b̂∗ =
B(u+) − B(u−)

u+ − u− , q̂ = q−, , B̂ = B(u+).

Similarly as before, the diffusion term for (2.19) is:

Dj =
1

2
un

j + λ(̂b∗
j+ 1

2

q̂j+ 1

2

− b̂∗
j− 1

2

q̂j− 1

2

) (2.21)
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where the q̂ is based on q which is solved locally from (2.20). If we replace the volume integral

by a quadrature rule with sufficient accuracy (see [4]), we have

qj(x) =
(B+

j+ 1

2

− B+
j− 1

2

)

h
+ 6

(B+
j+ 1

2

− B−
j+ 1

2

)

h
(
x − xj

h
)

Plugging it into (2.21), omitting the superscript n, we obtain:

Dj =
1

4
u−

j+ 1

2

+
1

4
u+

j− 1

2

+ µ
[
ξj+ 1

2

(4B+
j+ 1

2

− 3B−
j+ 1

2

− B+
j− 1

2

)

−ξj− 1

2

(4B+
j− 1

2

− 3B−
j− 1

2

− B+
j− 3

2

)
]
.

Here ξ = [B]
[u]

≥ 0. If we further rearrange the terms of Dj, we have

Dj =
1

4
u−

j+ 1

2

+
1

4
u+

j− 1

2

+ 3µξ2
j+ 1

2

[u]j+ 1

2

− 3µξ2
j− 1

2

[u]j− 1

2

+µξj+ 1

2

(B+
j+ 1

2

− B+
j− 1

2

) − µξj− 1

2

(B+
j− 1

2

− B+
j− 3

2

)

Notice that by definition, B+
j+ 1

2

− B+
j− 1

2

=
∫ u+

j+ 1
2

u+

j− 1
2

b∗(s)ds, B+
j− 1

2

− B+
j− 3

2

=
∫ u+

j− 1
2

u+

j− 3
2

b∗(s)ds,

b∗ ≥ 0. By the mean value thereom, we could find u1 ∈
(
min(u+

j+ 1

2

, u+
j− 1

2

), max(u+
j+ 1

2

, u+
j− 1

2

)
)
,

u2 ∈
(
min(u+

j− 1

2

, u+
j− 3

2

), max(u+
j− 1

2

, u+
j− 3

2

)
)
, such that B+

j+ 1

2

−B+
j− 1

2

= b∗(u1)(u
+
j+ 1

2

−u+
j− 1

2

) and

B+
j− 1

2

− B+
j− 3

2

= b∗(u2)(u
+
j− 1

2

− u+
j− 3

2

). Thus, by simple algebra we have,

Dj =
1

4
u−

j+ 1

2

+
1

4
u+

j− 1

2

+ 3µξ2
j+ 1

2

[u]j+ 1

2

− 3µξ2
j− 1

2

[u]j− 1

2

+µξj+ 1

2

b∗(u1)(u
+
j+ 1

2

− u+
j− 1

2

) − µξj− 1

2

b∗(u2)(u
+
j− 1

2

− u+
j− 3

2

)

= (3µξ2
j+ 1

2

+ µξj+ 1

2

b∗(u1))u
+
j+ 1

2

+ (
1

4
− 3µξ2

j+ 1

2

)u−
j+ 1

2

+(
1

4
− 3µξ2

j− 1

2

− µξj+ 1

2

b∗(u1) − µξj− 1

2

b∗(u2))u
+
j− 1

2

+3µξ2
j− 1

2

u−
j− 1

2

+ µξj− 1

2

b∗(u2)u
+
j− 3

2

Now if u±
j+ 1

2

∈ [m, M ] for all j, then under the CFL condition shown specifically in Table

2.1, the conclusion for Theorem (2.1) still holds.

Remark 2.6. From Table 2.1, we note that the CFL conditions for maximum-principle-

preserving DG schemes are comparable with or just slightly more restrictive than the standard
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Table 2.1: The CFL conditions for (1.1) or (1.2) and restrictions for penalty coefficients in
the one dimensional case.

Scheme convection CFL diffusion CFL penalty coefficient
Cheng-Shu DG λ max |f ′(u)| ≤ 1

4
µ ≤ 1

4max(a′(u))(α+1)
α ≥ 1

IPDG λ max |f ′(u)| ≤ 1
4

µ ≤ 1
4α+2max(a′(u))

α ≥ 1
2
max(a′(u))

LDG λ max |f ′(u)| ≤ 1
4

µ ≤ 1
20max(a′(u))

–

time step restrictions for linear stability of DG methods for diffusion terms. For example,

for the LDG method using piecewise linear polynomials and second order Runge-Kutta time

stepping, the CFL number for linear stability is µ max(a′(u)) ≤ 0.055 and, according to Table

2.1, a sufficient condition is µ max(a′(u)) ≤ 0.05 for maintaining the maximum-principle-

preserving property.

2.3 Implementation

To enforce the sufficient conditions in Theorem 2.1, i.e., u±
j± 1

2

at time level n, we can use

the same limiter as in [26]. Given approximation polynomials pj(x) evolved from a P1-DG

scheme, with its cell averages un
j ∈ [m, M ], we would like to modify pj(x) into p̃j(x) by

p̃j(x) = θ(pj(x) − un
j ) + un

j , θ = min

{
1,

∣∣∣∣
M − un

j

Mj − un
j ,

∣∣∣∣ ,
∣∣∣∣

m − un
j

mj − un
j ,

∣∣∣∣
}

, (2.22)

where

Mj = max{pj(xj+ 1

2

), pj(xj− 1

2

)}, mj = min{pj(xj+ 1

2

), pj(xj− 1

2

)}.

It is clear that p̃j(xj± 1

2

) ∈ [m, M ] and p̃j(x) has the same cell average un
j . Moreover, we

have ||p̃j − pj ||∞ = O(h2) if the exact solution is smooth, see [26] for the proof.

For forward Euler time discretization, at time level n, assume the P1-DG polynomial in

cell Ij is pj(x), and the cell average of pj(x) is un
j ∈ [m, M ], then

• In each cell, monitor the point values of pj(x) at the two end points xj± 1

2

by computing

θ in (2.22).

• If θ = 1, leave the DG solution pj(x) unchanged.
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• If θ < 1, use p̃j(x) instead of pj(x) in the DG scheme with forward Euler in time under

the CFL condition in Table 2.1.

For SSP high order time discretizations, we need to use the limiter in each stage for a

Runge-Kutta method or in each step for a multistep method. Notice that the CFL conditions

in Table 2.1 are sufficient but not necessary to achieve maximum principle. A more efficient

implementation would be enforcing the more restrictive CFL conditions in Table 2.1 only

when a preliminary calculation to next time step with a normal time step violates the

maximum principle. See Section 3.3 for more details regarding this implementation.

3 Maximum-principle-satisfying DG schemes in two di-

mensions

In this section, we extend our results to P1-DG schemes on triangular meshes solving the ini-

tial value problem for two-dimensional nonlinear convection-diffusion equations in a general

form:

∂u

∂t
+ ∇ · F(u) = ∇ · (A∇u), F(u) = 〈f(u), g(u)〉, (3.1)

where A = A(u, x) is a 2×2 symmetric semi-positive-definite matrix. Let [m, M ] denote the

desired range indicated by the initial condition. We will assume periodic boundary condition

again for simplicity. All the results regarding maximum principle can be easily incorporated

into any initial-boundary value problems.

3.1 Preliminaries

In [30], Zhang, Xia and Shu explained in details how to construct maximum-principle-

satisfying high order DG schemes for hyperbolic conservation laws on triangular meshes

ut + ∇ · F(u) = 0, F(u) = 〈f(u), g(u)〉. (3.2)

We review the results briefly. On a triangulation Th, for each triangle K, we denote by

|K| the area of the triangle and liK (i = 1, 2, 3) the length of the corresponding edges ei
K
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(i = 1, 2, 3), with outward unit normal vectors being ~νi (i = 1, 2, 3). We also denote the

neighboring triangle along ei
K as Ki. Any one-dimensional monotone flux can be used, for

example the global Lax-Friedrichs flux

f̂(u, v, ~ν) =
1

2
(F(u) · ~ν + F(v) · ~ν − a(v − u)), a = max

u
|F′(u) · ~ν|. (3.3)

The first order Lax-Friedrichs scheme for (3.2) on triangular meshes is defined as:

un+1
K = un

K − ∆t

|K|

3∑

i=1

f̂(un
K , un

Ki
, ~νi)l

i
K

By the same token, the scheme satisfied by the cell averages of DG schemes for (3.2) can be

written as:

un+1
K = un

K − ∆t

|K|

3∑

i=1

∫

ei
K

f̂(uin
i , uout

i , ~νi)ds

where uK is the cell average of the numerical solution over the triangle K, uin
i and uout

i are

the values of the numerical solution on the edge ei
K evaluated from the DG polynomials

defined in K and in Ki respectively. Given the approximation space Pk(K), with sufficient

accuracy, the line integrals along the edges can be approximated by the (k + 1)-point Gauss

quadrature rules:

un+1
K = un

K − ∆t

|K|

3∑

i=1

k+1∑

β=1

f̂(ui,β
K , ui,β

Ki
, ~νi)ωβl

i
K (3.4)

where ωβ denotes the quadrature weights for the (k + 1)-point Gauss quadrature rule on

[−1
2
, 1

2
], and ui,β

K denotes the value of the DG polynomial defined on K evaluated at the β-th

Gauss quadrature point on the edge ei
K .

In [30], the authors proved that the right hand side of (3.4) can be rewritten as a mono-

tonically increasing function with respect to certain point values of the DG polynomials, thus

the maximum principle can be easily achieved by the methodology for the one-dimensional

case. These points, denoted by Sk
K on each triangle K, contain the Gauss quadrature points

on the three edges. For DG method with polynomials of arbitrary degree k, Sk
K can be

constructed by taking the Dubiner transformation of the tensor product of Gauss-Lobatto

and Gauss quadratures, which is then summarized (see [30] for details). In particular, for
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the P1-DG method under consideration in this paper, the set S1
K is defined as the six points

shown in Figure 3.1 where the symbols denote the 2-point Gaussian quadrature points for

each edge.

bb

b

b

b

b

Figure 3.1: The local stencil S1
K for P1-DG on a triangle K

Let uK(x) denote the DG polynomial on the cell K. For the P1-DG method, if the point

values of uK(x) on the three vertices are in the range [m, M ] for each K at time level n,

then the point values of uK(x) on any points inside K including on the stencil S1
K are in

the range [m, M ] due to the linearity, thus following the result in [30] the solutions of (3.4)

satisfy un+1
K ∈ [m, M ] under the following CFL condition:

a
∆t

|K|

3∑

i=1

liK ≤ 1

3
. (3.5)

Therefore, to seek a sufficient condition to ensure the maximum principle for the convection-

diffusion equations, it suffices to focus only on the diffusion part. Straightforward extension

to convection-diffusion equations can then be obtained using similar cell average splitting

approach as in the one-dimensional case. Thus we will first consider the two-dimensional

diffusion equation, i.e., (3.1) with F ≡ 0.

3.2 Monotonicity of the scheme for the diffusion part

We take in this section only the Cheng-Shu DG scheme in [2] for (3.1) with F ≡ 0 as example.

Similar analysis can also be performed with respect to IPDG scheme or LDG scheme as in

the one dimensional case. For a given triangulation Th, define the approximation space as:
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V k
h = {v : v|K ∈ P k(K)}. The DG scheme is to seek u ∈ V k

h , such that for any test function

ϕ ∈ V k
h , the following equality holds:

∂

∂t

∫∫

K

uϕdx =

∫

∂K

̂(A∇u · ~ν)ϕds −
∫

∂K

(
ũA∇ϕ

)
· ~νds +

∫∫

K

u∇ · (A∇ϕ)dx. (3.6)

The numerical fluxes on each edge ei
K are:

̂(A∇u · ~ν) = A(u−)∇u− · ~ν +
αA

liK
(uout − uin), ũA = u+A(u+), (3.7)

αA = λAα, λA = max
u,x

‖ A(u, x) ‖,

where the maximum can be taken either locally on each edge or globally over the whole

domain, ~ν is the outward unit normal vector on the edges, ||A|| is the matrix 2-norm or

the spectral radius (maximum eigenvalue in absolute value) for the symmetric matrix A, α

is again a sufficiently large positive constant to ensure stability. u± denotes the numerical

solution on the edges, evaluated from K or Ki. The ’±’ for each edge ei
K is determined by

the inner product of ~νi and a predetermined constant vector ~ν0 which is not parallel to any

edge in the mesh: for each edge ei
K in the cell K,

u− = uK , u+ = uKi
if ~ν0 · ~νi < 0;

u+ = uK , u− = uKi
if ~ν0 · ~νi > 0.

Taking ϕ = 1 on K and ϕ = 0 everywhere else,

∂

∂t
uK =

1

|K|

∫

∂K

̂(A∇u · ~ν)ds.

Therefore, the scheme satisfied by the cell averages of the DG method with forward Euler

on a triangular mesh is

un+1
K = un

K +
∆t

|K|

∫

∂K

̂(A∇un · ~ν)ds.

The integral can be approximated by a 2-point Gauss quadrature with sufficient accuracy

for P1-DG. We use xi,β (β = 1, 2) to denote the local Gauss quadrature points for each edge
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ei
K . Let ωβ (β = 1, 2) denote the corresponding quadrature weights for the 2-point Gauss

quadrature on the interval [−1
2
, 1

2
]. The scheme then becomes (omitting the superscripts for

time level n on the right hand side):

un+1
K = un

K +
∆t

|K|

3∑

i=1

liK

2∑

β=1

ωβ(Â∇u · ~νi)
∣∣∣
x=xi,β

. (3.8)

Now the idea is to rewrite the right hand side above as a convex combinations of certain

point values. To find an explicit expression for the flux (Â∇u · ~νi), we consider two different

cases.

• Case A: u− = uout, u+ = uin. For this case, we have u−
i,β = uKi

(xi,β). The subscript or

superscript (i, β, Ki) for A and ∇u will denote the value evaluated at uKi
(xi,β). Then

we have

(Â∇u · ~νi)
∣∣∣
x=xi,β

= A
i,β
Ki
∇ui,β

Ki
· ~νi +

αA

liK
(ui,β

Ki
− ui,β

K ) (3.9)

Let ~vi,β = A
i,β
Ki

~νi, then ~vi,β · ~νi = A
i,β
Ki

~νi · ~νi ≥ 0 because A is semi-positive definite.

Namely, ~vi,β is a direction pointing into Ki or along the edge ei
K . Since A is symmetric,

we have a directional derivative

A
i,β
Ki
∇ui,β

Ki
· ~νi = ∇ui,β

Ki
·
(
A

i,β
Ki

~νi

)
=

∂uKi
(x)

∂~vi,β

∣∣∣∣
x=xi,β

.

For each point xi,β on the edge ei
K , consider the straight line described by the para-

metric equation r(t) = t~vi,β + xi,β, t ∈ R, which intersects with the other two edges of

Ki at one point denoted by x∗
i,β. See Figure 3.2 (a) for for an illustration.

By the linearity of uKi
(x), the directional derivative can be written as:

∂uKi
(x)

∂~vi,β

∣∣∣∣
x=xi,β

=
uKi

(x∗
i,β) − ui,β

Ki

||xi,β − x∗
i,β||

. (3.10)

Plugging (3.10) into (3.9), we obtain:

(Â∇u · ~νi)
∣∣∣
x=xi,β

=
1

||xi,β − x∗
i,β||

uKi
(x∗

i,β) +

(
αA

liK
− 1

||xi,β − x∗
i,β||

)
ui,β

Ki
− αA

liK
ui,β

K .

(3.11)
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• Case B: u+ = uout, u− = uin. For this case, we have u−
i,β = uK(xi,β). Then

(Â∇u · ~νi)
∣∣∣
x=xi,β

= A
i,β
K ∇ui,β

K · ~νi +
αA

liK
(ui,β

Ki
− ui,β

K )

Let ~vi,β = −A
i,β
K ~νi, then ~vi,β · ~νi = −A

i,β
K ~νi · ~νi ≤ 0. Namely, ~vi,β is a direction pointing

into K or along the edge ei
K . The directional derivative is

A
i,β
K ∇ui,β

K · ~νi = ∇ui,β
K ·

(
A

i,β
K ~νi

)
= ∇ui,β

K · (−~vi,β) = −∂uK(x)

∂~vi,β

∣∣∣∣
x=xi,β

.

For each point xi,β on the edge ei
K , consider the straight line described by the paramet-

ric equation r(t) = t~vi,β +xi,β, t ∈ R, which intersects with the other two edges of K at

one point denoted by x∗
i,β. See Figure 3.2 (b) for for an illustration. Assume x∗

i,β lies on

the edge ej
K (j 6= i). Since uK(x) is a linear function, uK(x∗

i,β) can be represented as a

linear combination of point values at the two Gauss quadrature points u
j(i,β),1
K , u

j(i,β),2
K

on the edge ej
K where j depends on i and β:

uK(x∗
i,β) = c1

i,βu
j(i,β),1
K + c2

i,βu
j(i,β),2
K (3.12)

with c1
i,β, c

2
i,β ∈ [−

√
3−1
2

,
√

3+1
2

] and c1
i,β + c2

i,β = 1.

b

b

bc

K

Ki

xi,β

x∗
i,β

~νi

~vi,β

(a) Case A

b

b

bb bc

K

Ki

xi,β

x∗
i,βxj,1 xj,2

~νi

~vi,β

(b) Case B

Figure 3.2: Two cases for the numerical flux on triangular meshes

By the linearity of uK(x), the directional derivative can be written as:

∂uK(x)

∂~vi,β

∣∣∣∣
x=xi,β

=
uK(x∗

i,β) − ui,β
K

||xi,β − x∗
i,β||

.
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Thus we obtain:

(Â∇u · ~νi)
∣∣∣
x=xi,β

= − 1

||xi,β − x∗
i,β||

uK(x∗
i,β) −

(
αA

liK
− 1

||xi,β − x∗
i,β||

)
ui,β

K +
αA

liK
ui,β

Ki
.

(3.13)

By the exactness of the quadrature in Figure 3.1 for the linear polynomial uK(x) on the

triangle K (see [30] for how to construct this quadrature), we can decompose the cell average

un
K as a convex combination of the point values on the stencil S1

K ,

un
K =

1

|K|

∫∫

K

uK(x)dx =

3∑

i=1

2∑

β=1

1

3
ωβui,β

K . (3.14)

Let hi,β denote ||xi,β −x∗
i,β||. Combining (3.11), (3.12), (3.13) and (3.14), we can rewrite

(3.8) as:

un+1
K = un

K +
∆t

|K|

3∑

i=1

liK

2∑

β=1

ωβ (Â∇u · ~νi)
∣∣∣
x=xi,β

=
1

2
un

K +
1

2
un

K +
∆t

|K|

3∑

i=1

liK

2∑

β=1

ωβ (Â∇u · ~νi)
∣∣∣
x=xi,β

=
3∑

i=1

2∑

β=1

ωβ

(
1

6
ui,β

K + ∆t
liK
|K| (Â∇u · ~νi)

∣∣∣
x=xi,β

)
+

1

2
un

K

=
∑

i∈CaseA

2∑

β=1

ωβ

[(
1

6
− ∆t

αA

|K|

)
ui,β

K +
∆t

|K|
liK
hi,β

uKi
(x∗

i,β) +
∆t

|K|

(
αA − liK

hi,β

)
ui,β

Ki

]

+
∑

i∈CaseB

2∑

β=1

ωβ

[(
1

6
− ∆t

αA

|K| +
∆t

|K|
liK
hi,β

)
ui,β

K + ∆t
αA

|K|u
i,β
Ki

]

+
∑

i∈CaseB

2∑

β=1

ωβ

(
− ∆t

|K|
liK
hi,β

uK(x∗
i,β)

)
+

1

2
un

K . (3.15)

Notice that we can rewrite the cell average as

un
K =

1

3

3∑

i=1

un
K =

1

3

(
∑

i∈CaseA

un
K +

∑

i∈CaseB

un
K

)
=

1

3

(
∑

i∈CaseA

un
K +

∑

i∈CaseB

2∑

β=1

ωβun
K

)
,

so the third term in (3.15) can be further expanded:

∑

i∈CaseB

2∑

β=1

ωβ

(
− ∆t

|K|
liK
hi,β

uK(x∗
i,β)

)
+

1

2
un

K
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=
∑

i∈CaseB

2∑

β=1

ωβ

(
− ∆t

|K|
liK
hi,β

uK(x∗
i,β)

)
+

1

6

(
∑

i∈CaseA

un
K +

∑

i∈CaseB

2∑

β=1

ωβun
K

)

=
∑

i∈CaseB

2∑

β=1

ωβ

(
− ∆t

|K|
liK
hi,β

uK(x∗
i,β)

)
+

1

6

∑

i∈CaseB

2∑

β=1

ωβ

3∑

k=1

2∑

γ=1

1

3
ωγu

k,γ
K +

1

6

∑

i∈CaseA

un
K

=
∑

i∈CaseB

2∑

β=1

ωβ

[
1

18

3∑

k=1

2∑

γ=1

ωγu
k,γ
K − ∆t

|K|
liK
hi,β

(
c1
i,βu

j(i,β),1
K + c2

i,βu
j(i,β),2
K

)]
+

1

6

∑

i∈CaseA

un
K

=
∑

i∈CaseB

2∑

β=1

ωβ

[
1

18

∑

k 6=j

2∑

γ=1

ωγu
k,γ
K +

(
1

36
− ∆t

|K|
liK
hi,β

c1
i,β

)
uj,1

K +

(
1

36
− ∆t

|K|
liK
hi,β

c2
i,β

)
uj,2

K

]

+
1

6

∑

i∈CaseA

un
K ,

where in the last step we use the fact that ω1 = ω2 = 1
2
. Finally, we have an equivalent

formulation of (3.8):

un+1
K =

∑

i∈CaseA

2∑

β=1

ωβ

[(
1

6
− ∆t

αA

|K|

)
ui,β

K +
∆t

|K|
liK
hi,β

uKi
(x∗

i,β) +
∆t

|K|

(
αA − liK

hi,β

)
ui,β

Ki

]

+
∑

i∈CaseB

2∑

β=1

ωβ

[(
1

6
− ∆t

αA

|K| +
∆t

|K|
liK
hi,β

)
ui,β

K + ∆t
αA

|K|u
i,β
Ki

]
+

1

6

∑

i∈CaseA

un
K

+
∑

i∈CaseB

2∑

β=1

ωβ

[
1

18

∑

k 6=j

2∑

γ=1

ωγu
k,γ
K +

(
1

36
− ∆t

|K|
liK
hi,β

c1
i,β

)
uj,1

K +

(
1

36
− ∆t

|K|
liK
hi,β

c2
i,β

)
uj,2

K

]
.

(3.16)

To have a convex combination in (3.16), it suffices to require the following terms to be

non-negative, which will imply a time step restriction,

1

6
− ∆t

αA

|K| , αA − liK
hi,β

,
1

36
− ∆t

|K|
liK
hi,β

c1,2
i,β . (3.17)

Next, we derive an explicit CFL condition for a regular triangulation, namely a trian-

gulation with the minimum angle bounded uniformly away from zero. Recall that for each

triangle K, xi,β (β = 1, 2) are the two Gaussian quadrature points on the edge ei
K . By simple

geometry relationship, we have,

hi,β ≥ C̃ sin(θ̃)liK ,
liK
hi,β

≤ 1

C̃ sin(θ̃)
(3.18)
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Here C̃ =
D(xi,β)

li
K

, with D(xi,β) denotes the distance from the point xi,β to vertices of the

edge ei
K . Notice that there is a uniform lower bound enforcing C̃ ≥ 3−

√
3

6
, since xi,β are

2-point Gauss quadrature points on ei
K . θ̃ here denotes the angle between the edge ei

K and

ej
K or ej

Ki
(j 6= i) on which the point x∗

i,β lies on. Thus, we let θi,j
K , i, j ∈ 1, 2, 3, i 6= j denote

the angles between edges ei
K and ej

K . Notice that c1,2
i,β ∈ [−

√
3−1
2

,
√

3+1
2

], it suffices to have the

following conditions for the terms in (3.17) to be non-negative,

αA ≥ 1

C̃ minK,i,j

(
sin(θi,j

K )
) , ∆t

αA

|K| ≤
1

6
, ∆t

1

C̃ minK,i,j

(
sin(θi,j

K )
) 1

|K| ≤
√

3 − 1

36
,

which can be simplified as

αA ≥ (3 +
√

3)
1

minK,i,j

(
sin(θi,j

K )
) , ∆t

αA

|K| ≤
√

3 − 1

36
. (3.19)

3.3 A second order maximum-principle-satisfying DG scheme

For a given triangulation Th, define the approximation space as: V k
h = {v : v|K ∈ P k(K)}.

The DG scheme for a convection-diffusion problem (3.1) is to seek u ∈ V k
h , such that for any

test function ϕ ∈ V k
h , the following equality holds:

∂

∂t

∫∫

K

uϕdx =

∫∫

K

F · ∇ϕdx −
∫

∂K

F̂ · ~νϕds

+

∫

∂K

̂(A∇u · ~ν)ϕds −
∫

∂K

(
ũA∇ϕ

)
· ~νds +

∫∫

K

u∇ · (A∇ϕ)dx,

(3.20)

with the numerical fluxes:

F̂ · ~ν =
1

2

(
F(uin) · ~ν + F(uout) · ~ν − a(uout − uin)

)
, a = max

u,~ν
|F′(u) · ~ν|,

̂(A∇u · ~ν) = A(u−)∇u− · ~ν +
αA

liK
(uout − uin), ũA = u+A(u+).

For forward Euler time stepping, take the test function as the indicator function on the

cell K, and replace the line integral with 2-point Gauss quadrature, we get the cell average

scheme for P1-DG method:

un+1
K = un

K − ∆t

|K|

3∑

i=1

liK

2∑

β=1

ωβ(F̂ · ~ν)i,β +
∆t

|K|

3∑

i=1

liK

2∑

β=1

ωβ(Â∇u · ~νi)
∣∣∣
x=xi,β

. (3.21)
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We can decompose (3.21) as un+1
K = CK + DK with

CK =
1

2
un

K − ∆t

|K|

3∑

i=1

liK

2∑

β=1

ωβ(F̂ · ~ν)i,β (3.22)

DK =
1

2
un

K +
∆t

|K|

3∑

i=1

liK

2∑

β=1

ωβ(Â∇u · ~νi)
∣∣∣
x=xi,β

(3.23)

By the results in [30], the convection part (3.22) is a monotonically increasing function of

point values of DG polynomials under the CFL condition a ∆t
|K|

3∑
i=1

liK ≤ 1
6
. By the discussion

in the previous subsection, the diffusion part (3.23) is a convex combination of point values

of DG polynomials under the constraints αA ≥ (3 +
√

3) 1

minK,i,j(sin(θi,j
K

))
, ∆tαA

|K| ≤
√

3−1
72

, with

one half smaller time step than (3.19) since the cell average un
K is halved in (3.23).

Notice that at time level n, for the linear DG polynomials uK(x), if uK(x) ∈ [m, M ] at

three vertices of the triangle K, then uK(x) ∈ [m, M ] for any x ∈ K. Thus, we have,

Theorem 3.1. Consider the P1-DG scheme (3.20), if the DG polynomial at time level n on

each triangle K satisfies uK(x) ∈ [m, M ] on all three vertices of the triangle K, then the cell

average at next time step satisfies the maximum principle, i.e., un+1
K ∈ [m, M ], under the

CFL conditions:

a
∆t

|K|

3∑

i=1

liK ≤ 1

6
, ∆t

αA

|K| ≤
√

3 − 1

72
, αA ≥ (3 +

√
3)

1

minK,i,j

(
sin(θi,j

K )
) , (3.24)

where θi,j
K is defined as in Section 3.2, and αA = λAα, λA = max

u∈[m,M ],x∈Th

‖ A(u, x) ‖.

Remark 3.2. The CFL conditions (3.24) is only a sufficient condition rather than a nec-

essary condition for maximum principle to hold. Larger time steps are possible by trying

different expansions in (3.15).

Given linear polynomials pK(x) as the DG polynomial defined on triangle K with un
K

as its cell average over K at time level n, if un
K ∈ [m, M ], the following limiter ensures

p̃K(x) ∈ [m, M ] for any x ∈ K:

p̃K(x) = θ(pK(x) − un
K) + un

K , θ = min

{
1,

∣∣∣∣
M − un

K

MK − un
K

∣∣∣∣ ,
∣∣∣∣

m − un
K

mK − un
K

∣∣∣∣
}

(3.25)
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where Mk and mk are the maximum and minimum of pK(x) on the triangle K. Notice that

the limiter (3.25) does not change the cell average. Moreover, we have ||p̃K −pK ||∞ = O(h2)

if the exact solution is smooth, see [26] for the proof.

An efficient implementation of our maximum-principle-satisfying P1-DG method (3.20)

is:

1. Find the desired bound [m, M ] by evaluating the minimum and maximum of the ini-

tial condition. Given the triangular mesh, find the mesh constant minK,i,j

(
sin(θi,j

K )
)

and a direction ~ν0 which is not parallel to any edge in the mesh. Calculate λA =

max
u∈[m,M ],x∈Th

||A(u, x)||. Take the penalty constant as α = (3 +
√

3) 1
λA

1

minK,i,j(sin(θi,j
K

))
as

suggested by (3.24).

2. Choose a discretization of the initial data such that the cell averages of the numerical

initial data are in [m, M ]. For instance, the standard L2-projection.

3. Use the second order SSP time discretizations, for instance, the second order Runge-

Kutta method (2.16).

4. For each forward Euler time stepping in (2.16), use the limiter (3.25) to pre-process

the DG polynomials.

5. Consider the DG scheme with limiter as an operator. Given the numerical solution un

at time level n as an input, let ũn+1 denote the output with a normal time step,

• if the cell averages of ũn+1 violates the maximum principle, then go back to time

level n and evolve un with a smaller time step suggested by (3.24).

• otherwise use ũn+1 as the solution at the next time level, i.e., set un+1 = ũn+1 and

proceed.

This algorithm is guaranteed to produce numerical solutions within the range [m, M ]

with uniform second order accuracy for smooth exact solutions.
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Remark 3.3. The methodology discussed above can also be extended to the LDG or IPDG

spatial discretizations on 2D triangular meshes, in which cases all those desirable numerical

properties mentioned such as strict maximum principle satisfying, conservation of mass and

second order of accuracy would still be preserved as long as the proper time step restrictions

are respected. Detailed algebra and theoretical proofs are omitted to keep the paper reasonably

concise. From a practical point of view, one can simply follow the efficient implementation

approach proposed above.

4 One dimensional numerical tests

In this section, we give numerical tests for the Cheng-Shu DG formulation [2]. The same

set of numerical experiments have also been carried out using the IPDG and LDG schemes.

The results are similar, thus we will not list them here to save space.

4.1 Accuracy test

We first consider the linear equation

ut + ux = εuxx (4.1)

with initial data

u0(x) = sin(x)

on [0, 2π] and periodic boundary conditions. The exact solution is: u(x, t) = exp(−εt) sin(x−

t). We take ε = 0.001 and the final time is t = 1. The time step is taken as suggested in

(2.10). From Table 4.1, we observe the expected second order accuracy for the maximum-

principle-satisfying DG scheme.

4.2 Porous medium equations

A typical example of degenerate parabolic equations is the porous medium equation. In one

space dimension, the porous medium equation can be written as follows:

ut = (um)xx, m > 1. (4.2)
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Table 4.1: Accuracy test (α = 10)

DG without Limiter DG with Limiter
No. of Elements L1 error order L∞ error order L1 error order L∞ error order

20 1.83E-02 – 1.70E-01 – 2.82E-02 – 2.38E-01 –
40 4.55E-03 2.01 4.33E-02 1.97 6.18E-03 2.19 7.72E-02 1.62
80 1.13E-03 2.00 1.09E-03 1.99 1.38E-03 2.16 2.09E-03 1.89
160 2.82E-04 2.01 2.73E-04 2.00 3.25E-04 2.09 5.43E-04 1.94
320 7.03E-05 2.01 6.82E-05 2.00 7.69E-05 2.08 1.35E-04 2.01
640 1.75E-05 2.01 1.70E-05 2.01 1.82E-05 2.08 2.95E-05 2.19

We test the proposed scheme using the Barenblatt solution:

Bm(x, t) = t−k[(1 − k(m − 1)

2m

|x|2
t2k

)+]
1

m−1 (4.3)

which is an exact solution to (4.2) with compact support. The initial condition is taken to be

Bm(x, 1), and the numerical solution is computed to t = 2, with zero boundary conditions.

We compare the numerical solutions obtained from the maximum-principle-satisfying DG

scheme to the analytical solutions, see Figure 4.1 (a). The maximum-principle-satisfying DG

scheme resolves the discontinuities in the solutions quite well, and keeps the solution strictly

within the initial bounds everywhere for all time. If the DG schemes are applied without the

limiter, there are significant undershoots near the foot of the numerical solution. See Figure

4.1 (b) and more clearly in the zoomed version Figure 4.1 (c).

4.3 The Buckley-Leverett equation

Now we consider the convection-diffusion Buckley-Leverett equation, which is a model often

used in reservoir simulations and a standard numerical test, see [11].

ut + f(u)x = ε(ν(u)ux)x, (4.4)

The numerical solution is computed at t = 0.2 with ε = 0.01 and boundary condition is

u(0, t) = 1. The ν(u) and the initial condition are given as:

ν(u) =

{
4u(1 − u) 0 ≤ u ≤ 1

0 otherwise
, u(x, 0) =

{
1 − 3x 0 ≤ x ≤ 1

3

0 1
3
≤ x ≤ 1

(4.5)
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(a) Dashed lines: The numerical solutions computed by maximum-principle-satisfying DG
schemes for m = 2, 3, 5, 8 on a uniform mesh with mesh size h = 0.075. Solid lines: The
exact solutions.
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(b) Comparison of the numerical solutions (m = 5).
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(c) Zoomed-in numerical solutions (m = 5).

Figure 4.1: The numerical results for one-dimensional porous medium equation.

29



f(u) has an s-shape:

f(u) =
u2

u2 + (1 − u)2

As shown in Figure 4.2, the maximum-principle-satisfying DG scheme provides good approx-

imation and at the same time eliminates all the negative values.
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(a) Numerical solutions computed by DG with and without
limiter.
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(b) Zoomed in results near the corner of the numerical solu-
tions.

Figure 4.2: The numerical results for one-dimensional Buckley-Leverett equation.
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5 Two-dimensional numerical tests

In this section, we list numerical results obtained from the Cheng-Shu DG formulation on

triangular meshes. Again the numerical results for 2D LDG/IPDG formulations are similar

to those obtained from Cheng-Shu DG formulation, thus only one example of those two

will be shown for illustration purpose. All tables and figures in this section refer to the

results obtained from the Cheng-Shu DG formulation unless otherwise stated. We first give

examples of the meshes that we use in the computation, see Figure 5.1. As we have shown

in Section 3, our maximum-principle-satisfying DG schemes put no additional constraints

on the shape of the elements. To be more specific, the schemes would preserve the physical

bounds strictly even if there are obtuse elements in the triangulation. All the meshes in this

section are unstructured, generated by EashMesh [13]. If not specified, the unstructured

meshes used in the computation are refined independently, which means for each refinement

we generate a new mesh with half of the previous mesh size.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Triangular mesh.
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0

0.2
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0.8

1

(b) Mesh containing obtuse elements.

Figure 5.1: An illustration of meshes used in Section 5.1.
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5.1 Accuracy test

Similar as in the one-dimensional case, we test the accuracy of the maximum-principle-

satisfying DG scheme by solving:

ut + ∇ · u = ε∆u, u0(x) = sin(2π(x + y)) (5.1)

on (x, y) ∈ [0, 1]× [0, 1] with periodic boundary conditions. The exact solution is u(x, y, t) =

exp(−8π2εt) sin(2π(x+y−2t)). We take ε = 0.0001 and the final time is t = 0.1. The schemes

are implemented as suggested in Section 3.3. Again, we observe the expected second order

convergence rates for all three types of DG spatial discretizations (Cheng-Shu DG, LDG

and IPDG) on meshes like that in Figure 5.1 (a), see Table 5.1 and Table 5.3. We also

compute the numerical solutions on the obtuse mesh shown in Figure 5.1 (b), where the

mesh size h = 0.025, and the largest angle among all the elements is about 2π
3

. From

the DG scheme without limiter, we obtain the maximum and minimum of the numerical

solutions to be 1.0958 and −1.0783 respectively; while by the DG scheme with limiter, the

maximum and minimum of the numerical solutions are exactly 1.0000 and −1.0000, the same

as indicated by the initial conditions. If we refine the unstructured obtuse mesh like Figure

5.1 (b) in a structured way, namely every triangle is divided into four similar subtriangles

for each refinement, we still observe uniform second order accuracy for the DG scheme with

or without limiter, see Table 5.2, as expected from the conclusions in Section 3.

Table 5.1: Two dimensional accuracy test (α = 10).

DG without Limiter DG with Limiter
Mesh size L1 error order L∞ error order L1 error order L∞ error order

0.1 1.71E-02 – 1.72E-01 – 2.59E-02 – 1.57E-01 –
0.05 4.27E-03 2.00 4.90E-02 1.81 6.00E-03 2.11 5.26E-02 1.58
0.025 1.05E-03 2.02 1.23E-02 2.00 1.33E-03 2.17 1.73E-02 1.61
0.0125 2.56E-04 2.04 3.61E-03 1.77 2.85E-04 2.23 3.90E-03 2.15
0.00625 6.12E-05 2.06 8.37E-04 2.11 6.19E-05 2.21 8.41E-04 2.21
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Table 5.2: Two dimensional accuracy test on obtuse meshes.

DG without Limiter DG with Limiter
Mesh size L1 error order L∞ error order L1 error order L∞ error order

0.025 4.21E-03 – 1.46E-01 – 7.29E-03 – 1.34E-01 –
0.0125 8.92E-04 2.24 4.58E-02 1.67 1.51E-03 2.27 4.57E-02 1.56
0.00625 1.92E-04 2.22 1.16E-02 1.98 2.85E-04 2.41 1.47E-02 1.64
0.003125 4.21E-05 2.19 2.76E-03 2.07 5.12E-05 2.48 3.73E-03 2.02

Table 5.3: Two dimensional accuracy test for LDG and IPDG.

LDG accuracy results IPDG accuracy results
Mesh size L1 order L1 (limiter) order L1 order L1 (limiter) order

0.1 1.70E-02 – 2.59E-02 – 1.71E-02 – 2.60E-02 –
0.05 4.26E-03 2.00 5.98E-03 2.12 4.28E-03 2.00 6.00E-03 2.11
0.025 1.04E-03 2.03 1.32E-03 2.18 1.06E-03 2.02 1.34E-03 2.17
0.0125 2.52E-04 2.05 2.80E-04 2.24 2.58E-04 2.03 2.87E-04 2.22
0.00625 6.03E-05 2.06 6.31E-05 2.15 6.28E-05 2.04 6.35E-05 2.18

5.2 Porous medium equations

To test the proposed scheme with the two-dimensional porous medium equation:

ut = ∆(u2) (5.2)

with a periodic boundary condition and the initial condition

u0(x, y) =

{
1, if (x, y) ∈ [−1

2
, 1

2
] × [−1

2
, 1

2
]

0, if otherwise on (x, y) ∈ [−1, 1] × [−1, 1],
(5.3)

we compute our numerical solution up to time t = 0.005. For this degenerate parabolic

equation, if we solve with the DG scheme only, the non-physical negative values will grow as

time steps accumulate, while the maximum-principle-satisfying DG scheme will always keep

the numerical solution nonnegative, thus also ensuring the well-posedness of the equation

(5.2) and the stability of the numerical scheme. In Figure 5.2 (b), we compare our numerical

results with the non-conventional finite volume scheme proposed in [25]. We also compare

our maximum-principle-satisfying DG scheme with the unlimited DG scheme, see Figure 5.3.

Here we only computed our numerical solutions up to a relatively shorter time, since the

negative values in the unlimited DG scheme will grow as time accumulates, and eventually
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lead to blowing up of the numerical solution. Nevertheless, our limited DG solution can be

used for long time. The minimum of our numerical solutions on different meshes is reported

in Table 5.2, which turns out to be identically zero.
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Figure 5.2: The figure on the left and the dotted curve on the right are the numerical
solutions at T = 0.005 of the maximum-principle-satisfying DG scheme on a h = 0.0125
mesh. The figure on the right is the cut of the numerical solution computed by maximum-
principle-satisfying DG compared with the reference solution computed by the maximum-
principle-satisfying finite volume WENO scheme [25] on a 128 × 128 mesh.

Mesh size 0.05 0.025 0.0125 0.00625
DG with limiter 0 0 0 0

Table 5.4: The minimum of the numerical solutions at t = 0.005.

6 Applications to incompressible Navier-Stokes equa-

tions

6.1 Preliminaries

To extend our maximum-principle-satisfying DG scheme to incompressible Navier-Stokes

equations, we consider the following vorticity and stream function formulation:

wt + (uw)x + (vw)y =
1

Re
∆w (6.1)
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Figure 5.3: The numerical solutions computed by DG with and without limiter at t = 0.0005.
The mesh size h = 0.05

∆φ = w, 〈u, v〉 = 〈−φy, φx〉 (6.2)

w(x, y, 0) = w0(x, y), 〈u, v〉 · ~ν = given on ∂Ω.

The exact solution of (6.1)-(6.2) satisfies the maximum principle, i.e.,

w(x, y, t) ∈ [m, M ], ∀(x, y) ∈ Ω, ∀t ≥ 0

where m = min w0(x, y), M = maxw0(x, y). In [12], Liu and Shu developed a high order

DG method for solving (6.1). The flowchart of the scheme is:

• Solve (6.2) by a standard continuous finite element Poisson solver for the stream func-

tion φ.

• Take u = 〈u, v〉 = 〈−φy, φx〉, notice here 〈u, v〉 · ~νi is continuous across the edges ei

since φ is continuous.

• Finally solve (6.1) by a DG scheme defined as follows: for a given triangulation Th of

the domain Ω, define the approximation spaces as:

V k
h = {v : v|K ∈ P k(K), ∀K ∈ Th}
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For given u = 〈u, v〉, which is obtained from the previous step, and test function

ϕ ∈ V k
h , the DG scheme is to find w ∈ V k

h such that

∫∫

K

(∂tw)ϕdx−
∫∫

K

wu · ∇ϕdx +
∑

e∈∂K

∫

e

u · ~νŵϕds

=
1

Re

(
∑

e∈∂K

∫

e

(∇̃w · ~ν)ϕds −
∑

e∈∂K

∫

e

w̃(∇ϕ · ~ν)ds +

∫∫

K

w∆ϕdx

)
(6.3)

Since u ·~ν is continuous across the element edges, u ·~νŵ can be defined as the Lax-Friedrichs

upwind biased flux, See [30]:

u · ~νŵ =
1

2
[u · ~ν(win + wout) − a(win − wout)], (6.4)

where a is taken to be the maximum of |u ·~ν|, either globally or locally. The diffusion fluxes

∇̃w · ~ν, w̃ are chosen as described in Section 3, (3.7):

∇̃w · ~ν = ∇w− +
α

liK
(wout − win), w̃ = w+ (6.5)

We use the same triangular mesh as in Section 3, and both the Poisson solver and the DG

method (6.3) use P 1 elements.

In [30], it is proved that for incompressible Euler equations on triangular meshes, the

high order DG scheme, which is the same as in (6.3) omitting the diffusion terms, coupled

with a linear scaling limiter, satisfies the maximum principle under the CFL condition:

a
∆t

|K|

3∑

i=1

liK ≤ 2

3
ŵ1, (6.6)

where ŵ1 is the one-dimensional Gauss-Lobatto quadrature weight for two cell ends. In

particular, for the P1 case, we have the following CFL condition for purely convection case:

a
∆t

|K|

3∑

i=1

liK ≤ 1

3
(6.7)

Following the discussion in Section 3 and the result in [30], Theorem 3.1 also holds for (6.1).
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6.2 Accuracy test

Firstly, we solve (6.1) with the initial condition: w(x, y, 0) = −2 sin(x) sin(y) on [0, 2π] ×

[0, 2π] and periodic boundary conditions. The exact solution is available: w(x, y, t) =

−2 sin(x) sin(y) exp(−2t/Re). In the computation, the Reynolds number is Re = 100 and

the final time is T = 0.1. As shown in Table 6.1, the maximum-principle-satisfying DG

scheme is second order accurate.

Table 6.1: Accuracy test.

DG without Limiter DG with Limiter
Mesh size L1 error order L∞ error order L1 error order L∞ error order

0.8 3.36E-02 – 2.22E-01 – 3.85E-02 – 2.50E-01 –
0.4 8.71E-03 1.94 5.84E-02 1.93 8.73E-03 2.14 5.83E-02 2.10
0.2 2.18E-03 2.00 1.57E-02 1.90 2.18E-03 2.00 1.57E-02 1.90
0.1 5.78E-04 1.92 3.66E-03 2.10 5.78E-04 1.92 3.72E-03 2.07
0.05 1.50E-04 1.95 1.00E-03 1.87 1.50E-04 1.92 1.00E-03 1.90

6.3 The vortex patch problem

We test our maximum-principle-satisfying DG scheme by solving Navier-Stokes equations

with the initial condition:

w0(x, y, 0) =





−1, if (x, y) ∈ [−π
2
, 3π

2
] × [−π

4
, 3π

4
]

1, if (x, y) ∈ [−π
2
, 3π

2
] × [−5π

4
, 7π

4
]

0, if otherwise on [0, 2π] × [0, 2π]
(6.8)

and periodic boundary conditions. Reynolds number is specified to be Re = 100. We

compare our numerical scheme with the unlimited DG scheme at t = 0.1 (see Table 6.2) and

t = 1 (see Figure 6.1).

Table 6.2: Maximum and minimum of the numerical solutions at T = 0.1.
DG without Limiter DG with Limiter

Mesh size Min Max Min Max
0.8 -1.002485131209995 1.008209167432207 -0.996833462986856 1.000000000000000
0.4 -1.012248342818721 1.029509746350882 -1.000000000000000 1.000000000000000
0.2 -1.063529424090108 1.048046525326357 -1.000000000000003 1.000000000000016
0.1 -1.028127448686370 1.037932424206786 -1.000000000000000 1.000000000000000
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(a) mesh size is 0.1

(b) mesh size is 0.1

Figure 6.1: The contour of vorticity at time t = 1.
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7 Concluding remarks

In this paper, we present second order accurate maximum-principle-satisfying discontinuous

Galerkin schemes for convection-diffusion equations. Through careful theoretical analysis

and extensive numerical tests, we show that under suitable CFL conditions, with a simple

scaling limiter involving little additional computational cost, the numerical schemes sat-

isfy the strict maximum principle while maintaining uniform second order accuracy. The

methodology works on both structured and unstructured triangular meshes, and also for

two dimensional incompressible Navier-Stokes equations in the vorticity / streamfunction

formulation. An important application is the positivity-preserving property for nonlinear

degenerate parabolic equations, which may become ill-posed for negative values. The effec-

tiveness of the maximum-principle-satisfying DG schemes has been demonstrated through

extensive numerical examples including two-dimensional porous medium equations and the

vortex patch problems. For maximum principle preserving, the proposed schemes require

only slightly more restrictive time step restrictions than that required for linear stability,

with explicit SSP time discretizations. Generalizations to implicit time marching schemes

constitute our ongoing work. It would also be interesting to generalize the result to higher

order discontinuous Galerkin schemes, although this appears to be difficult and there might

be a need to modify the numerical fluxes used in the DG formulation.
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