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Abstract

The convergence to steady state solutions of the Euler equations for weighted compact

nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22-44

and Zhang S., Jiang S and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied

through numerical tests. Like most other shock capturing schemes, WCNS also suffers from

the problem that the residue can not settle down to machine zero for the computation of

the steady state solution which contains shock waves but hangs at the truncation error level.

In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput.

31, 273-305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216-238],

to improve the convergence to steady state solutions for WENO schemes, are generalized

to the WCNS. Detailed numerical studies in one and two dimensional cases are performed.

Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS.

The residue of various order WCNS can settle down to machine zero for typical cases while

the small post-shock oscillations can be removed.
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1 Introduction

In this paper we study the steady state convergence of weighted compact schemes. Such

schemes are combinations of weighted essentially non-oscillatory (WENO) schemes and com-

pact schemes.

WENO schemes were first proposed by Liu et al. [11]. It is an extension of the essentially

non-oscillatory (ENO) schemes introduced by Harten et al. [7]. Using a cell average approach

(finite volume framework), Liu et al. [11] converted an r-th order ENO scheme to an (r+1)-

th order WENO scheme. Based on the pointwise finite difference ENO scheme [15, 16] and

by a careful design of the smoothness indicator used in the nonlinear weights, the WENO

scheme in [9] can achieve the optimal (2r − 1)-th order accuracy when converting an r-th

order ENO scheme, while still keeping the essentially non-oscillatory property near shock

waves.

Even though the order of accuracy for explicit finite difference WENO schemes can be

designed to be arbitrarily high, such as the eleventh order WENO scheme developed by

Balsara and Shu [2], the resolution of short waves of such high order explicit finite difference

schemes is still not ideal.

Based on the cell-centered compact scheme proposed by Lele [10], Deng and Zhang [6]

developed a class of weighted compact nonlinear schemes (WCNS) using the idea of WENO

interpolation for the conservative variables. Instead of the conservative variables, Zhang et

al. [19] extended WCNS to higher order weighted compact schemes by a direct weighted

interpolation of the flux on the cell interface. The resulted flux type WCNS has similar

formulae to those of the regular WENO schemes. Hence, the detailed analysis and even

many pieces of the code can be directly copied from those of the regular WENO schemes.

Compared with the regular WENO schemes, WCNS has the same ability to capture

strong discontinuities, while the resolution of short waves is improved and numerical dissi-

pation is reduced [19].

The WENO and WCNS schemes are high order finite difference schemes which can
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capture strong discontinuities. They have been extensively applied to various multi-scale

problems such as shock-turbulence interaction [1], shock induced vortex breakdown [22],

aeroacoustics [23] as well as the flow over complex configuration [5].

However, there are still issues that should be studied. One of the most interesting issues

is the convergence to steady state solutions, given by the equation

d
∑

i=1

∂Fi(U)

∂xi

= 0 (1.1)

where U is the vector of the conservative variables, Fi(U) is the (usually nonlinear) flux

function in the i-th direction, and d is the spatial dimension. It can be achieved by the time

marching method that solves the solution of the time-dependent equation

∂U

∂t
+

d
∑

i=1

∂Fi(U)

∂xi

= 0. (1.2)

When the time derivative ∂U
∂t

approaches zero, or equivalently when the residue of the nu-

merical scheme approaches machine zero, the steady state solution of the equation (1.1) is

obtained. The key of this method is the convergence of the computational procedure which

means that the residue should decrease to machine zero.

However, when there are strong discontinuities, which are common in supersonic flows,

the residue of shock capturing schemes often cannot settle down to machine zero but will stop

at the truncation error level, far above machine zero [17, 21]. Numerical tests show that this

difficulty is related to the slight post shock oscillations [17, 21]. Even though there has been

a debate on the importance of driving the residue to machine zero, as the numerical error will

still be at the truncation error level anyway, these slight post shock oscillations are however

troublesome under a few scenarios. First, for multi-scale flows such as supersonic turbulence

and shock associated noise, these post-shock oscillations may be confused with the multi-

scale feature such as aeroacoustic character and the fluctuation of turbulence. The amplitude

of the shock-associated noise may be smaller than the numerical post-shock oscillation. For

instance, the radiated pressure fluctuation is less than 10−4 for the “terrifyingly loud” noise

of 114dB of turbo-jets [4], which is smaller than the slight numerical post-shock oscillation
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for a Mach 2 steady shock wave. Second, there are a lot of local unsteady flow features such

as the shock boundary layer interaction, shock vortex interaction, etc. Such interactions will

often result in a locally unsteady movement of the shock wave, which may be confused by the

unsteady movement resulted from the post-shock numerical oscillation. In many cases, it is

difficult to distinguish between the self-induced unsteady behavior and the artificial unsteady

behavior resulted from the post-shock numerical oscillations. Third, when one uses the time

marching method to solve the unsteady equation to approach the steady state solution, the

residue is often used as a criterion to stop the computation. If the residue refuses to approach

machine zero or a value small enough, one can no longer use the size of the average residue

to determine when to stop the computation, and must rely on experience including a visual

comparison of the flow variables after many time steps to make this determination.

In previous work [21, 20], we proposed two techniques to improve the convergence of

the WENO scheme to steady state solutions. The first technique [21] is a new smoothness

indicator. By a detailed analysis, we found that the traditional smoothness indicator is not

adequate in the near region of the steady shock wave. Hence, we proposed a new smoothness

indicator that is better in this region. In the second approach [20], we found that the Roe

average procedure used in the local characteristic projection can influence the convergence

history. Hence, we used upwind biased interpolations instead of the Roe average in this

projection. Both of these techniques can result in the residue settling down to machine zero

for many one and two dimensional test cases.

In this paper, we generalize these two techniques to the WCNS schemes, with the ob-

jective of testing and comparing the convergence performance of these techniques for steady

state solutions. Typical one and two dimensional test cases are given. Numerical results

demonstrate that the residue can reach machine zero with these two techniques in many test

cases.

The paper is organized as follows. In the second section, we give a brief overview of the

methodology of the WCNS schemes and the traditional method to compute the eigenvectors.
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In section 3, we describe the generalization of the two techniques to improve the convergence

performance to steady states. Section 4 contains our numerical tests and comparisons. The

last section is our conclusion.

2 Methodology of WCNS

In this section, we give a brief overview of the finite difference WCNS schemes including

the construction of WCNS, smoothness indicator, flux splitting and the discretization of the

time derivative.

2.1 Construction of WCNS

We consider numerical approximations to the solution of the scalar conservation law

∂u

∂t
+

∂f(u)

∂x
= 0. (2.1)

A semidiscrete finite difference scheme can be written as

∂ui

∂t
= −f ′

i (2.2)

where f ′

i is the approximation to the spatial derivative of the physical flux f(u) at the

grid node xi. In WCNS, this approximation is computed by a combination of the linear

cell-centered compact scheme proposed by Lele [10] and the WENO interpolation [19, 14].

The linear cell-centered compact scheme proposed by Lele [10] has the following form

βf ′

i−2 + αf ′

i−1 + f ′

i + αf ′

i+1 + βf ′

i+2 = c
fi+ 5

2

− fi− 5

2

5△x
+ b

fi+ 3

2

− fi− 3

2

3△x
+ a

fi+ 1

2

− fi− 1

2

△x
. (2.3)

The left hand side contains the spatial derivatives f ′

i at the grid nodes and the right hand side

contains the cell-centered value fi+ 1

2

at the center xi+ 1

2

= 1
2
(xi + xi+1) of a cell x ∈ [xi, xi+1].

The constraints on the coefficients α, β, a, b and c correspond to different orders of accuracy

that can be derived by matching the Taylor series coefficients and have been listed in the

literature [10].
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Unlike the WENO scheme [11, 9], which is an explicit numerical scheme, the linear

compact scheme given by the equation (2.3) is implicit. It is necessary to solve a five

diagonal linear system to obtain the solution of the spatial derivatives f ′

i .

There are many methods to compute the value on a cell center fi+ 1

2

. For example, Lele

[10] proposed a linear compact method. However, this linear method could not capture

strong discontinuities. To compute strong discontinuities in fluids, WCNS adopted the idea

of WENO interpolation [19, 14] to compute fi+ 1

2

from the values on a stencil. In general,

given the value fi on the points of a stencil S2r−1 = (xi−r+1, ..., xi+r−1), the flux at any point

can be evaluated as a (2r − 1)-th order interpolating polynomial:

f̂ 2r−1(x) = fi +

2(r−1)
∑

l=1

al(x − xi)
l. (2.4)

Evaluating the function at the point xi+ 1

2

, the (2r − 1)-th order approximation for fi+ 1

2

is

given by:

f̂L
i+ 1

2

= q2r−1(fi−r+1, ..., fi+r−1). (2.5)

As is known in [9], the stencil S2r−1 can also be divided into r sub-stencils

S2r−1
k = (xi+k−r+1, xi+k−r+2, ..., xi+k), k = 0, 1, ..., r − 1.

In each of these substencils, a r-th order approximation can be obtained

f̂
(k)

i+ 1

2

= qr
k(fi+k−r+1, ..., fi+k) (2.6)

where

qr
k(g0, ..., gr−1) =

r−1
∑

l=0

ar
k,lgl.

Here, ar
k,l, 0 ≤ k, l ≤ r − 1, are constant coefficients.

The value f̂L
i+ 1

2

can also be obtained by a linear combination of f̂
(k)

i+ 1

2

q2r−1(fi−r+1, ..., fi+r−1) =

r−1
∑

k=0

Cr
kq

r
k(fi+k−r+1, ..., fi+k). (2.7)
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The approximation (2.7) is linear. The resulted scheme can not capture strong shock

waves and other discontinuities. Adopting the WENO idea, nonlinear weights ωr
k are used

to replace the linear weights Cr
k to obtain a nonlinear approximation

f̂i+ 1

2

=
r−1
∑

k=0

ωr
kq

r
k(fi+k−r+1, ..., fi+k) (2.8)

where the nonlinear weight ωr
k for the stencil S2r−1

k is given by:

ωr
k =

αr
k

αr
0 + αr

1 + ... + αr
r−1

(2.9)

with

αr
k =

Cr
k

(ε + ISr
k)

p
, k = 0, 1, ..., r − 1.

Here ε is a small positive number which is introduced to avoid the denominator becoming

zero. We take ε = 10−6 and the power p = 2 in this paper. ISk is the smoothness indicator

of the flux function in the k-th substencil which adopts the formulae given by Jiang and Shu

[9] as:

ISr
k =

r−1
∑

l=1

∫ x
i+ 1

2

x
i− 1

2

△x2l−1

(

∂lf (r)(x)

∂lx

)2

dx. (2.10)

a. For r = 3

In the case of r = 3, the three third order numerical fluxes at the three substencils are

given by

f̂
(0)
j+1/2 = 1

8
(3fj−2 − 10fj−1 + 15fj),

f̂
(1)
j+1/2 = 1

8
(−fj−1 + 6fj + 3fj+1),

f̂
(2)
j+1/2 = 1

8
(3fj + 6fj+1 − fj+2).

(2.11)

The linear weights are given by

C3
0 =

1

16
, C3

1 =
10

16
, C3

2 =
5

16
, (2.12)

and the smoothness indicators are

IS0 = 13
12

(fj−2 − 2fj−1 + fj)
2 + 1

4
(fj−2 − 4fj−1 + 3fj)

2,
IS1 = 13

12
(fj−1 − 2fj + fj+1)

2 + 1
4
(fj−1 − fj+1)

2,
IS2 = 13

12
(fj − 2fj+1 + fj+2)

2 + 1
4
(3fj − 4fj+1 + fj+2)

2.
(2.13)
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It is interesting that although there are differences between the WENO interpolation

and the WENO reconstruction, they have the same smoothness indicators for the fifth order

case. Since the nonlinear weights based on these smoothness indicators may lose accuracy

at certain smooth extrema, Henrich et al. [8] introduced a mapping function as follows

gr(ω) =
ω(Cr + (Cr)

2 − 3Crω + ω2)

(Cr)2 + (1 − 2Cr)ω
, (2.14)

where ω ∈ [0, 1] and r = 0, 1, 2. This function is monotonically increasing with a finite slope

and gr(0) = 0, gr(1) = 1, gr(Cr) = Cr, g′

r(Cr) = 0 and g′′

r (Cr) = 0. The mapped weights are

given by:

ωM
r = gr(ωr), (2.15)

where ωr are computed by the equations (2.9) and (2.13). This mapped technique can

improve accuracy at smooth extrema. An additional advantage is that accuracy depends

much less on the magnitude of the parameter ε and hence it can be taken close to machine

zero. We refer to [8] for more details.

Borges et al. [3] defined a new smoothness indicator given by

βz
r =

ISr + ǫ

ISr + τ5 + ǫ
, r = 0, 1, 2 (2.16)

where τ5 = |IS2 − IS0|, and the nonlinear weights are defined by

ωz
r =

αz
r

∑2
l=0 αz

l

, αz
r =

Cr

βz
r

= Cr

(

1 +
τ5

βr + ǫ

)

, r = 0, 1, 2. (2.17)

With this new smoothness indicator, the improved scheme has similar accuracy at smooth

extrema as the mapped technique, while the CPU cost is reduced by about 25%, since no

mapping is necessary.

b. For r = 4

In the case of r = 4, the four fourth order numerical fluxes at the four substencils are

f̂ 0
i+ 1

2

= 1
48

(−15fi−3 + 63fi−2 − 105fi−1 + 105fi),

f̂ 1
i+ 1

2

= 1
48

(3fi−2 − 15fi−1 + 45fi + 15fi+1,

f̂ 2
i+ 1

2

= 1
48

(−3fi−1 + 27fi + 27fi+1 − 3fi+2),

f̂ 3
i+ 1

2

= 1
48

(15fi + 45fi+1 − 15fi+2 + 3fi+3).

(2.18)
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The linear weights are given by

C4
0 =

1

64
, C4

1 =
21

64
, C4

2 =
35

64
, C4

3 =
7

64
. (2.19)

The smoothness indicator are

IS4
0 = fi−3(79788fi−3 − 566568fi−2 + 680328fi−1 − 273336fi)

+fi−2(1027692fi−2 − 2523384fi−1 + 1034568fi)
+fi−1(1610892fi−1 − 1378728fi) + 308748f 2

i ,
IS4

1 = fi−2(38028fi−2 − 232488fi−1 + 228168fi − 71736fi+1)
+fi−1(401292fi−1 − 847224fi + 277128fi+1)
+fi(492012fi − 364968fi+1) + 79788f 2

i+1,
IS4

2 = fi−1(79788fi−1 − 364968fi + 277128fi+1 − 71736fi+2)
+fi(492012fi − 847224fi+1 + 228168fi+2)
+fi+1(401292fi+1 − 232488fi+2) + 38028f 2

i+2,
IS4

3 = fi(308748fi − 1378728fi+1 + 1034568fi+2 − 273336fi+3)
+fi+1(1610892fi+1 − 2523384fi+2 + 680328fi+3)
+fi+2(1027692fi+2 − 566568fi+3) + 79788f 2

i+3.

(2.20)

c. For r = 5

In the case of r = 5, the five fifth order numerical fluxes at the five substencils are

f̂ 0
i+ 1

2

= 1
384

(105fi−4 − 540fi−3 + 1134fi−2 − 1260fi−1 + 945fi),

f̂ 1
i+ 1

2

= 1
384

(−15fi−3 + 84fi−2 − 210fi−1 + 420fi + 105fi+1),

f̂ 2
i+ 1

2

= 1
384

(9fi−2 − 60fi−1 + 270fi + 180fi+1 − 15fi+2),

f̂ 3
i+ 1

2

= 1
384

(−15fi−1 + 180fi + 270fi+1 − 60fi+2 + 9fi+3),

f̂ 4
i+ 1

2

= 1
384

(105fi + 420fi+1 − 210fi+2 + 84fi+3 − 15fi+4).

(2.21)

The linear weights are given by

C5
0 =

1

256
, C5

1 =
9

64
, C5

2 =
63

128
, C5

3 =
21

64
, C5

2 =
9

256
. (2.22)
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The smoothness indicators are

IS0 = fi−4(1114835fi−4 − 10262008fi−3 + 17985252fi−2 − 14254360fi−1 + 4301446fi)
+fi−3(23768432fi−3 − 83962416fi−2 + 67148512fi−1 − 20460952fi)
+fi−2(74964492fi−2 − 121605168fi−1 + 37653348fi)
+fi−1(50449520fi−1 − 32188024fi) + 5347091f 2

i ,
IS1 = fi−3(329267fi−3 − 2899576fi−2 + 4740132fi−1 − 3385432fi + 886342fi+1)

+fi−2(6595472fi−2 − 22176048fi−1 + 16196128fi − 4311448fi+1)
+fi−1(19389420fi−1 − 29385264fi + 8042340fi+1)
+fi(11710736fi − 6846904fi+1) + 1114835f 2

i+1,
IS2 = fi−2(329267fi−2 − 2406328fi−1 + 3199908fi − 1845208fi+1 + 393094fi+2)

+fi−1(4914800fi−1 − 13983024fi + 8404960fi+1 − 1845208fi+2)
+fi(10783116fi − 13983024fi+1 + 3199908fi+2)
+fi+1(4914800fi+1 − 2406328fi+2) + 329267f 2

i+2,
IS3 = fi−1(1114835fi−1 − 6846904fi + 8042340fi+1 − 4311448fi+2 + 886342fi+3)

+fi(11710736fi − 29385264fi+1 + 16196128fi+2 − 3385432fi+3)
+fi+1(19389420fi+1 − 22176048fi+2 + 4740132fi+3)
+fi+2(6595472fi+2 − 2899576fi+3) + 329267f 2

i+3,
IS4 = fi(5347091fi − 32188024fi+1 + 37653348fi+2 − 20460952fi+3 + 4301446fi+4)

+fi+1(50449520fi+1 − 121605168fi+2 + 67148512fi+3 − 14254360fi+4)
+fi+2(74964492fi+2 − 83962416fi+3 + 17985252fi+4)
+fi+3(23768432fi+3 − 10262008fi+4) + 1114835f 2

i+4.
(2.23)

Taking the formulae of WENO interpolation into the physical flux fi+ 1

2

of the equation

(2.3), we can obtain WCNS schemes ranging from fourth order to ninth order accuracy.

2.2 Local characteristic projection for systems of conservative laws

For systems of conservation laws, such as the Euler equations (1.1), the procedure of the

nonlinear WENO interpolation for the numerical fluxes f̂i+ 1

2

in the equations (2.8) and (2.10)

are usually performed in the local characteristic fields, which is more robust in controlling

spurious numerical oscillations. The procedure is as follows. Let Ai+ 1

2

be the Jacobian dF
dU

at the cell interface xi+ 1

2

, the left and right eigenvectors of Ai+ 1

2

are Ls and Rs. Then, the

scalar WENO interpolation can be applied to each of the characteristic fields

f̂ r
i+ 1

2
,s

= Ls

k−1
∑

j=0

crjfi−r+j, (2.24)

f̂WENOI
i+ 1

2
,s

=
k−1
∑

r=0

ωr
k,sf̂

r
i+ 1

2
,s
. (2.25)
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The nonlinear weights ωr
k,s are also computed in the characteristic fields

ωr
k,s = ωr

k(Lsfi+k−r+1, ..., Lsfi+k). (2.26)

When the WENO interpolation is finished in each characteristic field, the numerical fluxes

obtained in the characteristic fields can then be projected back to the component space by

f̂WENOI
i+ 1

2

=

m
∑

s=1

f̂WENOI
i+ 1

2
,s

Rs. (2.27)

Traditionally, the Jacobian matrix Ai+ 1

2

is often computed by the Roe average [12] of the

values of the numerical solution at the two neighboring points xi and xi+1. The Roe average

for the Euler equations is given by

Ui+ 1

2

=
ρi

ρi + ρi+1

Ui +
ρi+1

ρi + ρi+1

Ui+1, (2.28)

where ρ is the density. Then the Jacobian matrix Ai+ 1

2

can be obtained by

Ai+ 1

2

= A(Ui+ 1

2

). (2.29)

2.3 Flux splitting

The purpose of flux splitting is to introduce correct upwinding. In general, the flux can be

split into two parts:

f(u) = f+(u) + f−(u), (2.30)

where df+

du
≥ 0 and df−

du
≤ 0. The simplest and commonly used flux splitting is the Lax-

Friedrichs flux splitting

f±(u) =
1

2
(f(u) ± αu), (2.31)

where α = max |f ′(u)| with the maximum taken over some relevant range of u.

2.4 Time discretization

After the spatial derivative is discretized with WCNS, we obtain a set of ordinary differential

equations (ODEs):

du

dt
= L(u). (2.32)
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The operator L(u) is represented in (2.2). There are many methods that we can use to solve

this set of ordinary differential equations. Implicit methods with suitable preconditioning,

e.g. the methods in [18] are widely used, however there are issues related to extra numerical

dissipation which need to be resolved. In this paper we adopt the explicit third order TVD

Runge-Kutta method [15] to discretize the set of ordinary differential equations (2.2):

u(1) = un + △tL(un),
u(2) = 3

4
un + 1

4
u(1) + 1

4
△tL(u(1)),

un+1 = 1
3
un + 2

3
u(2) + 2

3
△tL(u(2)).

(2.33)

We remark that the simpler Euler forward time discretization is linearly unstable when

coupled with high order WENO or WCNS spatial discretizations and should not be used.

3 The techniques to improve the convergence to steady

state solutions for WCNS

In the previous section, we have given an overview of WCNS. WCNS is a high order shock

capturing scheme and has been applied in many areas, especially for the flow over complex

configuration [5]. However, like many other high order shock capturing schemes, it suffers

from the convergence problem for the computation of steady state solutions [19]. In our

previous work [21], we proposed a new smoothness indicator for the fifth order finite difference

WENO scheme. With this new smoothness indicator, the residue of the fifth order WENO

scheme for typical steady states can settle down to machine zero. However, in some critical

points, this WENO scheme may lose accuracy. Based on extensive numerical tests, we found

that the Roe average procedure to compute the Jacobian matrix Ai+ 1

2

may influence the

convergence history of WENO schemes [20]. Instead of the Roe average, we used upwind

biased interpolations to compute the physical variables at the middle point of a grid for the

computation of the Jacobian matrix in [20]. The residue by this procedure can settle down

to machine zero, while the accuracy is maintained. In this section, we generalize these two

procedures to WCNS.
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3.1 The new smoothness indicator

Based on a detailed analysis, we found that the second order term in the smoothness indicator

for the fifth order WENO scheme is not adequate in the near region of a steady shock wave.

Hence, in [21] we have removed the second order term and proposed a new smoothness

indicator for the fifth order WENO scheme as follows

ISr = 4

∫ x
j+1

2

x
j− 1

2

△x

(

∂pr(x)

∂x

)2

dx −
1

3

∫ x
j+ 1

2

x
j− 1

2

△x3

(

∂2pr(x)

∂2x

)2

dx. (3.1)

The explicit formulae for this modified smoothness indicator are:

IS0 = (fj−2 − 4fj−1 + 3fj)
2,

IS1 = (fj−1 − fj+1)
2,

IS2 = (3fj − 4fj+1 + fj+2)
2.

(3.2)

We can see from these explicit formulae that the modified smoothness indicators are always

non-negative. We will use these modified smoothness indicators for the fourth and fifth order

WCNS schemes to improve their steady state convergence.

3.2 Upwind biased interpolation

Instead of the Roe average, the physical variable Ui+ 1

2

at the cell interface can be obtained

by the upwind biased interpolation [20]. For example, we can use zeroth order, first order

one-sided interpolation and high order upwind-biased WENO interpolations (e.g. fifth order

WENO interpolation for the fourth and fifth order WCNS, seventh order WENO interpo-

lation for the sixth and seventh order WCNS and ninth order WENO interpolation for the

eighth and ninth order WCNS). They are given as follows.

Zeroth order:

U (1) = Ui, U (2) = Ui+1. (3.3)

First order:

U (1) = (3Ui − Ui−1)/2, U (2) = (3Ui+1 − Ui+2)/2. (3.4)
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High order WENO interpolations: These are the same as that in the section 2 given by

the formulae (2.7), (2.11), (2.18) and (2.21). For example,

Û
(1)WENOI

i+ 1

2

=
k−1
∑

r=0

ωkÛ
k
i+ 1

2

(3.5)

where Û r
i+ 1

2

is the lower order interpolation on each substencil given by

Ûk
i+ 1

2

=

k−1
∑

j=0

ckjUi−k+j. (3.6)

Here, Ui+ 1

2

= U (1) as ui+ 1

2

≥ 0 and Ui+ 1

2

= U (2) when ui+ 1

2

< 0, where u denotes the velocity

in the Euler equations.

4 Numerical experiments for the convergence to steady

states of WCNS

4.1 One dimensional steady shock

One dimensional steady shock wave is a nice example to test the convergence of high order

shock capturing scheme. In this example, there is no influence of boundary condition, which

is also an important factor for the convergence of high order numerical schemes. This example

has been used in our earlier papers [21, 20, 19] to test the convergence of WENO schemes [21,

20] and WCNS schemes [19]. The initial condition is given by the Rankine-Hugoniot relation

[13]. We refer to our earlier papers [21, 19, 20] for more details. Figure 4.1 is the numerical

density distribution along the computational domain obtained by the fourth order WCNS.

We can see that the result is essentially non-oscillatory: no noticeable oscillations can be

observed. The numerical shock profile is quite sharp and appears monotone to the eye. Figure

4.2 contains the zoomed density distribution (left) in the post shock region and the evolution

of the average residue (right) for various WCNS schemes. In this figure, we use WCNS to

represent the numerical result by the traditional weighted compact schemes, while WCNS4,

WCNS5, WCNS6, WCNS7 and WCNS8 correspond the fourth, fifth, sixth, seventh and

eighth order WCNS schemes, respectively. MWCNS represents the weighted compact scheme
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combined with the mapped technique [8]. ZWCNS is the weighted compact scheme combined

with the technique proposed by Borges et al. [3]. ZSWCNS is the weighted compact scheme

combined with the new smoothness indicator proposed by Zhang and Shu [21]. U0WCNS,

U1WCNS, and UWWCNS correspond the weighted compact scheme combined with zero

order, first order and optimal weighted upwind biased interpolation for the physical variable

in the cell interface. Based on this figure, we have the following observations: (1) There

are relatively strong post-shock oscillations for the original WCNS schemes in the zoomed-in

region and the residue can not settle down to machine zero but hangs at a relatively high

level; (2) These relatively strong post-shock oscillations are totally removed by the use of

either of the two techniques and the residue can settle down to machine zero for this test

case. For the fourth order and fifth order WCNS schemes, the residue for all versions except

WCNS and MWCNS can settle down to machine zero. This performance is quite similar

to that in WENO schemes [20]. The physical variable from ZWCNS has a small overshoot

after the shock wave. After considering the accuracy and the CPU cost, we recommend

U0ZWCNS as the best choice. For higher order weighted compact schemes, it is interesting

that the residue of U0WCNS and UWWCNS from sixth order to eighth order can settle down

to machine zero, which are resulted from the removal of the strong post shock oscillation.

Hence, the upwind biased interpolation is necessary for the higher order WCNS schemes.

4.2 135◦ oblique steady shock

As a two dimensional example, we simulate an oblique shock which has an angle of 135◦

with the positive x direction. The flow Mach number on the left of the shock is M∞ = 2.

The computational domain is 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2. The initial oblique shock passes the

point (3, 0). The domain is divided into 200 × 100 equally spaced points with △x = △y.

Figure 4.3 contains the density contours obtained by the fourth order ZSWCNS. Figure

4.4 contains the evolution of the average residue by various fourth order (left) and fifth

order (right) WCNS schemes. In the computation, the solution at the ghost points of the
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Figure 4.1: Density distribution around the one dimensional steady shock of M∞ = 2 by the
fourth order WCNS scheme.

upper and bottom boundaries is taken as the theoretical values that satisfy the Rankine-

Hugoniot relation [13]. For this example, the residue can not settle down to machine zero.

The residues obtained by the traditional fourth order weighted compact schemes are 10−2.39,

10−2.77 and 10−2.79 for WCNS4, MWCNS4 and ZWCNS4 respectively. The residues obtained

by the traditional fifth order weighted compact schemes are 10−2.35, 10−2.80 and 10−1.88

for WCNS5, MWCNS5 and ZWCNS5 respectively. These values are quite high for steady

state computation. With the new techniques of either the new smoothness indicator or the

upwind biased interpolation for local characteristic decomposition, the convergence property

is improved significantly. The best performance is obtained from the numerical scheme

combining the usage of both the technique proposed by Borges et al. [3] and the zeroth

order upwind biased interpolation. For example, the residue by U0ZWCNS4 can settle

down to 10−7.8 and that of U0ZWCNS5 can settle down to 10−4.25. The residue from all

other methods are much higher than those. Hence, it seems that the best method to use

for the two dimensional case is the combination of the Z-technique and the upwind biased

interpolation.
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Figure 4.2: The zoomed density distribution (left) and the evolution of average residue
(right) of the one dimensional steady shock of M∞ = 2 by the WCNS schemes.
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Figure 4.2: Continued.
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Figure 4.3: The density contour of a 135◦ oblique shock of M∞ = 2 obtained by the fourth
order ZSWCNS scheme.
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Figure 4.4: The evolution of the average residue for the 135◦ oblique shock. Left: Fourth
order WCNS schemes; Right: Fifth order WCNS schemes.

5 Concluding remarks

The convergence to steady state solutions of the Euler equations for weighted compact

schemes (WCNS) is studied through numerical experiments. Like most other shock cap-

turing schemes, WCNS also suffers from the problem that the residue can not settle down

to machine zero but hangs at a relatively high level for the steady state solutions containing

shock waves. This problem is related to the appearance of slight post-shock oscillations.

In this paper, we test and compare the effect of our earlier introduced techniques to

improve the convergence of WENO schemes [21, 20] on the WCNS schemes.

Numerical tests and comparison show that the relatively strong post-shock oscillations

can be removed by the combination of two techniques. One is the high order smoothness

indicator proposed by Borges et. al [3]. The other is the replacement of Roe average in

the computation of Jacobian matrix in local characteristic decomposition by the zeroth

order upwind biased interpolation [20]. The strong post-shock oscillation is removed and

the residue can settle down to machine zero for typical one dimension cases, which has no

boundary condition effect. For two dimensional oblique shock waves, which contain strong

influence of boundary conditions since the oblique shock wave passes through the upper and
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bottom boundaries, the convergence property is also improved significantly, although the

residue cannot settle down to machine zero.

In comparison with the corresponding WENO schemes, the influence of boundary con-

ditions on the convergence of WCNS seems to be more serious. This is perhaps due to the

global influence through the banded linear solver in the compact schemes. This issue is left

for our future study.
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