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Abstract High order path-conservative schemes have been developed for solving noncon-
servative hyperbolic systems in (Parés, SIAM J. Numer. Anal. 44:300–321, 2006; Castro et
al., Math. Comput. 75:1103–1134, 2006; J. Sci. Comput. 39:67–114, 2009). Recently, it has
been observed in (Abgrall and Karni, J. Comput. Phys. 229:2759–2763, 2010) that this ap-
proach may have some computational issues and shortcomings. In this paper, a modification
to the high order path-conservative scheme in (Castro et al., Math. Comput. 75:1103–1134,
2006) is proposed to improve its computational performance and to overcome some of the
shortcomings. This modification is based on the high order finite volume WENO scheme
with subcell resolution and it uses an exact Riemann solver to catch the right paths at the
discontinuities. An application to one-dimensional compressible two-medium flows of non-
conservative or primitive Euler equations is carried out to show the effectiveness of this new
approach.

Keywords Path-conservative schemes · High order finite volume WENO scheme · Subcell
resolution · Nonconservative hyperbolic systems · Primitive Euler equations · Two-medium
flows · Exact Riemann solver
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1 Introduction

Recent years have seen a growing interest in developing numerical algorithms for solving
compressible multicomponent flows. The dynamics of inviscid multicomponent fluid may
be modeled by the Euler equations. However, computations often run into unexpected dif-
ficulties due to nonphysical oscillations generated at the vicinity of the material interface,
while such oscillations do not arise in single-fluid computations when a nonlinearly stable
scheme, such as the essentially non-oscillatory (ENO) or weighted ENO (WENO) scheme
[18, 22, 32, 41], is used. The underlying mechanisms have been analyzed and several meth-
ods have been developed to overcome these difficulties, e.g. in [1, 2, 5, 10, 24, 25, 28].

There are mainly two approaches to circumvent these oscillations. One is still based on
the conservative Euler equations, and the other is to write the Euler equations in nonconser-
vative or primitive form.

The ghost fluid method (GFM) developed in [14] with the isobaric fix technique in [15]
has provided an attractive and flexible way to treat the two-medium flow model for conser-
vative Euler equations. The GFM treats the material interface as an internal boundary, and
by defining ghost cells and ghost fluids, the two-medium flow can be solved via two respec-
tive single-medium Riemann problems. This method is simple, can be easily extended to
multi-dimensions, and can maintain a sharp interface without oscillations. Variants of the
original GFM and their applications can be found in, e.g. [28–30, 49] and the references
therein. Later, these techniques are used to develop the Runge-Kutta discontinuous Galerkin
(RKDG) finite element method for multi-medium flow in [36, 37, 50, 55]. The GFM, even
though approximating directly the conservative Euler equations, is in general not a conser-
vative method because the flux at the interface is double-valued. Recently, a conservative
modification to the GFM using the fifth order finite difference WENO scheme with third
order Runge-Kutta time discretization has been studied in [31], which attempts to reduce
the conservation error of the GFM without affecting its performance.

The other approach is based on the observation that erroneous pressure fluctuations are
generated by the conservative equations, hence a better approximation can be obtained
when writing the equations in a nonconservative (primitive) form [23, 24]. In these papers
a scheme for the nonconservative Euler formulation is proposed, with consistent correction
terms to remove the leading order conservation errors. This scheme can completely eliminate
spurious oscillations at the material interface, yielding clean monotonic solution profiles.
This work has been extended to solve two dimensional problems in [38]. In this method, the
correction terms depend heavily on the corresponding conservative numerical scheme. Only
second order nonconservative schemes are considered and they are only applied to shocks of
weak to moderate strengths. This method is also less justifiable for high-resolution schemes
with narrow shock transition and it is not justified in cases of strong shocks [20]. It is noted
in these papers that, for nonconservative hyperbolic systems, the shock relationships are not
uniquely defined by the limiting left and right states, as they also depend on the viscous path
connecting the two states. The correct shock capturing lies in getting correctly the viscous
path.

The theory developed by Dal Maso, LeFloch and Murat [12] gives a rigorous definition
of nonconservative products, associated with the choice of a family of paths. Later, people
have paid much attention to the development of numerical schemes for solving nonconser-
vative hyperbolic systems, see for example [6–8, 35] and references therein. A high order
Roe-type scheme based on the reconstructed states has been provided in [7] for the one-
dimensional case, and then extended to two dimensions in [6], but only with applications
to shallow-water systems. Other work based on this high order method has been carried out
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for solving two-phase flow models in [13, 45, 46]. A limitation of this approach has been
pointed out recently in [3] when applied to nonconservative Euler equations. The problem
is related to the effective choice of a correct path in the nonconservative high order scheme.
It appears that, for nonconservative Euler equations, using the Roe linearization to choose a
path as in [6, 7, 48] might end up in converging to a weak solution of a different path [3],
see also this deficiency in Fig. 3 of our Example 3 in Sect. 8. Several natural questions were
raised in [3] for the path-conservative schemes, including (i) how does one go about choos-
ing a path; (ii) what influence does the choice of path and discretization scheme have on the
computed solution; (iii) once a path is specified and a consistent path-conservative scheme
designed, does the numerical solution converge to the assumed path; and (iv) in cases where
the correct jump conditions are known unambiguously, can a path-conservative scheme be
designed so that it converges to the correct solution. The answer to (i) is likely to have to
come from physics. For a non-conservative formulation of a conservative system, as is the
case discussed in this paper, the choice of the path can be achieved by an exact Riemann
solver. We attempt to discuss possible approaches to address (ii), (iii) and (iv) in this pa-
per. We focus on adapting high order schemes for solving nonconservative Euler equations,
still based on high order Roe-type finite volume schemes as those in [6, 7]. For the non-
conservative or primitive Euler equations, the right path should recover the weak solution
of the conservative Euler formulation with density, momentum and energy as its variables.
In smooth regions, the conservative and nonconservative Euler equations are equivalent, but
at discontinuities, they are not [23]. As is well known, shock capturing schemes such as
monotone, total variation diminishing (TVD), or ENO and WENO schemes, smear discon-
tinuities with one or several transitional points. These transitional points are necessary for
conservation, however in a nonconservative formulation, they may not land on the correct
path in the phase space and hence may lead to convergence to erroneous weak solutions on
different paths. Realizing this difficulty, which unfortunately is generic with all shock cap-
turing schemes, our basic idea in this paper is to use Harten’s subcell resolution technique
[17] to sharpen the discontinuities and effectively eliminate (or at least significantly reduce)
the transitional points. As a result, the convergence towards the correct weak solution based
on the originally desired path seems to be restored.

Harten’s subcell resolution idea [17] is based on ENO schemes with a Lax-Wendroff time
discretization procedure in a cell-averaged framework. Later, this idea is extended in [42]
to both finite volume and finite difference ENO schemes with Runge-Kutta time discretiza-
tion. Recently, this subcell resolution idea has been used in solving advection equations with
stiff source terms, to obtain correct shock speed on coarse meshes [51]. In this paper, with
the sharp left and right states at the discontinuities, we use an exact Riemann solution to
catch the right path that connects the two states, as the correct capturing of the shock speed
is sensitive to the accuracy of the numerically achieved path. Numerical experiments for
one-dimensional compressible one- and two-medium flows of nonconservative Euler equa-
tions show the effectiveness of our new approach. Based on these results, we give partial
answers to the questions in [3] as quoted above: (i) at least for nonconservative or prim-
itive Euler equations, the right path should recover the weak solution of the conservative
Euler formulation with density, momentum and energy as its variables; (ii) at least for non-
conservative Euler equations, different paths would lead to very different weak solutions;
(iii) numerical solution from a path-conservative scheme designed for a specified path, with
a smeared shock front, does not necessarily converge to the weak solution corresponding
to the desired path, see for example Fig. 3 in Sect. 8; (iv) at least for the nonconservative
Euler equations, where we know the correct jump conditions, our approach of high order
Roe path-conservative scheme with subcell resolution can effectively remove smearing of
discontinuities, leading to convergence to the correct solution.
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This paper is organized with the following sections. In Sect. 2, we first describe the
high order Roe scheme for the nonconservative hyperbolic systems. Then we introduce the
two-medium flow model for nonconservative Euler equations in Sect. 3. In Sect. 4, we illus-
trate how to apply the WENO reconstruction with subcell resolution to the high order Roe
scheme. In Sect. 5, we describe the computation of the integral term in the high order Roe
scheme in detail. In Sect. 6, we present the level set function to track the material interface.
A summary of our algorithm to aid implementation is given in Sect. 7, and one-dimensional
numerical examples are provided to demonstrate the effectiveness of our approach in Sect. 8.
Concluding remarks follow in the last section.

2 High Order Roe Scheme for Nonconservative Hyperbolic Systems

In this section, we follow the procedure in [7] to define the high order Roe scheme for solv-
ing nonconservative hyperbolic systems. For the one-dimensional case, a nonconservative
hyperbolic system reads

Wt + A(W)Wx = 0, x ∈ � ⊂ R, t > 0 (2.1)

where W = W(x, t) is a N-component state vector and A(W) is a N ×N matrix. The system
is supposed to be hyperbolic, i.e. A(W) has N real eigenvalues and a full set of N linearly
independent eigenvectors.

For simplicity, we use a uniform grid

a = x 1
2

< x 3
2

< · · · < xNx− 1
2

< xNx+ 1
2

= b.

The cells, cell centers, and the uniform cell size are denoted by

Ii ≡ [xi− 1
2
, xi+ 1

2
], xi ≡ 1

2
(xi− 1

2
+ xi+ 1

2
), �x ≡ xi+ 1

2
− xi− 1

2
, i = 1,2, . . . ,Nx.

In the case of systems of conservation laws, that is when A(W) = ∂F/∂W , which is the
Jacobian of a flux function F(W), (2.1) reduces to a classical conservation law

Wt + F(W)x = 0. (2.2)

A conservative finite volume semi-discretization [26] of the system (2.2) is

W ′
i (t) = 1

�x
(Gi−1/2 − Gi+1/2), (2.3)

with the numerical flux

Gi+1/2 = G
(
W−

i+1/2(t),W
+
i+1/2(t)

)
, (2.4)

where Wi(t) is used to approximate the cell averaged value Wi(t), which is defined as

Wi(t) = 1

�x

∫ xi+1/2

xi−1/2

W(x, t)dx,

and W±
i+1/2(t) are the left and right limits of solutions at the cell boundary xi+1/2, which are

the reconstructed states associated to the cell average sequence {Wj(t)}.
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The semi-discrete high order Roe scheme for (2.3) can be written as

W ′
i (t) = − 1

�x

(
A+

i−1/2

(
W+

i−1/2(t) − W−
i−1/2(t)

)

+ A−
i+1/2

(
W+

i+1/2(t) − W−
i+1/2(t)

) − F
(
W+

i−1/2(t)
) + F

(
W−

i+1/2(t)
))

(2.5)

which is equivalent to the conservative scheme (2.3) with the numerical flux (2.4) defined to
be

Gi+1/2 = F
(
W−

i+1/2(t)
) + A−

i+1/2

(
W+

i+1/2(t) − W−
i+1/2(t)

)

= F
(
W+

i+1/2(t)
) − A+

i+1/2

(
W+

i+1/2(t) − W−
i+1/2(t)

)

= 1

2

(
F

(
W+

i+1/2(t)
) + F

(
W−

i+1/2(t)
) − |Ai+1/2|

(
W+

i+1/2(t) − W−
i+1/2(t)

))
. (2.6)

Here

|Ai+1/2| = A+
i+1/2 − A−

i+1/2 (2.7)

and the Roe property

Ai+1/2

(
W+

i+1/2(t) − W−
i+1/2(t)

) = F
(
W+

i+1/2(t)
) − F

(
W−

i+1/2(t)
)

(2.8)

has been used. The intermediate matrices are defined by

Ai+1/2 = Â
(
W+

i+1/2(t),W
−
i+1/2(t)

)
(2.9)

and

A±
i+1/2 = Ri+1/2�

±
i+1/2R

−1
i+1/2, �±

i+1/2 = diag
(
(λ1)

±
i+1/2, . . . , (λN)±

i+1/2

)
(2.10)

where Ri+1/2 is a N × N matrix with each column as a right eigenvector of Ai+1/2, and
�i+1/2 is the diagonal matrix whose diagonal entries are the corresponding eigenvalues of
Ai+1/2. We have Â(W,W) = A(W), and a specific definition of (2.9) is given in Sect. 4. In
(2.10), we define

(x)+ =
{

x, if x > 0

0, otherwise
(x)− =

{
x, if x < 0

0, otherwise

so �±
i+1/2 are the corresponding diagonal matrices with positive or negative eigenvalues.

We introduce P t
i (x) as any smooth function defined in the cell Ii , such that

lim
x→x+

i−1/2

P t
i (x) = W+

i−1/2(t), lim
x→x−

i+1/2

P t
i (x) = W−

i+1/2(t). (2.11)

Then, (2.5) can be rewritten as

W ′
i (t) = − 1

�x

(
A+

i−1/2

(
W+

i−1/2(t) − W−
i−1/2(t)

)

+ A−
i+1/2

(
W+

i+1/2(t) − W−
i+1/2(t)

) +
∫ xi+1/2

xi−1/2

d

dx
F

(
P t

i (x)
)
dx

)
. (2.12)
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Now the numerical high order Roe scheme for solving the nonconservative system (2.1)
can be easily generalized from (2.12)

W ′
i (t) = − 1

�x

(
A+

i−1/2

(
W+

i−1/2(t) − W−
i−1/2(t)

)

+ A−
i+1/2

(
W+

i+1/2(t) − W−
i+1/2(t)

) +
∫ xi+1/2

xi−1/2

A
(
P t

i (x)
) d

dx
P t

i (x)dx

)
(2.13)

with the function P t
i (x) satisfying (2.11). In order to obtain entropy-satisfying solutions, the

Harten-Hyman entropy fix technique [19, 47] can be applied to this scheme.

3 Two-Medium Flow Model for Nonconservative Euler Equations

In this section, we describe the two-medium inviscid compressible flow model for the non-
conservative or primitive Euler equations. As pointed out in [23], the choice of the primitive
set of variables, that include density, velocity and pressure, provides a model better suited
than the conserved variables for computations of propagating material fronts. Such model
results in clean and monotonic solution profiles, so we consider the one-dimensional primi-
tive Euler equations

Wt + A(W)Wx = 0 (3.1)

with

W = (ρ,u,p)T , A(W) =
⎛

⎝
u ρ 0
0 u ρ−1

0 γp u

⎞

⎠ . (3.2)

Here ρ is the density, u is the velocity, p is the pressure, γ is the ratio of specific heats.
The total energy is given by E = ρe + 1

2 ρu2, where e is the specific internal energy per unit
mass. In Sect. 8, we will consider systems of two gases and systems involving air and water.
We will use the following γ -law equation of state (EOS) for both air and water

ρe = p/(γ − 1) (3.3)

note that for the water medium, what we have actually used is the Tait EOS [9, 14, 28, 36],
and we need to use p̄ = p + γ B̄ instead of p in all the above formulae, where B̄ = B − A,
A = 1.0E5 Pa and B = 3.31E8 Pa. For water, γ = 7.15, and the displayed pressure for the
water in Sect. 8 is p, not p̄.

4 WENO Reconstruction with Subcell Resolution

In this section, we will describe how to use the WENO reconstruction with subcell resolu-
tion to reconstruct W±

i+1/2(t) from the cell averages {Wj(t)}. The WENO reconstruction is
described in detail in [22, 40]. We follow the procedure in [42] to describe how to apply
the subcell resolution technique of Harten [17] to the scheme (2.13) with the third order
total variation diminishing (TVD) Runge-Kutta time discretization [41], also called strong
stability preserving (SSP) time discretization [16].
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We first consider the 1D, scalar, linear version ut +f (u)x = 0, with f (u) = au and a > 0,
to describe the WENO reconstruction with the subcell resolution technique. The extension
to the nonlinear and system cases will follow. We would like to reconstruct u−

i+1/2 and u+
i−1/2

in each cell from the sequence of cell averages {uj }, with the following algorithm.

WENO Reconstruction Algorithm Given the cell averages {uj } of a function u(x):

uj = 1

�x

∫ xj+1/2

xj−1/2

u(ξ)dξ, j = 1,2, . . . ,Nx, (4.1)

based on the big stencil Si ≡ {Ii−r , . . . , Ii , . . . , Ii+r}, a k-th (k = 2r + 1) order accurate
approximation to the boundary values u−

i+1/2 and u+
i−1/2 in the cell Ii is reconstructed as

u−
i+1/2 =

r∑

j=0

ωj (xi+1/2)pj (xi+1/2), u+
i−1/2 =

r∑

j=0

ωj (xi−1/2)pj (xi−1/2) (4.2)

where each pj (x) is a reconstruction polynomial that uses the cell averages in the small
stencil S

j

i ≡ {Ii−j , . . . , Ii−j+r} ⊂ Si . The nonlinear weights {ωj (x)}r
j=0 are calculated from

the polynomials {pj (x)}r
j=0 and the linear weights {dj (x)}r

j=0 at each fixed point x, and they
satisfy

ωj (x) > 0,

r∑

j=0

ωj (x) = 1. (4.3)

The nonlinear weight ωj (x) is close to zero when a discontinuity is located in the stencil S
j

i ,
so as to avoid involving much information from any stencil S

j

i which contains discontinu-
ities.

Remark For the cell boundaries (4.2), the linear weights dj (xi+1/2) and dj (xi−1/2) are pos-
itive. However, at certain internal points x ∈ Ii (reconstruction at those points are needed
in Sect. 5), the linear weights dj (x) may be negative. The linear weights may also become
negative if the stencil Si is changed to Si+1 or Si−1, while still reconstructing values in the
cell Ii (e.g. in the following subcell resolution algorithm). In these cases, the technique to
treat negative weights in [39] needs to be applied.

Subcell Resolution Algorithm We describe the procedure for the three-stage third order
TVD time discretization, specifically given as (7.1) in Sect. 7. First, at the beginning of
every Runge-Kutta stage:

(I) Define the “critical intervals” (intervals containing discontinuities) Ii = (xi−1/2, xi+1/2)

by σi ≥ σi+1, σi > σi−1, where σi = |m(�+ui,�−ui)|, �+ui = ui+1 −ui , �−ui = ui −ui−1

and m is the minmod function which is defined to be

m(a1, . . . , an) =
{

s min1≤i≤n |ai |, if s = sign(a1) = · · · = sign(an)

0, otherwise.
(4.4)

(II) For any “critical interval” Ii , let θi = (ui+1 −ui)/(ui+1 −ui−1), and use xi−1/2 +θi�x

as an approximation to the discontinuity location inside the cell Ii .
Then, in each Runge-Kutta time stage, we perform:
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(III) Let the cell Ii boundary values u−
i+1/2 and u+

i−1/2 be defined as usual, using the
standard WENO reconstruction algorithm (4.2), unless Ii or (for the second and third Runge-
Kutta stages) Ii−1 is a “critical interval”. If Ii is a “critical interval”, we define

u−
i+1/2 = (1 − ξi)u

(L)

i+1/2 + ξiu
(R)

i+1/2, with ξi = min

(
(1 − θi)�x

a�t
,1

)
(4.5)

u+
i−1/2 = u

−,old
i−1/2 (4.6)

where u
−,old
i−1/2 is the standard WENO reconstruction with the stencil Si−1, u

(L)

i+1/2 is also the
standard WENO reconstruction with the stencil Si−1, but evaluated at xi+1/2 of the cell Ii ,
and u

(R)

i+1/2 is the WENO reconstruction with the stencil Si+1 and evaluated at xi+1/2. Notice

that here for u
(L)

i+1/2 the technique for treating negative weights needs to be used. For the

second and third Runge-Kutta stages, we choose the stencil Si+2 for u
(R)

i+1/2 if ξi < 1 and the
negative weight treating technique needs to be used here as well. When Ii−1 is a “critical
interval” and ξi−1 < 1, we choose the stencil Si+1 for u−

i+1/2.

Remark (a) The case for a < 0 is easily obtained by symmetry.
(b) For nonlinear systems, the subcell resolution algorithm is simply applied in each

local characteristic field. The detailed procedure can be found in [42]. The only difference
in our current situation is that we just use A(Wi(t)) to do the characteristic decomposition
when defining if Ii is a “critical interval”. However if the material interface is located in
the cell Ii , we always set it to be a “critical interval”, and we use A(

Wi(t)+Wi+1(t)

2 ) to do the

characteristic decomposition for the right cell boundary at xi+1/2, and A(
Wi−1(t)+Wi(t)

2 ) for
the left cell boundary at xi−1/2. The average to define the intermediate matrix in (2.9) is

Ai+1/2 = Â
(
W+

i+1/2(t),W
−
i+1/2(t)

) = A

(
W+

i+1/2(t) + W−
i+1/2(t)

2

)
.

(c) For systems, due to different local characteristic decomposition, two adjacent cells
might both be “critical intervals”. In this situation, we remove the one with a smaller σi

from the list of critical intervals.
(d) It is pointed out in [17, 42] that the subcell resolution technique should be applied

only to sharpen contact discontinuities. Special caution is needed when one tries to sharpen
a (nonlinear) shock, to avoid obtaining a nonphysical, entropy condition violating solution.
In our approach, the subcell resolution is used to get sharp left and right states at the discon-
tinuities. At a nonlinear shock, this is also needed so as to get a more accurate shock speed
which heavily depends on the left and right states. In the computation for Euler equations of
compressible gas dynamics, we apply the subcell resolution algorithm in both the linearly
degenerate field and genuinely nonlinear fields [47], but for the genuinely nonlinear fields,
with eigenvalues λL and λR corresponding to the left and right states respectively, we only
apply the subcell resolution for the case λL ≥ λR to avoid sharpening a rarefaction wave.

5 Choice of the Path and Evaluation of the Path Integral

In smooth regions, all simple wave models for conservative Euler equations and primitive
Euler equations are equivalent. However, near discontinuities, they are not equivalent [23].
According to this, our choice of the path is divided into three parts: the smooth case, discon-
tinuities in a single medium, and discontinuities at the material interface.
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5.1 The Smooth Case

In the smooth case, the integral term in (2.13)
∫ xi+1/2

xi−1/2

A
(
P t

i (x)
) d

dx
P t

i (x)dx (5.1)

can be computed via a high order accurate Gauss-Lobatto quadrature rule. Given the posi-
tions {sj } and associated weights {ωj } for a G-point quadrature in the interval [− 1

2 , 1
2 ], we

can replace the analytical path integral (5.1) by

∫ xi+1/2

xi−1/2

A
(
P t

i (x)
) d

dx
P t

i (x)dx ≈
G∑

j=1

ωjA
(
P t

i (sj )
) d

dx
P t

i (sj ). (5.2)

In our numerical experiments, we use the four-point Gauss-Lobatto quadrature rule:

s1,4 = ∓1

2
, s2,3 = ∓

√
5

10
, ω1,4 = 1

6
, ω2,3 = 5

6
. (5.3)

For P t
i (s1,4), from (2.11) we already have

P t
i (s1) = W+

i−1/2, P t
i (s4) = W−

i+1/2 (5.4)

following the same procedure for obtaining P t
i (s1,4), we can also obtain P t

i (s2,3), where
P t

i (s2) is obtained in the same way as P t
i (s1) corresponding to the local characteristic field

at xi−1/2, and P t
i (s3) as P t

i (s4) corresponding to the local characteristic field at xi+1/2. Note
here for the smooth case, we do not need the subcell resolution in the WENO reconstruction.
Since we have {P t

i (sj )}4
j=1, d

dx
P t

i (x) can be approximated by Q(x), the derivative of the
Lagrangian interpolation polynomial based on {P t

i (sj )}4
j=1. Then d

dx
P t

i (sj ) can be replaced
by Q(sj ) in (5.2).

5.2 Discontinuities in a Single Medium

At the discontinuities, the cell is defined as a “critical interval”, and we have obtained the left
and right states W+

i−1/2 and W−
i+1/2 from the WENO reconstruction with subcell resolution in

Sect. 4. Denote the left and right states W+
i−1/2 and W−

i+1/2 to be WL and WR , we can use the
exact Riemann solver [43, 47] to obtain the exact Riemann solution between the two states.
The exact Riemann solution for the compressible Euler equations contains four constant
states connected by a rarefaction wave or a shock wave, a contact discontinuity, and another
rarefaction wave or shock wave. The four constant states can be denoted as WL, W∗L, W∗R

and WR . In this case of the “critical interval”, we use the exact Riemann solution to get the
integral path for the integral term (5.1). It can be computed as the following seven parts:

(a) The four constant-state parts, since d
dx

P t
i (x) = 0, the integral in these four parts are

all zero.
(b) If WL and W∗L are connected by a rarefaction wave, we similarly use the 4-point

Gauss-Lobatto quadrature rule (5.3), and P t
i (x) in this part is just the rarefaction wave line.

Otherwise, if WL and W∗L are connected by a shock wave, then the integral path for this part
needs to satisfy the Rankine-Hugoniot jump condition of the conservative Euler equations,
and the integral result is σ(W∗L −WL), with σ being the shock speed related to the two states
WL and W∗L. Similar results can be obtained for the connection between W∗R and WR .
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(c) For the contact discontinuity part between W∗L and W∗R , the integral path also needs
to satisfy the Rankine-Hugoniot jump condition. Since W∗L and W∗R have the same pressure
p and velocity u and different densities ρ∗L and ρ∗R , the integral result is simply (u(ρ∗R −
ρ∗L),0,0)T .

Remark In (b) and (c) above, for the shock wave and contact discontinuity, we do not need
to know the exact integral paths for satisfying the Rankine-Hugoniot jump condition, in
order to get the integral results along those paths. We only need to make sure that these
paths exist, which can be easily verified.

5.3 Discontinuities at the Material Interface

We always set the cell at the material interface as a “critical interval”. The integral term
(5.1) can be computed similar to the second case of discontinuities in a single medium, as
the exact Riemann solution at the material interface is almost the same as that for the single-
component compressible Euler equations, also containing four constant states connected by
a rarefaction wave or a shock wave, a contact discontinuity, and another rarefaction wave
or shock wave [27, 28, 30]. Apart from W∗L and W∗R which are connected by a contact
discontinuity, the left part is for medium one with the ratio of specific heats γ1 and the right
part is for medium two with the ratio of specific heats γ2.

6 Tracking the Moving Medium Interface

In this section, we describe how to use the level set equation [4, 34, 44] to track the moving
fluid interface. The level set equation for the one-dimensional case is

φt + uφx = 0. (6.1)

The interface is tracked as the zero level set of φ, with the initialized φ(x) to be the signed
normal distance to the material front. We use a fifth order finite difference WENO method
[22, 40] with the third order TVD Runge-Kutta time discretization [41] to solve the level set
equation (6.1). This equation is solved concurrently with the nonconservative Euler equa-
tions (3.1), using the velocity u coming from the Euler equations. The solution φ = φ0 from
solving the level set equation (6.1) has the zero level set as the material interface, but it does
not need to be the distance function for t > 0. A serious distorted level set function φ = φ0

may lead to significant errors for t > 0. For this reason, φ0(x) is reinitialized to be a signed
normal distance function to the interface by solving the following eikonal equation to steady
state

φτ = S(φ0)(1 − |φx |) (6.2)

through iterating the pseudo-time τ , where S(φ) = φ√
φ2+(�x)2

is the approximate sign

function. We use the Godunov Hamiltonian and the fifth order finite difference WENO
discretization in [21, 54] to solve (6.2). The stopping criterion for this iteration is e1 <

�τ(�x)2, where e1 is the L1 difference of φ between two consecutive iteration steps, and
we take �τ = �x/10 in the experiments [44].
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7 Algorithm Summary

Our basic semi-discrete scheme is (2.13), which can be written as

Wt = L(W).

It is discretized in time by the third order TVD Runge-Kutta method [41], also referred to
as the SSP Runge-Kutta method SSPRK(3,3) [16]:

W(1) = Wn + �tL
(
Wn

)
,

W(2) = 3

4
Wn + 1

4
W(1) + 1

4
�tL

(
W(1)

)
, (7.1)

Wn+1 = 1

3
Wn + 2

3
W(2) + 2

3
�tL

(
W(2)

)
.

Notice that this high order SSP Runge-Kutta method is simply a convex combination of
three Euler forwards. We can now summarize our algorithm to advance one time step (from
tn to tn+1) in the following steps.

Step 1. Compute the new time step size based on the CFL condition:

�t = CFL�x/ max
1≤j≤Nx

(|un
j | + cn

j

)
(7.2)

where cn
j =

√
γpn

j /ρ
n
j is the sound speed, and ρn

j , un
j ,p

n
j are the density, velocity and pres-

sure at time level tn, respectively. This step needs to be done only at the beginning of the
whole Runge-Kutta step.

Step 2. Taking Wn and φn as the initial condition, solve

Wt = L(W), (7.3)

φt = P (φ), (7.4)

for one time step using the Runge-Kutta time discretization (7.1). Here (7.4) is written from
(6.1) with the fifth order finite difference WENO spatial discretization. At each Runge-
Kutta time stage, we first reconstruct W+

i−1/2 and W−
i+1/2 as described in Sect. 4, then, based

on W+
i−1/2 and W−

i+1/2, we compute the integral term (5.1) as described in Sect. 5. We can
then formulate the right side of (7.3). P (φ) can be formulated simultaneously, given the
velocity u = un from the Euler equations. Denote the updated W by Wn+1, and the updated
φ by φ̃n+1.

Step 3. Reinitialize φ̃n+1 by solving (6.2) with φ0 = φ̃n+1, and denote this solution by φn+1.

Step 4. Define the new interface position from the zero level set of φn+1. Now we have
advanced one time step.

8 Numerical Experiments

In the following, we show several one-dimensional numerical examples to demonstrate that
our approach can improve the performance of the high order Roe scheme for the noncon-
servative Euler equations. With fifth order WENO reconstruction in Sect. 4 (r = 2) and
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Table 1 Accuracy test for
Example 1 with initial data (8.1),
t = 1. Without subcell resolution

Nx L1 error Order L∞ error Order

20 2.01E–04 – 3.73E–04 –

40 5.95E–06 5.08 1.28E–05 4.86

80 1.81E–07 5.04 3.93E–07 5.02

160 5.58E–09 5.02 1.19E–08 5.05

320 1.76E–10 4.99 3.53E–10 5.07

Table 2 Accuracy test for
Example 1 with initial data (8.1),
t = 1. With subcell resolution

Nx L1 error Order L∞ error Order

20 4.03E–04 – 7.20E–04 –

40 1.45E–05 4.80 4.83E–05 3.90

80 4.30E–07 5.07 3.00E–06 4.01

160 1.39E–08 4.95 1.46E–07 4.36

320 4.16E–10 5.06 7.92E–09 4.20

four-point Gauss-Lobatto quadrature rule in Sect. 5.1, the Roe scheme can achieve fifth
order accuracy for smooth solutions, which will be tested in Example 1. Except for Exam-
ple 1, Example 3 and Example 5, the computational domain for all other examples are taken
as [0,1], and the initial material interface for the two-medium flow problems is located at
x = 0.5. Due to the need of good performance for the subcell resolution in the Runge-Kutta
context, we take a small CFL number 0.1 for all examples [42]. The computational domain
is divided with Nx = 100 uniform grids. Units for density, velocity, pressure, length and
time are kg/m3, m/s, Pa, m and s, respectively.

Example 1 In this example, we first test the accuracy for a smooth solution to a single
component nonconservative Euler equations with initial conditions

ρ0(x) = 1 + 0.8 sin(x), u0(x) = 1, p0(x) = 1 (8.1)

on a domain [0, 2π] with periodic boundary conditions. The exact solution is

ρ(x) = 1 + 0.8 sin(x − t), u(x) = 1, p(x) = 1.

Since the solution to this problem is smooth, theoretically we do not need to apply the subcell
resolution. We use fifth order WENO reconstruction in Sect. 4 (r = 2) and four-point Gauss-
Lobatto quadrature rule for the integral term in the smooth case in Sect. 5.1. Without subcell
resolution, the fifth order accuracy for both L1 and L∞ norms can be achieved for this path-
conservative scheme applied to the single-component nonconservative Euler equations, as
listed in Table 1. If we apply the subcell resolution in the tracked critical intervals, we can
also obtain fifth order accuracy for the L1 norm, but we lose one order for the L∞ norm, as
listed in Table 2. This is reasonable as we would have only applied the subcell resolution in
a few cells in this one-dimensional case, and treating the smooth cells as discontinuous cells
would cause some loss of accuracy in these cells.

Example 2 In this example, we now show a single-medium flow problem, which is the
standard Lax shock tube problem, to demonstrate that we obtain the correct entropy solution
by our nonconservative scheme. Here γ = 1.4 is used, with the initial condition:
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Fig. 1 Density, velocity and
pressure for Example 2. t = 0.17.
Solid line: the exact solution.
Symbol: the numerical solution

(ρ,u,p) =
{

(0.445,0.698,3.528) for x ≤ 0.5;
(0.5,0,0.571) for x > 0.5.

(8.2)

The computed density ρ, velocity u and pressure p are plotted at t = 0.17 against the exact
solution in Fig. 1. We can see that the rarefaction wave, contact discontinuity and shock
wave are all captured well.
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Example 3 This example is a right moving shock for a single-medium flow. Here γ = 5/3
is used, with the initial condition:

(ρ,u,p) =
{

( 41
14 ,9

√
3

41 ,10) for x ≤ 0.5;
(1,0,1) for x > 0.5.

(8.3)

We compute this problem on a domain [0,1]. A similar example (in Lagrangian form) is
used in [3] to demonstrate potential problems of nonconservative path-based Roe-type and
Lax-Friedrichs (LxF)-type schemes. The computed density ρ, velocity u and pressure p are
plotted at t = 0.1 against the exact solution in Fig. 2. We can see that our algorithm can
capture the correct shock location in this case, and the minor glitches on the left constant
state would not grow with a much refined mesh (figures on the right).

We also use this simple example to illustrate that in our approach, the subcell resolution
and the exact Riemann solution are both necessary in order to catch the right path in this
nonconservative scheme. In Fig. 3, we list the results for two cases: one is obtained when
we use the exact Riemann solution but without subcell resolution, the other is obtained when
we use subcell resolution but with the line path [3, 48] instead of the exact Riemann solution,
on a very refined mesh Nx = 1000. We can see that neither of them can catch the correct
shock solution.

Example 4 This is an air-helium shock tube problem taken from [14, 31, 36], with the initial
condition:

(ρ,u,p, γ ) =
{

(1,0,1 × 105,1.4) for x ≤ 0.5;
(0.125,0,1 × 104,1.2) for x > 0.5.

(8.4)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0007 running with
495 time steps in our code, against the exact solution in Fig. 4. We can see that the rarefaction
wave, the contact discontinuity and the shock wave are all captured well for this two-medium
flow.

Example 5 This example is used to demonstrate the advantage of high order methods as in
[50] for two-medium flows. It contains both shocks and fine structures in smooth regions,
which is a simple model for shock-turbulence interactions. The initial discontinuity is right
on the material interface and located at x = −4, the left and right states for the initial dis-
continuity are

(ρ,u,p, γ ) =
{

(3.857143,2.629369,10.333333,1.4) for x < −4,

(1 + 0.2 sin(5x),0,1,5/3) for x > −4.
(8.5)

We compute the example up to time t = 1.8 on a domain [−5, 5]. For comparison, we also
show the results obtained with a second order method, by replacing the fifth order WENO
reconstruction with subcell resolution in Sect. 4 with a second order ENO reconstruction
[17, 42], and replacing the four-point Gauss-Lobatto quadrature rule for the smooth integral
term in Sect. 5.1 with a trapezoid rule. We plot the densities obtained by the second order and
the fifth order methods with Nx = 200 in Fig. 5. The solid line is the solution obtained by the
fifth order method with Nx = 1000 points, which can be considered as a converged reference
solution. We can find that the two methods can both capture the correct solution. However
the result of the fifth order method is in better agreement with the converged reference
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Fig. 2 Density, velocity and pressure for Example 3. t = 0.1. Solid line: the exact solution. Symbol: the
numerical solution. Left: mesh Nx = 100; Right: mesh Nx = 1000

solution than the second order method, especially in the region with fine structures, on this
relatively coarse mesh. This is similar to the results in [50].

Example 6 This is a problem of a shock wave refracting at an air-helium interface with a
reflected weak rarefaction wave taken from [14, 31, 36], with the initial condition:
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Fig. 3 Density, velocity and pressure for Example 3. t = 0.1. Nx = 1000. Solid line: the exact solution. Sym-
bol: the numerical solution. Left: exact Riemann solution without subcell resolution; Right: subcell resolution
and with the line path instead of the exact Riemann solution

(ρ,u,p, γ ) =

⎧
⎪⎨

⎪⎩

(1.3333,0.3535
√

105,1.5 × 105,1.4) for x ≤ 0.05,

(1,0,1 × 105,1.4) for 0.05 < x ≤ 0.5,

(0.1379,0,1 × 105,5/3) for x > 0.5.

(8.6)
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Fig. 4 Density, velocity and
pressure for Example 4.
t = 0.0007. Solid line: the exact
solution. Symbol: the numerical
solution

The computed density ρ, velocity u and pressure p are plotted at t = 0.0012 against the
exact solution in Fig. 6. The strength of the shock for this example is pL/pR = 1.5, the
computed results compare well with the exact solutions, without oscillation around the ma-
terial interface for the density.

Example 7 This example is the same as Example 6, also taken from [14, 31, 36] only by
increasing the strength of the right shock wave to pL/pR = 15, with the initial condition as:
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Fig. 5 Density, velocity and pressure for Example 5. t = 1. Solid line: the converged reference solution for
the fifth order method with Nx = 1000. Symbol: the numerical solution with Nx = 200. Left: second order
method; Right: fifth order method

(ρ,u,p, γ ) =

⎧
⎪⎨

⎪⎩

(4.3333,3.2817
√

105,1.5 × 106,1.4) for x ≤ 0.05,

(1,0,1 × 105,1.4) for 0.05 < x ≤ 0.5,

(0.1379,0,1 × 105,5/3) for x > 0.5.

(8.7)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0005 against the
exact solution in Fig. 7. The computed results still compare reasonably well to the exact
solutions, and there is still no oscillation around the material interface for the density with
this stronger strength of the shock. The small glitches on the left constant state can also
be observed for the methods in [14, 31, 36], which were explained in [14] to be due to the
(mis)capturing of the perfect shock initial data by a shock capturing scheme. In this example,
it is more pronounced since the shock wave is much stronger compared to Example 6.

Example 8 This is a problem of a shock wave refracting at an air-helium interface, but with
a reflected shock wave [14, 36], with the initial condition as:

(ρ,u,p, γ ) =

⎧
⎪⎨

⎪⎩

(1.3333,0.3535
√

105,1.5 × 105,1.4) for x ≤ 0.05,

(1,0,1 × 105,1.4) for 0.05 < x ≤ 0.5,

(3.1538,0,1 × 105,1.249) for x > 0.5.

(8.8)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0017 against the
exact solution in Fig. 8. The computed results show that there are slight oscillations near
the left shock region, similar results can also be observed in [14] using the standard scheme
from [33]. If we increase the strength of the shock to pL/pR = 15, the code would blow
up. It appears that our subcell resolution procedure is still not accurate enough to capture
the strong generated shock during the instant when the original shock wave impacts on the
material interface.

Example 9 This is a gas-water shock tube problem with very high pressure in the gaseous
medium taken from [31, 36]. The initial condition is given as
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Fig. 6 Density, velocity and
pressure for Example 6.
t = 0.0012. Solid line: the exact
solution. Symbol: the numerical
solution

(ρ,u,p, γ ) =
{

(1270,0,8 × 108,1.4) for x ≤ 0.5;
(1000,0,1 × 105,7.15) for x > 0.5.

(8.9)

The computed density ρ, velocity u and pressure p are plotted at t = 0.00016 against the
exact solution in Fig. 9. Even though the initial pressure in the gas is extremely high and a
very strong shock is generated in the water, our computed results still compare well to the
exact solutions.
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Fig. 7 Density, velocity and
pressure for Example 7.
t = 0.0005. Solid line: the exact
solution. Symbol: the numerical
solution

Example 10 This example increases the energy of the explosive gaseous medium in Ex-
ample 9, which is taken from [14, 31, 36], originally studied in [53] for the underwater
explosions, with the initial condition given as

(ρ,u,p, γ ) =
{

(1630,0,7.81 × 109,1.4) for x ≤ 0.5;
(1000,0,1 × 105,7.15) for x > 0.5.

(8.10)
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Fig. 8 Density, velocity and
pressure for Example 8.
t = 0.0017. Solid line: the exact
solution. Symbol: the numerical
solution

The computed density ρ, velocity u and pressure p are plotted at t = 0.0001 against the
exact solution in Fig. 10. We begin to see some discrepancies between the exact solution
and the numerical solution, however the errors are still reasonably small considering that we
are using a nonconservative scheme on this example with very strong discontinuities. The
methods in [14, 31, 36] can solve this problem well.
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Fig. 9 Density, velocity and
pressure for Example 9.
t = 0.00016. Solid line: the exact
solution. Symbol: the numerical
solution

9 Concluding Remarks

In this paper, we have investigated using the WENO reconstruction with a subcell resolution
technique when applied to high order Roe-type schemes for nonconservative Euler equa-
tions. The subcell resolution is to sharpen discontinuities, in order to remove or significantly
reduce transitional points at discontinuities. The technique has been shown to significantly
improve the capturing of the correct discontinuity waves by defining the correct path in the
path integral at discontinuities. The smearing of discontinuities by shock capturing schemes
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Fig. 10 Density, velocity and
pressure for Example 10.
t = 0.0001. Solid line: the exact
solution. Symbol: the numerical
solution

has transitional points at the discontinuities which do not necessarily land on the desired
paths. We have identified this numerical smearing as the most probable reason for the fail-
ure of schemes to converge to the correct weak solution on the desired paths. The proposed
subcell resolution technique within a Runge-Kutta time discretization seems to have robust-
ness problems for very strong discontinuities, especially during interactions of such discon-
tinuities. An improvement on the robustness of the algorithms when transitional points are
removed or significantly reduced constitutes our future work.
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Our discussion is restricted to the one-dimensional case. A preliminary study on the
extension of our methodology to two-dimensional problems (not reported in this paper),
implemented in a dimension by dimension fashion (not dimension splitting), has indicated
limitations for some of the complex discontinuity wave patterns. This may be due to the
complication of two-dimensional waves and the limitation of the subcell resolution tech-
nique to capture accurately the correct states and the corresponding paths at the disconti-
nuities. Further investigation of effective multi-dimensional algorithm in this context, for
example, discontinuous Galerkin (DG) method [11] and spectral finite volume method [52],
also constitutes our future work.
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